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We show that quark operators of twist 3 contributing to the polarized nucleon structure function gtW.3 (x, Q2) decouple from 
the evolution equation for the quark-gluon operators of the same twist in two important limits, Nc--,~ and n--,~(Nc is the 
number of colours and n refers to the nth moment of g2). The anomalous dimensions for the quark operators turn out to be always 
the lowest ones in the spectrum. Asymptotic behaviour ofg2(x, Q2) in the region 1 - x < <  1 is derived. Results of an extensive 
numerical study of the spectrum of anomalous dimensions for QCD and for the Nc-, ~ cases are presented. 

I. Introduction 

Spin dependent structure functions of the nucleon have received a lot of theoretical interest lately. The exper- 
imental data on the polarized structure function gt (x) from the EM Collaboration [ 1 ] have initiated animated 
discussions on the role of strange quarks and gluons in the polarized nucleon [2]. The second polarized nucleon 
structure function g2 (x) has not been measured so far. A novel feature of g2 (x) is that, unlike the spin-averaged 
nucleon structure functions and gt (x),  it involves contributions from the quark-gluon correlations even in the 
limit Q 2~ oo. In the language of Wilson operator expansion these are attributed to contributions of the sequence 
of local operators of twist 3 

O~ u ' ' "  = AS#?~ys Vu, ...Vu, q ,  ( 1 ) 

w h e r e  S d e n o t e s  s y m m e t r i z a t i o n  o v e r / q  .../~,, A a n t i s y m m e t r i z e s  o v e r  tr a n d  #1, a n d  q is t he  q u a r k  f ie ld  ope ra to r .  

I t  is k n o w n  t h a t  t he  c o n t r i b u t i o n  o f  t he  twis t -2  o p e r a t o r s  to  g2 ( x )  can  be  exp re s sed  in a c o m p a c t  f o r m  [ 3 ]: 
1 

g t 2 W ' 2 ( X ) = - - g l ( X ) + ! ~ g l ( y ) ,  ( 2 )  
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so that measurement of the difference g~W.3 (X, Q2) =g2 (x, Q2) __g~W.2 (X, Q2) would provide a clear signal for 
the higher twist effect. In this paper we elucidate the dependence ofg~ w3 (x, Q2 ) on the momentum transfer Q2. 
We recall that in the case of spin averaged distributions higher twist operators only give rise to power corrections 
in 1/Q2 to the leading twist part. Hence, their dependence on Q2 is a matter of  academic interest, in view of the 
rather constrained region o fQ 2 in which such effects can be observed. In polarized scattering this Q2 dependence 
can be studied experimentally for much larger values of  Q2. 

In earlier papers [4], a simple evolution equation for the moments ofg~ w3 (x, Q2) has been written 

f dxxSg~2W3(x, Q2)-ko~(l t2) j  J 
0 0 

(3) 

and the anomalous dimensions have been calculated by evaluating the operator ( 1 ) on the free quark states. 
Subsequently, it has been realized [5], that the derivation in ref. [4] leading to eq. (3) is in error, because 
quark operators ( 1 ) get mixed with quark-gluon operators of the same twist and quantum numbers. A complete 
basis of operators has been suggested and the mixing matrix has been calculated in ref. [ 6 ]. Similar calculations 
have later been performed by several authors [ 7-9 ]. 

The most significant departure from the results of ref. [ 4 ] is that the number of contributing operators to the 
structure function g~W.3 turns out to be increasing with the (x)-moment.  The expressions for n = 2 and 4 exem- 
plify this: 

I 

f .,,w., dxx  g2 (x, O2)=ke~(;t2)} ( ( O 1 ( ~ 2 )  )) , 
0 

1 / z  . ~2" \x~/h 
fdxx4gt2W3(x, Q 2 ) = ( ( O ~ ( f l 2 ) ) ) k ~  ] -{- <( 02  (,tt 2) 22 k ~  ) -{-<< 03  (/A 2 ) \Ols(/A2) J ' 

0 

(4) 

where (( 0} (/t2 ) )) are reduced matrix elements of the multiplicatively renormalized operators which are found 
by explicit diagonalization of the mixing matrix, ~ are the corresponding anomalous dimensions and 
b=  ( 11N c - 2 n f ) / 3 ,  with nf being the number of flavours. In the near future it will not be possible to distinguish 
between the terms with different anomalous dimensions experimentally. 

Eq. (4) suggests that it is not possible to write down an evolution equation for g~W.3 (X, Q2) of the Gr ibov-  
Lipatov-Altarelli-Parisi type [ 10 ], which would allow one to calculate the Q2-dependence of the structure func- 
tion from an assumed parametrization at some low virtuality. Hence unlike the spin averaged structure func- 
tions, one cannot use phenomenological models at lower Q2 to predict g~ w3 (x, Q2 ) at high momentum transfers. 
The anomalous dimensions 7} are not known analytically, which hinders analytic continuation to the small-x 
region. For higher moments the number of  independent operators increases and the situation becomes seem- 
ingly worse, see fig. 1 where the spectrum of anomalous dimensions of twist-3 operators is shown for n = 2 ..... 
30. These difficulties compel us to search for some reasonable approximation to the exact solution, which could 
be used to analyse data when these become available. 

We have found that eq. (3) provides actually an excellent approximate solution of the evolution equation and 
becomes exact in two important limits. The first is the limit of a large number of colours, N¢~ oo. The other one 
is the limit of a large number of the (x)-moment ,  n-~ oo, which governs the behaviour of the structure function 
g2 (x, Q-~) in the region 1 - x  << 1. To this end we solve explicitly the evolution equations for the quark-gluon 
operators obtained in ref. [6 ] and demonstrate that the particular combination of these operators which con- 
tributes to ( 1 ) diagonalizes the mixing matrix in the above mentioned limits. We present numerical calculations 
of the spectrum of anomalous dimensions for the flavour-singlet and -nonsinglet operators. Comparing these 
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Fig. 1. Spectrum of anomalous dimensions of twist-3 nonsinglet 
operators compared to anomalous dimensions of twist-2 opera- 
tors (shown by solid squares) and to the asymptotic formula (22). 

with our analytic solution for the large N¢-limit, we find that the 1/N¢ corrections are small. Thus, the quark-  
gluon operators couple only weakly to the structure function g~W.3, which, however, does not justify the assump- 
tions made in ref. [4],  as the anomalous dimensions turn out to be different. Our results strongly suggest that 
anomalous dimensions of  higher twist operators are analytic functions of  the angular momentum.  

2. Q2-evolution 0fg2(x, Q2) in the N~-*~ limit 

We start by recalling that with the help of  the equations of  motion, the twist-3 contributions to the polarized 
leptoproduction can be written in a number  of  equivalent ways. For our purpose it turns out to be convenient 
to use the particular form suggested in ref. [ 11 ] 

1 

x 

with 

~2(x) =g t  (x)  - l [ H ( x )  + g ( - x )  ] - ½ [ M ( x )  + M ( - x )  ] , (6) 

where the function H(x)  is determined by the nucleon matrix element of  the twist-3 nonlocal operator: 

1 

Z e 2 ~ d~(NIg(t(½z)[iGp~(~z)+~Gp~(~z)ys]z~¢q(-½z)lN) 
q = u , d , s , . . .  

- - I  

I 

=2[ (pz)sp- (sz)pp] J dx exp(ixpz) xH(x)  . (7) 
- -1  

Here Pa and s a = a(p, s)ypysU (p, s) are, respectively, the momentum and the spin-vector of  the nucleon, and z~ 
is a light-like vector. The gauge factors are not shown for brevity. We use the notations a ~ = ½ i [ ? , ,  7~], 
G,~ = ½ ~ , a G ~ a ,  and G,~ is the QCD field-strength tensor. The covariant derivative reads as V, = O/Oxu-igAu. 
For completeness we have included in (6) also the contribution of  the quark mass operator, which is actually 
omitted in what follows: 

1 

e~ (Nlgt(½z)imqap~z~ysq(- ½z) lN)  = [ (pZ)Sp-(SZ)pp] J dx exp(ixpz) xM(x )  . (8) 
q =  u , d , s  . . . .  - -  1 
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Our strategy will be to work directly with the nonlocal operator contributing to (7) rather than to go over to 
the series of local operators. We start with the flavour nonsinglet case and define 

S~ (o~, fl, 7)=g~i(az)[iG,,,(flz) + G~,,(flz)751z,,~q(Tz). (9) 

The operators S ÷ and S -  do not mix under renormalization and the evolution equation for them is written in 
the form of a certain integral transform on the light-cone. The corresponding kernel K + is given by eq. (6.2) in 
ref. [81. 

We further define 
I/2+iov 

+ 1 f dj(a_Ty_2S u (j, ~), ~= o~+7-2f l  S~7(o4fl, 7 ) -  2~ri o r -7  (10) 
1/2--i~ 

The complex angular momentum j is a trivial invariant of the evolution equation. Combinings eqs. (7), (9), 
and (10) we obtain, up to trivial flavour factors, 

1 

½ f d~[ (1 -~ ) (NIS2 (J ,~ ) IN)+( I+~) (N[Sy (J ,~ ) IN) ]  
- - I  

1 

=2[(pz)sp - (sz)pplF( - j +  1 ) [exp( - ½irc)pz] j-~ f d x ( x +  ie)JH(x) . 1 1 ) 
- -1  

Neglecting contributions to the evolution equation which are down by 1/N~ we obtain after some algebra 

1 

S + (/, {)."7 = S + 0, {).",~- ~ In dqKf(~,q)S+(j ,q)"~,  12) k/zi/ 
--1 

where ~ 

~ K,. -+ ((, ,I) = ~6(~- ~) 
--I 

o<,,-<,,-, ,r,- ,  i<,,, ' 
r / -~  1 - ( [ 1 - (  + + d ( r # - ( )  r / ' --~ 1--~ \ l - t - r / ' /  ] 

( 1 + ~ ) 3  ~ 1 ( K + ) ,  \ l -q]_] \ l - -q]  

{ o(~-~) - t 4  ~ {~ [1--( l  +#'~'1 1 +r# rl  - ( l  +~J+' ] } )  (K-) 
\ ] ~ r / / J -  j +  1L \ l + q /  

13) 

~-~ I + ( L ~  + - +6((-~)  J" ~_~, @' ll+~ +~' l+ 

The two expressions in large parentheses in the last line correspond to the contributions to K + and K - ,  respec- 
tively. To find the multiplicatively renormalized local operators one should consider the corresponding homo- 
geneous equation for positive integers j >~ 2: 

1 

f dq Kf  (~, q)fj(q) = yjfj(~). (14) 
--1 

aJ The corresponding expression in ref. [8] contains misprints. 
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Each solution of (14) in the f o r m  f-'~"e~m+ n=4-2a,n,~ (1 + Om( l  - ~)" yields a renormalization group invariant 
local operator Ots-~'J/bZm+n=j_2amn~ (v)mG(V)nq/. One can check that the mixing matrix for local operators 
corresponding to ( 13 ) coincides with eq. (54) in ref. [ 6 ] to the stated 1/N~ accuracy. 

Here we deviate from the standard procedure and search for the solutions of the evolution equation (12) in 
the form of nonlocal operators: 

1 

. [ d ¢ ¢ f ( ~ ) S - + ( J  ", ~ )  • (15) 

--1 

Hence we work with the integral equations conjugate to (14) for the function 0j .-+ (O: 

1 

~ dr /Kf  (r/, ~ )¢ f  ( r / )=Tier  (~) • (16) 

We are able to prove that eqs. (16) have one and only one pair of solutions which are analytic at the points 
¢= + 1 in the limit j - - ,~ :  

0 + ( O =  1-¢ ,  0 - ( O = 1 + ¢ ,  (17) 

and the corresponding eigenvalue (anomalous dimension) equals 

( ' )  7~=auc  ~ ' O + I ) + y E - I +  20+1------) ' (18) 

where ~ ( z ) =  (d /dz)  In F(z) and 7E is the Euler constant. The validity of eqs. (17) and (18) can easily be 
checked by a straightforward calculation. 

Inserting eq. ( 17 ) in ( 15 ) and comparing with ( 11 ) we see that precisely these nonlocal operators contribute 
at the tree level to the structure function gt2W3 (x, QZ). Thus, we arrive at eq. (3) with the anomalous dimension 
( 18 ). All other operators decouple from g~W.3 (x, Q2 ) in the Nc--,~ limit. 

For integer values of j =  n we can go over to local operators. In the notations of ref. [6 ] the solution (15) 
(with ¢ ± given in (17) ) becomes 

! 

( n + l ) . ½  d~[O+(~)S+(n,O+¢-(OS-(n,O]= ~ (n-k)Y~. (19) 
k ~ l  

--1 

By comparison with the numerical calculations of the spectrum shown in fig. 2, we find that the analytic expres- 

qO.O 

30.0 

2 0 . 0  

10.0 

0 . 0  

= ~  

_ ? ? : ? : : : : ~ -  

0 . 0  1 0 . 0  20.0 

n 

3 0 . 0  

Fig. 2. The same as in fig. 1, but with the substitution Cf= ½N¢, 
which corresponds to the limit of a large number of colours, com- 
pared to the analytic solution ( 18 ). 
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sion (18) reproduces the lowest anomalous dimensions of  the quark-gluon operators for each moment. For 
example, for the second moment  j =  2 we obtain from ( 18 ) 7~ s = ~ZNc, in agreement with ref. [ 5 ]. For the fourth 
moment one obtains y4 Ns = 58 ~3Nc, which coincides with the lowest of anomalous dimensions found in ref. [ 9 ]. It 
is easy to check that a small difference is indeed the 1/N2c effect. Taking all the 1/NZc corrections into account 
we obtain by explicit diagonalization of the mixing matrix from [6] ~2 

I 

--~ dxx4gt2W.3(X, Q 2 )  = [0 .81 (( y43 (],t 2 ) }) + 2 . 3 2 ( (  Y42(fl 2 ) )) +2.89((  Y~(/t 2) )) ][°Ls(Q2)] y ' / b / \  
0 

. ,  , {  O~s( Q~)'~ ~/' + [0.026((Y34(It2) )) +0.013((  y2(i, t2 ) )) -0 .024 ( (  Y4~ (/t 2) )) ] ~, a~---7-~-~,) 

)) I(C~,( QZ) ~Ys/b +[O'16((y34(U2)>>-O'33((Y?*(Izz)>>+O'13((Y~4(/~2) \oq~-p-~J 

y,=10.89,  y2=13.71, 73=16.15.  (20) 

It is seen that the contributions of the operators with higher anomalous dimensions are indeed small and that 
the coefficients in front of  the three terms with the lowest anomalous dimension are close to their values in the 
N c ~  limit, 1, 2, and 3, respectively. We have checked that neglecting the 1/N 2 terms in the mixing matrix of  
ref. [ 6 ] we arrive precisely at eq. (3). 

The result (20) disagrees, however, with the expression given in ref. [ 9 ], although the anomalous dimensions 
coincide. An inspection suggests that the difference between the results of  refs. [6,8] and ref. [9 ] is due to an 
overall sign of the contributions of operators containing the 7s matrix. In our language the effect would be in the 
interchange of the operators S + and S -  in eq. ( 11 ). The statement that in the N c ~  limit the operators with 
lowest anomalous dimensions decouple from the evolution equation remains, in any case, true. 

3. Q2-evolution ofg-,(x, Q2) in thej--*oo limit 

It is well known that the behaviour of structure functions in the region x--. 1 is determined by the asymptotics 
of  the corresponding anomalous dimensions in t h e j ~  limit. In this limit all 1/N~ corrections to the kernel in 
eq. (13) are reduced to the factors Cf/Nc which can easily be read offthe complete expression given in ref. [ 8]. 
We arrive at the following integral equation: 

Ys fb(~)=4Cf(lnj+TE-3)fb(~)+NcO(~)+Nc f d r l (1 -~  2~(~)-(9(~1) 
kl - q ]  ~-q --1 

1 

(21) 

Note that in this limit, the kernels K + and K -  coincide and hence we drop the superscripts ( _+ ) from K + and 
¢~ +. The kernel in (21 ) becomes symmetric after multiplication by 1/( 1 -~2)2, so that the eigenfunctions should 
be orthogonal with this weight function. Thus, the solutions which are analytic at the points ~= _+ 1 are given by 
the Gegenbauer polynomials with a negative superscript Cy 3/2 (() .  They exist for n = 0  and n =  1 only and do 
not form a complete set of functions. We end up with the two solutions given in (17), which both satisfy eq. 
(21 ), corresponding to the same anomalous dimension 

y~s = 4Cf( ln j+  YE -- 3 ) + Arc. (22) 

,2 The particular expression for the mixing matrix for n = 4  in ref. [6] contains misprints which can be figured out by comparing it 
to the general expression eq. (54) in this reference or to later publications by the same authors [ 12]. Our thanks are due to A.P. 
Bukhvostov for correspondence on this point. 
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We argue that these solutions satisfy the complete evolution equation to the ( 1/j) lnj  accuracy. This issue is not 
trivial. To illustrate the difficulty involved let us return to the evolution equation in the N c ~  limit, discussed 
in the previous section. We easily find that each of the functions ( 17 ) provides an approximate solution to the 
integral equation with the counterpart kernel 

| 1 

f f 1 driK+_(rl,~)Om_(rl)=2[!l/(j+l)+TE_l]Om_(~)_f_ ~ (~ )+2  0+(1T-~)/( I_+~) ( 1 - 0 y .  (23) Nc 
- - I  0 

All the terms on the RHS of (23) except for the first one are down by the factor 1/j. However, a simple expan- 
sion of the last term in a power series, 
1 

7 lm_~ + 0  , (24) 
0 

would introduce dangerous singularities at ~= + 1, giving rise to logarithmic divergences in the matrix elements 
of the corresponding nonlocal operators (15). Thus the mixing is actually of the order of (1 / j )  lnj. In the 
language of local operators the origin of this difficulty can be explained as follows. Eq. (23) states that the 
coefficient in the mixing matrix in front of the particular local operator corresponding to ¢ :~ (~) = 1 _+ ~ is of the 
order of unity, while all mixing coefficients are down by 1/j. However, since the total number of operators is 
large, of the order of j, the danger is that the smallness of the coefficients can be compensated by a large number 
of contributions. The increase is actually of the order of lnj  only, which follows readily from (23) under the 
assumption that the matrix elements of the operators S -+ (~) are nonsingular at ~= + 1. Including the 1/Nc 
corrections does not bring in any principle complications. We substitute ( 17 ) in the exact evolution equation 
and make sure that retaining the O( 1/j) corrections does not bring in mixing with functions which contain 
singularities stronger than linear at the end points ~= + 1. Corresponding matrix elements are then of the order 
oflnj .  

Comparing eq. (22) with the well known result for the asymptotics of anomalous dimensions of operators of 
twist 2, 7) w-2 = 4Cr(lnj+ 7E- ~ ) + -.., we find that the coefficients in front of lnj  turn out to be equal while the 
constant term for the twist-3 operators is larger by No. 

Physical interpretation of this result becomes quite transparent if one remembers that the particular combi- 
nation of the quark-gluon operators (7) which enters g~W.3 (x, QZ) coincides with the quark operator ( 1 ), and 
the difference to the leadingtwist is in specific spin projection only. It is well known [ 13 ] that the logarithmic 
rise of anomalous dimensions in QCD is due to the emission of soft gluons and that the factor in front of lnj  is 
determined entirely by the colour charge of the parton (quark). On the other hand, the constant term is affected 
by the emission of hard gluons and does depend on the spin state of the parent quark. 

From eq. (22) it follows readily that in the limit 1 - x < <  1 
I 2 Nc/b 

~ ,  2 , / ~ s ( a  )'~ 1 gI~S(x, QZ)~F(QZ)(1-x)(4Crl6)ln[a'°'2)/a'(QZ)l-I l + s t / x  ) l t ~ .  ) J ,  (25) 

where F(QZ) is a Q/-dependent normalization factor, determined by the twist-2 contribution to g2, and the 
term T(/t 2 ) stands for relative contributions of twist-3. On the evidence of various model estimations we expect 
it to be negative. In other words, twist three contributions to gz(x, Q2) have the same power behaviour at 
1 - x < <  1 as terms of the leading twist and fall offslowly with increasing Qz. 

The same conclusion can be reached in the flavour singlet channel for contributions ofgluons. We are able to 
calculate in a similar way the asymptotics of anomalous dimensions of the relevant nonlocal three-gluon operator: 

Gu(ot,]3,~ ) = l_zf, a ~ b  ~ . (26) 

Making the Mellin transformation (10) and searching for a multiplicatively renormalized nonlocal three-gluon 
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Fig. 3. Anomalous dimensions of the three-gluon operators of 
twist-3 (with nr= 3 ) neglecting the mixing with the quark opera- 
tors (shown by solid diamonds ), compared to the anomalous di- 
mensions of two-gluon operators of twist 2 (shown by solid 
squares) and to the asymptotic formula (28). 

operator in a form analogous to (16), we arrive at an integral equation for the corresponding weight function 
O~(~): 

+Uc (27) 
- 1  

Eq. (27) follows readily from eq. (6.9) in ref. [8] neglecting all ~ l / j  terms, and differs from (21) by trivial 
factors only. Hence, we get the same pair of solutions ~c(~)  = 1 4- ~. The anomalous dimension in this case is 

y~G~ = 4Nc(ln j +  yE + ~ ) - b ,  (28) 

and exceeds the asymptotics of anomalous dimensions of two-gluon operators of twist-2 by the same constant 
No, y~G =4N~(Inj+yE) - b +  .... Thus, the difference in the behaviour of  twist-2 and -3 gluon distributions at 
l a r g e - x  is the same as that for the quark ones. The asymptotics formula (28) is compared with the results of 
numerical calculations of the spectrum of anomalous dimensions in fig. 3. 

4. Concluding remarks 

We have found an explicit solution of the evolution equation for g~W.3 (X, Q2) in the large-No limit which gives 
rise to the series of local operators with the lowest anomalous dimension. To proceed further, one may try to 
find a general solution of the asymptotic equation (21 ) which could provide a basis of functions in search of 
multiplicatively renormalized nonlocal operators. At least O( 1/j) corrections to anomalous dimensions and the 
operator mixing can be studied in this way. An inspection of (21) shows that these solutions should possess 
logarithmic branching points at ~= 4- 1 and be orthogonal with the weight function 1/( 1 -~2)2, which suggests 
Legendre functions Q(z) as a natural candidate. This work is in progress. 

Including all the 1/Arc corrections to the evolution equation for nonsinglet operators and studying evolution 
of gluon operators beyond the j - ,oo  limit seems to be more difficult. The point is that in the expressions dis- 
cussed above we have had a very important simplification as compared to the general case, in that the evolution 
kernels have been vanishing for contributions with the interchanged ordering ofpartons on the light-cone. It can 
be traced that this property has allowed us to search for the nonlocal solutions (15) of the evolution equation 
with the support property - 1 < ~< 1. In general situations, the integration regions are stretched up to infinity 
and a nontrivial analytical structure arises at ~= 4- 1. 

Using explicit expressions for the mixing matrices of local operators from ref. [6] we have carried out exten- 
sive numerical calculations of the spectrum of anomalous dimensions for both the flavour-nonsinglet and 
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-singlet operators.  Some of  the results are shown in figs. 1-3, where compar isons  with the analytic results ob- 
ta ined in the stated l imits  are also shown. We give below a parametr iza t ion  for the lowest anomalous  d imension  
in the spectrum of  nonsinglet  operators ,  which is val id  within 0.1% accuracy for j>_- 2, and which has the correct 
behaviour  for the large-Nc and large-n limits: 

( 1 1 3 )  ( 1 ) +  1 10 (29 ,  yNS'min=4Cf 1 + ~ + . . . + ~ : - -  +Arc l + j - : ~  N c j ( j + l ) "  

In the region 2 ~<j~< 32 the spli t t ing between the lowest and  the second lowest anomalous  d imensions  in the 
spectrum can be approx imated  by the formula  

~)NS,min =4Cf(0 .21 + 1.29/ j )  . (30)  

In the same interval  o f j  the difference between the lowest and the largest anomalous  d imensions  behaves as 

~NS . . . .  _ yNS.m!n = 4Cf( 1.17 5 l n j -  0.491 - 0 . 6 4 2 / j ) .  ( 31 ) 

The difference in the anomalous  d imensions  for the flavour-singlet and flavour-nonsinglet  operators  is dist in-  
guishable for j---2 and j =  4 only. Complete  results will be publ ished elsewhere. 
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