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A three-dimensional theory whose canonical quantization yields wavefunctions which can be identified with the superconfor- 
real blocks of two-dimensional super Wess-Zumino-Witten theory is presented. In particular, the anomalous Ward identities 
satisfied by the superconformal blocks in the presence ofa supergauge background are reproduced in terms of constraints obeyed 
by the wavefunctions of the three-dimensional theory. The action contains the bosonic Chern-Simons action but does not possess 
a three-dimensional supersymmetry. The "time" coordinate plays the role of an interpolating parameter between two-dimensional 
superconnections. The structure of the Hilbert space of the theory is examined. 

I. Introduction 

New insights into the nature o f  two-dimensional conformal field theories have arisen recently as a result o f  a 
three-dimensional interpretation o f  these theories. As shown by Witten [ 1 ] and elaborated on by many groups 
[ 2 ], the conformal blocks o f  a two-dimensional conformal field theory (2D CFT)  can be realized as wavefunc- 
tions for a canonically quantized three-dimensional Chern-Simons  theory (3D CS). In particular, the Verlinde 
operators [ 3 ] have a very natural interpretation in this picture. 

It is natural to inquire whether a similar correspondence exists between the superconformal blocks for super- 
conformal field theories and wavefunctions for some three-dimensional theory. The first idea that springs to 
mind is to supersymmetrize the 3D CS theory. However, one immediately encounters the problem that the 
lagrangian for a supersymmetric theory is not invariant under supersymmetry but transforms by a total deriva- 
tive, which means that the action is not supersymmetric on a bounded manifold. This results in the failure o f  
the wavefunction for 3D supersymmetric CS theory to be invariant under supersymmetry transformations, which 
makes an identification with the manifestly supersymmetric superconformal blocks problematic (for attempts 
in this direction, see ref. [4] ,  and additional remarks in ref. [5] ). 

However, it is not immediately obvious that 3D supersymmetry is the relevant structure to consider. The 
relation between even-dimensional gauge theories and Chern-Simons  terms in one dimension higher is well 
established in topological approaches to nonabelian anomalies, in which the extra dimension plays the role o f  
an interpolating parameter [ 6 ]. In a certain sense, it is the nonabelian anomaly which is the key to the link 
between the conformal blocks for the Wess -Zumino-Wi t ten  models and 3D CS theory. The anomalous Ward 
identity obeyed by the conformal blocks implies that they can be considered as sections of  a holomorphic line 
bundle over the space o f  chiral connections modulo (complexified) gauge transformations. The wavefunctions 
for the canonical quantization o f  3D CS theory are, following the general principles o f  K~ihler quantization, also 
sections o f  a holomorphic line bundle. The relation between the theories arises through the equivalence o f  the 
line bundles. 

In supersymmetric gauge theories, there is also a relation between even-dimensional nonabelian anomalies 
and CS-like terms involving a bosonic interpolating parameter [ 7 ]. However, the supersymmetry does not ex- 
tend to the "extra dimension" afforded by the interpolating parameter. Thus, i fa  3D theory is to reproduce the 
anomalous Ward identities of  super Wess -Zumino-Wi t ten  theory, it could be expected that it need not involve 
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3D supersymmetry. In this paper, we present a proposal for such a theory. Indeed, the theory even fails to be 
Lorentz invariant in 3D, and so is best thought of as a quantum mechanical model with a supersymmetry de- 
fined on the configuration space. 

2. Superconformal blocks for SWZW theory 

We begin with a review of N=  1 super Wess-Zumino-Witten (SWZW) theory on a Riemann surface Z, and 
construct the corresponding superconformal blocks. A supergravity background on this surface determines a 
superconformal structure specified by local superconformal coordinates (z, 0, g, 0) = (Z, Z) [8 ]. For a super- 
field ~(Z,  Z) taking values in a compact simple Lie group G, the level k SWZW action takes the form [ 9 ] 

Swzw[N]= ~ d z ^ d g  d20 (~ - I  DoN, .~-l Dg~f) 

' If f +4-~n dt d z ^ d g  d20 (~  - ~ S t ~ , { 3 - ~ D o ~ , ~ - ' D ¢ 3 } ) ,  (1) 

where Do=8o+ 00~, f d20 tT0= 1, ( , ) denotes an inner product on the Lie algebra g of G invariant under the 
adjoint action, and 3(t, Z, Z) is the extension of ~(Z,  Z) to a 3D disc with boundary Z and local coordinates 
(t, z, 3). The second term in the action is topological, in that under an infinitesimal variation 8 ~of  the extension, 

8 ( 3 - '  0,~, { 3 - '  Do3, 3 - '  D O 3 } ) = ~ t ( 3  - l  ~ ,  {3 - l  Do3, 3 -1D¢3})  

- D o ( 3 - '  83, [ 3  -1 0,3, 3 - 1 D o 3 ] ) - D o ( 3 - '  83, [ 3  -1 ~,3, 3 -1D0-3] ) ,  (2) 

a total derivative. In fact, with the parametrization 

3 = ~  exp [i (0g)+ 0~+ #Off) ], 

all dependence on ~, ~, and ff in the topological term in the action appears in the form of total derivatives and 
so is independent of their extension; the remaining manifestly 3D piece is 

i k l  ~ 
-4-~ dt d z ^ d g ( ~ - ~ 0 , ~ , [ ~ - ~ 0 z ~ , ~ - ~ 0 , ~ ] ) .  

This is the usual topological term for the bosonic WZW theory, and the action is in general not the same for 
extensions ~ which are not homotopic. However, if 2k/(~,, ~,) is an integer (with ~ the highest root of g), then 
the functional integral is well defined [ 10 ] due to the proportionality of the difference of the topological term 
for two extensions to a 3D winding number. 

The action ( 1 ) satisfies a Polyakov-Wiegmann condition [ 11 ], 

Swzw[~]=Swzw[~l+Swzw[ ~l+ ~ d z ^ d e  dZO(Do~.N -~, ~,~¢-' Doo~f). (3) 

A gauge field background is specified by gO-valued superfields do and do with do= - (do)*. These superfields 
can be written locally in the form d o =  ~ff- ~ Do~ff and do= ~ DoCg'*-1 for a superfield ~ taking values in G c 
[ 12 ]; only if ~ = ~f'- 1 s G is the connection flat. The gauged SWZW action is [ 13 ] 

Swzw [ f¢, ,~'o, ~o] = Swzw [ J V ~ *  ] - Swzw [ W~ ~* ] 

- - S w z w [ ~ l + ~  d z ^ d g  dZO[(DoN. N-~ ,~o ) - (~o ,N- tDo~) - (~o ,N- l~oN)+(do ,~ ) ] .  (4) 
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Under the GC-valued gauge transformation [ 14,15 ] 

~ - J f ~ * - , ,  d e . _ , W ~ * - ' = ~ * ( d o + D o ) ~ * - l ,  W e - - , W ~ ' = ~ - J ( . 4 ~ + D o ) ~ ,  

it is easily verified using the first expression in (4) that 

- " - " - ~  d ~ ' ]  =Swzw[ ~, -~o, do] - S w z w [ ~ ] - S w z w l Y r * ]  S w z w [ ~ - I  ~ . -  I, ~'o , 

i k l  f (~¢~ , d ~ ' ) -  ( ~ ,  ~¢o)1 (5) + ~  dzAdg d20[- (DoJU{ 'J{- l ,  do ) - (a Jo ,  D o J t ¢ * - l ' ~ * ) +  ~*-~ 

The action is invariant under the diagonal subgroup of gauge transformations with ~ = ~ * -  t e G. 
The effective action F[do, do] is defined by 

P 

exp( - F [ d 0 ,  We] ) = j [dff] exp( -Swzw[ if, do, de] ), (6) 

where f [ d  f ]  denotes the functional integral over the component fields of ~. We assume that f [d f ]  is regulated 
in a manner which preserves supersymmetry and so that f [ d (~¢-t  f j r . - t  ) ] = l i d  f ] .  This is justified because 
the gauge transformations act vectorially on the chiral fermionic components of (¢ so there is no anomaly (it is 
also consistent with the usual OPE for the super Kac-Moody currents ~o(Z) = - k  Doff' f -  l which follows from 
the Ward identity below with do= 0 ). It then follows from ( 5 ) and (6) that 

r[.~¢o , ~¢~'] = F [ ~ ,  , c o ] - S w ~ , v [ ~ C l - S w z w [ ~ * ]  

+ ( .4~ , . ~ "  ) - (S~o, .~o) 1 + ~ dz^dg d20[-(DoJ{'Jf-l ,  Je)-(~Co, DoJf*-l'J{ *) **-' 

so that one can identify exp( - F [ d o ,  do] ) with a sum of terms of the form 

; ) exp(-F+[de]) exp(-F_[do]) exp - ~ d z ^ d g  dZO(do, do-) (7) 

(corresponding to a modular invariant combination of superconformal blocks), where F+ and F obey the 
Ward identities 

f d z ^ d g  dZO(DoJ¢'YC-l,da), (8) 

f r_[~'~'I---r_[dol-Swzw[~-']- ~ d z ^ d g  d20 (do, D e o ~ ' ~  -~) . (9) 

The chiral partition functions Z+ [do] = e x p ( - F +  [Wo] ) and Z_ [do] = e x p ( - F _  [do] ) in the presence of 
background gauge supertields will be referred to as the holomorphic and antiholomo~hic superconformal blocks 
respectively (so named because the gauge superfields couple to the holomo~hic  and antiholomorphic super 
Kac-Moody currents respectively). 

For an infinitesimal gauge transformation ~ = exp (iA), (8) takes the form 

k 
d,~ ; d20 (DoA, do) &~ F+ [ do] = ~ ~ dz  ^ 

Since 8aWe= i~eA = iDeA + i [We, A ], this is equivalent to 

~edF+ [do] _ -  k (Dodea) , 
6d~ n 

where the supercurrent 5F[~qe]/6d~ is defined using 
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6 
~ d ~ (  Z, Z)  ~ } (  W, I,V) = 8 a b 8(2) (Z-- W) a (2) (0--  0' ) , 

with W= (w, 0' ) and 

Rewritten in terms of the holomo~hic  superconformal block, the infinitesimal form of the Ward identity takes 
the form 

(D0da~) - -~Dos~ ~ -~f~b~d b Z+[do]=O, (10) 

where f~bc are the structure constants of the group G. Eq. (9) yields a corresponding identity for the antiholo- 
morphic superconformal block. In section 3, we attempt to reproduce these identities from a 3D viewpoint. 

3. Reproducing the superconformal blocks from 3D 

In order to reproduce eq. (10) for the superconformal blocks as a condition on the wavefunctions of a canon- 
ically quantized 3D theory, we follow the approach of refs. [ 16,17 ]. It will be shown in this section that the 
appropriate 3D action is 

k 
d• f dZO[ (do, OtJa) - (soot, ~oo) ] S~cs[ d]  = -~n f dt f dz ^ . (11) 

Here, the 2D superfields do and do depend on the " t ime" coordinate t on the 3D manifold Z × ~ ,  dr(t, Z, Z)  is 
an unconstrained superfield and 

.~o= Dodo+ Dodo + { do, do}. (12) 

Written in terms of component fields (see later), this action contains (up to a total derivative) the usual 3D 
bosonic CS action, although it must be stressed that S~-cs does not possess 3D supersymmetry. It is only super- 
symmetric with respect to supersymmetry transformations on the "spacelike hypersurface" Z, and 0 and Oare 
chiral spinors on Z. This is similar to the corresponding situation for the topological term in the SWZW action. 

Under a finite gauge transformation f¢(t, Z, Z) e G with W0 ~ and W~ defined as before and d l  ~ = ff-  z ( d, + 0t ) ff, 
the 3D action is not invariant but transforms as 

S~cs [d  c~] =S~-cs[d] + S+cs [ ff-~D ff] 

f +~-~ dt d z ^ d e  d20[-Do(do, O, ff. f f - t ) -Do(da,~, f f ,  ff-~)+O,(Doff, ff-~,do)], (13) 

where ~¢ = ff-  ~ D ff is a shorthand for 

(do, do, ~ )  = ( f f - '  Doff, ff- i  Doff, f f - '  0, f f ) .  

The last term in (13) is a total derivative and vanishes if Z has no boundary and the gauge transformation 
vanishes at + co. It is easily verified that 

f S~-cs[f f -~Dff]=~-~ dt d z ^ d e  d20[-Do(ff-~Doff,  f f - ' 0 ,  f f ) - D o ( f f - ~ D o f f ,  f f - ' 0 t f f )  

+ 0 , ( f f - i  Doff, f f - '  Do f f )+  (ff-~ 0tff, {ff-~ Doff, ff-~ Doff})] • (14) 

394 



Volume 263, number 3,4 PHYSICS LETTERS B 18 July 1991 

By comparison with the topological term in the SWZW action ( 1 ), the last term in (14) is seen to be propor- 
tional to the winding number of  the bosonic configuration given by the 0= 0 = Ocomponent of fq, which vanishes 
on Y. × ~. Thus the action is gauge invariant for gauge transformations vanishing at t = + ~ .  This relation of the 
gauge variation of S~-cs to the winding number of the gauge configuration will reproduce the quantization con- 
dition on k from the SWZW theory if the functional integral which contains exp (iS~-cs) is required to be well 
defined on more complicated three-manifolds which are locally of  the form Z × E. 

The gauge freedom can be used to set ~--- 0. In this gauge, the action describes a set of free fields, 

k S~es[~c]= ~-~ f dt ~ dz A d2 ~ d20(~¢o, O,~¢o-) , 

whose canonical quantization yields the superfield anticommutation relations 

{.~'~(z, 2) ,  .~,~( w, if ')}= - k g  ~ a ~ ( z -  w) a~2~(0-0 ' ) ,  (15) 

where gab= ( T~, Tb) for generators Ta ofg. This can be verified by writing the action out in components, remem- 
bering 8~2)(0-0 ' ) = ( 0 - 0 ' )  ( 0 - 0 ' ) .  Since only a¢a appears in the action with a time derivative, the compo- 
nents of  this superfield play the role of canonical coordinates, and the wavefunction ~ is a functional of  the 
component fields of  ~¢o, denoted ~ =  ~[  ~¢6]. The canonical anticommutation relations are realized on the wave- 
functions via the identification 

~¢~(z, Z ) =  _~ ~b a - k g 8d~-(Z,Z)" (16) 

The n"qlinearity of the theory (as in ref. [ I ] ) is contained in the equation of motion ~oo=0 for 4 ,  which 
contains no time derivatives and so is an equation of constraint. The superfield ~oa acts as the generator of  
infinitesimal time-independent gauge transformations of  ~'o and ~a  via the canonical anticommutation rela- 
tions, so the constraint is first class. In the quantum theory, the constraint equation is realized on the space of 
wavefunctions as 

~ o  ~[.~o] = 0 ,  

which, using (16), is the equation 

(Do~%) + ~ Do &e~ ~ Lb ~ do  b- ~[da] =0 .  

(17) 

This is equivalent to the anomalous Ward identity (10) if we identify the holomorphic superconformal block 
Z+ [~4a] with the wavefunction T[sCa], the promised result. 

The behaviour of the wavefunction under finite gauge transformations is most easily obtained by considering 
[ .#a] as the result of  performing the functional integral f [ d~¢ ] exp (iS~-cs [ d ] ) on Z × E ÷ with da  prescribed 

on the boundary surface t = 0. Using ( 13 ) and ( 14 ), it follows that 

[.~¢~ ] =exp(Swzw[ if, ~C¢o =0,  ~¢a] ) ~ [da]  (18) 

The action S~cs [ J ] is in fact one of a large class characterized by the equations of  motion 

8S __ ik.~a, 8S _ ik.~o, 8S _ i k ~ o a  
&% zt &z/a zt 8~, n 

(with ~o=  0,~¢o-Do~, + [ 4 ,  do] and similarly for -~,,a)- The most general action of this form can be constructed 
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by integrating these equations in the same manner that one constructs Wess-Zumino effective actions [ 18 ] and 
differs from ( 11 ) by total derivatives. Gauge invariance of the actions (with appropriate boundary conditions 
on the gauge transformations) results from the Bianchi identity ~a~o+  ~o ~-~ / .~ ' o a=0 ,  where ~ denotes 
gauge covariant derivatives. Of particular interest are the actions 

dz d, f 0, 

whose canonical quantization reproduces the antiholomorphic superconformal blocks Z_ [do] and the sym- 
metric version 

S s c s [ d ] = ~  dt dz^dZ  dZO[½(do,~a)+½(d6,~o)-½(~,~oa)+½(~,{do, Wa})], 

which contains the usual bosonic CS action in its component expansion. 

4. The reduced phase space 

In the previous section, the 3D theory with action S~-cs [ d ] was quantized on the phase space of all supercon- 
nections {do, do} and then the constraint .~a= 0 was imposed on the wavefunctions. According to the general 
principles of geometric quantization (see, for example, ref. [ 19 ] ) this is equivalent to the statement the physical 
wavefunctions are defined on the reduced phase space of superconnections {do, rig) with vanishing curvature 
modulo the action of the group of gauge transformations taking values in G. In this section, we will examine the 
structure of the reduced phase space. Attention is confined to the case where the superconformal structure on E 
is "split", meaning that there is no nontrivial gravitino background (i.e., the gravitino background is pure gauge). 
In this case, 0 is an ordinary chiral spinor on Z in a given spin structure [8 ]. The nonsplit case is discussed in 
the conclusion. 

We will first show that the constraint -~oa= 0 means that do and do are equivalent to the superfields do and 
.~¢a which have the particularly simple form 

.~o=Od:=O(A_-+~{Ao, Ao}), do=~.=O(A~+½{Ao, Ao}), 

with ~ = 0~A~- 0~A. + [A~, A~] = 0. To show this, one requires the transformation properties of do and do 
under finite gauge transformations. If Wo and do have the component expansions 

do=Ao +OA~ +OAoo +OOA~o, do=Ao+OAoo+OA: +6OA~o, (19) 

then under a finite gauge transformation by ff=exp(iA)=exp[i(O2o+O2o+OO2ao)] with AEg [this is not the 
most general allowed gauge transformation, which is of the form gexp(iA ) ], 

do ~ =Ao +i2o + O(A~-i{2o, Ao} + ~ {20, 2o}) + O(Aoo-i2oo- i{2~, Ao} + ½ {20, 2o}) 

+O0(A~o-i D_-2~-i[2o, Aao]-i[2ao,Ao]-½ [20, {2a, Ao} ] 

+ ½ [20, {Ao, 2o}1 - [)to, 2ool + ¼i[{2o, 2o}, 2a] ) ,  (20) 

d ~  =Aa+ i2o+ O(Aoo+ i2ao - i{2 o, Ao} + ½ {20, 2a} ) + O(Ae- i{2a, Aa) + ½ {20, 2~} ) 

+ O0(Aeo + i De2o + i [20, Aoo] - i [2ao, Aa] - ½ [)to, {2a, Ao} ] 

+ ½ [2a, {2o, Aa} ] - [20, 2oo] + t i[  {/lo, 2a}, 2ol ) , (21 ) 

where D-2a=0~20-+ [Az, 2a]. 
The superfield constraint ~oo = 0 is equivalent to the following constraint equations for the component fields: 
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Aoa+Aao+{Ao,Ao}=O, A~a=-E)zAo-  [Ao, Aoo], Aeo=[)~Ao+ [Aa, Aoo] , (22) 

ff_.f = 0 .  (23) 

By choosing i2 o = - A  o, i2 o= - A o  and i2 oo =Aao + ½ {A o, Aa} and making use of the constraint equations (22), 
(23) and the Jacobi identities, (20) and (21) reduce to 

do'= 0L, 

So, the result is that superfields ~¢0, do obeying the constraint ~oa=0 are gauge equivalent to the flat [via 
(23) ] bosonic connection (A,, Az)- As pointed out, the full gauge group is not used in achieving this result, 
there still remains the freedom to make purely bosonic gauge transformations with ~9=g(z, Z). Thus the reduced 
phase space is equivalent to the space of flat bosonic connections on Z modulo the action of the group ofbosonic 
gauge tranformations taking values in G. This is a satisfactory state of affairs, since, as emphasized in ref. [ 1 ], 
this space is canonically associated with the surface Y independent of any choice of metric (and hence complex 
structure) or spin structure. In the case of  ordinary conformal blocks, the canonical nature of  the reduced phase 
space allows the conformal blocks associated with different points on Teichmfiller space to be canonically iden- 
tified and can be interpreted as the presence o f a  projectively fiat connection over moduli space in the spirit of  
the program of modular geometry of Friedan and Shenker [ 20 ]. As we shall point out, in the superconformal 
case the superconformal blocks are associated with an additional structure over this space of fiat bosonic con- 
nections, but the canonical structure of this space offers the hope of identifying the supersymmetric analogue of 
the projectively flat connection over moduli space. 

In order to identify the additional structure referred to in the above paragraph, it is useful to examine how the 
wavefunction T [ d a ]  defined on the space of all {do, do} reduces to a physical wavefunction defined on the 
reduced phase space. This is achieved by attempting to express do in the form f~-~ D a ~  (or, equivalently, 
.~¢~-' = 0 ) with f¢ a globally well-defined superfield on Z taking values in G c. (Note that this is not equivalent 
to the superconnection being pure gauge; this is only the case when ~ takes values in G, as then with ~¢o= -~¢~  
the curvature ~ o  vanishes. ) There is an obstruction to writing do in this form which is related to the additional 
structure on the reduced phase space. 

We make the reduction in two steps by writing if= ~2~1, and choosing ff~=exp[-i(O2o+OO2ao)] with 
i2o= -Aa,  i2oo= -Aoa. Then using (21), 

~4~ i- ~ = d.4~ + OO ( Azo + [ Aoo, Ao] ) • 

Since Aa and Aoo are globally defined spinors (which follows from the fact that do is a globally defined spinor 
superfield), ~ is also a globally well-defined mapping from Y. into G C. However, we will find that there is an 
obstruction to writing d ~  r~ in the form ~-~ D0-f¢2. 

We choose f¢2=g exp(i020) with g(z, Z) eGc. Equating d ~  r '  and ~-~ D~r f¢2, one finds 

Aeo+ [Aoa, Aa] =i(0e20 + [g-~ 0eg, 20] ) .  

(24) 

(25) 

Turning first to (24), there is an obstruction to expressing the (nonflat) connection . ~  in this form with g a 
globally well-defined map from Z into G c. However, within the G c gauge orbit of Ae (with/~,= - A *  ), there is 
a flat connection [21,14]. Thus we can write ,4,=Az(u) g, where g is globally well defined and Ae(u) is a flat 
connection parameterized by (complex) coordinates u on the space of flat connections on Z (these coordinates 
are related to the holonomies of the flat connection, see refs. [22,14] ). Actually, since G c G c, the G c gauge 
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orbit is characterized by a point in the moduli  space of  flat connections modulo gauge transformations taking 
values in G. 

Eq. (25) can now be reexpressed A'0 = i D~(u)2~, where A'zo and ;t~ are suitably redefined quantities with 
A'o a globally defined vector-spinor, and De(u)  the covariant derivative with respect to the fiat connection 
As(u).  Again, there is in general an obstruction to fulfilling this equation for a globally well-defined spinor which 
is classified by the equivalence classes [A ~-0 ] of  tensors under the equivalence relation A "0 ~ A ~-o + De(u)  ;t b with 
2~ a globally well-defined spinor. The equivalence classes [A'~o] form a vector space V ( u )  whose dimension can 
be established by index theory; it is finite dimensional. 

To summarize, it has been shown that a point in {do, d o } / ~ c  is equivalent to a point u on the moduli  space 
of  fiat bosonic connections modulo G-valued gauge transformations plus a vector ~(u ) in the vector space V ( u ) 
o f  equivalence classes [A'_,o] over this point. The latter is the extra structure on the reduced phase space in the 
superconformal case alluded to earlier. The equivalence classes [A'o] are supermoduli. 

Using the above results and ( 18 ), it is thus possible to reduce the wavefunction ~u[do] in the form 

7v[dol =exp(Swzw[  f#, do, tier] ) 7V[u, ~(u) ] , (26) 

with ff an appropriately chosen GO-valued gauge transformation and where 7v[ u, ~(u) ] is the physical wave- 
function on the reduced phase space. If  one chooses a basis for the vector space V(u) ,  then the vector ~(u) is 
characterized by Grassmann-valued parameters ~i(u) relative to this basis, and the wavefunction can be ex- 
panded in the Grassmann parameters as 

7V[u, ~(u) ] = ~'o(U) +~(u)c/~(u) +~i(u) A ~J(u)~o(u ) + .... (27) 

The components  q/o... (u)  take values in the wedge product of  appropriate order of  V (u) with itself. With the 
notation Swzw [ ~, do = 0, do  ] =- S [ if, d ], the exponent in (26) obeys the cocycle condition 

O = S [ ~ , , d l + S [ ~ , d ~ ' ] + S [ ( ~  ~ ) - ' ,  :e  ~"~'~], 

as can be verified using ( 3 ) and (4).  This ensures that ~[  da]  reduces consistently to a section of  a vector bundle 
over the reduced phase space. This is of  the form L® ( @ i/k i E),  where L is the line bundle in which ~Vo (u) takes 
values and E is the vector bundle with fiber V (u) over u. This is the usual form of  the wavefunction for super- 
symmetric systems (see, for example, ref. [ 23 ] ). 

In the next section, we illustrate this structure for the case when the split super Riemann surface Z is the torus 
with the ( + + )-spin structure for the fermions. 

5. The torus case 

Flat bosonic connections on the torus are characterized by their holonomies g~ and z-,gp around the a and fl 
cycles (corresponding to z - , z+  1 and z - , z+  r respectively, where z is the modular  parameter on the torus).  Due 
to the relation g,gagg ~ g~ L = 1 and the equivalence of  connections with holonomies related by conjugation by a 
constant element in G, g~ and gp can be chosen to take values in the maximal torus T of  G [ 14,22 ]. I f  we write 
g,~ = exp ( - 2niO) and gp=exp(  - 2niO) with ¢D, Oct,  the Cartan subalgebra of  g, then O+M, O -  Nwith  M a n d  
N coroot vectors [M, Ne t  and exp(2~riM)= 1 =exp(21riN)]  determine the same holonomies. Also, there re- 
mains the freedom to make a simultaneous Weyl transformation of  O and q~, which is what survives of  the 
equivalence of  holonomies under conjugation after choosing g~ to lie in T. The flat connections on the torus can 
thus be parameterized by u = O -  zq~ with the identifications u ~ u + M +  Nr and u ~ w (u),  where w denotes an 
element of  the Weyl group. A particular realization is given by 

A~(u) =g(u, a) -~ Ozg(u, a), Az(a) = -A~(u)* ,  (28) 

with g(u, a) =exp{ [ 2 1 r i / ( r - f )  ] ( u Z -  az) }. 
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Over a point u on the moduli space of  flat bosonic connections, we will examine the vector space of equiva- 
lence classes [Azo ] under the equivalence relation A zo ~ Aeo + De ( u)2 o for ,t o a well-defined spinor taking values 
in gO, and De(u)2o = 0e2o + [Ae(u), 2o]. This is dual to the vector space of zero modes Ao of the operator 
De(u) via the inner product ½i f dz^  d~(Ao, Aeo). Thus it suffices to find the kernel of De(u) .  Using (28), 
De(u)Ao = 0  is equivalent to 

0e[g(u, a)Aog(u, a ) - ' ]  = 0 .  (29) 

For the ( + + )-spin structure, the spin bundle is trivial and soAo transforms by the transition function 1 around 
a and fl cycles. Decomposing Ao=A'JE,~ +A g'~E_,~ +A ~oHi, where E ,  are the generators ofg associated with the 
positive roots and Hi is a basis for the Cartan subalgebra, one finds that g ( u, a)A ~ ag ( u, a) - ~ are sections of flat 
line bundles over Z with transition functions exp [ -T- 2 nice (qb) ] and exp [ -Y- 2zfia (O) ] around the ce and fl cycles 
respectively, while g(u, ~)A ~g(u, ~) - l are sections of  the trivial line bundle. Using (29), ker D d  u) is equiva- 
lent to the space of holomorphic sections of  these flat line bundles. If  one excludes the connections Ae(u) cor- 
responding to q) and O being coroot vectors [ 14 ], there are no holomorphic sections of the line bundles associ- 
ated with A ~ % while for each A b there is a one-dimensional space of holomorphic sections, namely the constant 
sections. So we find that the vector space of equivalence classes [A~o] has dimension rank G, which is equal to 
the dimension of the moduli space of flat connections. This is a reflection of the rigid supersymmetry due to the 
presence ofa  conformal Killing spinor on the torus with the ( + + )-spin structure, and the supermodular param- 
eters parameterizing the classes [Aeo] can be considered as superpartners of  the modular parameters u. The 
nontrivial equivalence classes [Aeo ] associated with the modular parameter u can be represented by A ~-o = 

- [ ~ i ( u ) ] / ( r - O ,  where ~i(u) is a constant (i.e., independent of z and g) Grassmann parameter, as these 
cannot be written in the form Dz (u)2~ for 2b with trivial transition functions on the torus. For the other spin 
structures on the torus, Aeo has nontrivial transition functions and these constant sections are ruled out, so there 
are no supermoduli. 

To determine the nature of the vector bundle over the moduli space of flat connections given by the vector 
spaces V (u) of  equivalence classes [Aeo ], it is necessary to determine the behaviour of  ~i(u) under the transfor- 
mations u~u+M+Nr ,  u~w(u) .  These are equivalent to the gauge transformations Ae(u)-+Adu) g'~'u and 
Az(U)-~Az(u) h-' respectively, where gMN(2, Z) =exp{ [ 2 n i / ( z - O  ] [ (M+ Nz)g-  (M+Nz)z]} and w(u) = 
huh - ~ for h~N(T) ,  the normalizer of  the torus. Using the gauge transformation properties of the superfield ~¢a, 
it follows that ~ ( u + M + N r ) = ~ ( u ) ,  but ~(w(u))Hi=w(~(u)HD.  Thus V(u+M+Nz)  and V(u)  can be 
identified but V ( w (u) ) differs from V (u) by the action of the Weyl group. As a result, the vector spaces V (u) 
determine a twisted vector bundle over the moduli space of flat connections. 

The behaviour of  the physical wavefunctions ~U[u, ~(u)]  under these gauge transformations follows from 
( 18 ) for fY=ga~N(Z, g) and ~ = h .  One finds tha t f [u ,  ~(u) ] =exp{ [ - i z e k / ( r - O  ] (u, u)} 7t[u, ~(u) ] satisfies 

f [u+ M, ~( u+ M) l =ftu,  ~(u) ] , 

f[u+Nr,  ~(u+Nz)  ] =exp[  - i r rkr (N,  N) - 2zfik(N, u) ] f[u, ~(u) ] , (30) 

f[w(u) ,  ~(w(u) ) ] =f[u, ~(u) ] . (31) 

Making use of  the expansion (27) of  71[ u, ~(u) ], this means in particular that a basis for the top component 
l ( U ) ^ ~2 (U) A... ^ ~r (U) ~ffl 2...r (~/) ( w i t h  r = rank G)  is given by the expressions 

exp~( i~zk) (u 'u)]  ~ l ( u ) ^ ~ 2 ( u ) ^ ' ' ' ^ ~ ( u ) k k r -  f /  ~.w y" (--1)'(w)O~Z"k(r'U) , (32) 

where W denotes the Weyl group and l(w) the parity of  an element weW, O~,x(z, u) is a level k theta function, 
and 2 is a weight with the property 0~< (2, ~,) ~<k (where ~u is the highest root of g). The presence of the level k 
theta functions is due to the fact that they provide a basis for the multivalued functions on the moduli space of 
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fiat connections with the periodicity properties (30). The Weyl invariance condition (31 ) means that a linear 
combination of theta functions antisymmetric under the action of the Weyl group must appear, as the wedge 
product ~ (u) A ~2(U) A... A ~r(U) is antisymmetric under the action of the Weyl group. 

Precisely this structure arises when one considers the superconformal blocks for the level k SWZW model on 
the torus with the ( + + )-spin structure in the presence of a background gauge field Az(u). The superconformal 
blocks of the gauged SWZW model on the torus are proportional to characters of super Kac-Moody (SKM) 
algebras. In the case of a split super Riemann surface (no nontrivial gravitino background), the character for a 
level k SKM algebra factorizes into the product of an ordinary Kac-Moody character of level k -  g (where g is 
the Coxeter number of G)  and a partition function for a set of free Weyl fermions ~t o in the adjoint representa- 
tion [24]. If  the ( + + )-spin structure is chosen on the torus, there are fermion zero modes in the presence of 
the background gauge field Ae(u) [the analogous of De(u)Ao = 0 ] and the fermion partition function vanishes 
unless these are "soaked up" by appropriate insertions of  fermion operators. These insertions arise via terms 
j dz A dZ(A~o, Vo) in the component expansion of the SWZW action ( 1 ) in the presence of background super- 
gauge fields characterized by the nontrivial equivalence classes [A~o]. The result [25 ] is that up to the factor 
exp( [ ink / ( r -  f) ] (u, u ) }, the SKM character is proportional to the expression in ( 32 ) (the difference between 
the results is due to the fact that the SKM character is computed using a connection Ae(u) in which all the 
holonomy is around the fl cycle, as appropriate for the operator computation of two-dimensional chiral partition 
functions on the torus). 

6. Conclusion 

A 3D theory has been presented for which the wavefunctions resulting from the canonical quantization of the 
theory provide a realization of the 2D WZW superconformal blocks. The general structure of the Hilbert space 
of states has been examined in section 4, and this structure has been illustrated in detail for the case of the torus 
with the ( + + )-spin structure in section 5. We make the following additional remarks on the structure of the 
theory. 

(i) So far, the dynamics of  the 3D theory have not been considered. Since the action (11 ) is linear in time 
derivatives, the hamiltonian vanishes weakly (it is proportional to the generator -~oe of gauge transformations, 
and so vanishes on the space of physical states). Also, as has been discussed in section 4, the space of states is 
finite dimensional, because the states are associated with a finite-dimensional vector bundle (related to an index 
problem) over the finite-dimensional moduli space of flat bosonic connections. These facts suggest that the 3D 
theory described by the action ( 11 ) is a topological theory, as in the case of the ordinary Chern-Simons theory 
I l l .  

(ii) Although the space of states for the theory ( 11 ) has been examined, no discussion of an inner product on 
this space has been presented. By analogy with the bosonic case [ 15,2,17 ], we suggest that the inner product on 
the space of states ~v[ do] is provided by 

(~{~)l~u{2))= [ d d o ] [ d J o ] e x p - - ~ n n  dzAdg d20(~¢o,~¢#) ~T- - / ( l ) [ d~0 - ]*~ (2 ) [~e ]  , 

where the functional integral is over all superfields do, de  on the surface Y. Using ( 18 ) and (4), this is seen to 
be gauge invariant. The reduction of the inner product from the full phase space to the reduced phase space in 
the manner of Elitzur et al. [ 2 ] remains to be carried out; due to the supersymmetry, it is expected that there 
will be no renormalization of k from jacobian factors. 

As the hamiltonian vanishes weakly, the partition function on E × S ~ is just a (super) trace over the Hilbert 
space of states. Using (6) and (7) and the identification of 7/[ ~-¢o ] with exp ( - F+ [ de] ), this is equivalent to 
the partition function for the gauged SWZW theory. Also, in the case 0Y vanishes, the action ( 11 ) differs from 
the symmetric version presented at the end of section 3 by - (k/4n) f dt f dz A dY fd20 0,(~¢o, '-~¢o), so the trace 
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can be considered as the result of  a funct ional  integral on E X S ~ for the symmetr ic  version of  the action. This  is 
related to the in terpre ta t ion  of  wavefunct ions as resulting from functional  integrals over  bounded  manifolds.  

( i i i )  As has been stressed, the " t i m e "  coordinate  in the act ion (11 ) really parameter izes  a one-parameter  
family of  superconnect ions  do and d a  on Y. (as is done when relating 2D nonabel ian  anomal ies  to C h e r n -  
Simons te rms) .  Accordingly,  the fermions in the theory are 2D spinors rather  than 3D spinors, so the theory 
does not  possess 3D Lorentz invariance.  This makes the extension of  the def ini t ion o f  the act ion ( 11 ) to mani-  
folds other  than E X ~ or  Y X S l problematic ,  as would be necessary to calculate par t i t ion functions on arbi t rary  
three-manifolds  using the functional  integral. 

Despi te  this, there is still the hope that  the par t i t ion  function for the act ion ( 11 ) on arbi t rary  three-manifolds  
can be computed  using canonical  techniques.  As has been stressed by Wit ten  in his original work [ 1 ], an arbi-  
t rary three-manifold  can be generated from S 3 by a sequence of  surgery. Surgery means cutt ing a tube (whose 
surface has the topology o f  a torus)  f rom a three-manifold  and replacing it after making a modu la r  t ransforma-  
t ion on the surface o f  the tube. This should allow the computa t ion  of  the par t i t ion  function o f  the theory for any 
three-manifold  from a knowledge o f  the Hi lber t  space associated with the torus and the act ion o f  the modula r  
group on this space [ 1 ]. The lat ter  can be ob ta ined  from the known (at  least in the split  case)  act ion o f  the 
modula r  group on the S W Z W  superconformal  blocks. 

( iv)  All the discussion in section 4 and section 5 was for the case of  a split  super R iemann  surface, where 
there is no nontr iv ia l  gravi t ino background and the super R iemann  surface reduces to an ord inary  R iemann  
surface and a choice of  spin structure. However,  for certain choices o f  spin structure, it is possible to include 
nontr ivial  gravi t ino backgrounds  (corresponding to super Teichm/il ler  parameters ) .  This would considerably 
complicate  the structure discussed in section 4, leading to a mixing o f  the vector  spaces A~V (u)  for different i. 
In terms of  the S W Z W  superconformal  blocks, this reflected in the failure of  super K a c - M o o d y  characters to 
factorize into an ord inary  K a c - M o o d y  and a free-fermion par t i t ion  function [25 ]. 
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