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Unstable particles (resonances) occur in QCD, the Higgs model and many other quantum 
field theories of interest. Since they are a dynamical phenomenon, showing up in scattering 
processes of stable particles, it is not obvious how to extract their masses from numerical 
simulations of the theory in euclidean space. For resonances in the elastic region, a solution to 
this problem is proposed here on the basis of a recently established relation between the 
scattering matrix in infinite volume and the two-particle energy spectrum in a periodic box. 

1. Introduction 

It is common practice in lattice field theory to determine the spectrum of 
particle masses from the exponential decay of suitable correlation functions in 
euclidean space. To calculate the pion mass msr in QCD, for example, one would 
consider the two-point function 

C,(t) =/d3~(~‘(t,x)~‘(0,0)) 

of the field 

W) 

(1.2) 

where u and d denote the up- and down-quark fields, and ra the isospin Pauli 
matrices (isospin symmetry breaking effects are neglected). One then expects that 

C,(t) a e+r’ (1.3) 

at large times t, up to corrections of order e -3m~’ which come from three-pion and 
higher intermediate states. In particular, the limit 

is reached exponentially fast and is thus suitable for numerical work. 
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For this computational strategy to work out it is essential that the particle 
considered is stable. Only then is it possible to argue that the one-particle states 
make the leading contribution to the appropriate correlation functions at large 
times t. Resonances, on the other hand, have masses greater than the many-par- 
ticle threshold in the given channel. At best they are hence dominating for some 
range of t before the low-energy scattering states take over. 

On a more fundamental level, the problem with resonances is that they are 
primarily a dynamical phenomenon, which is observed in scattering processes. To 
compute resonance masses, one must hence be able to study particle scattering in 
one way or the other. This seems quite impossible in the framework of numerical 
simulations, because the lattices one can afford are small in physical units. In 
particular, the spatial sizes L of the lattices currently in use for simulations of 
QCD are a few fermi at most. To set up a low-energy rrrr scattering “experiment” 
in such a small box is clearly inconceivable. 

It has however been noted that there is a close connection between the 
two-particle energy spectrum in finite volume and the elastic scattering amplitude 
[1,2]. The general idea then is that the latter can be inferred from the spectrum, 
which in turn should be accessible to numerical simulations. The practical feasibil- 
ity of this programme has been demonstrated for models living in two space-time 
dimensions [3], and there are also some partial results on the +4-theory in four 
dimensions [4,5]. In the present paper the aim is to discuss how, in principle, the 
properties of resonances in the elastic region can be computed along these lines. 
Using specific models and perturbation theory, many of the qualitative issues 
involved have already been clarified earlier [6-81. The new ingredient here are the 
formulae of ref. [2], which allow one to address the problem quantitatively on a 
non-perturbative level. 

To keep in touch with real physics, the p-resonance in QCD is taken as an 
example, allowing for various values of the quark masses as is the case in 
numerical simulations. Other resonances can be treated in the same way without 
additional difficulties. In sect. 2 the properties of the physical p-resonance are 
briefly discussed. The relevant results of ref. [2] are reviewed after that and in sect. 
4 the spectrum of TV states in finite volume is worked out. In particular, it is 
shown there how to determine the resonance mass if the energy spectrum is known 
at a few values of L. 

2. Pion scattering and properties of the p-resonance 

The theory discussed in the following is QCD with degenerate up- and down- 
quark masses, and an arbitrary number of heavy quarks. When formulated on a 
lattice, cutoff effects will be assumed to be negligible. In particular, it is taken for 
granted that isospin is either an exact symmetry, as for Wilson fermions, or only 
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weakly broken. This condition is often not satisfied when one chooses to work with 
staggered fermions, and in these cases the analysis in this paper may not apply. 

2.1. KINEMATICS 

Single pion states Ipa) are labelled by a momentum 

P = (P”>P)> PO= &&7, (24 

and an isospin index a ranging from 1 to 3. Their normalization is chosen such 
that 

The elastic pion scattering amplitude T, in the channel with isospin I is defined 
through 

(p’a’,q’b’ outIpa,qb in) = (p’a’,q’b’inpa,qbin) 

+i(2r)“6(pf+q’-p-q) 5 Q;y,t,abT,, (2.3) 
I-1 

where the isospin projectors Q’ are given by 

Q:w $01, = $( 6,,6,*, + 8”y&J - $“‘b’l&j). P-6) 

In the centre-of-mass frame, T, is a function of the scattering angle 8 and the 
absolute value k = lpI of the pion momenta. It is also convenient to introduce 

w=2JG5F, (2.7) 

the total energy of the scattered particles. 
The partial wave expansion of TI reads 

T,= 169-rWe (21+ l)P,(cosO)t,,, (2.8) 
1-o 

where P,(z) denotes the Legendre polynomial of order 1 (the normalization is as in 
ref. [12], appendix B). Bose symmetry implies that the partial waves t,, vanish 
when I + 1 is odd. Furthermore, if we define the scattering phase 6,,(k) and the 
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inelasticity v,,(k) through 
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it follows from unitarity that v,, = 1 in the elastic range 2m, < W < 4m, and 
q,, Q 1 elsewhere. 

2.2. l-I-E p-RESONANCE 

According to the Particle Data Group [9], the physical p-meson has quantum 
numbers IG(JPC) = l+(l--), mass m,, = 770 MeV and total width r, = 150 MeV. 
In almost all cases, it decays into two pions. The scattering phase 6,,(k) accord- 
ingly passes through a/2 at the resonance energy, which corresponds to a pion 
momentum k equal to 

kp=f,fw. (2.10) 

The effective range formula 

k3 
zcotS,,=a+bk2 (2.11) 

is in fact known to fit the experimental data quite well, if the parameters a and b 
are chosen such that 

at k=k,. 

This amounts to 

4k; 
a= -bki=- 

rnzr, ’ 

(2.12) 

(2.13) 

(The effective range theory for pion scattering is discussed in more detail in ref. 
[lo]. For an analysis of the experimental pion phase shifts see ref. [ll], for 
example.) 

A simple phenomenological description of the decay p --, rr is provided by the 
interaction lagrangian 

3nt = gpp&,bcP;~baP+ - (2.14) 

The p-meson field pz and the pion field W’ occuring here are effective fields with 
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canonical kinetic terms. To first order in the coupling g,,,, this model gives 

r  = (gpmJ2 kp” 

- . -  

P 
6-r rnt ’ (2.15) 

from which one infers 

g prr,r = 6.0 9 (2.16) 

a rather large value. 

2.3. QUARK MASS DEPENDENCE OF 6,,(k) 

As already mentioned in sect. 1, we shall also study the spectrum of QCD at 
quark masses larger than their physical values. In particular, we shall be interested 
in situations where the p-resonance is in the elastic energy range. The scattering 
phase 6,,(k) is then not known, but it is likely that the effective range formula 
(2.10, with parameters determined through eq. (2.12), continues to be a good 
approximation. Furthermore, it seems reasonable to assume that the effective 
cowling g,,, is only weakly dependent on the quark mass so that the p-width is 
still given by eqs. (2.15) and (2.16). We are then left with a scattering phase 6,,(lc), 
which is completely determined once mp/mT and the pion mass are specified. The 
latter just sets the scale, while rnz/rni is roughly inversely proportional to the 
quark mass. 

In the following the phase shift defined in this way will be referred to as the 
phenomenological scattering phase. It is only needed for the purpose of illustration 
and no claim is made that it coincides with the true pion phase shift in QCD. 

3. Pions in the femto-universe 

A term originally introduced by Bjorken [13], the femto-universe here denotes a 
four-dimensional world with spatial extension L in the range between say 2 and 10 
fermi. More specifically, space is assumed to be a torus, i.e. a cubic box with 
periodic boundary conditions in all directions. This little world is what can be 
simulated on a computer, and the question then is how to deduce the properties of 
hadrons in infinite volume from such computations. 

3.1. POLARIZATION EFFECTS 

Since the pion is an extended object roughly one fermi wide, it will be slightly 
squeezed when placed in the box. In particular, the energy E(P) of a pion with 
momentum p must be expected to differ from its energy in infinite volume. The 
effect is known to decrease exponentially at large L, 

e(p) = J/- + 0( emm*‘), (3-l) 
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reaching a level of less than 2 percent of the pion mass for box sizes L > 1.5 X m;’ 
[14,15]. 

In the framework of effective pion models, finite-size effects of the type just 
described arise from virtual pion exchange around the femto-universe. They are 
present in all physical situations considered below and are referred to as polariza- 
tion effects. Being related to classically forbidden processes, they are exponentially 
suppressed at large L. For this reason they will be neglected in the following, but 
in any numerical work it would be important to check on the size of these 
corrections, especially in the case of single pion states. 

3.2. T’WO-PION STATES 

When considering states of two pions in the femto-universe, it is crucial to note 
that the quantum of momentum in this little world is given by 

Ap = 2a/L = 1240 MeV/L [fm] . (3.2) 

The energy spectrum of the theory below say 4m, is hence far from being 
continuous. In every sector with definite quantum numbers, one rather has a 
sequence of discrete levels that are separated by energy gaps of the order of 
100 MeV. 

Of particular interest in the following are the energy eigenstates with zero total 
momentum, energies W in the elastic region 2m, < W < 4m, and the same 
quantum numbers as the p-meson. In particular, they are required to have even 
G-parity, isospin I = 1 and no other flavour. And they should transform as a vector 
(the representation T;) under reflections and cubic rotations of space. The 
collection of all these energy eigenstates will be referred to as the p-sector. 

3.3. ENERGY SPECTRUM AND PION PHASE SHIFTS 

If the pions would not interact, the possible TIT energy values W in the p-sector 
would be given by 

w=z&qTc, (3.3) 

where k = Aplnl’ and II runs through all integer vectors such that 0 < k < am,. 
The basic result of ref. [2] is that the true energy spectrum is still given by eq. (3.3), 
but with k being a solution of a complicated non-linear equation which involves 
the pion scattering phases 6,,(k). 

To write it down, let us first assume that all scattering phases 6,,(k) with la 3 
vanish in the elastic region. The equation then reads 

kL 
np--6,,(k) =4(q), n E Z, 4=gs (3.4) 
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where (b(q) is a known kinematical function, whose properties are discussed in 
appendix A. For fixed L, eq. (3.4) has a finite number of solutions k in the range 
0 <k < firn,, and the corresponding energy values W, defined through eq. (3.3), 
are precisely the energies of the states in the p-sector*. 

To the author’s knowledge the physical pion scattering phase 6,,(k) has not 
been measured at low energies. It is presumably very small there, since the lightest 
observed resonance with quantum numbers IG(JPC) = 1+(3--j, the p,(1690), is 
far above the inelastic threshold. In the simple p exchange model with interaction 
(2.141, one indeed finds that 6,,(k) < 1” for all energies around and below the 
p-mass. Under these conditions its influence on the energy spectrum in the 
p-sector may be treated as a small perturbation. To first order, eq. (3.4) then gets 
replaced by 

n+r - &t(k) = 4(q) + $a(q)ta b,(k) 3 (3.5) 

where the sensitivity a(q) is another kinematical function defined in appendix A. 
If one inserts the scattering phase 6,,(k) computed from p-exchange, the correc- 
tion term in eq. (3.5) is in most cases less than a percent of 4(q). Corrections of a 
few percent are found when mp is close to 2m, and if k is large. 

The influence of the higher scattering phases can be discussed similarly, but 
since these are even smaller than S,,(k), it is unlikely that they lead to a noticeable 
effect. 

4. Signatures of the p-resonance 

In the following the working hypotheses is made that the spectrum in the 
p-sector is accurately described by eq. (3.41, i.e. that the influence of the higher 
scattering phases is negligible. As discussed above, one has reason to expect that 
this assumption is justified down to a level of a fraction of a degree - an accuracy 
far sufficient for the analysis of numerical data. 

Eq. (3.4) may be read in two ways. We may first insert the phenomenological 
scattering phase (2.11) and work out the solutions of the equation. This will give us 
the “expected” energy spectrum in the p-sector. Or else we may assume that one 
or the other energy level has been computed through numerical simulation. Eq. 
(3.4) then yields the scattering phase 6,,(k) at the corresponding values of k. 

4.1. EXPECTED ENERGY SPECTRUM IN THE p-SECTOR 

For physical values of m,, mP and I”, the predicted energy spectrum in the 
p-sector is shown in fig. 1. Since the phenomenological scattering phase is small 

*There are further levels with q > fi which we do not discuss here, because they are above the 
inelastic threshold for box sizes L < (20/3)‘/% x m;‘, i.e. for L < 11 fm. 
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2.5 - 

Fig. 1. Expected energy spectrum in the p-sector for physical values of m,, mp and r,. 

below the inelastic threshold (a few degrees at most), the spectrum is practically as 
if the pions would not interact at all. The maximal deviation from the free pion 
levels is less than 11 MeV, an effect which is surely hard to detect in any numerical 
simulation. 

A more interesting result is obtained when the up- and down-quark mass is large 
enough for the p-mass to move below the inelastic threshold (see fig. 2a). The most 

2.5 

lb) , 1 , I t 

3 5 5 6 1 

Fig. 2. Expected energy spectrum in the p-sector for (a) m,/m, = 3 and (b) mP/m_ = 2.2. In both 
cases the p-meson width is assumed to be given by eqs. (2.15) and (2.16). This amounts to I-,/r+ = 0.30 

and f,/m, = 0.038, respectively. 
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obvious difference compared to fig. 1 is that at all values of L there is one more 
level below the inelastic threshold. This is in accord with the naive expectation that 
the p corresponds to an additional state which mixes with the two-pion states. The 
figure also shows that all levels vary substantially with L. In particular, there are 
no pronounced plateaus at the p-mass, as one would expect for a very narrow 
resonance 16-81. 

At even smaller values of mp/mr, the lowest level looks more and more like a 
stable particle state (see fig. 2b). The reason for this behaviour is that the available 
phase space for p-decay becomes small and eventually vanishes at threshold. 
Effectively one thus has a narrow width case, with a flat plateau at the resonance 
energy extending up to values of L greater than 8 X m;‘. 

4.2. DETERMINATION OF THE p-MASS FROM SIMULATION DATA 

Let us now assume that some energy values in the p-sector have been computed 
through numerical simulation on a few lattices with fixed bare coupling and quark 
masses. Via eq. (3.3), each measured energy value W corresponds to some 
momentum k, and the scattering phase 6,,(k) at these momenta is then deter- 
mined by eq. (3.4). With sufficient data one will in this way be able to trace out the 
complete phase shift in the elastic region. If the p-resonance is below the inelastic 
threshold, a fit of the data with a Breit-Wigner or effective range formula then 
allows one to estimate the resonance energy and width, taking eq. (2.12) as the 
definition of these two quantities. 

Alternatively, by varying L one may directly search for the point, where 6,,(k) 
passes through 7r/2. This happens when 4 [the parameter introduced in eq. (3.4)] 
satisfies 

4,(q) = (n - t)T (4.1) 

for some integer n. The complete list of solutions of this equation in the range 
0 Q q Q 3 is given in appendix A. Once this point is found, the resonance width 
may be determined from the identity 

8k; Y aw r,= --. 
d’(q) 4kp’ + m,,r ’ 

Y’L$p (J-2) 

which is a straightforward consequence of eq. (3.4) and the definition (212) of the 
p-width. For a very narrow resonance, the calculation of the slope y may however 
turn out to be impractical, because it may be impossible to compute the energy 
vahes in the p-sector with the necessary statistical accuracy. The best one can 
achieve in this case is an upper bound on the width. 
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4.3. RESONANCE AMPLITUDES 

When computing the energy spectrum in the p-sector through numerical simula- 
tion, one proceeds as in the case of the pion mass calculation outlined in sect. 1. 
That is, one chooses some fields with the right quantum numbers and works out 
their correlation matrix at large times t. The desired energy values can then be 
read off from the eigenvalues of the matrix (see ref. [3], appendix A, for the 
relevant technical lemma). 

Two-pion states can be created from the vacuum by acting with operators of the 
trpe 

(4.3) 

where fk(z) is some periodic wave function, which transforms according to the 
representation T; of the cubic group. All levels in the p-sector can eventually be 
reached by these operators. The states with energies close the p-mass are special, 
however, because they have an enhanced projection on the states generated from 
the vacuum by local operators. The computation of this part of the spectrum may 
hence be facilitated by including such operators in the correlation matrix. 

To illustrate the point, let us consider the correlation function 

C,(t) = /d3x($(~,X)j~(0,0)) (4.4) 

of the isospin current 

This operator has the same quantum numbers as the p-meson, and all energies 
IV,, < 4m, appearing in the finite-volume spectral representation 

C,(t) = t A,emK’ 
Cr=l 

(4.6) 

hence come from intermediate states J(Y) in the p-sector. 
If Ia) is a state well below the resonance energy, it describes two weakly 

interacting pions in the femto-universe. The probability that both of them are close 
to the origin is proportional to L -6. Since it is only then that a non-zero overlap 
with the state j~(O,O)lO) is obtained, it follows that the amplitude 

A, = L31(Olj~(0,0)I~)12 (4.7) 
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is of order L - 3. (It is straightforward to confirm this qualitative argumentation in 
the free pion theory, where the isospin current is given by ji = e,,,crbL$#.) 

For the levels close to the resonance energy, the situation is different. To see 
this let us first imagine that the coupling gprrrr between the p-resonance and the 
two-pion states is switched off. The p would then be stable and the amplitude A, 
of the corresponding state would be of order 1. When the coupling is turned on, 
the former resonance state mixes with the nearby two-pion states. The mixing is 
usually small, except when a two-pion level happens to cross the resonance energy 
[6]. In that case the associated amplitudes just rotate into each other so that both 
levels will in general have an appreciable amplitude. The upshot then is that the 
off-resonance states are suppressed relative to the states around the resonance 
mass. The energies of the latter should hence be comparatively easy to extract 
from the current correlation function. 

Further support for this conclusion comes from the spectral representation of 
the current correlation function in infinite volume, 

CJ t) = Ll dWe( W)emW’. 
li 

(4.8) 

Up to a kinematical factor, the spectral density Q(IV) coincides with the total cross 
section for e+e---, hadrons, where the final state is required to have isospin I = 1. 
As is well known [16], the p-resonance shows up in these processes through a 
broad peak, which may be roughly represented by the Breit-Wigner formula 

3k3 
@(W) = - * m: 

8T2W (W-m,)‘+ +r,2 * 
(4.9) 

When this expression is inserted in the spectral integral (4.8), one finds that C,,(t) 
is dominated by the states around the p-peak for all times t that are not too large 
compared to m; ‘, but large enough to suppress the contribution of the high- 
energy states. 

5. Conclusions 

The ideas discussed in this paper provide a conceptually satisfactory basis to 
approach the problem of resonances in lattice field theory. So far the method only 
applies to resonances in the elastic region, and its practical feasibility has not yet 
been demonstrated. To study the technical issues involved, it would certainly be 
useful to experiment with a simple test case, such as the linear m-model, before 
one turns to the physically more relevant theories. 
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If the resonance considered is very narrow, it may be difficult to extract its width 
from the two-particle energy spectrum in finite volume, unless the latter can be 
determined very accurately. In this situation it is probably better to try to compute 
the relevant phenomenological coupling constants directly from three point corre- 
lation functions. The theoretical problem of how to pass to the desired on-shell 
matrix elements has, however, not been solved up to now. 

Appendix A 

A.l. ZETA FUNCTIONS 

Let r be a vector in R3 and r, 13, cp its polar coordinates. A complete set of 
homogenous harmonic polynomials in f is given by 

y/,,,(r) = ernw 9) ’ (A.11 
where 1= 0, 1,2,. . . and m = -1, -I+ I,..., 1. The functions Y,,,,(B, cp) are the 
usual spherical harmonics, with phases and normalizations chosen as in ref. [12], 
appendix B. In particular, Y0,,(t9, 50) = l/ 6. 

The generalized zeta functions Z,,,(s; q2) of the cubic lattice are meromorphic 
functions of s in the whole complex plane. For Re2s > I+ 3, they are defined 
through the convergent series 

z,,(s;q2) = c Yt,,,(4(n2-q2r 
ncz-’ (A.21 

and elsewhere through analytic continuation (in eq. (A.21 the phase convention 
-r < ars(n2 - q2> G r is adopted). An efficient way to evaluate the zeta functions 
numerically is described in ref. [2], appendix C. 

A.2. DISCUSSION OF THE ANGLE 4(q) 

For all q > 0, the angle 4(q) is determined by 

T3/2 4 
tan4W = -2,,(1;q2) 3 4(O) = 0, (A.3) 

and the requirement that it depends continuously on q. For q2 > 0.1, 4(q) is very 
nearly equal to rq2 (see table A.0 The numbers listed there are exact to the 
precision stated. For intermediate values of q2, quadratic interpolation will in 
general yield sufficiently accurate results. 
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TABLE A.1 

249 

Values of the angle d(9) in the range 0.1 c 9’ Q 9.0 

92 4/7rs2 9’ 4/n-92 92 d/7792 

0.1 1.1100 3.1 1.0083 6.1 0.9933 
0.2 1.1352 3.2 1.0098 6.2 0.9856 
0.3 1.1091 3.3 1.0063 6.3 0.9773 
0.4 1.0779 3.4 1 .oooo 6.4 0.9688 
0.5 1.0503 3.5 0.9924 6.5 0.9601 
0.6 1.0283 3.6 0.9850 6.6 0.9515 
0.7 1.0121 3.7 0.9791 6.7 0.9429 
0.8 1.0021 3.8 0.9766 6.8 0.9345 
0.9 0.9981 3.9 0.9514 ,6.9 0.9262 
1.0 i .oooo 4.0 1.0000 7.0 0.9182 

1.1 1.0071 4.1 1.0318 7.1 0.9104 
1.2 1.0178 4.2 1.0540 7.2 0.9030 
1.3 1.0292 4.3 1.0594 7.3 0.8959 
1.4 1.0382 4.4 1.0558 7.4 0.8892 
1.5 1.0422 4.5 1.0481 7.5 0.8831 
1.6 1.0408 4.6 1.0387 7.6 0.8777 
1.7 1.0345 4.7 1.0286 7.7 0.8734 
1.8 1.0247 4.8 1.0185 7.8 0.8706 
1.9 1.0128 4.9 1.0088 7.9 0.8705 
2.0 1.0000 5.0 1 .oooo 8.0 0.8750 

2.1 0.9872 5.1 0.9924 8.1 0.8857 
2.2 0.9751 5.2 0.9867 8.2 0.8982 
2.3 0.9645 5.3 0.9838 8.3 0.9055 
2.4 0.9563 5.4 0.9847 8.4 0.9072 
2.5 0.9512 5.5 0.9902 8.5 0.9058 
2.6 0.9508 5.6 0.9985 8.6 0.9030 
2.7 0.9564 5.7 1.0050 8.7 0.8994 
2.8 0.9686 5.8 1.0071 8.8 0.8957 
2.9 0.9852 5.9 1.0050 8.9 0.8921 
3.0 1.0000 6.0 1 .oooo 9.0 0.8889 

In the small-q’ range, d(q) is roughly proportional to q3. The function 

2rr*q3 
&( 4) = arctan= , (A4 

x = 8.91363 q* - 16.5323 q4 - 8.402 q6 - 6.95 q*, 

gives an accurate numerical representation there, with 

I1 - 40(4)/d+?)l < 4 x 1r5 

for all q* 6 0.1. 

(A.3 

(A4 
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TABLE A.2 

Solutions qn of eq. (A.71 in the range 0 d q =G 3 

(In (b’(4J 

0.6877 4.0280 
1.2007 8.3454 
1.6208 10.765 1 
1.8806 8.5345 
2.0620 16.4027 
2.3532 21.5301 
2.6826 6.3787 
2.8789 23.4860 

For each integer n > 1, the equation 

has a unique solution q = q,, which is given in table A.2 together with the first 
derivative of (b(q) at this point. 

A.3. PROPERTIES OF THE SENSITIVITY o(q) 

The sensitivity a(q) is defined through 

u(q) = $ * 2,&i 42)2 
7r3q6 + q42,( s; q2)2 - 

(A-8) 

o(q) is non-negative and smooth for all q > 0. The function varies appreciably with 
peaks at the points where the zeta functions are singular. In the range 0 < q2 G 9 
the bound 

7 6 
o(q) G T + 

q (qz-4)2+1 

holds. 
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