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We propose that the true quantum symmetries of minimal conformal models are weak quasitriangular quasi Hopf algebras 
("quasi quantum groups") canonically associated with Uq (sl2), rather than the quantum group algebras Uq (sl2) themselves. We 
show by construction that the conformal Ising model admits quasi Hopf covariant field operators which obey quasi Hopf covari- 
ant operator product expansions and local braid relations. Both are valid as operator identities on the whole positive definite 
physical Hilbert space. 

Soon after the discovery o f  quantum mechanics, group theoretical methods were used extensively to exploit 
rotational symmetry and classify atomic spectra. Ever since it was thought that symmetries in quantum theory 
are groups. It took nearly 60 years to discover that it need not to be so. 

Conformal models show signs o f  unusual symmetry,  and quantum group algebras Uq(sl2) with qP= 1 were 
proposed as their symmetries [ 1 ] #l. As the defining features o f  a quantum symmetry one may take it that there 
should be a transformation law of  states and of  field operators, ground state and hamiltonian should be invar- 
iant, and the transformation law should be consistent with braid group statistics in the sense that the covariant 
field operators obey local braid relations as introduced by Fr6hlich [ 4 ]. For the conformal Ising model, an 
action of  Uq(sl2) with q=  ( + ) i  on states in a (positive definite) Hilbert space ~ o f  physical states was de- 
scribed and Uq (s12)-covariant field operators were constructed which act in Yd [ 3 ]. However, the Uq ( s12 )-braid 
relations are not valid as operator identities, i.e., they are not valid on all of  aft, but only on a subspace, and the 
same is true o f  the Uq(sl 2)-cOvariant operator product  expansions. We propose to remedy this unsatisfactory 
state of  affairs by reinterpreting the symmetry. 

Quantum groups ~q are noncommutat ive  but associative generalizations o f  the algebra o f  functions on a group. 
To have a conventional picture of  a symmetry one considers the dual f#*. It is a Hopfalgebra  which is coassocia- 
rive but not cocommutative.  In Drinfel 'd 's  quasitriangular quasi H o p f  algebras coassociativity is weakened to 
quasi-coassociativity [ 5 ]. Quasitriangularity means that an element Re  ~9"® ~#* is given which furnishes the 
braid relations o f  field operators (up to a phase factor).  An orbifold model with quasi-Hopf invariant correla- 
tion functions was discussed by Dijkgraaf, Pasquier and Roche [ 6 ]. Drinfel 'd 's  axioms can be weakened further 
without loss of  the physical interpretation as a symmetry, by giving up invertibility requirements. Some weak 
quasitriangular quasi H o p f  algebras f#* of  this type are canonically associated with Uq (s12) when qP= 1. All their 
representations are physical. We propose to regard them as the true symmetries o f  conformal models. This 
reinterpretation affects both the covariant operator product expansions and the local braid relations. We show 
at the example o f  the conformal Ising model that the quasi-Hopf covariant operator product expansions and 
braid relations are valid as operator identities. 

i E-mailaddress: I02MAC@DHHDESY3.BITNET. 
~t Ref. [2] has been reviewed in ref. [3 ]. 

Elsevier Science Publishers B.V. 207 



Volume 267, number 2 PHYSICS LETTERS B 12 September 1991 

We proceed to a short description of weak quasitriangular quasi Hopf algebras fg* and their interpretation as 
a symmetry. A pedagogical account will be presented in ref. [ 7 ]. 

~* is a *-algebra with unit e, with additional structures as follows. There is a counit E: G*~C and a coproduct 
/t: f¢*-, f¢*® fg*. Both are *-homomorphisms of algebras and obey 

( id®e)A= (e®id)A (1) 

( id=identi ty map). In the case of interest here, the *-operation on fa*® fa* is defined as (a®b)*=b*®a*. 
There is an element ~o~ fa*® fa*® fa* which implements (weak) quasi coassociativity of the coproduct (see 
below). In contrast with Drinfel'd, we admit true projectors A(e) ~ e®e, and we do not demand invertibility of 
~o, but only the existence of a quasiinverse, still denoted by (0- ~, such that 

~o~o-I=(id®A)/f(e), ~o-'fa= (A®id)A(e) ,  (2) 

(id®id®E) (~o) - d ( e ) .  (3) 

Furthermore there should exist an Re fa*® f~* such that 

z~' (~/)R =R,~(~) for all q~ f#*, (4) 

lfA (~) = Y ~' ® ~z then A' (~) = Y ,~2 ® y~ by definition. We do not demand that R be invertible, instead it should ,=p ".:p, ~p ":p 

have a quasiinverse R - ~ such that 

R R - ' = A ' ( e ) ,  R - ' R = A ( e ) .  (5) 

By definition, weak quasi coassociativity demands that 

~0(A®id)d(~) = (id®A)A(~)~0 for all ~e fg*. (6) 

Following Drinfel'd the following relations between A, R, ~o are postulated: 

(id®id®A) (~o) (zJ®id®id) (~0) = (e®~o) ( id®d®id)  (~o) (~o®e), (7) 

(id®zl) (R) = ¢ p ~ ' 3 ~ R 1 3 ~ 2 t 3 R 1 2 ~  - l  , ( 8 )  

(A®id) (R) u~ ~312RI3 (~ 131R23~ . (9) 

We used the standard notation. If R = E ~ 2 l 2 ra®ra then RI3 = ~  etc. any ra®e®ra, I f s  is permutation of 123 and 
~ = ~  1 2 3 ~0o@~0o@¢~ then 

~Os(l)s(2)s(3) ~ E s - l ( l )  s - l ( 2 )  (fla ®~0o  ® fffs-' (3). (10) 

Eqs. (8), (9) imply the validity of the quasi Yang-Baxter equations, 

--1 --1 RI2~O31zRI3~O 132R23~=~o321R23¢P231RI3q)213Rt2 . ( 1 1 ) 

and this guarantees that R together with ~0 determines a representation of the braid group with generators a~ = R, 
crz=~213(R®e)~o-~, etc. There should also exist an antipode ~ with certain properties [7,5 ]. Quantum group 
algebras are special cases with A(e) = e ® e  and ~0= e®e®e. 

A weak quasitriangular quasi Hopf algebra f¢* is a symmetry of a quantum mechanical system if: 
- The Hilbert space carries a representation of f¢* by operators U(~) which is unitary in the sense that 
U(~)*= U(~*), and U( e) = 1. 

- The ground state I 0)  is invariant in the sense that 

U(~) I0) = I0)~(~) for all ~ fq*, (12) 

and representation operators U(~) commute with the hamiltonian. 
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- Field multiplets ~u I transform covariantly in the sense that 

t : (~ )v , , ' =  E , i , 2 G'®~p,2 ~v/r jA~p)U(~v)  i fA(~)=  E (13) 
P 

where r ~ are finite dimensional unitary representations of f¢*. Summation over repeated indices is understood, 
and we neglect to write arguments r, t of field operators. The transformation law of fields is the same as proposed 
by Buchholz, Mack and Todorov for quantum group algebras [2]. 

We distinguish in notation between the standard tensor product ® of matrices, algebras, etc, which is associ- 
ative by definition, and the tensor product ® of representations of f¢* which is defined by 

(z lOz J) (~) = ( z l® ' t  v) [A(~) ] . (14) 

It is not associative unless ~ is trivial. But weak quasiassociativity ensures that the representations (itl®itg) 
® ItK and Itt® (its® itK) are equivalent. It follows from the transformation law of field operators and invariance 

,,,11 ,,d, I 0)  transform according to the tensor product representation of the ground state that states lit il ...l,~i,, ) = ,.,, ....,.i, 

U(~)  Ill i l ,  ..., Ini,, ) = Ill k l ,  ..., Ink,, ) [ zl '®.. .® (C"-'  ® C")... ] kl...k,,,...i, (~) • ( 1 5 ) 

Using (01 U(~) = ~(~) ( 0 I, invariance properties of the correlation function ( 0111il...I,,i,,) are deduced in the 
standard way. 

Ordinary products of field operators do not transform covariantly in general, but one can use ~o= Y, ~ ®  
~02~®~ 3 to define a covariant product X. 

J 1 1 J 2 3 ( ~1× 7jg)~j= ~ ~ ~ ' . z m , ( ~ a ~ ) z , j ( ~ o ) U ( ~ ) .  (16) 
¢7 

It transforms according to the tensor product representation z 1 ® z  v. The covariant product × is not associative 
in general, hut eq. (7) implies that it is quasiassociative in the sense that 

[ ( ~.11 X ~.lJ) X ~'lK]ijk = [ ~-'IIx ( ~'lJx ~.IK) ]i'j'k' ('~l®'cJ®rK)i'j'k'.ijk(~9) • ( 17 ) 

Relation (3) and invariance of the ground state I 0)  imply that 

[ ~e I1X ( ~el~x...X ( ~i._, X ~ " ) . . . )  1,,...,. l 0> = ~,'.~ ~e,'.~... ~e',r,:l ~',r, to> . (18)  

Thus the ordinary product of field operators agrees with the covariant product with multiplications performed 
in a definite order, when it is applied to the invariant ground state. Assuming that states [I~i,...I,,i,,) span the 
Hilbert space ~ ,  one deduces from this that the ordinary product of field operators can be recovered from the 
covariant one by use of the quasiinverse ~0- l just as if~o- l were a true inverse. 

Using this fact, operator product expansions for ordinary products can be translated into expansions for co- 
variant products and vice versa. It is the operator product expansion for covariant products which will involve 
numerical Clebsch-Gordan coefficients. In the expansion for ordinary products they get replaced by represen- 
tation operators for fg* in ~ .  

The appropriate form of the fC*-covariant local braid relations for the two field operators ~v I and ~v 'J, valid 
under appropriate conditions on the arguments of the fields (as in ref. [ 3 ] ), reads 

( ~"llx ~ J ) i j  = ( ~["ltJx ~.11~ ~ l J  I ]lm~,~ml, ij. (19) 

It involves the numerical matrix 

~lJ  1J 1 J ~ml ,  i j=C (T ®'C )ml, i j ( R )  . (20) 

c 1J are numerical (phase) factors which are not determined by the symmetry. These covariant braid relations 
translate into braid relations for ordinary products which involves an ~-matrix which is a representation oper- 
ator for ~* in ~ [ 7 ]. 
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Drinfel'd's relations (8), (9) imply that covariant products of field operators will also satisfy local braid 
relations, under appropriate conditions on their arguments r, t, if the individual fields do. 

We note finally that covariant adjoints of field operators can be defined by use of the antipode and of R. This 
is discussed in ref. [ 7 ]. 

We will show that the conformal Ising model yields an example. The appropriate weak quasitriangular quasi 
Hopf  algebra if* is canonically associated with Uq(sl2) with qP= 1. q( + )i in the Ising model, but we discuss 
general p first, as occur in other minimal conformal models. As an algebra f9* = Uq ( s l2 ) / J ,  where J is the ideal 
which is annihilated by all the physical representations C, 2•=0, ..., p - 2 ,  of Uq(sl2). (~* is semisimple, its 
representations are fully reducible, and the irreducible ones are precisely the physical representations of Uq (sl2). 
Let U ( I , J ) = m i n { l I + J [ , p - 2 - I - J }  and let P,j be the projector on the physical subrepresentations, K, 
[I -J[  <~K~ u(I, J) of the tensor product n*®qn J of Uq(sl2) representations. There exists a Pc if* such that 
PH= (n*®nJ) (P). The coproduct in (¢* is determined in terms of the coproduct Aq in Uq(sl2) as 

A(~)=PAq(¢),  (21) 

hence A(e) = P ~  e®e. This coproduct specifies a tensor product ® which is equal to the truncated tensor prod- 
uct of physical Uq(sl2 ) representations. There exists an element ~ ~* such that ~uK= (~i® ztJ® ~*:) (~) imple- 
ments the well known unitary equivalence of the truncated tensor products ,r*® ( ~ : ® n r )  and (~*®,tJ) ®ha:. A 
truncated tensor product ® is defined also for basis vectors ~f in the dual representation spaces ~" * on which ~* 
acts from the right, viz. ~l - ,  ~, -J ei ®e5 =ei  ®e~ P,:. The map ~H~ can be specified by its action on triple truncated 
products of basis vectors, together with the condition ~=  (id®A)/l(e)~, viz. 

E I,' ,%[," "* "" p]qei®ea®ek~o= ~ Fee [:r ~] r* J Ol ** "J **: ,~ J q,v [qO ~ }]q (22) e~ ®ej ® e k .  
ijkp O,ijkq 

with fusion matrices given by 6j-symbols, Ft,Q [ J / ]  = { ~ ~ ~}q. The R-element of f~*® c5" is given in terms of 
the R-element Rq for Uq(sl2) by 

R =RqA(e) =A' (e)Rq, (23) 

while antipode and counit are the same as in Uq(Sl2). It is shown in ref. [7 ] that the defining properties of a 
weak quasitriangular quasi Hopf  algebra are satisfied. 

Let us now turn to the conformal Ising model. The Hilbert space ~ will be the direct sum of irreducible 
representation spaces oa t for the Virasoro algebra, I = 0 ,  l, 1, with multiplicities 21+ 1, 

1 

oa= ~ ~ of / . (24) 
• =0 ,1 /2 ,1  i=--* 

By closure in a suitable topology, the oa~ become the representation spaces for a somewhat larger algebra ag of 
observable than the Virasoro algebra, ag o carries the vacuum representation n ° of a¢ with Virasoro lowest weight 
0, while the af  t carry representations 7t I with lowest weight it ,= ~ and 1 for I= ½, 1. 

The field operators will be those constructed in ref. [ 3 ], and the action of f¢* on oa is given by the action of 
Uq(sl2) as described there. This is appropriate because the irreducible representations of (¢* are the physical 
representations of  Uq (s12), and because of eq. ( 18 ). Our aim is to show that these field operators will satisfy the 
fg*-braid relations (19), (20) as operator identities, and fg*-covariant operator product expansions on all of 
)f .  

We review briefly what is needed of the construction. Positive energy representations of  ag are related by 
nJ~  n°op,  where p, are morphisms of d which are explicitly known. One uses this equivalence to introduce 
identification maps i,m and their adjoints i~,,, 

i~m: o J oa ~ o a m ,  

with the intertwining property 7rJ(A)i3m = i~,,, rr ° [pj(A) ] for all A e ag. {~ fg* acts on afJm ~ oa according to 
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U(~)i3,,,Ig/)=i3kl~)z~m(~) for I~ ,>~  :°. (25) 

These representation operators U(~) commute with all observables Ae~¢. In particular, the conformal hamil- 
tonian L0 is invariant. The ground state I 0)  e Yt ~° is invariant because z ° (~) = E (~) and i3o is trivial. 

The field operators are given by the general bosonization formulas of Doplicher, Haag and Roberts, 

~J(r, t ) = F  JAg(r, t ) .  (26) 

The spacetime dependence is carried by the factors As which are observables. These factors commute therefore 
with U(~), ~e f¢*, and they map each subspace ~ s  into itself. Only the "constant fields" F J transform nontriv- 
ially under (¢*. They make transitions between different subspaces ) f s  and map the vacuum I 0)  into the lowest 
weight vector 12j) e ~Jm- They enjoy the intertwining property : 'J AFJ =l-'jpj(A) for all A ~ ¢  ( J= l , 1 ,  ~ = 1 ). 
They are given by the formula 

k ]q I K k l t o [ T ( K J L ) ] i r t .  (27) r~=  Z ~ [~m ,~'~ -. 
K,L , 

[ ::: ] q are the Clebsch-Gordan coefficients for the physical representations of Uq (s12), [ J -  L [ ~< K~< u (J, L ). The 
"intertwiners" T(K g L) are elements of ~ with the intertwining property 

T(K 'g)pg[pz(A ) ] =pK(A ) T(r  '#) • (28) 

They are known explicitly and enjoy the "fusion property" [8] 

T(z Nt)pt[T(uKj)  ] = ~ FNM [JK IL]T(L KM)T(MJ,) • (29) 
m 

When suitable normalization and phase conventions are imposed then F is a numerical matrix which is given 
by the same 6j-symbol as before. 

The fields (26) transform covariantly under f9* in the sense that eq. (13) holds. This follows from the fact 
that they are Uq (s12) covariant and ~v: carries only physical representations of Uq (s12). 

The Hilbert space ~ carries a unitary representation of the braid group with generators trl = ¢g, tr~ =p~-  1 ( ~ j )  

for n >i 2. This is true for every J =  0, ½, 1, but the only nontrivial case is J =  ½ [ 9 ]. Cg is an element of ~¢ which is 
in the commutant of p2(~¢) and is known explicitly. For fixed J we use the abbreviation s~= (x, JK~-,)[ = 
(Kt, Ki_ ~ ) for short]. The operator Cg determines braid matrices ~'~ Rs2s, such that 

T(s2)T(sl)PKo(~j)= ~ T(s'2)T(s'I ~'2~'1 )R ,~ , .  (30) 
~s~ 

Explicitly they come out proportional to 6j-symbols, for q= i z2, 

~'2~'~ =OK~K;OKoK'oCK, K; [S2 Solphy~, (31) Rs2s|  

Cjj, [:g,~ g~]pny~- ( - g 3  - 1)g+g'-gl-s4q(~'+~'-c:-~J')/2exp(--lin) [J~ s, g' ~,]q, (32) 

cg=J(J+ 1 ) .  (33) 

Validity of the local braid relations (19) of field operators for I = J  is ensured by the following property of 
constant fields: 

( F J X F J ) i j ¢  J = ( F J x F J ) j ,  i, - JJ ~ i ' j ' , i j  " (34) 

This follows from the definition and the homotopy invariance of eg [ 9 ] in the manner explained in ref. [ 3 ]. The 
fact that we want to consider a covariant product makes no difference in the derivation because observable 

#2 The numerical expressions for R :: differ from those given in ref. [ 3 ]. This results from the new phase conventions for intertwiners T 
which we had to adopt in order to establish ( 29 ) with the fusion matrix given by the 6j-symbols (22f.). 
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factors Aj in the field commute with representation operators. Below we verify eq. (34) for J =  ½. Validity of  
local braid relations for arbi tary/ ,  J follows from the operator product expansions for l = J =  ½ and the afore- 
mentioned fact that local braid relations for covariant products of fields follow from those for individual fields. 

Validity of operator product expansions for local field operators is ensured by those for constant fields (com- 
pare sections 4.4, 6.4 ofref. [3 ] ). In covariant notation they read 

I J K  K 1 ( V * X V a ) o =  ~ cIjK [ i j  k l q F~  T(K j) , (35) 
K 

with numerical factors C1jK. I I - -JI  <~K<~ u(I ,  J )  and [:::]q are the Clebsch-Gordan coefficients for Uq(sl2) and 
~* at the same time. 

We want to establish eq. (34). Inserting the definition of / '~  [ eq. (27) ] and of the covariant product (16) 
into the left hand side ofeq. (34) we get 

(r, E Z p]q [f, Oq S TJ 1 ZJ 2 r Q 3 i* T s T s s]q k 'k(~Oa)l ' l (~Oa)q,q(~O#)?p (e  S) (S Q)pq(Ej)iQq 
P,Q,S c~ 

The right hand side ofeq. (34) becomes 

J J --SS S' P S' J 1 J 2 rQ 3 ~SJ l'~ T J T J i (1 "~ X V  )mn~nm,kl  = E E [J'  p]q [J' Qq' s' ]qTm'm(~Oa)'~n'n(~Oo) q'q(q)a)~nm,k'  Pp (P S') (S' Q) Qq. 
P,O,S' a 

SO by (30), eq. (34) is equivalent to the following equation of c-numbers: 

E [J' S P ] q  [J Qq, Ss] q J 1 J 2 Q 3 (PS')(S'Q) Tk'k(~Oa)TI'I(~Oa)Tq'q(~Oo)R(ps)(SQ) 
S,~7 

E [ J m ,  S ' P  J S" J I J 2 Q - JJ  plq[., ~ (36 = ' s" ]qTm'm (~Oo)'rn'n(~OG)'[q'q(~ 03 ) ~nrn,kl • ) 
a 

Using the definition (22) of  ~0 this simplifies to 

E J J S "  Q P  PS')S '  )F  [ , , ,  ]~[sS.."~,I~R{~)~Q~ ~ . . [ ~ '~ ] =E[ 'm ' ,~ ; ' ]~ [~ ; ' ~  ~' ~ "  ,,]q ~ . . , ,k l .S 'S"  [Je ~] (37) s" 
S,S" S" 

Finally with the definition of R:: (30), a well known property of the mathematical ~-matr ix  R which enters 
(20) [ 10] and the choice c tJ=exp(  - ~in) in (20) we arrive at 

" S"}q [kt  lo t  s:' q°~]q( - 1  J J s" )s+s'-e-Oq<Ce+Ca-cs-cs,)/2 e x p ( -  -~irr) t J e S , , q t s  *J Q s ~ to  se s 
S",S 

= E [{~ s:' ]q [s;' qe ep]q ( - 1 ) 2 J - S " q C S ° / 2 - ~ e x p ( - ~ i r t ) { e s J S ' l ,  s,,}q. (38) 
S" 

But this holds, if 

S' }q { Y V e S" }q '  ( 3 9 )  
S 

which is the familiar hexagon identity on account of  the symmetry { J e  J Q ss, }q={J J ~ s s' }q of 6j-symbols. This 
completes our proof of  local braid relations. The calculation of  operator product expansions is similar and we 
leave it as an exercise. 
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