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Based on the concept of particle weight a unified description of stable particle-like systems in local quantum field theory is 

given which applies also to so called infraparticles. Particle weights carry definite charge, four momentum and spin and give rise 

to characteristic mass shell singularities. A collision theory for these weights is proposed which allows to calculate transition 

probabilities directly from local gauge invariant operators. 

1. Particle concepts 

The customary particle interpretation in local 
quantum field theory is based on the hypothesis, put 
forward by Wigner [ 1 ] more than 50 years ago, that 
the states of stable elementary particles can be de- 
scribed by vectors in some irreducible representation 
of the Poincark group, respectively its covering group. 
As is well known, this idea does not work for particles 
carrying an electric charge. The states of such parti- 
cles always contain clouds of low energy photons and 
therefore cannot be described by eigenvectors of the 
mass operator or vectors in some Lorentz invariant 
superselection sector of the physical Hilbert space, cf. 
refs. [2,3]. 

The formulation of mathematical concepts which 
are adequate for the description of such “infraparti- 
cles” [ 41 is a longstanding problem. In spite of some 
progress [ 5,6] many basic questions, such as the def- 
inition of spin and statistics of infraparticles, the gen- 
eral construction of collision states etc. remain open 
to date. 

We present in this letter a framework which seems 
to be suitable for a solution of these problems. Our 
approach is based on the observation that infrapar- 
titles can be viewed as elementary systems (like par- 
ticles) if one proceeds to Dirac’s idealization of im- 
proper states of sharp momentum [ 7 1. The standard 

treatment of improper states requires, however, some 
modifications. 

Standard (rigged Hilbert space) approach. Im- 
proper momentum eigenstates Ip) of a particle are 
regarded as Hilbert space valued distributions, 

CELL+ j d3p.0) Ip)Ex, (1) 

i.e. as linear mappings from the space of wave func- 
tions into the physical Hilbert space. This definition 
is based on the implicit assumption that the super- 
position principle holds unrestrictedly for the im- 
proper states (p), a condition that is not satisfied in 
the case of infraparticles. Improper states of infrapar- 
titles with different momenta cannot coherently be 
superimposed since they are affiliated with different 
superselection sectors which can be distinguished by 
the shape of the asymptotic electromagnetic field 

[WI. 
Present (algebraic) approach. Improper momen- 

tum eigenstates Ip) are regarded as linear mappings 
from some left ideal Y of localization operators, con- 
tained in the algebra d of local observables of the 
theory, into the physical Hilbert space, 

LEY+L(p) E;X . (2) 

Such mappings are called weights. In local QFT Y 
consists of almost local observables which annihilate 
the vacuum. Examples of such operators are ob- 
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tained by smearing any local field A (x) with a test 
func t ionf (x)  whose Fourier transform has compact 
support in the complement of the forward light-cone 
V+, 

L= ~ dx f (x )A(x ) .  (3) 

(In non-relativistic quantum mechanics 5( is gener- 
ated by rapidly decreasing functions of the position 
operator. ) The present characterization complies with 
the intuitive idea that an improper momentum ei- 
genstate (a plane wave) should become normaliza- 
ble after localization. 

In completely massive theories there always exist 
localization operators L such that the vector LIp) 
describes the state of a single particle. Our approach 
is then equivalent to the standard treatment of im- 
proper states. In the presence of long range forces the 
process of localization of a particle may, however, 
inevitably be accompanied by the production of 
massless particles. Then the vector LIP)  describes a 
multiparticle state for any choice of L, although the 
pre-image IP> can be interpreted in terms of a single 
particle. It is this phenomenon which one faces in the 
case of infraparticles and which is taken into account 
in our definition. 

2. Properties of particle weights 

It has been noticed in ref. [ 8 ] that, irrespective of 
the type of interaction in the underlying QFT, the 
time-like asymptotic structure of physical states can 
be described in terms of particle weights character- 
ized by the following definition. 

Definition. A particle weight L ) is a continuous (in 
a suitable topology) linear mapping from a Poincar6 
invariant left ideal LP c ~4 of almost local vacuum an- 
nihilation operators into a Hilbert space ,~, such that 
(i) the family of operators n (A), A ~ J fixed by 

n ( A ) I L ) -  IA.L) , LeLP, (4) 

defines a self-adjoint representation (n, ,g )  of the al- 
gebra ~ '  on the Hilbert space ~ ,  and (ii) 

U(x)IL>'- IL(x)) ,  Le~,  (5) 

defines a continuous unitary representation of the 

space-time translations x with spectrum in some 
light-cone V+ + q. 

Detailed properties of particle weights, which jus- 
tify their interpretation as improper momentum ei- 
genstates of a particle, have recently been established 
in ref. [9]. We list the most interesting ones. 

(i) Charge and momentum. Particle weights can 
be decomposed into direct integrals 

L )=J 'd#(2) l  >~ (6) 

of pure particle weights ] >~ inducing irreducible rep- 
resentations of ~4. The label 2. characterizes different 
particle weights, i.e. it subsumes all properties of the 
corresponding particles. In particular, there exists for 
each weight I )~ a unique four vec to rp~  V+ such that 
the continuous unitary representation of the transla- 
tions given by 

U~(x) JL>~-exp(ip~.x)lL(x))~, L ~  w, (7) 

has Lorentz invariant spectrum. Thus pure particle 
weights I>a  have fixed superselection quantum 
numbers, sharp four momentum p~, and mass ma = 

(ii) Spin. Here we assume that the space of pure 
particle weights I >4 corresponding to given four mo- 
mentum p is finite dimensional (finite particle mul- 
tiplets). With this input we can show that in the rep- 
resentation (nx, Y{~) of .~¢, induced by h )~, there 
exists a continuous unitary projective representation 
of the "little group" of p, i.e. of SO (3), respectively 
E (2). (Lorentz boosts may not be represented on ~ . )  
This implies that all particle weights of mass m~ > 0 
can be decomposed into weights of definite (half-) 
integer spin, as in the familiar case of particles of 
Wigner type. If  mz= 0 the helicity need not be quan- 
tized, however. This leaves open the interesting pos- 
sibility of massless infraparticles with fractional hel- 
icity in four space-time dimensions. 

(iii) Spectralproperties. Pure particle weights I > 
induce representations (gz, ~ )  of.sO with character- 
istic spectral properties of energy and momentum. 
There exist vectors qS~ ~,~. such that the functions (for 
given p) 

Xo~ f d 3 x e x p ( - i p . x )  (cb~, U~(xo, x)qg~) (8) 
d 
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are the Fourier transforms of  certain specific meas- 
ures. These measures have an atomic (~-function) 
part at Po = ~ i fp  is put equal to the spatial 
momen tumpa  of  the underlying particle weight I )~. 
I f p # p ~  this atomic part may, however, be absent ~. 
This is the case for infraparticles (in contrast to par- 
ticles of  Wigner type, where the measures have an 
atomic part for any p, i.e. on the whole mass shell). 
Lorentz boosts are then spontaneously broken on ~¢;~ 
and particle weights corresponding to different mo- 
menta induce inequivalent representations o f  ~¢. 

(iv) Local normality. Assuming decent phase space 
properties of  the theory (which can be expressed in 
terms of  compactness conditions [ 10 ] ) the represen- 
tations induced by particle weights are locally unitar- 
ily equivalent to the vacuum representation. This re- 
sult shows that particle weights are affiliated with 
states o f  physical interest. 

3. Collision theory 

Within the present setting the task o f  collision the- 
ory consists in the construction of  states on ~/which  
describe asymptotic configurations of  (infra) parti- 
cles with prescribed charge, spin, mass, and momen-  
tum. Contributions from low energy massless parti- 
cles need (and can) not be specified. The resulting 
states suffice for the calculation o f  cross sections for 
collision processes o f  "hard"  particles in which an 
unspecified number  o f  "soft"  particles is present. 

We have developed a method for the construction 
of  such states which does not require the knowledge 
of  charged fields [ 1 1 ]. The charged (infra) particle 
content of  the theory is determined in a first step from 
the observables ~¢ on the vacuum Hilbert space ,~o. 

Following ideas o f  Araki and Haag [ 12 ] we con- 
sider for any L e ~  and suitable, sufficiently regular 
functions h (v) the space-t ime averages 

~ Such "'isolated singularities" appear for example in some uni- 
tary gauges of quantum electrodynamics in the fermion prop- 
agators. This fact was pointed out to one of the present au- 
thors (D.B.) by K. Symanzik marly years ago. Yet its 
significance was unclear at that time. 

(L 'L)  (t; h) 

2t 

=t -l / dt' f d3xh(x/t')(L*L)(t',x). (9) 
t 

These operators are uniformly bounded in t on all 
subspaces of  0% of  finite energy [ 13 ]. The proposed 
construction o f  collision states is then accomplished 
by the following steps: 

(i ) Determination of particle content. Given ~ o% 
one calculates the limit 

a S ( L l L ) a S - l i m  (7/, (L*L)(t;h)TJ), (10) 
t ~ t a s  

where t"s= _+ co and as stands for in, respectively out. 
This expression defines, for positive h, a positive 
sesquilinear form as( I )as on 50 which can be de- 
composed into a mixture of  pure particle weights [9 ], 

.s( I )a~= f d / t a s ( 2 ) ~ (  [ ) a .  (11) 

The pure weights describe the (infra) particle con- 
tent appearing asymptotically in state 7tin the space- 
time cone fixed by the support of  h and the sign o f  t. 

(ii) Construction of selective counters. Having de- 
termined the particle weights appearing in the theory 
one constructs for each weight I )a a linear combi- 
nation o f  operators Zu(L~L~)( t ;  hu,a) such that the 
range of  the operator S a~ defined by 

S,~ s ~u ' - s -  lim ~ (L*~L~) (t; hu,~) 7/ (12) 

consists of  states in which a particle weight with 
properties specified by 2 appears at asymptotic times 
/ a s .  

In the case of  massive (infra) particles this con- 
struction is performed as follows: one first comple- 
ments the weight I )~ to a basis o f  weights I )~, with 
the same velocity, p~,/(p~,)o =Pa/(P~)o =v~. Then 
one picks sufficiently many operators L , e  50 and de- 
termines functions hu,~ with support about v~ such that 
there holds the relation 

~, (L,, IL~ )~,,h~.~(va)=~;~, ~, ,  . (13) 
/z 

This construction, which amounts to the solution o f  
a linear equation, always works if the respective basis 
consists of  a finite number  o f  elements. In that case 
one even can find functions hu,a such that relation 
( 13 ) holds for velocities in some neighbourhood of  
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va. (For  massless particles the construction is some- 
what different.) The operators S~ s obtained this way 
may be compared with selective particle counters 
which are only sensitive to particles of  type 2. 

(iii) Fixing of configurations. For most  purposes it 
suffices to consider asymptotic configurations of  par- 
ticles, fixed by labels 2 h "", 2~, which have different 
velocities. Then the corresponding selective counters 
S]~, i =  1, ..., n commute,  i.e. they refer to compatible 
properties o f  quantum states. 

Each configuration of  particles has total four mo- 
mentum p = px, +... +pa, .  It is said to be (essentially) 
neutral if for any open neighbourhood Ap o fp  the op- 

a s  a s  r eratorE(Ap)Sa,. . .S~ t , whe e E(  ) is the spectral pro- 
jection of  energy and momentum on ~o, is different 
from 0. This terminology is suggested by the fact that 
the range o f  this operator consists o f  states in the vac- 
uum sector 9fo describing (apart from -poss ib ly  
cha rged-  massless particles of  arbitrarily low en- 
ergy) the asymptotic configuration 2 ~ .... ,2 , .  

Now given any (not necessarily neutral) configu- 
ration 2 ~, ..., 2 m one first extends it to a neutral one ~2, 
2~ . . . .  , 2m, 2-,,+~, ..., 2-~. The operator E(Ap) 
× S~...S~,,+, S]~...S]] is then different from 0. Pick- 
ing any vector ~u in the set theoretic complement  of  
its kernel (which is an open set in ~%, hence almost 
all vectors kUwill do)  one proceeds to the vector 

a s  _ a s  a s  a s  a s  -E(Ap)S~,...S~m+, S~m...Sat ~ ,  (14) 

which describes the desired asymptotic configura- 
tion 2 i, ..., 2m, additional particles of  type '~m+~, ..., 
,~, carrying compensating charges, and possibly also 
an unspecified number  of  low energy massless 
particles. 

(iv) Removal of compensating charges. In order to 
remove the compensating charges from ~u~s one re- 
places the functions h~,x (v), appearing in the defini- 
tion of  the selective counters S~ -s for the compensat-  
ing charges, by 

exp (ir- mzv/ ~ ) hu.x (v) . ( 15 ) 

The phase factor has the effect that the asymptotic 

#2 The assumption that this is possible amounts to the hypothe- 
sis that for each charged particle there exists a particle carry- 
ing a compensating charge. Since massless particles can have 
arbitrarily small energy it suffices to consider supplementary 
particles 2,~+ ~ ..... 2-, which are massive. 

localization centers ( impact parameters) of  the com- 
pensating charges in kvas are shifted by r. The result- 
ing vector is denoted by ~ s .  One then proceeds to 
the limit state 

ogas(A)-  lim (~,~S,A~,~s), A z d .  (16) 
I r l ~ o o  

By macroscopic causality the contributions of  all 
compensating charges factor out in this limit and the 
collision state co as describes the desired asymptotic 
particle configuration 2~ . . . .  , 2,,. A corresponding 
Hilbert space representative can be recovered from 
the state ogas by the GNS reconstruction theorem. 

This construction o f  collision states mimics a kind 
of  filtering experiment. The ambiguities left in the 
definition of  these states with regard to the energy and 
momentum content (given by the size of  Ap) and the 
contributions from low energy massless particles cor- 
respond precisely to the experimental ambiguities in 
the preparation of  such states. 

(v) Cross sections. Having constructed the incom- 
ing states coin, the cross sections for (inclusive) col- 
lision processes can be determined from the expec- 
tation values 

i l l  o u t  O u t  o9 (Sx~ ...Sas ) ,  (17) 

where the selective counters are defined as in eq. (12) 
as limits o f  observables A ~ d .  These expectation val- 
ues are directly related to the probability that the in- 
coming configuration 21, ..., 2,~ turns into an outgo- 
ing configuration 24, ..., 2~ (plus undetected 
particles). 

A general proof  that this method works in the 
framework of  local QFT has so far only been given 
for asymptotically complete massive theories [ 14 ]. 
Even there the method is of  interest since it has the 
character o f  an algorithm which, in contrast to the 
reduction formulas in standard collision theory, 
avoids the use of  charged fields. Such fields are fre- 
quently hard to construct in gauge theories. Since the 
method relies on quantities which are always given 
in local QFT, it can be applied to any model. Its ef- 
fectiveness can then be checked directly. For exam- 
ple, the method has been tested [ 15 ] in the Schroer 
model o f  infraparticles [ 4 ]. 

The problem of  particle statistics, the status o f  the 
PCT theorem and the formulation of  conditions for 
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a sympto t i c  comp le t enes s  in this  set t ing are  present ly  

u n d e r  inves t iga t ion .  
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