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Among thetrajectoriesthat solve the differential equationsof generalscalar—tensortheories
of gravityspecial onesare selectedthat successfullyinflate the universe.They arewell-approxi-
mated by separatrices.Furthermorea set of necessaryconditionsis derivedwhich allows for
successfulinflation. They not only include sufficient horizon growthbut also both phasespace
and further cosmologicalconstraints.Theseconditionsare imposedon a simple ~“ potential
and on severaldilaton theoriesto arrive atboundsfor theinvolved parameters.

1. Introduction

As a preliminary cosmologicalmodel, inflation [1] is very successful since it
removesseveraldifferent shortcomingsof the hot big-bangmodel at once.Any of

theseshortcomings(e.g. horizon problem, flatness problem, abundanceof un-
wantedrelics...)arisesfrom a dissatisfyingfine-tuningof initial conditionsthat is
necessaryto reconcilepredictionsof the big-bangmodelwith astronomicalobser-
vations. Clearly the issueof initial conditionsaddressesthe open questionof the
correct laws of quantumgravity, i.e. the physics beyond the Planck scale. Thus,
inflation is preliminary as a viable approachto model the early universewithin
classicalgravity until a deeperinsight into quantumgravity might naturallysuggest
initial conditions. In addition, it turns out that a large classof theoriescontaining

one or more scalar fields (inflatons) is eligible for inflation. A novel naturalness
problem arises along with the construction of exclusively tailored versions of
inflation which questionsthe uniquenessandsimplicity it wascelebratedfor.

Therefore,we insist that inflation’s reasonabledomain be classicalgravity and
that inflatons should not be pure cosmologicalartefactsbut play a double role in

cosmologyas well as in particlephysics.The final goal of this paperis to arrive at
boundson the parametersof suchtheoriesby requiringthat successfulinflation be
possible.

Unfortunately, the original models of inflation were accompaniedby new
problems.Although a non-vanishingvacuumexpectationvalue of a scalar field
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playing the role of a cosmologicalconstanttriggersan era of exponentialexpan-
sion, it can not bothsolve the cosmologicalproblemsandproducea homogeneous
and isotropic Friedmanuniversethat is filled with galaxies,etc. This problem of

old inflation [2] which in general is connected with the termination of the
inflational era is referredto as the gracefulexitproblem.Eventhe refinedversion,
new inflation [3], suffersfrom drawbacks.It works only for a veryspecialclassof
potentialsand asks for fine-tuning to both inflate the universesufficiently and
providesatisfyingdensityperturbationsfor galaxyformation.

To avoid thisundesirablepropertyof old and newinflation we will be following
Linde’s idea of chaotic inflation [4] that assignsthe features of an effective
cosmologicalconstantto a scalarfield ~ moving in a potential V(~).Initially, the
energydensityp(~,~) dominatesandas 4 evolves, it decreases.Inflation becomes
dynamicalin the sensethat no additional mechanismis necessaryto terminatethe
rapid expansionof the universe.The gracefulexit problemis solved naturally.The
parametercrucial for this scenariois the initial value f~of the field. It is bounded
from abovesince inflation starts no higher in energydensityas p(~,~) ,n~1to
rendergravity classical.At the endof inflation all radiation hasbeensupercooled
to a negligible fraction of the universe’senergydensity. It must then be created
anew by the thermalization of the inflaton. For inflation to be successfulwe
imposethe following threeconditions:

(i) The horizonproblem mustbe solved as the mostseriousshortcomingof the
cosmologicalstandardmodel.(After all, the flatnessproblem,the small abundance
of relics, such asmagneticmonopoles,domain walls..., andthe horizon problem
are closelyconnected.Sufficient horizon growth to accountfor the isotropyof the
cosmic microwavebackgroundradiation (CMBR) servesalso to flaten space-time
andto dilute unwantedrelics.)

(ii) Inflation must terminateearly enoughto enablethe unperturbedevolution
of mechanismsthat are either well understoodor strongly desired,e.g. nucleo-
synthesis [5] or baryogcnesis[6]. In other words, the radiation content of the
universemust take over the cosmologicalevolution at a final reheatingtempera-
ture T, that is higher than the characteristictemperatureof a given cosmological
mechanism.We consider the best case of an inflaton whose energy density is
completely thermalizedwhile decaying.

(iii) The initial and final values ç1~and ~ of the field are boundedby the
structureof the phasespacein which trajectories~(~) evolve.

This set of conditionswill provideboundson the parametersof a given theory
independentof further cosmological constraints like e.g. density perturbations
after inflation.

To apply theseconsiderationswe investigatea generalscalar—tensortheoryof
gravity in sect. 2. Wewill show that only a fractionof the phasespaceof solutions
for 4’ is relevantandthat the most interestinginflational trajectoriesare separatri-
ces. In sect. 3 we formulate the horizon problem and the above-mentioned



152 D. Wa/user / Inflation in sea/ar— tensorgrar’iiy

conditionson trajectoriesof the phasespace.It will becomeclear that a satisfying
formulation of the horizon problem relies not only on a certain amount of
inflational e-folds (or equivalentlyon a certain power r for power-lawinflation)

but also crucially on the termination or reheatingtemperatureT~of the universe
andthe individual phasespacestructureof the inflaton’s trajectories.In sect.4 we
apply the previouslyexhibitedmethodsto the simplest theory V(4’) = A~4”andto
severaldilaton theoriesthat havebeensuggested[15,16].Therebywe find bounds
on A~,the dilaton constantf and its massm.

2. Field equationsand related phasespace

The mostgeneralaction S of a scalar—tensortheoryof gravity that is compati-
ble with general covarianceand upon variation leads to field equationsof no
higher than seconddifferential order reads

S= fd4x %I~(~h(4’)R+g(4’)3 4’a~4’g~-v(4’)) +SM. (2.1)

We choose to use a metric g~ with signature(+, —, —, —) and units with
1 = c = h = 8~G/3=:fj1

2. SM contains additional matter and h, g and V are
arbitrary functions of 4’. Although field redefinitionsmight simplify (2.1) and
eventually lead to a Bergmann—Wagonertheory [7], they cannot be applied
without loss of generality. In particular, the conformal transformation g,~—~

becomessingular at critical points of the field equations.It was even
shown [8] that thesepoints are unstableand perhapscosmologically relevant.In
addition, symmetriesor a preferredform of S at low energiesmay suggestthe
generalaction (2.1). Therefore,the following discussionswill be basedupon the
action (2.1) and theoriesin different field representationswill be dealt with by a
suitablechoiceof h, g and V.

Variation of (2.1) with respect to g~ and 4’ respectively yields the field
equations

R~— ~g~R = ~ [(3ga~4’aM4’— 3V+ D h)g~— V~V~h— 6g0~4’3~4’+

(4hg+h’2)LJ4’= —(2hg’+2gh’+h’h”)8~4’ö~’4’+2(2h’V—hJ/’)

+hh’T~+2h—~—. (2.2)

Here denotesa covariantderivative, n = anda prime denotesdifferentia-
tion with respectto 4’. The energy—momentumtensor and the lagrangian of
additional matteraredenotedby TM~and 2’M respectively.
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The chaotic inflationary scenariosuggeststhat the universeevolved from a
spatiallyhomogeneousandisotropic regionunderthe influenceof a homogeneous
scalar field 4’ = 4’(t). Thus on a large scale a Robertson—Walkermetric line

element

dr2ds2=dt2—a2(t) 1—kr2 +r (do +sinO d~2) (2.3)

describesspace-timesufficiently well. Recentsatellite-basedmeasurementsof the
CMBR by COBE [10] haveevenconfirmed the isotropyof spaceat decouplingup
to a relativespatialvariation 5T/T< i0~at the black-bodytemperatureT of the

CMBR.
Finally, we introducethe Hubble function H(t) = a/a and (2.2) becomes

h(H+H2) = —~(p+pM+3P+3PM)

(2.4)

1<
h(H2+~)=p+pM_h~H4’, (2.5)

1 h’2 .. . 1 g’ h’ h’h” . V h’ V’
1+——— (4’+31-i4’)=—_ __+~_+___ 4’2~_

4hg 2 g h 2hg g h 2V

h’
~~~(PM+3PM), (2.6)

4g

PM+3(PM+PM)I’O (2.7)

Time-derivatives are representedby a dot, 4’-derivatives by a prime and the
quantities

~ =g~2~v, p =g~2_ V (2.8), (2.9)

describeenergydensityp and pressurep respectivelyof a universethat is filled
with the scalar field 4’ for constanth. The universe’s additional matter hasbeen
introducedvia the energydensityPM andthe pressurePM of a perfectfluid which
is assumedto obey an isothermal equation of state PM = ~MPM’ ~M ~ o• Such
ordinarymatterwith positive pressurecannotsolve the horizon problem (cf. sect.
2). it will red-shift rapidly during inflation andcan henceforthbe neglectedin the
discussionof field equations~.

This effect is knownas supercoolingof radiation PM = 3PM. After inflation the inflaton thermalizes
and eventuallyradiationdominatesthe expansionof the universe.
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In the following we will assumethat h 1 and k = 0 to keepthe calculations
transparent~. After all, the modelsunder investigation in sect. 4 will be of that
specific type. Then the finite critical point P~= (4’~,4’.) of (2.5) and (2.6) with

= 0 and V’(4’~)= 0 (g> 0) is Lyapunov stable [11]. This can be verified by

consideringthe Lyapunov function

t(4’, ~):=H2(4’, ~)-H2(4’~,~) (2.10)

which is positivedefinite andzero at P~.Stability follows from dv/dt = —6g4’21I
<0, at (4’, ~) * P~for expandinguniversesH> 0. P~is a focus if V(4’) has a
minimum at &• Up to now, the evolution of the universeis describedby an
autonomoussystem of non-linear, second-orderdifferential equations,i.e. the
independentvariable t doesnot appearexplicitly. However, as will be shown in
sect. 3, an appropriatedescription of the horizon problem requires only the
solution ~(4’)and hencethe secondintegrationof eqs.(2.4)—(2.6) is superfluous.

The independentvariable t can easily be eliminatedby defining

~(4’) :=~(t),

[1(4’) :=H(t),

~ (4,)
a(4’)=exp f d4’ :=a(t) (2.11)

q~(cb)

Therebyaphasespace{4’, ~, H, Z~)hasbeenintroducedwhosetrajectoriesare the
solutionsof the non-autonomous system (the independent variable appears explic-
itly) of non-linear,first-order differential equations

+ H2 + 2g~2— V= 0, (2.12)

— g’
çecp’+3Hço+—çe2+-—-=0, (2.13)

2g 2g

which evolve under the constraint

H2 —g~2— V= 0. (2.14)

After insertion of the constraint to eliminate H eq. (2.13) decouplesfrom the

* The basicideaof thepaperdoesnot rely on this specializationand canalsohepursuedin thegeneral

case.
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other equationsand the dynamics of the systemis completelycontained in the

two-dimensional subspace(4,, ~). The remainingdifferential equation takesthe
form

~ ~(4,, ~), (2.15)
1= 1

where

T1 =3~/g~
2+V, (2.16)

T
2=f~2, (2.17)

VP

T5 = .~—. (2.18)

For unspecified functions g and V the solutions of eq. (2.15) can not be obtained
in closed form. Therefore, the phase space is divided into several regions R. in
which approximate solutions ~(4,) may be given analytically. Within any of these
regions, a single term on the r.h.s. of (2.15) dominates the others. In the jth region

3
1.I—I ~1~)>0. (2.19)

in *1

The set of curves cB(4,) that bound theseregions is implicitly definedby (2.19)
oncethe l.h.s. is set equalto zero. Then, the approximatedifferential equationin
the jth regionbecomessimply

= 7~(4,,cc). (2.20)

A typical phasespaceis shown in fig. 1. Although the differentiableconnection
of the pieces ~(4,) leads to some approximate trajectories, it is not clear, under
which circumstancesthe approximationis valid and good. Fortunately,one is not
interested in the complete, exact field of solutions. On the one hand (as will be

seenin sect. 3), only a fraction of the phasespaceis relevantandthe construction
of a lower boundary for the true trajectories suffices to describe the horizon
problem. On the other hand, at least the separatrices are known to be a good
approximation, since they are approached by the true trajectories arbitrarily closely
[11]. In appendix A it is shown how such curves can be found.

Of particular interest is the curve c~(4,),which is implicitly defined by

(2.21)
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Fig. 1. The relevantpart of the phasespacefor V= A,,~V.Themarkedregionin the middle is bounded
by ~ and excluded.A large classof solutionsapproachesthe separatrixc~that provides the most
favorable inflational conditions. In the quantumregion(cf. sect. 3) theEinstein equationsarebelieved

to be invalid.

At every point of this curve cccc’ = 4’ = 0. One can verify that c5 is containedin the
set of boundaries cB(4,) of R3 and separates two regions R~,Rm in which I~,T1~
dominate respectively. By the condition (A.4) that is derived in appendix A it is a
separatrix if

Trn(4,, c~) T~(4,,c~)>~c~(4,)~. (2.22)

In publications on inflation it is customarily assumed that 4, is small during an
inflationary phase. This result clarifies what the neglection of 4’ amounts to:
although the curves 4’(4,, 4,) do not solve the Friedman equations, they may be
separatrices.

3. Horizon problem and inflation on trajectories

It is well known that the Friedmanstandardmodel of cosmologycannotexplain
why the CMBR is so extraordinarily isotropic. To understand this, we divide the
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r~ T0~3•1cJ
4eV

MD

td Td ~Q.3eV
tm Tm~1eV / \ /~

RDf / \ /:
Tf If / /

Inflation /
-c-i T~/
T~ L I

—r
Fig. 2. In the standardmodelof the hot big-band the particlehorizons l.~= Td — T~of radiationfrom
oppositedirectionsoverlaponly if inflation enlargesthe particlehorizon by /~= — r~.Immediately
after inflation at T

1 the universe becomesradiation-dominated(RD) and matter-dominated(MD)
belowT,,~.The i--scaleis stretchedcomparedto the r-scale.

universe’shistory into severalphases(cf. fig. 2) and considerthem in a conformal
time frame

dt
(3.1)

in which the Robertson—Walker metric is conformally flat,

ds
2=a2(t)(dr2—d[12). (3.2)

Here dfl denotes the line-element of flat, three-dimensional space and light rays
propagate on straight lines in a ~—r diagram (cf. fig. 2).

Photons detected in opposite directions within the CMBRare observed to have
last scattered off centers of the same temperature T = 2.7 K with a relative
variation ~T/T which is smaller than i0~ [10].This is very improbable, unless the
scattering centers have had causal contact at some time in the history of the
universe. In the most favorable case the interaction was transmitted via photons at
some conformal time ~cprior to decoupling at r.~. Therefore, the photon’s particle
horizon = Td — TC must at least be as large as the radiotelescope’s particle
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horizon ‘d = T
0 — Td that detectsit,

(3.3)

The present conformal age of the universe and the conformal time at decoupling
are denoted by i-0 and Td. Various phases in the universe’s history possibly

contribute to both
1d and

= 1malter +

= 1matter + trad + 1jnf + .

= (Td — Tm) + (Tm — Tf) + (T~ T

1) + ..., (3.4)

where l~ servesto meet (3.3). A similar procedure has been exhibited in ref. [9] to
formulate the horizon problem. Apart from ~ all particle horizons I can be
expressed in terms of the photon temperature T a—

1(t). If we choose t~as
reference time and T~as reference (reheating) temperature at the end of inflation,
the physical horizon after decoupling is given by

gf2 I/o 1 1

Ld := a(tf)ld 3t~T~ ~—~-- — — (3.5)
gdg,~ i/TOTd Td

and equivalently

2/3 1
Li- = a(tf)li- 2t~T~(~)(~— (~)~)+ L~. (3.6)

For an order of magnitude estimate we set the temperature Td — Tm and the
radiation degrees of freedom g~ g

0. Here g1 denotes g(T1). Without an infla-
tional phase (L1~1= 0) the ratio LY/Ld ~ 1, no matter how early the radiation-
dominated phase started. This horizonproblem can only be solved if ~ > Ld.
Since this paper aims at finding necessary conditions for inflation and therefore
exclusive bounds on parameters of field theories the limit when inflation becomes
impossible is of interest, namely

~ ~ Ld lOtf [GeV] (3.7)

In the following this exclusive condition will be referred to as horizon condition
with the abbreviation HC.
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At first glance it seems that the inflational contribution to the horizon may

become arbitrarily large if the universe inflates long enough. However, it would be
very unpleasant if we still had inflation today. Inflation must have terminated prior
to eras of the universe that have already been probed by self-consistent, successful
models and observations, e.g. nucleosynthesis, quark—hadron transition, baryogen-
esis... [5,6]. To account for this the universe must become radiation-dominated
above a temperature Tf that characterizesthe onsetof a given era. In otherwords,
inflation cannot last arbitrarily long, since the inflaton’s energy density, which must
provide the energy for reheating, decreases. Again, to arrive at necessary bounds,
we formulate the exclusive termination condition or TC and impose

fl.
2

p~~~(t~)©PM ~Prad(Tf) = -~-g(T~)T~4, (3.8)

where g counts the radiation degreesof freedomand completethermalizationof
the inflaton is assumed.

To complete the list of conditions a third inequality needs to be included. The
classical description breaks down when the expectation value of the energy—
momentum tensor (T,~) approaches the Planck scale. Namely p, I p I
(3Q/8~-)m~

1, where 3Q/8~r is of order unity and chosen such, that gravity
remains classical. In the given units (f~1= 1) the exclusive quantum condition or
QCthat defines the quantum limit reads

> Q. (3.9)

As an example,considerpower-lawinflation a(t) tr which canbe achievedby an
isothermalequationof statep = n(r)p where n(r) = (2/3r) — 1. The HC, TC and
QC exclude successfulinflation if (Q = 8ss-/3)

1 27+ln(Tt/[GeV])
r<1+— . (3.10)

2 44 — ln(T~/[GeV])

For T~ 1 GeV around the quark—hadron transition r © 1.3 whereasaroundthe

GUT scale * T~ l0’~ GeV and r © 8. These results are quite different and
correspond to n> — 1/2 and n> —11/12 respectively. Clearly, successful infla-
tion is impossibleif

p>0. (3.11)

The conditions above can easily be rewritten such that a scalar—tensor theory of

* Throughoutthe paperwe consider T1- = 1 GeV and Tf = 1017 GeV. The former accomodatesan

unperturbedquark—hadronphasetransition and nucleosynthesis.If baryogenesisreally works at the
electroweakscale,T~= 1 TeV. Otherwisethe GUT scalesets Tf= io’~GeV.
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gravity triggers inflation. The conditions(3.9) and (3.11) define regionsR01 and
~ in the phase space (4’, cc}. Rq1 denotes the region in which the classical
description is valid and is bounded by the quantum limit p(4’, cc~i)= Q or

~ V(4,)
ccqi(4’) = ± y g(4,) (3.12)

Successfulinflation occurs only within R1~~where p(4’, cc) < 0 and which is
thereforeboundedby

cc~~(4’)= ±~V(4,)/g(4,). (3.13)

In this region, the differential equation (2.15) is simplified and T1(4’, cc) = 3Vi
7cc.

In other words, the entire discussion becomes restricted to a fraction of the phase
space and the remaining conditions need only to be evaluated therein. In phase
space the HC (3.7) reads

~, d4’ ___
L

1~~= f ‘—~-~-expf cc(~)H(4,) <t~ e~©), (3.14)

where 4,, = 4’(t1), 4,~ = 4,(t,) andeht(Tt) = 10
12Tf/[GeV]. Since

c~’____
tf — t~= f , (3.15)

~, cc(4’)

it canbe recastin the final form

,~, d4, —

h~
1~(4,~,4,~,A) =1 H(4’) ~h(T1). (3.16)

~ cc(4’)

h ,~are the e-folds of horizon growth aquired during inflation that depend upon

theset of parametersA contained in the action S (cf. (2.1)). Once the first integral

cc(4,) is known, all conditions may be evaluated by pure integration. In order to
derive boundson parametersin a given theory, it is sufficient to find an upper
bound hUh for the inflational e-folds(most favorablecase).Successfulinflation is

excludedif

h1~1(cb1, 4,~, A) <hUh <h(T1). (3.17)

It is straightforward to realize, that given any two trajectories Icc’ I < Icc
2 I, the

correspondingc-folds obey h~,,f<h~~
1.Thus, the evaluationof bounds on the

parametersA doesnot rely on the knowledgeof the exact trajectories,but on a
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limiting trajectory cciim as a lower bound on the absolute value of the true

trajectory.
The previous considerationsestablisha frameworkto investigate the horizon

problem on trajectoriesof the scalar field’s equationsof motion: oncethe func-
tions g and V are given, the approximatephasespacetrajectories cc1(4,) and

separatricesc5(4’) canbecalculatedas well as the correspondingcc,im(4’)~Parame-
ters A are constrainedby imposingtheHC (3.17), theTC (3.8),the QC (3.9) andby
taking into considerationthe individual phase-spacestructure(such as critical
points).

4. Special theories and bounds on parameters

Since the inflationary scenariowas first suggestedto solve the horizon and
flatnessproblem,a greatvariety of scalarshaverisen to fameas possibleinflatons.
The uniquerole of the Higgs field wasremovedwhenchaotic inflation cameup as
a moresatisfyingmodel. Successfulinflation relies no longeron a specialform of
the potential,i.e. on a flat part, to enablethe slow roll-oter. Almost any scalarhas
then become eligible and consequentlyalmost any conceivable scalar—tensor
theory could becamethe focus of interest. Therefore,it is important to select
carefully amongthe possiblecandidatetheories.Otherwiseonemight constructa
new artefactparticlein cosmology(the inflaton) that is purely a servantof inflation
andunrelatedto other fields of theoreticalhigh-energyphysics.

The examplesof the following discussionwith a potential V, that contains
powersof the field and different kinds of exponentialfunctions,haveeither the
virtue of being the simplestcase or of being motivated by particle physics. We
assumethat the inflaton is interactingvery weakly with other fields and doesnot
decaysignificantly during inflation, i.e. beforeit startsoscillating.Thus,taking the
most favorablecase,the resultingboundsare strictly exclusive.

4.1. THE SIMPLEST CASE: V(~)=A,,//

This theory is not only interesting for illustrative purposesor as prototype
theory for chaotic inflation [4]. We will mainly use it to state our methodsmore
precisely and to show how bounds dependon the reheating temperatureT~.
Thereafterthe applicationto dilaton theories,in which we are mostly interested,
becomesstraightforward. For n = 2 the potential representsa mass term or a
simple self-interactionterm for n = 4. The differential equationof the theorythat

is definedby

V=A,,4”, g~I/2, n=even,

andeq.(2.15) has a (stable)focus at 4,~= = 0 (cf. sect. 2). As a consequence4,
will oscillate anddecaywhile reheatingthe universe. In the following, we consider
4, > 0 since the equationsare invariant under the reflection 4’ —~ —4,, cc —~
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The term T2 vanishesin the differential equationandonly the two regionsR,, R3
remainwithin R~1where one expectsinflation. They areseparatedby the curve

c~(4’)= ~ ~ (4.1)

that was definedby eq. (2.21). c5 is a separatrixfor the uppersign and if I 4, I >

I n
2/2— n I /9 (cf. (A.6)). All casesdiscussedin this paperhave in common that,

although T
2 is not necessarilyzero, it is alwayssmall within ~ Therefore,it is

convenientto derive some generalexpressionscommon to all theories.
The approximatesolutionsare

cc, = 3f(~t)l/~2d4, (4.2)

cc3 = ±

0—d4’, (4.3)

in R
1, R3 respectively and 4’,~ is an arbitrary constant of integration that

parametrizestheclassof trajectories.Fig. 1 showsa qualitativesketchof thephase
space.All trajectories cc~(4,)are boundedfrom below by c5(4,), Ic5 I I cc, I and
therefore cci is irrelevantfor a bound on inflation. Next, we will be dealingwith
the most interestingcase:inflation on the separatrixc~.Note that the separatrixis
the best candidatetrajectorynot only becauseit promisesa large horizon growth
~ Additionally, almostevery solution of eq. (2.15) eventuallyapproachesit and
therefore inflation might take place almost independentof the initial conditions.

The inflational e-folds caneasilybe calculated,

3
h1~f(4,~,4’f) = —(4’~—4’~), (4.4)

and the set of conditions that define bounds on A,, takethe form

3
HC h,~(4’, 4,~) =

n
2

OC p(4’,,A~)=A,,q5~’l+-j-~-~ >Q,

n2
TC p(4,

1, A,,) =A,,4’~ 1 + ~~4,2

n
2 1

SC

IC ~ -~~r-, (4.5)
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with the first three expressing the HC (3.17), the QC (3.9) and the TC (3.8). The
last two conditions guaranteethat both c5 is a separatrix(i.e. the separatri.x
condition or SC (A.6) is respected)and lieswithin R01. The latter will be referred
to as the inflation condition or IC. Once the marginalvaluefor 4, is found by the
QC to be (Q/A,,)” (note that the secondtermin the parenthesesis small), it can
be insertedinto the HC. Equally any of the remainingconditionsmust be imposed
indepedentlyalongwith the HC to give threeconditionson A,,. Of course,only the
largest value gives the true exclusive bound. But this is automatically taken into

account if one permits only the smallest parameter A,, from any of the three
conditions TC, SC or IC.

ImposingSCor IC onefinds

18 n/2

Q(fl(~1+12h(~))) n~4,
A,,> 324 t,/2 (4.6)

Q 2
(n

4 2) +216nh(T
1))

and for TC

n/2 (T) 2/n

> Q( 2nh(Tf)) 1 - ( ~) . (4.7)

Hereit wasusedfor the latterthat the TC becomesrelevantonly whenneitherthe
SCnor the IC apply: 4,, 4,,>>n/ V1~.It is noteworthythat the allowedrangefor
A0 shrinks for increasing n and depends upon T~not only through h but also
through p(T~)from theTC. Although p(T)/Q ~v 1, it induces a relative variation
at n = 20 of ~5A,,/A,, 0.8 as comparedto the casewhereTC is not imposed.

In table 1 the results are shown for a massive and a self-interacting scalar field.
The range of parameter values for n = 2 contains the result that was obtained in

TABLE 1
For different final temperaturesT1 thelargestallowedvaluesfor A,, aregiven asmassm= ~ in
termsof the Planckmassm151, self-couplingconstantA4 andthedimensionlessquantityA211/m~°’.

fl

1GeV] ~ ~

io~ = 0.8 A4 = 3x 102 A20/m~,’
6= 7~106

m
1 0.7 2x102 4>10’

i0’~ 0.4 3x iO~ 3x10’
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ref. [13]. A massive scalar with mass m := <0.4mrn triggers an era of
inflation. A self-interactingscalarmight serve as inflaton if A4 < 3 X iO~.(Only
for illustrative purposeswe show the strongdependenceon the final temperature
T1 for n = 20.)

It shouldbenotedthat the inflaton is assumedto reheatthe universeright after
the horizon problem is solved. This is sufficient for an exclusive bound on A0.
If instead the inflaton interacts very weakly with other matter, it is not expected to
decay before it starts oscillating. Now the TC must be imposed at a final value 4~
right before the trajectories are woven into the whirl-point. Un upper bound for 4,,
is given by the IC. The TC yields

1~,,
— p(T1). (4.8)

For T~= i0’~GeV only a small window is left for the mass of the inflaton (n = 2),

2 x i0~<m/m~1<4 X 10_i, or the coupling constant (n = 4), 7 x 10°<A4 <

3 X i0~.Theseresultsare to be comparedwith the most importantpostdictionof
inflation: sufficient densityperturbationsfor galaxy formation compatible with the
isotropy of the CMBR[14]. The largest tolerable self-coupling is known to be
A4 10_is (cf. e.g. ref. [1]). This does not compete with the weaker bounds from
table 1. However, in combination with the stronger bound (4.8), the reheating
temperature is constrained to values less than T1 1015 GeV.

4.2. EXPONENTIAL FUNCTIONS VAND g

In this subsection we will discuss theories that are invariant under certain
symmetry transformations. The symmetries are non-linearly realized by Goldstone
bosonsthat enter the action via non-renormalizable,exponentialcouplings. An
important role is played by the dilaton field that introduces either scale invariance
into the electroweak standard model of particle physics [15] or, together with the
axion, superconformal invariance [161.The motivation of such theories is further
strengthenedbecauseeffectivelow-energyactionsof stringtheorieshavethe same
form [17].

4.2.1. Dilatons in a scale-invariantmatter lagrangian.

It hasbeenshown how a scale-invariant matter lagrangian is constructed by means
of a dilaton field o-. However, an ambiguity remains as to how such a theory is
constructed in curved space-time. Either the dilaton is introduced with a canonical
kinetic term a,~0-a~0-g~ or with a non-canonicalone,exp(o-/2f)a0ua~o-ghui~•In
ref. [15] the one-loop corrected potential is given in terms of the dilaton field and
the Higgs field. Our concern is inflation with an onset close to the Planck scale.
Therefore, the coherent dynamics of the Higgs field is frozen to (4,> = 0 due to
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finite-temperaturecorrectionsof the potential V(4’, T) [18], and the contribution
from quantumfluctuations to the energydensityof the universeis dampeddueto
Higgs decay. The dilaton couplesonly weakly to other fields and moves in the

potential

V(o-) =(V~+f3u) en”. (4.9)

The potential V is supplementedby

g(u) = ~ exp(~o-/2) (4.10)

with a parameteri~that may eitherbe set equal to zero for a canonicalkinetic
term or equalto a for a non-canonicalone. In this subsectionif is identifiedwith

4,.
The differentialequation(2.15) hasa finite critical point P~at o~= —(1/a + V

0//3)
and cc~= 0. For /3 > 0 it is a (stable) focus. Had we neglectedto include the
anomalyand contentedourselveswith a purely exponentialpotential, the theory
not only would havesufferedfrom the absenceof a healthyground statebut also
from the absenceof oscillations to thermalize the inflaton’s energydensity. For
conveniencewe introduce

x:=

V0a
A

/3’

- Va
A:=—~--—. (4.11)

13

It is straightforwardto show that p(o-, cc) <0 canonly be achievedif V> 0. Thus,
without loss of generalitywe can contentourselveswith x > 0. The strategy to
derive boundsfor the parametersa, /3 and A was exhibited in sect. 3. We will
ratheremphasizenew featuresthanrepeatthe motivation of everystep.

R1, R3 areseparatedby

[~1+2x -

~ exP(A_A+(1_~)x). (4.12)

c5 is a separatrixfor vanishing iEi if a
2< 18 andfor ~ = a if x>> 1/2. The phase

spacesare depictedin fig. 3. For illustrativepurposestheordinatehasbeenchosen
as ~ = cc/cc~~.The pole at x = 0 is purely artificial and due to the singular
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(a)

p*o

- i// //// /////

/

>/ QuantumP~O region//— ~3I~) ____c5I~)
(b) //////////2~</4//

Fig. 3. Figure(a) depictsthe phasespacefor a dilaton with a canonicalkinetic term, figure (b) with a
non-canonicalterm. The pole is purely artificial and due to the singular transformation~

at a-= 0.

transformationcc —~~ at x = 0. A straightforwardintegrationyields lower bounds
on the inflational e-folds

6 x—x1
ct2 e~/

2(e* — exf) i~= a. (4.13)
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Here, terms of order O(1/x,) and logarithmic ones are neglected.It can be
checkedthat this approximationis justified.

Again, the initial value x is constrainedby the QC and the final value x1 by
either the TC, SC or the IC. A trivial constrainton the parameters,

2/3
A>1+ln—, (4.14)

aQ

ensuresthat ~ intersectsc5 at a smaller x than ccqi (cf. (3.12) and(3.13)). The
completeset of conditionsthat excludeinflation takesthe form

6
HC —~(x~—x1)<h(T1)

2/3 a21
2 <h(T

1)
QC —x 1+— 1+—

a 18 2x

xen/
2_©)) e2©~ > Q

2/3 a2 1 2
TC —x

1 1+— 1+—
a 18 2x1

x e
2~~) e2c,_A <p( ~.)

SC a2>18
x<l/2

IC x<~(i~y’ ~

1 + e’~42~ 2s -~ =a.
2x

1 a

(4.15)

As in sect. 3 the last three conditions bound the final value X~. Any of them
defines,togetherwith the HC and OC, implicitly defined hypersurfacesin the
parameterspace(a, /3, A). As a systemof threetranscendentalequations,it can
only be solved numerically.

Now we will focus on the dilaton case with the fundamentalparameters
f=

4/a, —~= /3f and V
0. V,, and ~ <0 (which is related to the conformal

anomaly)are parametersof the electroweakstandardmodel and of the order of
the Fermi scalel/,/G~ 300 0eV. The decayconstantf sets the scaleat which
scaleinvarianceis spontaneouslybroken.



168 D. Wa//iser / Inflation in sea/ar—tensorgravity

The trivial constraint (4.14) is always fulfilled since I 4 I <<m~1and V0> 0.
Then the exclusive bound on f is set by the TC for a canonically introduced
dilaton (~= 0)

f< ln(Q/p(Tf))
mn

— 3m~

1 T1= 1017 GeV,

— 2X 10
2m~

1 T~.=1 GeV.

The specialcase 4 = 0 was alreadyconsideredin ref. [19]. The condition that was
derivedthereamountsto simply requiring that the separatrixc5 be within R ,,~:
f< 3 X 10~m~1.Inclusion of the TC slightly modifies this result. ln the non-
canonicalcase(i.e. ~ = a) all threeboundsyield approximatelythe sameresult

41 1/4f< 2 x 10
20~’h(T,)([GeV]4) rn

1,,, (4.16)

i.e. f needsto be larger than 100 0eV almost irrespectiveof T1. The wish to

identify the dilatonconstantf with a scalethat is alreadyknown, e.g. the Planck
scale,is met safelyin the non-canonicalversion.The canonicalversion leavesonly
a small window for f below the Planckscaleif T1 is small enough.

4.2.2. Superconformallyinvariant theory
The bosonic part of an action ~ that is superconformally invariant by means of a

dilaton field if and an axion field ~ has the form

Ssc = fd4x~(~R + ~g (3~ifacif+ d~0,~)e
2iT/f). (4.17)

If oneallows for soft symmetrybreaking,the dilaton field a- movesin the potential
V = -~m2a-2 The equations of motion of the axion field ~ can explicitly be
integrated[16]

~= ~e2t*/f (4.18)

and the energy density Pf and the pressure p~assignedto the fields a- and ~ are
respectively

Pg= 4e2r~cc2+~e2(r~+m2a-2],

p~=+{e2~~1cc2+ ~e2f_m2a-2~. (4.19)
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~

Fig.4. Phasespacefor a dilaton within a superconformallyinvarianttheory.

In early stagesof the universe’s evolution the second term in the brackets
dominates V. The effective equationof state is p~= PE and no inflation occurs.
Once m2o-2 exceedsthe secondterm, the universeevolvesunder influence of a
theory (2.1) with h 1 g = ~ exp(2o-/f) and V= ~m2u2. Successfulinflation is
altogetherexcludedonce superconformalinvarianceis an exact symmetry of the
theory.

The sameprocedureasin the lastsectionsrevealsthat trajectoriesapproachthe
separatrix

c
5(x) = ~ (4.20)

where x := a-/f. Fig. 4 shows the phase-space trajectories. Again we find the set of
conditions

HC h,~1(x,,x1, f) = 6f2[(2x1 —1) e
2x — (2x~—1) e2df} <h(T

1)

QC p(x,, f, m) = ~(18f2x~+ e
2n)>Q,

m2

TC p(xt, f, m) = -~-(18f2x~+ e_2xt)<p(T
1),

SC Ix) e
2xt> 9f2’

IC jxfl e2x1> ~ (4.21)
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which yield constraintsamongf and m by inserting x1 from the QC and x1 from
eitherTC, SC or IC. Unlike the dilaton from the last section,both negativeand
positive half-plane of the phase space may yield inflation (since V is positive

definite).
The casex > 0 is qualitatively similar to the previousones.For f and m below a
few m~1successfulinflation occurs, as a numericalevaluationof eq. (4.21) shows.

Quite differentfeaturesareencounteredin the negativehalf-planex <0. Both

SC and IC havetwo zeros if they are taken as equalities. The inequalities define
intervals outsidewhich we can not expectsuccessfulinflation. Thus, the largest
possiblex for inflation is given by both QC and the zero of SC or IC with larger
absolutevalue. However, it turns out that all boundsare containedin the case
where the QC sets the initial value. A numerical analysisyields that no inflation
occursunlessm < 10

3m~
1and f> mp1.

5. Conclusion

A detailed analysisof the differential equationsunderlying a generalscalar—
tensortheory of gravity establishedthat only a fraction of the phasespaceof

trajectoriesallows for successfulinflation. We argued that the most favorable
curves thereinare separatrices.They sharethe property that the secondtime-de-
rivative of the scalarfield is small comparedto other termsin the differential field
equation.This neglection,which is commonlypromoted(cf. refs. [1,12]), simply
selects a trajectory, namely a separatrix,that does not solve the equationsof
motion,but is approachedby a largeclassof solutions.A largeamountof horizon
growth is thusguaranteedalmost independentof initial conditions.

It wasalso shownthat a certainamountof inflational c-foldsdoesnot necessar-

ily suffice to really solve the horizon problem. For importantor well-understood
mechanisms(such as baiyogenesisor nucleosynthesis)to take place, it must be

accompaniedby the timely termination of inflation which is followed by reheating
of the universeup to a critical temperatureT1. Furthermore,the phase-space
structure(i.e. critical points)constrainsthe duration of inflation.

Imposing theseconditionson a simple potential V= A,,4,”, yieldsupperbounds
on A,, that dependupon T1. For example,if T~ 1 0eV, the self-couplingconstant
A4 < 2 x 10—2, whereasA4 < 3 X i0~ for T1 1017 GeV. If the inflaton couples
very weakly to othermatter, i.e. reheatingdoesnot occur before it startsoscillat-
ing, only a rangeof parametersallows for successfulinflation: 2 X i0~<m/m~,
<4 x 10_i for a massiveand7 x 10_n <A4 < 3>< i0

3 for a self-interactingscalar

field (Tf 1017 GeV). This providesa further constrainton A
4 apartfrom density

perturbations.Accomodatingboth requirements,the reheatingtemperaturecan-
not be larger than Tf = lOis GeV.
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A canonicaldilatonneedsf> 3m~1for T1m 10i7 GeV and f> 2 x 10~
2mpifor

T~ 1 GeV, whereasa non-canonicaldilaton always inflates the universesuffi-
ciently for valuesof f> 100 GeV. In a theorywith softly brokensuperconformal
invarianceinflation constrainsf only if the dilaton massm > m~

1,i.e. thereis no
boundfor meaningfull valuesof the parametersf<<m <<m~1.

I would like to thank W. Buchmüllerfor attractingmy attentionto inflation and
for helpful discussions.

Noteadded

After this work was completed, I becameawareof a preprint [20] by Bento,

Bertolami and Sá in which a string-inspiredtheorysimilar to the onediscussedin
subsect.4.2.2 is investigated.

Appendix A

SEPARATRICES

For our purposeit is not necessaryto set up a rigoroustheoryof separatrices.In

generala separatrix(in two dimensions)is a curve c5(4,) that separatesa phase-
spacemanifold into two submanifolds.It emergesfrom a critical saddlepoint and
trajectorieson eithermanifold approachc5(4,) arbitrarily closely,but nevercrossit

[11].
Be c(4,) a curve that separatestwo regions R1 and R11 in a two-dimensional

phasespace(4,, cc) with different classesof trajectories cci and ccii~The trajecto-
ries aregiven in parametricform 4,(t), cc(t) and are subject to the constraint

~(t) cc(cb(t)). (A.l)

Therefore,fields of trajectorieshavea definite direction of flow in the positive
(negative)4,-direction for cc> 0 (<0). At cc = 0 trajectorieseither encountera
critical point or have infinite slope dcc/d4,.Assumingthat cci(4,) and ccii(4,) are
approximatesolutionsof

dcc P(cb,cc) A2

d4,Q(4,,cc) ( .)

in R1 andR11 respectivelyandthat P/Q is a differentiablefunction of both 4, and
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~.p1KD)

~ C(t1~)

(a) I
-~

R~

(b) _________—cv
Fig. Al. Separatricesin phasespace.The solid and dotted curves ~,, g0 show the approximate
solutionsin R1, R,1 andhow theywould extendinto the other region.Close to e the approximation
breaksdown and ~,, g~,,aredeformed into the true solutions(brokencurves).In (a) e is a separatrix,

whereasin (b) it is not.

cc~then according to the existence and uniquenesstheorem the only sinks or

sourcesof trajectoriesare the critical points

(A.3)

This is the correspondingconditionfor the non-autonomousdifferential equation
(A.2) and amountsto setting 4, = 4, = 0 in the autonomouscase.In a neighbor-
hood of a point A lying on c(4,) that contains no critical point, trajectories
approachingA from different regions R1, R11 must eitherbe differentiably con-
nectedor remainseparateuntil theyjoin in a critical point. Two different cases
may occur. In fig. A.la cc~(4,)and cc~~(4,)cannot join (without changingthe
direction of flow) and c is a separatrixc~.In fig. A.lb cc~(4,)crossesc andjoins

cc11(4,). c is no separatrix.
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This yieldsa necessaryconditionfor c(4,) to be a separatrix:

cc(4’) <c~(4,)<cc~1(4’). (A.4)

cc’i and ~ areevaluatedat cc(4,) c(4,) and orderedsuch that cc <cc~1.(A.4) is
valid only if cc ~ 0 anddefinesintervalsfor 4, beyondwhich c(4,) is no separatrix.

For the specialtheoriesthat are investigatedin sect.4 the secondterm T2(4,, cc)
is negligible and(A.4) becomes

T,(4, c)
jc~(4,)/~ c~(4,)~’ (A.5)

since T~ — T3 closeto A. The two remainingregionsR andR3 areseparatedby
c(4,) = ~ V’/(6gVV) but it is only a candidatefor a separatrixc5 if the uppersign
is realized. Otherwise,close to c, cc(4,) cc(4,), violating (A.4). The separatrix
condition SC then takesthe explicit form

V V” IV’ g’
18g— > —--————. (A.6)

V’ V’ 2V g
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