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Among the trajectories that solve the differential equations of general scalar—tensor theories
of gravity special ones are selected that successfully inflate the universe. They are well-approxi-
mated by separatrices. Furthermore a set of necessary conditions is derived which allows for
successful inflation. They not only include sufficient horizon growth but also both phase space
and further cosmological constraints. These conditions are imposed on a simple ¢” potential
and on several dilaton theories to arrive at bounds for the involved parameters.

1. Introduction

As a preliminary cosmological model, inflation [1] is very successful since it
removes several different shortcomings of the hot big-bang model at once. Any of
these shortcomings (e.g. horizon problem, flatness problem, abundance of un-
wanted relics...) arises from a dissatisfying fine-tuning of initial conditions that is
necessary to reconcile predictions of the big-bang model with astronomical obser-
vations. Clearly the issue of initial conditions addresses the open question of the
correct laws of quantum gravity, i.e. the physics beyond the Planck scale. Thus,
inflation is preliminary as a viable approach to model the early universe within
classical gravity until a deeper insight into quantum gravity might naturally suggest
initial conditions. In addition, it turns out that a large class of theories containing
one or more scalar fields (inflatons) is eligible for inflation. A novel naturalness
problem arises along with the construction of exclusively tailored versions of
inflation which questions the uniqueness and simplicity it was celebrated for.

Therefore, we insist that inflation’s reasonable domain be classical gravity and
that inflatons should not be pure cosmological artefacts but play a double role in
cosmology as well as in particle physics. The final goal of this paper is to arrive at
bounds on the parameters of such theories by requiring that successful inflation be
possible.

Unfortunately, the original models of inflation were accompanied by new
problems. Although a non-vanishing vacuum expectation value of a scalar field
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playing the role of a cosmological constant triggers an era of exponential expan-
sion, it can not both solve the cosmological problems and produce a homogeneous
and isotropic Friedman universe that is filled with galaxies, etc. This problem of
old inflation [2] which in general is connected with the termination of the
inflational era is referred to as the graceful exit problem. Even the refined version,
new inflation [3], suffers from drawbacks. It works only for a very special class of
potentials and asks for fine-tuning to both inflate the universe sufficiently and
provide satisfying density perturbations for galaxy formation.

To avoid this undesirable property of old and new inflation we will be following
Linde’s idea of chaotic inflation [4] that assigns the features of an effective
cosmological constant to a scalar field ¢ moving in a potential V(¢). Initially, the
energy density p(¢, q[)) dominates and as ¢ evolves, it decreases. Inflation becomes
dynamical in the sense that no additional mechanism is necessary to terminate the
rapid expansion of the universe. The graceful exit problem is solved naturally. The
parameter crucial for this scenario is the initial value ¢, of the field. It is bounded
from above since inflation starts no higher in energy density as p(d¢, &) =m} to
render gravity classical. At the end of inflation all radiation has been supercooled
to a negligible fraction of the universe’s energy density. It must then be created
anew by the thermalization of the inflaton. For inflation to be successful we
impose the following three conditions:

(i) The horizon problem must be solved as the most serious shortcoming of the
cosmological standard model. (After all, the flatness problem, the small abundance
of relics, such as magnetic monopoles, domain walls..., and the horizon problem
are closely connected. Sufficient horizon growth to account for the isotropy of the
cosmic microwave background radiation (CMBR) serves also to flaten space-time
and to dilute unwanted relics.)

(ii) Inflation must terminate early enough to enable the unperturbed evolution
of mechanisms that are either well understood or strongly desired, e.g. nucleo-
synthesis [5] or baryogenesis [6]. In other words, the radiation content of the
universe must take over the cosmological evolution at a final reheating tempera-
ture 7y that is higher than the characteristic temperature of a given cosmological
mechanism. We consider the best case of an inflaton whose energy density is
completely thermalized while decaying.

(iii) The initial and final values ¢, and ¢; of the field are bounded by the
structure of the phase space in which trajectories ¢(¢) evolve.

This set of conditions will provide bounds on the parameters of a given theory
independent of further cosmological constraints like e.g. density perturbations
after inflation.

To apply these considerations we investigate a general scalar—tensor theory of
gravity in sect. 2. We will show that only a fraction of the phase space of solutions
for ¢ is relevant and that the most interesting inflational trajectories are separatri-
ces. In sect. 3 we formulate the horizon problem and the above-mentioned
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conditions on trajectories of the phase space. It will become clear that a satisfying
formulation of the horizon problem relies not only on a certain amount of
inflational e-folds (or equivalently on a certain power r for power-law inflation)
but also crucially on the termination or reheating temperature T; of the universe
and the individual phase space structure of the inflaton’s trajectories. In sect. 4 we
apply the previously exhibited methods to the simplest theory V(¢) = A,¢" and to
several dilaton theories that have been suggested [15,16]. Thereby we find bounds
on A,, the dilaton constant f and its mass m.

2. Field equations and related phase space

The most general action S of a scalar—tensor theory of gravity that is compati-
ble with general covariance and upon variation leads to field equations of no
higher than second differential order reads

S=[d*x V=g (sh($) R +8($)0,60,68" = V($)) + Sy (2.1)

We choose to use a metric g, with signature (+, —, —, =) and units with
l=c=h=8wG/3=f;>. Sy contains additional matter and #, g and V' are
arbitrary functions of ¢. Although field redefinitions might simplify (2.1) and
eventually lead to a Bergmann-Wagoner theory [7], they cannot be applied
without loss of generality. In particular, the conformal transformation g,, —
h(d))gw, becomes singular at critical points of the field equations. It was even
shown [8] that these points are unstable and perhaps cosmologically relevant. In
addition, symmetries or a preferred form of S at low energies may suggest the
general action (2.1). Therefore, the following discussions will be based upon the
action (2.1) and theories in different field representations will be dealt with by a
suitable choice of A, g and V.

Variation of (2.1) with respect to g,, and ¢ respectively yields the field
equations

1
R, —38.,R= ’ [(320,00%¢ — 3V + O h)g,, - V.V,h — 629,¢3,6 + Ty, ],

(4hg + ™) Db = — (2hg’ + 2gh’ + h'h" )3, by + 2(2h'V = hV")
, 5.7y,
+ hh T&#+2h‘g. (22)

Here V, denotes a covariant derivative, O = V,V* and a prime denotes differentia-
tion with respect to ¢. The energy-momentum tensor and the lagrangian of
additional matter are denoted by Ty, and ) respectively.
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The chaotic inflationary scenario suggests that the universe evolved from a
spatially homogeneous and isotropic region under the influence of a homogeneous
scalar field ¢ = ¢{¢). Thus on a large scale a Robertson—Walker metric line
element

2

ds?=dt? —a’(t)

+r2(d6% + sin’6 de? 2.3)
1—kr?

describes space-time sufficiently well. Recent satellite-based measurements of the
CMBR by COBE [10] have even confirmed the isotropy of space at decoupling up
to a relative spatial variation 87 /7 < 10™* at the black-body temperature T of the
CMBR.

Finally, we introduce the Hubble function H(¢) =d/a and (2.2) becomes

h(H+H?) = —3(p+py+3p+3py)

—1h (15+H<15+?¢32), (2.4)
k )
h(H2+-2—)=p+pM—h’H¢, (2.5)
a
1 1A . S L(g" n KW\, V(h’ V!
+-— + =—=|=—+—=—+— +———-=
4 hg (QS d)) 2\ g h 2hg ¢ g\ h ZV)
—Z”(pM+3pM), (2.6)
g
P+ 3o+ o) H=0. (2.7)

Time-derivatives are represented by a dot, ¢-derivatives by a prime and the
quantities

p=gd>+V., p=gd’—V (2.8), (2.9)

describe energy density p and pressure p respectively of a universe that is filled
with the scalar field ¢ for constant A. The universe’s additional matter has been
introduced via the energy density p,, and the pressure p,, of a perfect tluid which
is assumed to obey an isothermal equation of state p,, =#nypnm,. 7y = 0. Such
ordinary matter with positive pressure cannot solve the horizon problem (cf. sect.
2). It will red-shift rapidly during inflation and can henceforth be neglected in the
discussion of field equations *.

* This effect is known as supercooling of radiation py, = 3py. After inflation the inflaton thermalizes
and eventually radiation dominates the expansion of the universe.
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In the following we will assume that A =1 and k =0 to keep the calculations
transparent *. After all, the models under investigation in sect. 4 will be of that
specific type. Then the finite critical point P, = (¢, q,’ic) of (2.5) and (2.6) with
d;c =0 and V'(¢.) =0 (g>0) is Lyapunov stable [11]. This can be verified by
considering the Lyapunov function

o(6, )= HY(6, 6) - (. b.) (2.10)

which is positive definite and zero at P,. Stability follows from dv/d¢ = —6gd*H
<0, at (¢, $) # P. for expanding universes H > 0. P, is a focus if V() has a
minimum at ¢_. Up to now, the evolution of the universe is described by an
autonomous system of non-linear, second-order differential equations, i.e. the
independent variable ¢t does not appear explicitly. However, as will be shown in
sect. 3, an appropriate description of the horizon problem requires only the
solution ¢(¢) and hence the second integration of egs. (2.4)—(2.6) is superfluous.

The independent variable ¢ can easily be eliminated by defining

() =1,
e(¢) = (1),
H():=H(1),
a(¢)=exp(f d(b%) =a(t). (2.11)

Thereby a phase space {¢, ¢, H, a} has been introduced whose trajectories are the
solutions of the non-autonomous system (the independent variable appears explic-
itly) of non-linear, first-order differential equations

eH' +H>+2g¢> -V =0, (2.12)
g’ v’ ,
oo +3He + ——¢> + — =0, (2.13)
2g 2g

which evolve under the constraint
H?-go>—V=0. (2.14)
After insertion of the constraint to eliminate H eq. (2.13) decouples from the

* The basic idea of the paper does not rely on this specialization and can also be pursued in the general
case.
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other equations and the dynamics of the system is completely contained in the
two-dimensional subspace {¢, ¢}. The remaining differential equation takes the
form

3

—p¢'= Y T(¢, ¢), (2.15)
i=1
where
T,=3¢jge’ +V, (2.16)
o
T,=—¢°, 2.17
2 Zg"p ( )
T d 2.18
3T 2g (2.18)

For unspecified functions g and ¥ the solutions of eq. (2.15) can not be obtained
in closed form. Therefore, the phase space is divided into several regions R; in
which approximate solutions goj(cf)) may be given analytically. Within any of these
regions, a single term on the r.h.s. of (2.15) dominates the others. In the jth region

3
711 T,1>0. (219)

my

The set of curves cg(¢) that bound these regions is implicitly defined by (2.19)
once the Lh.s. is set equal to zero. Then, the approximate differential equation in
the jth region becomes simply

—¢0, =T, ¢;) (2.20)

A typical phase space is shown in fig. 1. Although the differentiable connection
of the pieces (pj(d)) leads to some approximate trajectories, it is not clear, under
which circumstances the approximation is valid and good. Fortunately, one is not
interested in the complete, exact field of solutions. On the one hand (as will be
seen in sect. 3), only a fraction of the phase space is relevant and the construction
of a lower boundary for the true trajectories suffices to describe the horizon
problem. On the other hand, at least the separatrices are known to be a good
approximation, since they are approached by the true trajectories arbitrarily closely
[11]. In appendix A it is shown how such curves can be found.

Of particular interest is the curve ¢ (), which is implicitly defined by

ZTj(¢, ¢;) =0. (2.21)
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p=d

Quantum
region

Fig. 1. The relevant part of the phase space for V' = A,¢". The marked region in the middle is bounded

by ¢;; and excluded. A large class of solutions approaches the separatrix ¢, that provides the most

favorable inflational conditions. In the quantum region (cf. sect. 3) the Einstein equations are believed
to be invalid.

At every point of this curve @@’ = ¢ = 0. One can verify that c, is contained in the
set of boundaries cp(¢) of R; and separates two regions R, R, in which T, T,
dominate respectively. By the condition (A.4) that is derived in appendix A it is a
separatrix if

cs(¢) ¢(¢)

In publications on inflation it is customarily assumed that ¢ is small during an
inflationary phase. This result clarifies what the neglection of ¢ amounts to:
although the curves ¢(¢, ¢) do not solve the Friedman equations, they may be
separatrices.

3. Horizon problem and inflation on trajectories

It is well known that the Friedman standard model of cosmology cannot explain
why the CMBR is so extraordinarily isotropic. To understand this, we divide the
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Fig. 2. In the standard model of the hot big-band the particle horizons [ =74 — 7. of radiation from

opposite directions overlap only if inflation enlarges the particle horizon by /;; = 7; — ;. Immediately

after inflation at 7, the universe becomes radiation-dominated (RD) and matter-dominated (MD)
below T,,. The 7-scale is stretched compared to the r-scale.

universe’s history into several phases (cf. fig. 2) and consider them in a conformal
time frame

T= .
Ly a(t)
in which the Robertson—-Walker metric is conformally flat,
ds?=a?(1)(dr*—dQ?). (3.2)

Here d{2 denotes the line-element of flat, three-dimensional space and light rays
propagate on straight lines in a 7—7 diagram (cf. fig. 2).

Photons detected in opposite directions within the CMBR are observed to have
last scattered off centers of the same temperature T=2.7 K with a relative
variation 8T /T which is smaller than 10™* [10]. This is very improbable, unless the
scattering centers have had causal contact at some time in the history of the
universe. In the most favorable case the interaction was transmitted via photons at
some conformal time 7, prior to decoupling at 7,. Therefore, the photon’s particle
horizon [, =74 — 17, must at least be as large as the radiotelescope’s particle
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horizon /4 = 7, — 74 that detects it,

L=l (3.3)
The present conformal age of the universe and the conformal time at decoupling
are denoted by 7, and 7, Various phases in the universe’s history possibly
contribute to both /; and [,

li=lnawer T - -+
=Tg—Tqgt ...,
Ly = Daster + Leaa T ligg + -+
= (1= 7o) + (T — () + (7= T) + ..., (3.4)

where [, ; serves to meet (3.3). A similar procedure has been exhibited in ref. [9] to
formulate the horizon problem. Apart from /,, all particle horizons / can be
expressed in terms of the photon temperature T ~a '(¢t). If we choose ¢; as
reference time and 7T; as reference (reheating) temperature at the end of inflation,
the physical horizon after decoupling is given by

Verog 1
L,=a(t)l, =3tT,| =" R 35
d (te)ly ft(gdgm) (v'Ton Td) (3.5)

and equivalently

g, \?
L, ;=a(,f)1y:2thf(g—’) +L,;. (3.6)

m

(%)
Ty 8y T;

For an order of magnitude estimate we set the temperature T,=T, and the
radiation degrees of freedom g, =g,. Here g; denotes g(T;). Without an infla-
tional phase (L, ;= 0) the ratio L /L, < 1, no matter how early the radiation-
dominated phase started. This horizon problem can only be solved if L, ;> L.
Since this paper aims at finding necessary conditions for inflation and therefore
exclusive bounds on parameters of field theories the limit when inflation becomes

impossible is of interest, namely

T;

th <Ld = 1012”@_] .

1

(3.7)

In the following this exclusive condition will be referred to as horizon condition
with the abbreviation HC.
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At first glance it seems that the inflational contribution to the horizon may
become arbitrarily large if the universe inflates long enough. However, it would be
very unpleasant if we still had inflation today. Inflation must have terminated prior
to eras of the universe that have already been probed by self-consistent, successful
models and observations, e.g. nucleosynthesis, quark—hadron transition, baryogen-
esis... [5,6]. To account for this the universe must become radiation-dominated
above a temperature 7, that characterizes the onset of a given era. In other words,
inflation cannot last arbitrarily long, since the inflaton’s energy density, which must
provide the energy for reheating, decreases. Again, to arrive at necessary bounds,
we formulate the exclusive termination condition or TC and impose

2
T
Pint (1) <Pm = Prag(Tr) = ﬁg(r{)r@’ (3.8)

where g counts the radiation degrees of freedom and complete thermalization of
the inflaton is assumed.

To complete the list of conditions a third inequality needs to be included. The
classical description breaks down when the expectation value of the energy—
momentum tensor (7,,) approaches the Planck scale. Namely p, | p| <
(3Q/8m)m},, where 3Q/8m is of order unity and chosen such, that gravity
remains classical. In the given units (f,, = 1) the exclusive quantum condition or

QC that defines the quantum limit reads
Pint( ;) = 0. (3.9)

As an example, consider power-law inflation a(¢) ~ " which can be achieved by an
isothermal equation of state p = n(r)p where n(r)=(2/3r)— 1. The HC, TC and
QC exclude successful inflation if (Q = 87/3)

1 27 + In(T;/[GeV])
+ = :
2 44— 1n(7,/[GeV])

(3.10)

For T; =1 GeV around the quark—hadron transition r < 1.3 whereas around the
GUT scale * T;= 10" GeV and r<8. These results are quite different and
correspond to n > —1/2 and n> —11/12 respectively. Clearly, successful infla-
tion is impossible if

p>0. (3.11)
The conditions above can easily be rewritten such that a scalar—tensor theory of

* Throughout the paper we consider T, =1 GeV and T;=10!7 GeV. The former accomodates an
unperturbed quark-hadron phase transition and nucleosynthesis. If baryogenesis really works at the
electroweak scale, Ty =1 TeV. Otherwise the GUT scale sets 7T; = 10" GeV.
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gravity triggers inflation. The conditions (3.9) and (3.11) define regions R and
R, in the phase space {¢, ¢}. R, denotes the region in which the classical
description is valid and is bounded by the quantum limit p(¢, ¢,) =Q or

[o-V
Pa(¢) =+ %)‘L)_ (3.12)

Successful inflation occurs only within R,; where p(é, ¢) <0 and which is
therefore bounded by

eunmi(d) = £V(d)/2(d) . (3.13)

In this region, the differential equation (2.15) is simplified and 7\(&, ¢) = 3VV ¢.
In other words, the entire discussion becomes restricted to a fraction of the phase
space and the remaining conditions need only to be evaluated therein. In phase
space the HC (3.7) reads

, d¢ cdé
L= f: o(6) exp( ¢ —~—H(¢)) <t; e, (3.14)

where ¢, = ¢(1,), b= ¢(t;) and "'V = 10T, /[GeV]. Since

b d¢
L=l == j:‘) o(d)’ (3.15)

it can be recast in the final form

. dé
(b, by, A) = /d) —H

ey ) <), (3.16)

h, are the e-folds of horizon growth aquired during inflation that depend upon
the set of parameters A contained in the action S (cf. (2.1)). Once the first integral
o() is known, all conditions may be evaluated by pure integration. In order to
derive bounds on parameters in a given theory, it is sufficient to find an upper
bound # ,, for the inflational e-folds (most favorable case). Successful inflation is
excluded if

hinl'(d)iv d)t'v /\) <hub <h(T1) (317)

It is straightforward to realize, that given any two trajectories |¢'| < |¢?|, the
corresponding e-folds obey hZ; <h!;. Thus, the evaluation of bounds on the

parameters A does not rely on the knowledge of the exact trajectories, but on a



D. Walliser / Inflation in scalar — tensor gravity 161

limiting trajectory ¢, as a lower bound on the absolute value of the true
trajectory.

The previous considerations establish a framework to investigate the horizon
problem on trajectories of the scalar field’s equations of motion: once the func-
tions g and V are given, the approximate phase space trajectories (pj(d)) and
separatrices ¢ (¢) can be calculated as well as the corresponding ¢,;,(¢). Parame-
ters A are constrained by imposing the HC (3.17), the TC (3.8), the QC (3.9) and by
taking into consideration the individual phase-space structure (such as critical
points).

4. Special theories and bounds on parameters

Since the inflationary scenario was first suggested to solve the horizon and
flatness problem, a great variety of scalars have risen to fame as possible inflatons.
The unique role of the Higgs field was removed when chaotic inflation came up as
a more satisfying model. Successful inflation relies no longer on a special form of
the potential, i.e. on a flat part, to enable the slow roll-over. Almost any scalar has
then become eligible and consequently almost any conceivable scalar—tensor
theory could became the focus of interest. Therefore, it is important to select
carefully among the possible candidate theories. Otherwise one might construct a
new artefact particle in cosmology (the inflaton) that is purely a servant of inflation
and unrelated to other fields of theoretical high-energy physics.

The examples of the following discussion with a potential ¥, that contains
powers of the field and different kinds of exponential functions, have either the
virtue of being the simplest case or of being motivated by particle physics. We
assume that the inflaton is interacting very weakly with other fields and does not
decay significantly during inflation, i.e. before it starts oscillating. Thus, taking the
most favorable case, the resulting bounds are strictly exclusive.

4.1. THE SIMPLEST CASE: V()= A,,¢"

This theory is not only interesting for illustrative purposes or as prototype
theory for chaotic inflation [4]. We will mainly use it to state our methods more
precisely and to show how bounds depend on the reheating temperature 7.
Thereafter the application to dilaton theories, in which we are mostly interested,
becomes straightforward. For n = 2 the potential represents a mass term or a
simple self-interaction term for n = 4. The differential equation of the theory that
is defined by

V=A,d", g=1/2, n=ecven,
and eq. (2.15) has a (stable) focus at ¢, = ¢, = 0 (cf. sect. 2). As a consequence ¢

will oscillate and decay while reheating the universe. In the following, we consider
¢ > 0 since the equations are invariant under the reflection ¢ = — ¢, ¢ > —o.
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The term 7, vanishes in the differential equation and only the two regions R, R
remain within R, ; where one expects inflation. They are separated by the curve

c(@) = Fingr, /27! (4.1)

that was defined by eq. (2.21). ¢, is a separatrix for the upper sign and if || >
In?/2—nl/9 (cf. (A.6)). All cases discussed in this paper have in common that,
although T, is not necessarily zero, it is always small within R, ;. Therefore, it is
convenient to derive some general expressions common to all theories.

The approximate solutions are

¢ = 3[:"Wd¢>, (4.2)

orm ) [, (4.3)
¢ &
in R, R; respectively and ¢, is an arbitrary constant of integration that
parametrizes the class of trajectories. Fig. 1 shows a qualitative sketch of the phase
space. All trajectories ¢ (@) are bounded from below by c (), l¢, | <|¢,| and
therefore ¢, is irrelevant for a bound on inflation. Next, we will be dealing with
the most interesting case: inflation on the separatrix c,. Note that the separatrix is
the best candidate trajectory not only because it promises a large horizon growth
h,. Additionally, almost every solution of eq. (2.15) eventually approaches it and
therefore inflation might take place almost independent of the initial conditions.
The inflational e-folds can easily be calculated,

3
higi($is &1) = E(d)? — 7). (4.4)

and the set of conditions that define bounds on A, take the form

3
HC  hy(d;, df) = ‘2;(4’12 _¢%)<h(Tr‘)s
n?

QC p(¢i’An):A'1¢;l(l+

n2
TC p((ﬁI’An):)‘nd)r(1+_—)gp(Tf)’

187
SC L l
d)f < E - 6 s
n
IC b < (4.5)

V18’
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with the first three expressing the HC (3.17), the QC (3.9) and the TC (3.8). The
last two conditions guarantee that both ¢, is a separatrix (i.e. the separatrix
condition or SC (A.6) is respected) and lies within R, ;. The latter will be referred
to as the inflation condition or IC. Once the marginal value for ¢, is found by the
QC to be (Q/A,)'/" (note that the second term in the parentheses is small), it can
be inserted into the HC. Equally any of the remaining conditions must be imposed
indepedently along with the HC to give three conditions on A,. Of course, only the
largest value gives the true exclusive bound. But this is automatically taken into
account if one permits only the smallest parameter A, from any of the three
conditions TC, SC or IC.
Imposing SC or IC one finds

18 "
Q(n(n+12h(Tf))) n<d

/\n > 324 n/2 (46)
" 3 n>4,
(n*~2)" +216nh(T;))
and for TC
n/2
3 ny2 o(T}) 2/ny\ 1/
> S — 1—— . 4.

A”>Q(2nh<m) ( 0 ) &7

Here it was used for the latter that the TC becomes relevant only when neither the
SC nor the IC apply: ¢, ;> n/ V18 . It is noteworthy that the allowed range for
A, shrinks for increasing » and depends upon 7; not only through # but also
through p(T;) from the TC. Although p(T,)/Q < 1, it induces a relative variation
at n =20 of 8A, /A, = 0.8 as compared to the case where TC is not imposed.

In table 1 the results are shown for a massive and a self-interacting scalar field.
The range of parameter values for n = 2 contains the result that was obtained in

TaBLE 1
For different final temperatures T} the largest allowed values for A,, are given as mass m =+/2A, in
terms of the Planck mass 7y, self-coupling constant A, and the dimensionless quantity A,y /mip'®.

T, n

[GeV] 2 "

T

107 — =038 Ay=3%x1072 Xy /mp'0=Tx10°
mpy

1 0.7 2%x10772 4x10°

10" 0.4 3x10~? 3% 10!
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ref. [13]. A massive scalar with mass m := V’ZT\Z <0.4my triggers an era of
inflation. A self-interacting scalar might serve as inflaton if A, <3 X 107> (Only
for illustrative purposes we show the strong dependence on the final temperature
T; for n=20.)

It should be noted that the inflaton is assumed to reheat the universe right after
the horizon problem is solved. This is sufficient for an exclusive bound on A,
If instead the inflaton interacts very weakly with other matter, it is not expected to
decay before it starts oscillating. Now the TC must be imposed at a final value ¢,
right before the trajectories are woven into the whirl-point. Un upper bound for ¢,
is given by the IC. The TC yields

2

'l<

n

1(V18Y"
(——) p(T;). (4.8)

For T,=10"" GeV only a small window is left for the mass of the inflaton (n = 2),
2X 107 <m/my <4 X107 or the coupling constant (n=4),7x 10" % <A, <
3% 1073, These results are to be compared with the most important postdiction of
inflation: sufficient density perturbations for galaxy formation compatible with the
isotropy of the CMBR [14]. The largest tolerable self-coupling is known to be
A, = 107" (cf. e.g. ref. [1]). This does not compete with the weaker bounds from
table 1. However, in combination with the stronger bound (4.8), the reheating
temperature is constrained to values less than T; = 10'° GeV.

4.2. EXPONENTIAL FUNCTIONS V' AND g

In this subsection we will discuss theories that are invariant under certain
symmetry transformations. The symmetries are non-linearly realized by Goldstone
bosons that enter the action via non-renormalizable, exponential couplings. An
important role is played by the dilaton field that introduces either scale invariance
into the electroweak standard model of particle physics [15] or, together with the
axion, superconformal invariance [16]. The motivation of such theories is further
strengthened because effective low-energy actions of string theories have the same
form [17].

4.2.1. Dilatons in a scale-invariant matter lagrangian.

It has been shown how a scale-invariant matter lagrangian is constructed by means
of a dilaton field ¢. However, an ambiguity remains as to how such a theory is
constructed in curved space-time. Either the dilaton is introduced with a canonical
kinetic term d,0d,0 g*” or with a non-canonical one, explo/2f)d,00,0 g*". In
ref. [15] the one-loop corrected potential is given in terms of the dilaton field and
the Higgs field. Our concern is inflation with an onset close to the Planck scale.
Therefore, the coherent dynamics of the Higgs field is frozen to {¢) = 0 due to
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finite-temperature corrections of the potential V(¢, T) [18], and the contribution
from quantum fluctuations to the energy density of the universe is damped due to
Higgs decay. The dilaton couples only weakly to other fields and moves in the
potential

V(o) =(V,+ Bo) e*. (4.9)
The potential V' is supplemented by
g(0) =1 exp(ao/2) (4.10)

with a parameter & that may either be set equal to zero for a canonical kinetic
term or equal to « for a non-canonical one. In this subsection ¢ is identified with
.

The differential equation (2.15) has a finite critical point P, at o, = —(1/a + V,/B)
and ¢.=0. For B>0 it is a (stable) focus. Had we neglected to include the
anomaly and contented ourselves with a purely exponential potential, the theory
not only would have suffered from the absence of a healthy ground state but also
from the absence of oscillations to thermalize the inflaton’s energy density. For
convenience we introduce

(43
X = ﬁ(l/()-’hﬁa-)’

s
B

_ Va

A= —— (4.11)
B

It is straightforward to show that p(o, ¢) <0 can only be achieved if V> 0. Thus,
without loss of generality we can content ourselves with x > 0. The strategy to
derive bounds for the parameters a, B and A was exhibited in sect. 3. We will
rather emphasize new features than repeat the motivation of every step.

R,, R; are separated by

af 1+ 2x - a
cg=— ETexp(A——)\+(1—E)x). (4.12)

c, is a separatrix for vanishing @ if @ < 18 and for @ = « if x > 1/2. The phase
spaces are depicted in fig. 3. For illustrative purposes the ordinate has been chosen
as ¢ =¢ /@ The pole at x =0 is purely artificial and due to the singular
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(a)/' 2

)
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Quant
p-0 regon
Rinf
Lp:; (o) G
Cs(o-) @1 (G)

(b)

K

Fig. 3. Figure (a) depicts the phase space for a dilaton with a canonical kinetic term, figure (b) with a
non-canonical term. The pole is purely artificial and due to the singular transformation o :=¢ /¢
at o =0.

N

transformation ¢ — @ at x = 0. A straightforward integration yields lower bounds
on the inflational e-folds

(4.13)
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Here, terms of order O(1/x;) and logarithmic ones are neglected. It can be
checked that this approximation is justified.

Again, the initial value x; is constrained by the QC and the final value x; by
either the TC, SC or the IC. A trivial constraint on the parameters,

2B
Az 1+In—, (4.14)

aQ

ensures that ¢, intersects ¢, at a smaller x than ¢ (cf. (3.12) and (3.13)). The
complete set of conditions that exclude inflation takes the form

6
HC ?(xi—xf)Sh(Tf) a=20,
6
_2(6,\-,7/\/2_8)({—/\/2) Sh(Tf) C_¥=a,
a
oc 2B ) a’ : 1\
. + — 4+ —
P T T
Xe&/a(/\/zfxi)) ezxi—/\ > Q’
28 o’ 1y’
TC —x4|1+ =1+ —
« 18 2x;
Xe(‘x/a(/\/zfxf)) eZ.t‘,*/\ Sp(Tf),
SC «? > 18 a=20,
x;<1/2 o=,
IC ¢ (1 ’ )I a=>0
< —=|1-— @=0,
T 6v2 3v2
1+ e 1/ =250 5 ﬂ 7 =a
2x, o

(4.15)

As in sect. 3 the last three conditions bound the final value x;. Any of them
defines, together with the HC and QC, implicitly defined hypersurfaces in the
parameter space {a, 3, A}. As a system of three transcendental equations, it can
only be solved numerically.

Now we will focus on the dilaton case with the fundamental parameters
f=4/a, —A=8f and V. V, and A4 <0 (which is related to the conformal
anomaly) are parameters of the electroweak standard model and of the order of
the Fermi scale l/VfEI: = 300 GeV. The decay constant f sets the scale at which
scale invariance is spontaneously broken.
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The trivial constraint (4.14) is always fulfilled since |A| <my, and V, > 0.
Then the exclusive bound on f is set by the TC for a canonically introduced
dilaton (& = 0)

- \/'Zh(Tf)/Tr "
S In(Q/e(L)) *

3mp T,=10" GeV,
2x 10 %myp  T,=1 GeV.

The special case A = 0 was already considered in ref. [19]. The condition that was
derived there amounts to simply requiring that the separatrix ¢, be within R,
f<3%x107'm,,. Inclusion of the TC slightly modifies this result. In the non-
canonical case (i.e. @ = ) all three bounds yield approximately the same result

1/4
My, (4.16)

A

<2X 10T | ———
f Y ( t) [GCV]4

i.e. f needs to be larger than 100 GeV almost irrespective of T;. The wish to
identify the dilaton constant f with a scale that is already known, e.g. the Planck
scale, is met safely in the non-canonical version. The canonical version leaves only
a small window for f below the Planck scale if 7; is small enough.

4.2.2. Superconformally invariant theory

The bosonic part of an action S that is superconformally invariant by means of a
dilaton field ¢ and an axion field ¢ has the form

Ssc = [dixy =g (4R + 18" (3,00,0 +3,£0,¢) e2/7). (4.17)

If one allows for soft symmetry breaking, the dilaton field & moves in the potential
V=1im%02 The equations of motion of the axion field ¢ can explicitly be

integrated [16]
. £
£= 53¢/ (4.18)
P

and the energy density p, and the pressure p, assigned to the fields o and £ are
respectively
2

é:()
Pg: %[CZ(r/f¢2+ FCZU’/f+m20_Z ,

o, &
De= %[ez"/f(pz + a—(:)ez"/f—m2 2l (4.19)
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Fig. 4. Phase space for a dilaton within a superconformally invariant theory.

In early stages of the universe’s evolution the second term in the brackets
dominates V. The effective equation of state is p, =p, and no inflation occurs.
Once m’c? exceeds the second term, the universe evdlves under influence of a
theory (2.1) with h=1 g=1 exp(2o/f) and V = 1m?c?. Successful inflation is
altogether excluded once superconformal invariance is an exact symmetry of the
theory.

The same procedure as in the last sections reveals that trajectories approach the
separatrix

V2m
c(x)= —sign(x) 5 e Y, (4.20)

where x = o /f. Fig. 4 shows the phase-space trajectories. Again we find the set of
conditions

HC  hy(xis xp, f) = 6f2[(2x;— 1) e = (2= 1) 2] <i(Ty),
m2

QC p(x;, f, m)= —(18f xi+e )=,

2
m
TC o(x;, f,m) = (18f2xf +e My <p(Ty),

SC | x| e > —

IC [x2| e > —5 (4.21)
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which yield constraints among f and m by inserting x; from the QC and x; from
either TC, SC or IC. Unlike the dilaton from the last section, both negative and
positive half-plane of the phase space may yield inflation (since V is positive
definite).
The case x > 0 is qualitatively similar to the previous ones. For f and m below a
few myp, successful inflation occurs, as a numerical evaluation of eq. (4.21) shows.
Quite different features are encountered in the negative half-plane x < 0. Both
SC and IC have two zeros if they are taken as equalities. The inequalities define
intervals outside which we can not expect successful inflation. Thus, the largest
possible x for inflation is given by both QC and the zero of SC or IC with larger
absolute value. However, it turns out that all bounds are contained in the case
where the QC sets the initial value. A numerical analysis yields that no inflation
occurs unless m < 10 *my, and f> mp,.

5. Conclusion

A detailed analysis of the differential equations underlying a general scalar—
tensor theory of gravity established that only a fraction of the phase space of
trajectories allows for successful inflation. We argued that the most favorable
curves therein are separatrices. They share the property that the second time-de-
rivative of the scalar field is small compared to other terms in the differential field
equation. This neglection, which is commonly promoted (cf. refs. [1,12]), simply
selects a trajectory, namely a separatrix, that does not solve the equations of
motion, but is approached by a large class of solutions. A large amount of horizon
growth is thus guaranteed almost independent of initial conditions.

It was also shown that a certain amount of inflational e-folds does not necessar-
ily suffice to really solve the horizon problem. For important or well-understood
mechanisms (such as baryogenesis or nucleosynthesis) to take place, it must be
accompanied by the timely termination of inflation which is followed by reheating
of the universe up to a critical temperature 7;. Furthermore, the phase-space
structure (i.e. critical points) constrains the duration of inflation.

Imposing these conditions on a simple potential V= A, ¢", vields upper bounds
on A, that depend upon T;. For example, if 7; = 1 GeV, the self-coupling constant
A, <2X 1072, whereas A, <3 %107 * for T;= 10" GeV. If the inflaton couples
very weakly to other matter, i.c. reheating does not occur before it starts oscillat-
ing, only a range of parameters allows for successful inflation: 2 X 107 <m /my,
<4 % 107" for a massive and 7 X 10~ ® < A, < 3 X 1072 for a self-interacting scalar
field (T; = 10'7 GeV). This provides a further constraint on A, apart from density
perturbations. Accomodating both requirements, the reheating temperature can-
not be larger than 7, = 10" GeV.
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A canonical dilaton needs f > 3my, for T, = 10" GeV and f> 2 X 10~ ?m,, for
T.=1 GeV, whereas a non-canonical dilaton always inflates the universe suffi-
ciently for values of f>= 100 GeV. In a theory with softly broken superconformal
invariance inflation constrains f only if the dilaton mass m > m,, i.e. there is no
bound for meaningfull values of the parameters f<m <my,.

I would like to thank W. Buchmiiller for attracting my attention to inflation and
for helpful discussions.

Note added

After this work was completed, I became aware of a preprint [20] by Bento,
Bertolami and Sa in which a string-inspired theory similar to the one discussed in
subsect. 4.2.2 is investigated.

Appendix A
SEPARATRICES

For our purpose it is not necessary to set up a rigorous theory of separatrices. In
general a separatrix (in two dimensions) is a curve c(¢) that separates a phase-
space manifold into two submanifolds. It emerges from a critical saddle point and
trajectories on either manifold approach ¢ (¢) arbitrarily closely, but never cross it
[11].

Be c(¢) a curve that separates two regions R; and Ry, in a two-dimensional
phase space {¢, ¢} with different classes of trajectories ¢, and ¢|;. The trajecto-
ries are given in parametric form ¢(¢), ¢(¢) and are subject to the constraint

b(1) =o($(1)). (A1)

Therefore, fields of trajectories have a definite direction of flow in the positive
(negative) ¢-direction for ¢ >0 (<0). At ¢ =0 trajectories either encounter a
critical point or have infinite slope d¢/d¢. Assuming that ¢,(¢) and ¢,(¢) are
approximate solutions of

de  P(&, ¢)

a6~ 0(4. ¢) (A-2)

in R, and R, respectively and that P/Q is a differentiable function of both ¢ and
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Fig. A.l. Separatrices in phase space. The solid and dotted curves ¢, ¢, show the approximate

solutions in Ry, Ry and how they would extend into the other region. Close to ¢ the approximation

breaks down and ¢, ¢; are deformed into the true solutions (broken curves). In (a) ¢ is a separatrix,
whereas in (b) it is not.

¢, then according to the existence and uniqueness theorem the only sinks or
sources of trajectories are the critical points

P(¢., ¢.) =Q(d., ¢.) =0. (A3)

This is the corresponding condition for the non-autonomous differential equation
(A.2) and amounts to setting ¢ = ¢ =0 in the autonomous case. In a neighbor-
hood of a point A lying on c(¢) that contains no critical point, trajectories
approaching A from different regions R, R, must either be differentiably con-
nected or remain separate until they join in a critical point. Two different cases
may occur. In fig. A.la ¢ (¢) and ¢, (¢) cannot join (without changing the
direction of flow) and c¢ is a separatrix c,. In fig. A.1b ¢(¢) crosses ¢ and joins
o(d). ¢ is no separatrix.
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This yields a necessary condition for c(¢) to be a separatrix:
e1(¢) <ci(d) <en(d). (A4)

¢} and ¢}, are evaluated at ¢(¢) = c(¢) and ordered such that o] <¢j;. (A4) is
valid only if ¢ # 0 and defines intervals for ¢ beyond which ¢(®) is no separatrix.

For the special theories that are investigated in sect. 4 the second term T,(¢, ¢)
is negligible and (A.4) becomes

Tl(d)’ Cs)
c(d)| <|———F—1, A5
) <[~y (AS)
since T, = —T5 close to A. The two remaining regions R, and R ; are separated by

c(p)=7F V’/(ég\/V) but it is only a candidate for a separatrix c, if the upper sign
is realized. Otherwise, close to ¢, ¢i(¢) = @4(p), violating (A.4). The separatrix
condition SC then takes the explicit form

18‘g

V V!I 1 VI gf
> (A.6)

vy 2 v g
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