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Abstract. The interaction of a scalar quantum field with gravity is investigated in the 
semiclassical context where the spacetime is treated classically. It is essentially understood 
as a self-interaction of the quantum field, mediated by its awn states. The relevant states 
here are not arbitrary but tlIe selected by the principle of equivalence which is incorporated 
in the form of speci6c non-linear constraint equations. A (state-dependent) dynamics for 
the quantum field is proposed which is based on a suggested non-linear field equation. 

1. Introduction 

Since Hawking's original discovery of black hole radiation a great deal of work has 
been done on the foundation of 'the semiclassical model of self-consistent dynamics'$ 
describing the interaction of linear quantum fields with gravity. The general framework 
adopted in this model may be indicated as follows. One starts by considering a quantum 

relations on a fixed global spacetime, the latter understood classicalIy in the sense of 
the general theory of relativity. The central assumption is that the back reaction of the 
quantum field to gravity can be described in a self-consistent manner via the Einstein 
equations coupled to the renormalized expectation value of the energy-momentum 
tensor operator of the quantum field in some appropriately chosen state, namely 

6e:d obeykig a !ineai covaiiaii: djjnamica: equ2tioii aiid :he Staiidaib coiniiiu:a:ioii 

In its underlying structure this model originates, of course, from striving for a 
semiclassical approach to quantum gravity. But, for this purpose its basic assumptions 
have turned out to be very restrictive. Looking, for example, at the technical side there 
is a complete lack of success in dealing with the problem of how to define the right-hand 
side of (1). Indeed, despite several attempts, e.g. [2]-[ll], no truly satisfactory pro- 
cedure for renormalization of (TpJ has been developed$. 

At the present time there is a feeling around that the conventional approach based 
on this model is not even consistent to serve as a basis for a semiclassical quantum 
gravity. But outside that model no attempts at a formulation of a self-consistent 
semiclassical scheme have been made. 

i Present address: h o i d  Sommerieid institute ior Mat'nematicai Fnysics, Tii Ciausihai, ieibniz Sirasse 
10. W-3392 Clausthai-Zellerfeld. Federal Revublic of Germany. 
$This subject is, for example, described in i l l .  
6 Some details are given at the end of section 4. 
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It may be, of course, that the incorporation of gravity into the quantum field theory 
could be accomplished only at the level of the fully quantized theory of gravity. At 
present one school of thought shares this conviction and maintains that the principles 
of semiclassical quantum gravity ultimately will not define a theory. There are, however, 
other aspects. Nobody knows today the principles of the fully quantized theory of 
gravity. Granted this ignorance the semiclassical approach remains the natural one 
towards the incorporation of gravity into the quantum field theory. 

In any case, there is the desire to understand the inherent objective weaknesses of 
the conventional semiclassical approach. Concerning this task we have to take seriously 
the many conceptual difficulties surrounding the nature of its underlying assumptions. 
The history of science teaches us that such an investigation may help to establish the 
guiding line along which the future theory should be formulated. In this context it is 
important to realize, first, that the conventional framework indicated is based on the 
inadmissible notion of a rigid global background metric. This necessarily introduces, 
of course, a non-local element in the theory and degenerates the characteristic feature 
of the general theory of relativity, in which the spacetime becomes a dynamical object 
and all physical laws are strictly local. Conceptually, this feature of the general theory 
of relativity must be preserved in any theory incorporating the gravitational interaction. 
In order to have an example of the kind of difficulty one encounters consider the 
problem of the general covariance. It is obvious that the notion of a rigid global 
background metric implies the existence of apriori causal relations between observables 
of different spacetime regions. On the other hand, since the group of all local 
diffeomorphisms does not leave the causal relations unchanged, so the latter should 
not be given a priori if the former is regarded as the symmetry group. 

Another unsatisfactory aspect of the conventional frame concerns the nature of the 
dynamical laws. It is by no means clear that a model based on linear dynamical 
equations for the quantum field could fit into the essentially non-linear gravitational 
interaction. On the contrary, we expect that the incorporation of gravity into the 
quantum field theory can only be provided by a non-linear theory. 

The main goal of the present article is to propose an alternative approach. We shall 
study in particular how the semiclassical theory can be formulated without refemng 
to any rigid global background metric. In arriving at dynamical laws our guiding 
principle will be the principle of equivalence. We demonstrate a possibility of incor- 
porating that principle into the quantum field theory. 

The scheme presented is by no means intended to be complete and final and many 
questions remain to be answered. But in the absence of any conclusive treatment of 
gravity in quantum field theory, we believe that the scheme presented is quite instructive 
because it stresses the significance of a non-linear (self-interacting) dynamics for the 
quantum field and therefore none of the restrictive features of the linear dynamics of 
the conventional approach can affect the conclusions. 

Our discussion will he mainly based on the algebraic approach to generally covariant 
quantum field theory, presented by Fredenhagen and Haag [IZ], in which the principle 
of locality is advanced in its most stringent form dispensing with the existence of a 
priori causal relations between distant observables. Their work seems to clarify consider- 
ably the question of how the general covariance and the strict locality can be incorpor- 
ated into the quantum field theory. 

To begin with, let us present a description of the principal frame. At the most basic 
level we consider a four-dimensional manifold M, not yet equipped with a metric, and 
associate to each open set 0 c A4 an involutive algebra d(0). The self-adjoint elements 
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of d(0)  are interpreted as observation procedures which are pure descriptions of 
laboratory measurements in 0. There should not be any a priori relations between 
observation procedures associated with different spacetime regions, in other words the 
algebra d = ud(0) has to be flexible. 

This interpretation allows us to implement the principle of the general covariance 
by considering the group of all local diffeomorphisms of the manifold as acting by 
automorphisms on d, i.e. each local diffeomorphism ,y is represented by an automorph- 
ism a, of d such that 

ax(d(0))  = d(X(0)). (2) 
There are, of course, many observation procedures which are equivalent with respect 

to their action on a physical system, i.e. of measuring an observable. Thus, the question 
arises of how to construct the observables as an equivalence class of observation 
procedures. For this aim we note that the precise mathematical description of a physical 
system is given in terms of a (physical) state w, i.e. a positive linear functional on d. 
Given a state w one gets via the GNS construction a representation .rr, of s2 by an 
operator algebra in a Hilbert space Zm. In the representation ?io one can select a 
family of related states on d (the so-called folium of w ) ,  namely those represented 
by vectors and density matrices of Rut. 

Once a physical state w on d, has been specified, one can consider in each subalgebra 
d ( 0 )  the equivalence relation 

A - B l ) w ' ( A  - B )  = 0 V W l E  F". (3) 
Here F" denotes the folium of the state w. The set of such equivalence relations 
generates a two-sided ideal F(0) in d(0). The construction of the algebra of observ- 
ables dobs(0) from the algebra of observation procedures is then accomplished by 
taking the quotient 

d o b s ( 0 )  = d(0)/F('). (4) 
This standpoint in the treatment of local observables is essential for our approach 

to semiclassical quantum gravity. Clearly, in this setting the emphasis in the specification 
of the physical laws, i.e. the relations between local observables, is placed on the 
characterization of the admissible folia of physical states$. If there are snperselection 
rules there exist several folia (sectors) of physical states on d which correspond to 
different unitary inequivalent representations of d. 

To approach the problem of specification of the admissible folia of physical states 
we shall make the basic assumption that the relevant states (and the associated folia) 
are everywhere primary (the von Neumann algebras resulting from the GNS representa- 
tion of such states have only trivial centre for a sufficiently small neighbourhood of a 
point). Each primary folium of local physical states provides us with a realization of 
the principle of local definiteness in the sense of the work [13], where a fixed gravita- 
tional background was assumed. The characteristic change here is that, unlike the 

t To have some idea from the folium of a given representation we would like to mention that in the 
conventional theory there is a conjecture that the class of local Hadatnard states defines the folium of a 
unique (up to unitary equivalence) representation. 
+One should note, however, that the whole information about the physical laws contained in the algebra 
of observables can be expressed by direct specification of the two.sided ideals in the algebra of procedures 
as well. This alternative is widely used in the traditional treatments of quantum field theory. But for the 
treatment of gravity in quantum field theory it appears to be inevitable to convert the physical laws into 
appropriate mathematical constraints on states rather than observables. 
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situation in that work, for each sufficiently small neighbourhood of a point there will 
now be different primary folia of local states. This fact can be understood on the basis 
of our interpretation of the local algebras as the algebras of observation procedures. 

Our main objective is, Erst, the question of how to specify the primary folia of 
local physical states. 

We can formulate now one general criterion selecting the primary folia of physical 
interest. Let us comment first on the physical background. The axioms of quantum 

In that theory, due to the exact Lorentz invariance, the observables in spacelike 
complement of a single point generate the total algebra. It is not hard to see that this 
statement ignores the existence of the Planck length, l , = ( h ~ / ~ ) " * =  cm (K is 
the gravitational constant), as the smallest possible length scale that can he measured 
even in principle by experiments. In reality the above statement need not hold in the 
I eravitational case. The hest we can do is to require the validity of that statement in 
the Minkowskian limit K +O where the Planck length tends to zero. Therefore in the 
limit K 4 0 the algebra dobr(0) has to move into the commutant of the total algebra 
as 0 contracts to a single point. Thinking in terms of states this requires that, if we 
ignore the Planck regime, two states in the same primary folium should become 
indistinguishable in a sufficiently small neighbourhood of a point. Clearly, this state- 
ment converts the ignorance of the Planck regime into the requirement of a common 
leading short distance singularity (ultraviolet tail) of different states in the same primary 
folium. The full significance of the primary folia exhibiting this property will become 
evident in the light of our considerations in this work. 

The required features of the algebra of observation procedures are incorporated 
in a simple model, the so-called tensor algebra over the space of scalar test functions 
on the spacetime manifold. The monomials of the local algebra d(0)  in this model 
are smaath fi;nc:i~ns f'"': M x . . . x ,% -f c with :i;ppa:! i:: t?. >e a!geb:ak prod-c: 
is the tensor product of functions 

C-IA r h -  -_.. :- R#:-> ,-...- I: - - " ~ ~  n u ~ l . . A n  r h o  -":a+*--- -P,.L.n-.aL1nn -6 n -:-..#.. 
" C L U  ,,,CV,J U 1  I " I I I ' r . Y I Y D P I  "pa.cc *A*lU"C L U G  CAlDLCLIb.C V L  V V J G L I P V I C l  0, Q "" '~15 p,, ,r .  

The involution is the complex conjugation together with the inversion of the 
sequence of arguments. A diffeomorphism sending the point p to x p  acts as the 
automorphism ax on d according to 

(ax f '""p , , . .  ., P.)=f'"'(X-'PI,...,X-lP.). (6) 

A state w on d(0) is given by a hierarchy of distributions (the n-point functions) 
w l " ' ~ 9 ' ( 0 x . .  .x0). ~'"'(f'"') is the expectation value of the monomialsf'"' in the 
state w. In the present work we shall take this model as the kinematical model for the 
local algebras of a scalar field. It must be emphasized that this intepretation departs 
from the similar Borchers interpretation of the ordinary Wightman field theory [ 141 
in an essential feature. We do not admit, namely, any a priori relations between 
observables. In order to work with the more familiar notion of a covariant 'quantum 
field +' we shall write for the degree 1 elements of the algebra +(f"') instead off"'. 
~eurisiicaiiy we may from ,$(j-<l!) in each x =  &) io +,ix; io 

+(f'") = d*x+(x)f"'(x). (7) 
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Correspondingly we may pass from w'"'(f'"') to W'"'(x,, . . . , xn), where 
W'"'(x,, . . . , x.) is referred to as the n-point function of the state. 

Depending on the specific theory in mind we also need concern ourselves in the 
following with the hierarchy of truncated n-point functions, WP), in terms of which 
the hierarchy W'"' is obtained by standard formulae. 

The formalism described so far does not initially include any notion of spacetime 
geometry. Therefore the central problem is how one can transform it in a semiclassical 
+hn--. 1x7- -AAr--- -..n.l.ia. -A.., +- th:. ---hi-- 
L"'"LJ. .,I -"'.,a., " Y I I I I I C a  ,I"_ L" "A'* p,"",C'L.' 

2. The local structure of pbysical states 

The concept of spacetime metric is naturally tied to the subjective ignorance of the 
Plinck regime. 0" the other hmd, as wis z!ree.dy Indiczted, !hit ignnrince requires 
a common leading short distance singularity of different states in the same primary 
folium. This raises the question of whether we can in some sense combine these two 
aspects. 

In this section we want to exhibit the precise correspondence between the spacetime 
metric and the local structure of states in one primary folium. So we shall, first, ignore 
the Planck regime and consider its effect later. 

On general grounds we expect that the two-point function plays the dominant role 
in the theory. Specifically, the spacetime metric should be encoded basically in the 
local structure of that function. Therefore, in this work our attention will be focused 
on the specilication of the local structure of the two-point function, leaving the 
specification of higher functions to future work. 

Let us now consider a 'sufficiently small' contractible neighbourhood Ob of a point 
,E E :I: and a primary f o h n ,  denoted by go , of:ocd states ozi A:Cpb). %e si: iii smii 
chart x={x"}=p(p) 

dop = sup IxP -x'*I. 
X'Cq, 

For a given state w E Fop we shall assume that there exists at least one smooth 
scalar function F"): On x Op+ R, so that T: ' (X ' )  = F"'(x, x') Wy'(x, x') is bounded as 
a function of x' in Op and the limit 

exists and is non-vanishing. Here Wy' is the truncated two-point function of the state 
w. For practical reasons the quantity arising from the above limit is assumed to be 
dimensioniessi. 

One might think of the function F'*' as describing the shvcture of the leading short 
distance singularity of the two-point function of the state involved. Since the structure 
of this singularity should be common for all states in the same primary foliumf in 
what follows the function F'" is taken to be universal, i.e. independent on the individual 

&.., , 'ye shd; adopi iii o"I dircUlrss;uri ihe ,iaiuia: units iU .WF,i& = 'n ~ 1, Aciioi&@y the si:: 9 hwe 
the dimension of an inverse Iensh. 
$1" the notation of the work [ I l l  this statement corresponds to the well established fact that the scaling 
limit coincides for all states in one primary folium. 
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states. Concerning the specification of that function we shall assume that the limit 

exists and is non-vanishing. Expanding now the function F(2J(.x, x’) in the coordinate 
differences [’=x‘”-x’, the above condition asserts that the leading term in this 
expansion must be of second order, namely 

F ‘ * ’ ( x , x ’ ) = ~ ~ ” ( x ) 5 ’ 5 ‘ +  .... (9) 
The dimensionless quantity &Jx) that arises from this expansion transforms like 

a tensor and is determined by the above assumption up to a conformal factor [note 
that 6” does not transform in general Like a vector). In view of this fact one may 
conclude that the macroscopic metric g,.(x) can be obtained from &&) by a 
conformal transformation, namely 

g,.(x) = n-’(x)&”(x). (10) 
This observation may be regarded as the quantum version of the classical result 

that the knowledge of the null cone at each point of the spacetime enables one to 
measure the metric at this point up to a conformal factor, see [15]. We can use this 
analogy further to give the function F‘*’(x, x’) an intrinsic geometrical meaning by 
requiring that the equation F”’(x, x‘) = 0 d e h e  the null cone at point x. Therefore by 
this requirement F“’(x, x’) can be identified up to the conformal factor n-’(x) with 
the square of the geodesic distance u ( x ,  x’) between the points x and x’, namely 

u ( x , ~ ’ ) = ~ - ’ ( x ) F ‘ ~ ) ( x , x ’ ) .  (11) 

We may determine the conformal factor in the last equation by normalizing I ~ T ~ ’ ’ [ I  
in (8) to one which results in F‘”(x, x‘) coinciding with u [ x ,  x‘). 

Having introduced the notion of local macroscopic metric, we now take on the 
problem of writing down an expansion determining the local structure of the two-point 
function of the state considered. At this point there are several ways to proceed. The 
most convenient way consists in applying the techniques of covariant Taylor expansion, 
developed in [ 161 and [3]. We shall base our analysis on an expansion for the symmetric 
part of the truncated two-point function w‘$ of the form 

~ : i $ ( x , x ‘ ) = ~ - ’ ( l + a , u : ’ + a , , u ’ ” u : ’ + .  . .). (12) 

Here a,, a,+”, . . . are (smooth) tensors at point x and the semicolon denotes covariant 
derivatives with respect to the symmetric affine connection defined by the metric. It 
should be noted that this i s  not to say that such an expansion could not include 
additional singular terms which respect the norm condition (8 ) .  For example we could 
allow W$$&(x,  x‘) to involve an additional logarithmic singularity, such as in the case 
of Hadamard expansion. But, in that expansion the logarithmic singularity occurs 
because the equations governing the dynamics of the quantum field are supposed to 
be linear. As already mentioned in the introduction we are not satisfied with this idea. 
Generally there is no real justification for regarding such additional singularities as 
fundamental. We therefore adopt the view that additional singularities are not present. 
It is quite likely that at some future time we may have the occasion for improving the 
expansion (12), e.g. by a return to an additional singularity. But at this stage we must 
adhere to the principle of simplicity. In this sense the expansion is the simplest thing 
that one can write. 
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Another point is that in general there would be states in one primary folium whose 
behaviour do differ from that given by (12). We assert to have in (12) only a condition 
singling out the subclass of ‘smooth states’. These are such that the amount of the 
energy-momentum density produced by them is 6nite. This point will be illustrated 
in section 4. 

Now, for a reason which is apparent from mathematics we shall refer to the 
expansion (12), when terminated at some order, as the jet class associated with this 

This terminology will help us to avoid confusion. 
One important point should be noted about the expansion (12). In reality we must 

always confine ourselves in (12) to a separation of the points x and x’ of scales greater 
than Planck length, as we are dealing with semiclassical quantum gravity. Further, we 
must always avoid the possibility that the separation of the points x and x’ becomes 
too large, as we have in (12) a local expansion. In actual situations there would be 
always a domain of many orders of magnitude on which the expansion (12) can be valid. 

Thus, if we want to develop the theory with the expansion (12) that part of the 
(symmetric) truncated two-point function which corresponds to a separation of the 
points x and x’ of scales comparable with the Planck length remains unspecified. 
Basically, one is dealing here with a lack of determinacy. There are, however, important 
indications that the theory should become finite at scales below the Planck length. 

cut-& in &e 
semiclassical theory and hence wherever we use the expansion (12) to make some 
calculations the end results must be replaced by their average value over the Planck 
regime as x’+x. In this way one gets a theory in which no singularity occurs. 

We shall adopt this point of view in our discussion. It will be used in the form that 
the average of U-’ over the Planck regime gets replaced by the inverse value of the 
gravitational constant, K-’. We then have in the theory a sort of general principle 
which asserts that the effect of gravity should always be included in the local structure 
of states. We shall refer to this principle as the Planck structure hypothesis. This 
hypothesis reduces the occurrence of singularities to a peculiarity of the Minkowskian 
limit K + 0. 

The discussion so far has led to a semiclassical interpretation of the theory, i.e. 
disregarding the Planck regime, the local macroscopic geometry arises as a common 
intrinsic property ofa primary folium of iocai physicai states. Tne next centrai question 
concerns the physical significance of jet classes and the problem of their specification. 
At this stage we need the notion of dynamical laws in order to proceed. 

order. For exa.m,p!e the jet c!ess or order two is dete-!sed by the tenses and a *”’ 

Gnce this ass.ump~oii is ma& the plaiick leiigirf .wOii1: kci 

3. The local laws 

The problem of specifying the jet classes in the present context is closely related to 
what one calls in the conventional approach the problem of renormalization of the 
energy-momentum tensor operator. First we note that if we wish to have a theory 
based on differential equations the actual construction of the jet classes must be 
subjected to a certain ‘maximal set’ of differential equations relating them to the 
macroscopic geometry de6ned by the primary folium employed. There is an objective 
criterion telling us what kind of equations one should incorporate in a semiclassical 
theory. Indeed, following the intuitive idea that the admissible physical states should 
carry a finite inertial and gravitational mass the equations employed have to provide 
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us with a realization of the principle of equivalence (equality of inertial and gravitational 
mass). Thus the problem becomes one of how to convert this idea into appropriate 
matbematical constraint equations on states. 

As a first preliminary step towards this goal let us assume that among all local 
observables of a bounded region 0 there is a specified observable, called Q, whose 
expectation value vanishes in each 'smooth' state belonging to a primary folium Po 
of local physical states, namely 

.. (aiw = 0 VOJ E su ( 1 3 )  

where 9& denotes the class of smooth states as a subset of Pa. One may think of Q 
as being for each state sensitive to a deviation of the inertial mass from the gravitational 
mass. Viewed in this way the condition (13) is an essential constraint to which the 
relevant states must be subjected. Therefore we shall try to present the theory directly 
in terms of some postulates about 0. 

In the present work we are primarily concerned with one feature of Q, its scaling 
behaviour at a point p E M. On the heuristic level we shall assume here that as 0 
contracts to a single point p the scaling behaviour of Q is controlled in each chart 
x = p ( p )  by a symmetric tensor operator Q,.(x). Heuristically we may then replace 
equation (13) by the following equations at a single point 

(Q,& = 0 VOJ E 90. (14) 

Now, as we are dealing with the principle of equivalence we would expect that the 
operator Q,. involves the field operator q5 in a aon-linear manner. 

It is important to realize that the constraints imposed by (14) are macroscopic in 
character, i.e. they need not be visible on small scales appropriate for the microscopic 
dynamics of the states?. This is an immediate consequence of the principle of 
equivaience which requires the reievant scaie for the constraints (i4j to be the macro- 
scopic scale of metric inhomogeneity. The vanishing of the right-hand side of (141, 
therefore, turns out to be a general feature valid on large scales. We would like to 
emphasize that there are not any compelling reasons for the constraints (14) to hold 
at scales smaller than the macroscopic scale of metric inhomogeneity. Rather, we would 
expect that on such small scales the right-hand side of (14) will differ from zero, leading 
m a state-dependent residua! quantity; The origin of such quantities miry be Found in 
the irreversible (dissipative) structure of the theory on small scales$, an issue which, 
although very important, we will not discuss in the present article. We would expect, 
therefore, that the theory to be developed by means of equations (14) cannot take 
account of the 'relaxation processes' visible on the small scales appropriate for the 
microscopic dynamic of the states. In this sense we shall interpret (14) as a condition 
characterizing the local equilibriums. 

t Here we try to use intuitive physical arguments to understand the whole physical content of the equations 
(14). But. we would like to note that the assumption of the existence of small scales appropriate lor the 
microscopic dynamics can be motivated by the physics involved in the Hawking radiation. see [IS], A 
further remark is needed. The order of magnitude o f  such scales is always imagined to be measured in an 
appropriate local coordinate system, e.g. the free-falling frame defined by the folium of local states employed. 
t The motivation for this comes from OUT experience with the dynamical behaviour of systems with many 
degrees of freedom. 
5 To explain the extent to which equations (14) are the defining characteristic of local equilibrium, and to 
establish their structural connection with some local slability group remaim to be explored, 
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It should be clearly understood that the behaviour of the d, field established by 
(14) does not happen in the ordinary Minkowski theories. It is an entirely new feature 
emerging in theories including the gravitational interaction. Therefore we are led to 
formulate a correspondence principle. According to this principle the physical effect 
of the equations (14) should disappear in the non-gravitational limit K + 0 where the 
spacetime metric should become globally the Minkowski metric. We may establish this 
fact by requiring that the expectation value (Q,,")- in every state of one primary folium 
should satisfy the asymptotic condition 

x-0 
(Qdw + K-'G,, (15) 

where G,. is the Einstein tensor corresponding to the macroscopic metric defined by 
the folium of local states considered. This ensures, indeed, that in the limit K -0 the 
requirement (14) is no longer'a constraint on the states but is reduced to the identity 
G,. = 0, as already satisfied in the Minkowski theories. 

We may also expect here a close relationship between equations (14) and the 
semiclassical Einstein equations. In the next section we shall establish this relationship 
in more specific terms. Notice now that by (15) the whole of Q,, must have the 
dimension of a length to the power -4. 

To construct Q,. in terms of the field operator d, we may start from the statement 
&at equa!isn: (14),as !oca! eqni!ibzk~m coxditiox, x-ed xc! ho!d fer an x!i:rary fie!d 
configuration but only for fields which satisfy the dynamical laws. Thus the question 
arises of how to supplement them by a field equation. Here we are, of course, greatly 
hampered by the absence of a natural approach. But, tentatively, we may write the 
field equation in the form 

nd,+~d,Q,~=O (16) 
where 0 is the invariant d'Alembertian depending on the local primary folium 
employed. Notice now that as a consequence of (15) and (16) in the non-gravitational 
limit K + 0 the theory becomes one of a scalar massless field propagating in Minkowski 
spacetime. 

In view of (16) we would expect now that the operator Q,. involves the derivatives 
of the field d, up to first order (otherwise we would obtain certain pathologies). Further, 

expect that Q,," cannot explicitly contain the field operator 4 and hence must be 
expressible only in terms of derivatives of d,. 

The simplest candidate for Q,,. incorporating all the expected features will be 

hecause of "p!e!e homogeneity of spacetjme under equflihriom condition we wou!d 

Qw = d,;pd,;v. (17) 
The hypothesis that we want to advance is that the necessary dynamical information 

for the semiciassicai quantum gravity situation is aiways contained in equations (i4j, 
(16) and (17). 

4. The Einstein equations 

In this section we study more closely the kind of restrictions which the constraint 
equations (14) impose upon the structure of jet classest. Before entering into the 

t The considerations made in this section are heuristically in character. They should be understood as a 
first step towards a more rigorous treatment. 



2566 H Salehi 

discussion we want to collect some technical facts. First, in the standard notation of 
the point separation method, see [3], equation (14) may be expressed as5 

( Q,JW = !!& g:'W&(x, x') = 0. (18) 

Here Wiz) is the symmetric part of the two-point function of w,  and 9:' is the bivector 
of the parallel transport (here and in what follows the unprimed indices refer to tensors 
in tangent space at x while the primed indices refer to the tensor in tangent space at x'). 

An important feature of this equation is that it restricts only the structure of the 
jet class of order four. We refer for the discussion of the analogous situation in the 
frame of the conventional approach to the publications [4,5], where attention was 
directed to the problem of renormalizing the energy-momentum tensor operator and 
singularities arising from the Hadamard expansion of the two-point function. Now, 
let us write down explicitly the expansion that would determine the local structure of 
the symmeiric part of the truncated two-point Function, w?;, corresponding to the 
jet class of order four 

(19) 

which is similar to (U)$. The requirement of symmetry determines the tensors a, and 

wF&x, x') = - I Z U - ' ( ~  + a,u;'+ a,p%;"+ a , , 6 u ~ ~ u ~ y u 6 + a ~ ~ , . g l u ~ ~ u ~ y u ~ 6 ~ ~ )  

ap"6 to 

a, = O  (20) 

allpB = -&%.~:6. (21) 

The simple proof may be found by looking at the symmetric covariant Taylor series, 
see [ l l ] .  

We are now prepared to give the calculational results conceming the local behaviour 
of the expectation value <QP*)*.  Usins the expansion (19) and the formula (18) we 
find after collecting terms in like powers of U;'' 

(Q,A = ( Qpy)Ydc + ( Q,.)Ydratic + (Q,X (22) 

(23) 

where 

(Q,.)Y""= -12 X'*X lim U - * ( - ~ U - ' U ~ , U ~ , + ~ , ~ )  

(Q )quadratic - - - 12 lim { 0 ~ ~ ( - 2 a ~ ~ u ~ ~ u ~ ~ u ~ , u ~ ~ )  + U ~ * [ ( ~ R , , ~ ~ +  g,va,,B)u'"'a;8 
x +x Y" ol 

+2a,,u~nu~.+Za,u'"u:,] -2u-'a,,} (24) 
0 - wWw('~-~* 1' !m [ U-7 -2a,B6~p'"u:Bu:6u1u~,u~~) 

x -x 
(QpJa- :, 

-,-, 1 - 7 -* ~ .- .,2 . f  + 
+ ( -fa,,RAp,8 + a,g6;+ + 4a,~p6)u~"uT:BuT:60:, 

-L(ZtK,.y~;ay + &Kh,p Ri6vr + g,,a,~36, + dR,evp%y)U ' -U"U '"u '  

+ ($aAmRApd + 4a,p6)u'*u'Bu;su,Y] 

+ ~ - ~ ( - 2 4 a , , ~  -3a,,,a -3a,vp~w)u;eu~B}. ( 2 5 )  

t In the following expression a symmetrization with respen to the indices p and Y must be done so that 
Qwn becomes symmetric. For simplicity we shall make the symmetrization only at the end. 
t For technical reasons we have separated off the factor -12. 
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Here W"' is the one-point function. In writing the above expressions we have sup- 
pressed direction-dependent terms involving odd powers of U'=, since such terms may 
be eliminated by averaging over a separation of the point x in the ui0 direction and 
one in the -U;= direction. There remains still a difficulty concerning direction-depen- 
dent terms involving even powers of U'*. To get rid of direction-dependence of such 
terms, that is, in order for (Q,& to be a true tensor at point x, one has to average 
over all directions using a suitable measure. Following the work of Adler, Lieberman 
and Ng [ 4 ]  in what follows we use the elementary averaging procedure which consists 
in making the replacements 
,+DU:P '&.p 

u:Pu:"u:~u:Pu.isuiY 

u:~u:Pa;su;Y ' b u  e3 S v +  d PY + =r PS 1 2 ( g g  g g  g g )  

+ g " P ( g ' " g s Y +  g *s g "Y + g"g"S) + g'S( g-gay + g"@g"Y + g"g0") 

+ g ~ ~ ( g " g S S  f g ' P g = s  + *6 Q@ g g )I. 
In consequence of this averaging, the term (Q,JYdc vanishes identically. For the 
second term in (22) we find 

lim u-'(Rpu -8a,,+Zg,,a,"). (27) 

Now, according to our Planck structure hypothesis, stated in section 3 ,  we have to 

( Q )quadratic = - 
x +x ," w 

:cp!ace expressia:: (27) by 

(28) ( Q )quadratic - - 
PY - K- ' (R , ,  - 8a,, +2g,,a,"). 

Turning now to the evaluation of the last term in (22) we find after averaging 

(Q,.): = @:'U'$'+ T*. + HPu 

T," = 156~,, A -36g,,&*l,"," 

(29) 

where 

(301 

and 
H p y  =-I *~o(13R,,+R,"~;A:,+R,"~;C;h) - ~ ( R ; , ^ ~ ~ ~ + R ' A , , R , " ~ + R ' " ~ R ~ R , C . ^ )  

- f( a,"R,, + ~R,, ,Q "" ) + $( a,,R 

-%(a,,R"", + a,,R",,,," + a,,RAv) + 2a,,RAe; -4(a,R*," 

+ aeAR *,,,(I + a,R *,) 

( 3 1 )  +a,ARA,~+a,,RA",,)  -2(ah,,,,+2a,,'~,)+18a, A ;'. 

Now putting all these results together and looking back at (18) we 6nd 

(QPV)* = -K-'(R,,,-8QPy +2g,,a.n)+ q:'wf:'+ H,.+ T,+. = 0. (32)  

We may use at this point the correspondence principle (15) to obtain 

a PY ='R 4 MY. (33) 
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This determines the jet class of order two. Consequently, equation (32) take the form? 

G,,. =--KS,+,,){O) (34) 

where 

s,,{w}= w$'b'$'+H,,,+~+.. (35) 

In (34) we have a set of 10 equations to which the actual construction of the allowed 

function and correspond to the standard form of the semiclassical Einstein equations, 
the quantum source of gravity being S,,{w}. 

Let us now look at the tensor T,,.. We immediately see a connection between that 
tensor and the amount of energy momentum contained in the local part of the two-point 
function. Actually, the tensor T ~ "  is the basic dynamical variable occurring in the theory 
and one should always imagine different states in one primary folium to differ in the 
behaviour of T ~ . .  Only in this way can we get a theory which is basically in accord 
with the standard ideas of general relativity. 

From the standpoint of the Cauchy problem, equation (34) alone does not provide 
a determinate mathematical problem. We need, namely, 'an equation by which the 
quantum source of gravity can be computed independently. This gap is now filled by 
taking into account the field equation (16). Indeed, using the point separation method, 
we may derive From (i6) the foilowing equations for the one-point Function and the 
two-point function$ 

;a+ d o c c  nfnrAnr fnnr hre +n h m  e w h i a r t d  T h n c m  nmnrtinne v n l o t ~  +ha r n A  t w m . n ~ i n t  
J'L UlUl., Y. YL".. L U U '  l 'Ul L V  Y I  " Y V , C " ~ Y '  ..'""W 'y".'""" L I I O L . .  .U* Y..l- ..'I.. L"Y-p". . . '  

~ " ' ( x )  = - K  X'+X Iim 2 - x  Iim, g::W$b*'(x, x', x") (36) 

OW(*'(X, x') = --K lim l i i  g::w;;!:"'"(x, x", x'", x') 
X " 3 X  P - r X "  

(37) 

where W"' and Wi"j are the three-point function (symmetrized in x' and x") and the 
four-point function (symmetrized in x", x"') respectively. 

There is a technical problem if we try to treat the Cauchy problem, because of the 
term H,. in (35). That term involves, namely, the fourth-order derivatives of the metric 
and terms which are quadratic in curvature. 

Now, appealing to the idea of the local equilibrium, one might argue that the effect 
of HPv will appear small in comparison with other terms in (34) and hence one could 
put the theory in a more sensible form by neglecting that tensor. But, one cannot get 
a reasonable interpretation of equations by adopting this picture. It is, namely, quite 
likely that the tensor H,", even if it is small, would lead to inappropriate stability 
properties of solutions§. At first sight this seems to prevent us from obtaining a 
reasonable set of equations. But, we would like the reader to notice that the scheme 
developed might open up a new possibility to overcome this difficulty. It may be that 
H,. could be entirely compensated for by a corresponding counter-term in the remain- 
der of S,,{o}. Such a counter-term could be produced by the tendency of the state 
towards local equilibrium. But a consistent incorporation of this idea requires a detailed 

t In the fallowing the parentheses around the indices denotes the symmetric par! of a tensor. 
i. From the field equation (16) one obtains an infinite sequence of equations, each relating Wr") to W'"+". 

of the equations (14) and some reasonable approximations to obtain the whole dynamics of local equilibrium. 
5 The requirement that the right-hand side of the Einstein equations should not contain terms like He" was 
originally suggested in 161. 

nc-"d:....,". :...-nd"..-- i" +LO -..a-*:,." ^CL ... .-...""*a .I.:. ~-"..~-"- .̂ ... :.̂ U- ̂ .A__ L.. 
"L p~,L,L",.,, "L1p"1L""*. >I ..*L q"rr..".l " I  U",, L" L L " L I * I I L r  YYl,L'I"L'LLC a. O"11.S , " I , ~ V I C  ","Cl ")I 11151111h 
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knowledge about the structure of local equilibrium, i.e. about the whole dynamics 
involved in the local equilibrium. Further investigations are needed here to resolve the 
issue. 

At this point a remark concerning the position of our approach with respect to the 
conventional theory appeata to be in place. We have already mentioned that the 
conventional theory is based on the idealized assumption of a linear dynamical equation 
for the quantum field which dismisses a possible correlation between the dynamics of 
inc two-puini iunciiun anu t u x  UI inr cmirt: nicrarcriy UL oi~ici~ I U I ~ C U O I I ~ .  ncmamauiy 
the significance and the validity of this assumption have never been seriously discussed 
in the literature?. 

How difficult in the framework of the conventional theory the problem of defining 
the right-hand side of the Einstein equations (1) is, may be illustrated by the following 
example. In many problems one studies a massless quantum field obeying the equation 

(38j 

which differs from (16) by the absence of the self-interacting term K+Q.". Starting 
from the standard expression of T,,. for this field, calculations show, [4], that the 
divergent part of ( Tpv) is universal for all states whose local structure is restricted to 
the Hadamard form. The leading divergency of ( T , J  has the form aG,,+pg,,, a and 
fi  being quadratically divergent. The term aGFv gives rise to the renormalization of 
the gravitational constant. The term pg,. can be cancelled by introducing into the 
Einstein equations a diverging cosmological counter-term, leading to the renormaliz- 
ation of the cosmological constant.$. ( T , J  contains further a divergent term which 
diverges logarithmically and a finite-state-dependent term. There is no conclusive 
treatment of these terms powerful enough to decide whether the theory is capable of 
unambiguous definition of the renormalized energy-momentum tensor. One might 

left-hand side of the Einstein equations a corresponding diverging counter-term, but 
this procedure is somewhat arbitrary, because the diverging counter-term is only unique 
up to an arbitrary finite part and this ambiguity evidently affects the finite term of 
(T,&. It is therefore unclear what meaning can be attributed to the right-hand side 
of the Einstein equations by means of the renormalization prescriptions. An axiomatic 
approach might be more serious, see [6,7], but we would like the reader to notice 
that, at a more fundamental level, the conventional theory suffers from the inability 
to explain why, in many interesting situations, the dynamics contained in the Einstein 
equations is clearly separated from the scales on which the quantum fields can be 
probed, see [18]. 

Our own interest in the formulation of a non-linear theory results from the realization 
that a suitable non-linear generalization of the conventional theory is needed to 
overcome the difficulties in defining the right-hand side of the Einstein equations and 
in interpreting them as a condition of local equilibrium. The principal virtue of our 

~.~..  *..~...:.- .__I .'-.I__ --.:.. L: ..̂._ L.. .P .LL. .c  I:._. n I..L1.. 

- u+=B 

tho+ +ha InnDrithmir rl;s,nmnni +P- m.xlrl ho ArnnnnA h.ir i n t m A ~ ~ r ; n n  in+- thn Y'6Y' L L l V .  Y A W  ' " 6 U L . L L L Y Y '  -"U'Lfi"." .-.=I " Y Y L Y  "I ..'"f,f,.," ", ..'""".""~ L U L Y  LIZ" 

t A justification of the conventional scheme on the basis of many attractive results that have been obtained 
in that scheme seems to be less obvious. For example a serious difficulty of the conventional scheme concerns 
the role played by sub-Planckian scaJes in the usual derivation of the Hawking radiation. For the discussion 
of this point we refer the reader to the works [17, IS]. 
t We would like to mention that the term pg,, can also be cancelled by introducing into the field equation 
(38) a diverging mass term. 
8 We expect that in cancelling the leading divergency of (7,") in the massless case this sort of ambiguity, 
on dimensional grounds, will not affect the b i t e  term of (T,.). 
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approach as compared to the conventional theory is that the right-hand side of the 
Einstein equations comes out in a natural way by means of the condition of local 
equilibrium and the assumption of a Planck scale cut-off. Our basic strategy was that 
the whole (state-dependent) dynamics of the local equilibrium carries the local charac- 
teristics of the non-linear field equation (16) on large scales. 

5. Concluding remarks 

We hope to have demonstrated a new possibility of thinking about semiclassical 
quantum gravity. Let us summarize once again the basic steps. 

Starting from the principle of equivalence we have attributed the corresponding 
non-linear constraint equations (14) to quantum gravitation. The basic input here was 
the assumption that the relevant local states belong to one primary folium exhibiting 
a specific universai short distance structure. The iatter property was essentiai in 
introducing the notion of macroscopic spacetime metric. This acts as a superselection 
quantity separating different folia of local states. To answer the question which folium 
of local states is actually realized we have to solve the non-linear field equation (16) 
together with the constraint equations (14), (17) subject to appropriate boundary 
conditions. In this sense different folia of local states are connected by dynamical laws. 

The nature of the dynamics in this scenario is, however, at this stage of development 
obscure, e.g. i t  is still not clear whether the Cauchy development respects the local 
structure of the truncated two-point function assumed in (19), on which the results of 
this work are based. But, to this problem some understanding of the local behaviour 
of the higher functions seems to be an essential prequisite. We feel confidence that a 
rigorous justification of this scenario can be given. Concerning ‘the thermodynamic 
aspects’ of the theory there is the problem of a deeper understanding of constraint 
equations which we have called the condition of local equilibrium. There must also 
be some changes to be introduced into these equations in order to include the effect 
of local entropy production. 

The other important question that remains to be answered concerns the relation 
of our approach to a ‘Lagrangian’ and its corresponding energy-momentum tensor. 
From the conceptual point of view it is, of course, entirely open whether investigations 
1:: qdax?um g:a-;ity should f~llo-w *he c.*h~dox pic!ure of Lagra-giax f x x i ! i m .  Hex 
we merely note that it is perhaps possible that the basic nature of the macroscopic 
metric to be essentially a state-dependent quantity limits the effectiveness of such a 
picture. 

In conclusion, let us point out that we have concentrated in this article on the 
broad line of the development of a ‘possible theory’, rather than on any attempts at a 
rigorous justscation of our assumptions. It is our belief that a rigorous formulation 
of a theory along the lines suggested will have a beneficial effect upon our understanding 
of quantum gravity. 
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