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We investigatethe ultra-violet behaviorof non-compactlattice QED with light staggered
fermions.The main questionis whetherQED is a non-trivial theoryin the continuumlimit, and
if not, what is its rangeof validity as a low-energytheory. Perhapsthe limited rangeof validity
could offer an explanationof why the fine-structureconstantis so small. Non-compactQED
undergoesa second-orderchiral phasetransition at strong coupling, at which the continuum
limit can be taken.We examinethe phasediagramand the critical behaviorof the theory in
detail. Moreover,we addressthe questionas to whetherQED confines in the chirally broken
phase.This is done by investigating the potential betweenstatic external charges.We then
compute the renormalizedcharge and derive the Callan—Symanzika-function in the critical
region.No ultra-violet stablezero is found.Instead,we find that the evolutionof chargeis well
describedby renormalizedperturbationtheory, andthat the renormalizedchargevanishesatthe
critical point. The consequenceis that QED can only be regardedas a cut-off theory. We
evaluatethe maximumvalue of the cut-off as a function of the renormalizedcharge.Next, we
compute the massesof fermion-antifermioncompositestates.The scalingbehaviorof these
massesis well describedby aneffectiveactionwith mean-fieldcritical exponentsplus logarithmic
corrections.This indicatesthat alsothemattersectorof thetheoryis non-interacting.Finally, we
investigateandcomparethe renormalizationgroup flow of different quantities.Altogether,we
find that QED is a valid theoryonly for small renormalizedcharges.

1. Introduction

Thereis considerableinterestin the non-perturbativeinvestigationof QED. In
particulartheultra-violet behaviorof QED hasbecomeanimportantissue.Recent
progressin lattice gaugetheory, especiallyin the field of simulatingfermions,has
madeit possibleto attackthis problem from first principles.In this work we shall
presentan extensiveinvestigationof non-compact,lattice regularizedQED in the
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vicinity of its critical point. Preliminaryresultsof this work havebeenreportedin
refs. [1,2].

QED is the best testedof all field theories.It describesthe static propertiesof
electronsand muons to a remarkableprecision. But all this successis in the
context of perturbationtheory, while it is well knownthat the perturbationsseries

is at mostasymptotic.Until veryrecentlynotmuchwasknown abouttheultra-violet
behavior,in spiteof greatcalculationalefforts [3]. Themain obstaclewasthat the
effective chargegrowswith increasingenergy,so that perturbationtheorycannot
be applied.

The prejudice is that QED, togetherwith all other non-asymptoticallyfree
theories,is trivial, in the sensethat the renormalizedchargevanishesas thecut-off
is sentto infinity [4]. We call this limit the continuumlimit. If true, QED canonly
be regardedas a cut-off theory. The maximum valueof the cut-off is determined
by the magnitudeof the renormalizedcharge.A cut-off theorymay be a useful
low-energytheory, if the cut-off canbe pushedto reasonablylargevalueswithout
changingthe low-energyphysics.Later on we shall call a theory, which hasthis
property,weaklyrenormalizable.At the latestat themaximumvalueof the cut-off
newphysicsis expectedto showup,whichmakesthe cut-offbehaviorof the theory
an interestingsubjectto investigate.In pure QED this valueis expectedto lie far
abovethe Planck mass,where QED shouldnot be consideredin isolation any-
more. So, the problem was regardedto be of academicimportanceonly. In the
standardmodel with its many chargedparticles, and even more so in current

compositeandsupersymmetricmodels,the cut-off may, however,lie not far from
the Planckmass.In this casea closeinspectionof the ultra-violet behaviormight

give usa clue of what liesbeyondthe standardmodel.
Non-perturbativephenomenaof non-asymptoticallyfree (gauge)theoriesplay

also a central role in current modelsof electroweaksymmetry breaking. The
possibleexistenceof a critical pointwith largeanomalousdimensionshasled to a
revival of technicolormodels[5] andinspiredthe constructionof dynamicalHiggs
modelsbasedon the top quarkcondensate[6]. QED containsthe basicdynamical
structureof such theories.Thus, it provides a useful laboratory for the studyof
dynamicalsymmetrybreakingin thesetheories.

The interest in non-perturbativestudies of QED began after Miransky [71
investigateda truncatedSchwinger—Dysonequation for the fermion propagator
andfound a continuouschiral phasetransition,with chiral symmetrybeing broken
spontaneouslyat strong coupling. Though this equation did not include any
vacuumpolarizationeffects, he arguedthat the critical coupling should be re-
gardedas an ultra-violet stablefixed point, at which the theoryadmitsa non-trivial
continuum limit. The existence of a chiral phasetransitionwas confirmed by
numericalstudiesof non-compactlattice QED in the quenchedapproximationand
with a small numberof dynamical fermions [8]. Theseearly lattice investigations
also claimed to find support for non-trivial critical behavior.The picturechanged
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whenfurtherstudies[1,9,10]foundcritical exponents,which were consistentwith
mean-fieldtheory.Studiesof a coupledset of Schwinger—Dysonequations,which
include certain effects of fermion loops [11,12],found also mean-field critical
exponents.Recently,this investigationhasbeencompletedby computingthe flow
of the renormalizedchargein the vicinity of the critical point ~, both on thelattice
[2] and from Schwinger—Dysonequations[12,14]. It turnedout that the renormal-
ized charge,vanishesin the continuumlimit, suggestingthat the theory is indeed
trivial. Evidencefor the non-renormalizabilityof QED wasalso seen.

The outline of thepaper is as follows. Sect.2 dealswith thetechnicalaspectsof
the calculation.In sect. 3 we discussthe phasediagramand determinethe critical
coupling.We find a first-ordercritical line at strongcouplingendingin a tricritical
point. On this line chiral symmetryis brokenspontaneously.We furthermoreshow
that the critical behavior is consistentwith mean-fieldtheory. For our further
analysisit is importantto know, whetherthe vacuumof the chirally brokenphase
is confining or Coulomb-like. We therefore study the potential betweenstatic

externaltestchargesin sect.4. Theansweris that thereis no sign of confinement.
In sect.5 wecomputethe renormalizedfermion massfrom the fermion propaga-

tor. For this oneneedsto fix the gauge.We havechosenthe Landau gauge.In
appendixA it is shownthat the massdoesnot dependon the choiceof covariant
gauge,andin appendixB an alternativemethodof calculatingthefermion massis
presented.A serious problem is the occurrenceof slowly moving background
fields, which haveto be treatedwith specialcare.The effectof backgroundfields
in perturbativecalculationson a finite lattice is discussedin appendixC. Finally,
we comparethe renormalizedfermion masswith the chiralcondensate,in orderto

shedsomelight on the mechanismof chiral symmetrybreaking.The renormalized
charge is computed in sect. 6. This proceedsvia the photon propagator in
momentumspace. Here, the problem is to extrapolatethe propagatorto zero
momentum.We usevariousmethods,which give consistentresults.We usethese
resultsto computethe potentialbetweenstaticchargesto one-looporderandfind

quantitative agreementwith the datapresentedin sect. 4. In sect. 7 we compute
the Callan—Symanzikf3-functionanddeterminethe linesof constantrenormalized
charge.Theselinesend on the first-ordercritical line, exceptfor the zero-charge
line, which runs into the critical point. We evaluatethe maximum value of the
cut-off as a function of the renormalizedcharge.The massesof fermion—antiferm-
ion compositestatesarecomputedin sect.8. Furthermore,theircritical behavioris
interpretedin termsof an effectiveaction.In sect. 9 we investigateto what extent
QED canbe regardedasa useful low-energytheory. This requiresthe existenceof
lines of constantphysics,which can be found by comparingthe flow of different
dimensionlessquantities.In additionto the linesof constantrenormalized-charge,

* Outsidethecritical regionthe renormalizationgroupflow maybecomputedby meansof largemass

andperturbativeexpansions[13].
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we computelines of constantmassratios, involving the renormalizedfermionmass
andvariousmassesof fermion—antifermioncompositestates.Doesdecouplingof
the photonimply triviality of the mattersectoralso?In sect.10 we re-examinethe
critical exponents and relate them to the anomalousdimension of the mass
operator.Finally, sect.11 lists our conclusions.

The reader,who is mainly interestedin the resultsratherthanin the details of
the calculation, is advisedto readthe end of sect.5, sects.7, 8 and 9 and the
conclusionsin sect.11.

2. Lattice calculation

The non-compactformulationof latticeQEDsharesall the essentialfeaturesof
thecontinuumtheory [15].It hasthe property that the photonfield interactsonly
with fermions, whereasthe compact theory has monopolesand gives rise to
photon—photoninteractions.The compactformulation,furthermore,mightbelong
to a differentuniversalityclass.According to refs. [16,17]it leadsto a first-order
chiral phasetransitionat strongcouplingandthereforeadmitsno continuumlimit
associatedwith this transition~.

Thenon-compactgaugefield action is given by

S0=~j3~ F~(x), (2.1)

with

I~(x) —4,.~A~(x)—4VA,L(x), (2.2)

where~ is the forward latticederivative,)3 = 1/e
2,and e is the barecharge.In

eqs.(2.1) and(2.2) andin the following the latticeconstanthasbeenset equalto
one for convenience,so that all dimensionfulquantitiesare to be understoodin
units of the (inverse)lattice spacing.The gaugefields take valueson the real line.
As long as one only considersgaugeinvariant quantities,the functional integral
can alwaysbemadewell-behaved,in spiteof the unboundedrangeof integration.

Sincechiral symmetryplays a major role in this work, a naturalchoicefor the
fermionicvariablesarestaggeredfermions.The correspondingactionis givenby

SF=~A(x)[MXY+mt5XY]x(y). (2.3)

~ = ~ ~( —

1)XI+ ... +XM_1[eiAi~(x)~y~ — ~ x—a]’ (2.4)

* For the mixed gaugefield actionwith largenegativeadjoint coupling see,however,ref. [18].
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wherem is the baremass.In the naivecontinuumlimit this actiondescribesfour
Dirac fermions(flavors)minimally coupledto a U(1) gaugefield. For finite lattice
spacingit hasa chiral U(1) x U(1) symmetry at m = 0, while the SU(4)x SU(4)
symmetryis only approximate.This symmetryis restoredin the naive continuum
limit. The questionof flavor symmetry restorationwill be addressedat various
stagesof the discussion.

Wilson fermions,on the other hand, haveno continuouschiral symmetry.In
QCD the effect of the Wilson term vanishesin the continuum limit due to
asymptoticfreedom.In QED this is not so clear,andit is possiblethat the Wilson
actionfalls into a different universalityclassfrom the continuumaction.

The calculationsin this paperare basedon the action S = SG + SF,where we
haveusedperiodicboundaryconditionsfor the gaugefields andperiodic(antiperi-
odic) spatial(temporal)boundaryconditionsfor the fermions.The extentof the
lattice in the ~ direction will be denotedby L,~,so that the four-dimensional
volume is given by V=L1L2L3L4.

We have performedcalculations on 8~,8~16 and 12~lattices at /3-values
rangingbetween0.16 and 0.22 and at massesbetween0.01 and 0.16. The actual
values can be readoff from the forthcoming tables. We have used the hybrid
Monte Carlo algorithm [19] for updating the gaugefield configurations.Some
detailsof the performanceof the algorithmfor QED can be found in ref. [1]. On
the 12~lattices we have accumulated0(250) gauge field configurations, each
separatedby 5—10 trajectories,for eachvalueof /3 andm. For m = 0.01, however,
we were only able to accumulate0(100) configurations.On the 8~and ~ 16
lattices our data sample consistsof 0(100) configurations,eachseparatedby 25
trajectories.The trajectory length T was chosen to be 0.7—1.0 and 8?, the
molecular dynamics step-size,was set so that an acceptanceof 70—80% was
obtained. On the 12~lattices the most time-consumingruns were those with
m = 0.01, when 8?= 0.007, n~ = 100 was chosen. For m = 0.02, 0.04 we
needed3r = 0.0125, n~= 60 and 8r = 0.02, n~= 40, respectively.Thesearevalues
for J3 > f3~.For /3 <f3~,6r had to be slightly reducedto maintain the acceptance.
The stoppingcriterion for the conjugate-gradientinverter was takenas r

2 < 10b0.

3. Chiralcondensateandphasediagram

The first stepin our calculationis the determinationof the phasediagram.This
includesthe determinationof the critical couplingand, as far as this is possible,of
the critical exponents.

The quantity of main interesthereis the chiral condensate(ax). To compute
we haveused a stochasticestimator,as, e.g. employedin ref. [20], which

makesuseof one inversionof the fermion matrix for a sourcevector of random
numbersof meanzero. The resultsof the calculationare given in table 1. For
completenesswe list the averagegaugefield actionperplaquettein table2.



718 M Göckeleret a!. / Non-compactlattice QED

TArna 1
Thechiral condensate(.~x>on the8~,~ 16 and12~latticesatvariousvaluesof /3 andm.Theerrors

shownarepurelystatistical

/3 m <xx)
8~ 8~~16 12~

0.16 0.16 0.4782 (5)
0.09 0.4470 (7) 0.4474(5)
0.04 0.4062(12) 0.4059(7)
0.02 0.3804(16)

0.17 0.16 0.4577 (3)
0.09 0.4194 (3)
0.04 0.3698 (7)
0.02 0.3329 (9)

0.18 0.16 0.4380 (5) 0.4375 (3)
0.09 0.3907 (7) 0.3918(5) 0.3910 (3)
0.04 0.3281(11) 0.3264(6) 0.3277 (6)
0.02 0.2790(18) 0.2855 (8)

0.19 0.16 0.4172 (5) 0.4177 (2)
0.09 0.3619 (6) 0.3635 (3)
0.04 0.2850(13) 0.2892 (6)
0.02 0.2255(15) 0.2340 (7)
0.01 0.1835(13)

0.20 0.16 0.3975 (5) 0.3982 (2)
0.09 0.3361 (5) 0.3377(4) 0.3377 (3)
0.04 0.2483(18) 0.2477(5) 0.2514 (5)
0.02 0.1694(10) 0.1891 (6)
0.01 0.1322(10)

0.21 0.16 0.3798 (4) 0.3798 (2)
0.09 0.3124 (5) 0.3123 (2)
0.04 0.2197 (4)
0.02 0.1550 (6)
0.01 0.0917 (6)

0.22 0.16 0.3618 (5) 0.3624 (2)
0.09 0.2887(5) 0.2881(4) 0.2898 (2)
0.04 0.1808(10) 0.1845(4) 0.1917 (4)
0.02 0.1012(34) 0.1213 (4)

For /3 </3~,where ~ is the critical coupling below which chiral symmetry is
spontaneouslybroken(which will turn out to be PC = 0.186), we find that the
finite-sizeeffectsdisplayedby the dataareconsistentwith the formula

I~( s)
(xx)(m, V) = (,~x)(O,°°)

I
0,~,S

3
= <,~x~(O,cc) — j—j~+ O(V

2), (3.1)
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TArna2
The averagegaugefield actionper plaquette(5

0>/(6V13)on the8~,~ 16 and12~latticesatvarious
valuesof /3 and m.Theerrorsshownarepurelystatistical

/3 m <S0)/(6Vf3)

8~ 8~16 12~

0.16 0.16 1.4280 (8)
0.09 1.4018 (8) 1.4005(6)
0.04 1.3739(11) 1.3736(6)
0.02 1.3617(22)

0.17 0.16 1.3376(4)
0.09 1.3093(5)
0.04 1.2832(6)
0.02 1.2669(6)

0.18 0.16 1.2583 (5) 1.2577(4)
0.09 1.2287 (8) 1.2297(6) 1.2303(4)
0.04 1.2031 (9) 1.2013(6) 1.2022(6)
0.02 1.1873(20) 1.1881(6)

0.19 0.16 1.1872 (6) 1.1876(4)
0.09 1.1589 (6) 1.1610(3)
0.04 1.1331(13) 1.1343(5)
0.02 1.1166(11) 1.1194(5)
0.01 1.1106(9)

0.20 0.16 1.1244 (5) 1.1256(3)
0.09 1.1000 (7) 1.0990(4) 1.0997(3)
0.04 1.0731 (7) 1.0735(5) 1.0739(3)
0.02 1.0592 (6) 1.0617(4)
0.01 1.0548(6)

0.21 0.16 1.0205 (5) 1.0695(3)
0.09 1.0466 (5) 1.0455(3)
0.04 1.0234(4)
0.02 1.0133(4)
0.01 1.0068(4)

0.22 0.16 1.0205 (5) 1.0206(3)
0.09 0.9972(4) 0.9970(4) 0.9978(2)
0.04 0.9771 (8) 0.9775(4) 0.9779(3)
0.02 0.9679 (6) 0.9692(3)

wheres= mV<~~)(0,cc)and 10(s) is the modified Besselfunction.This equation
was derivedby Jolicoeurand Morel [21]in the strong-couplinglimit, wherethe
symmetryof the action is U(1) x U(1). In casethe chiral SU(4) x SU(4)symmetry
is restored,the formula of GasserandLeutwyler [22]applies,which gives a factor
of 15/32 insteadof 3/8 in eq.(3.1). We concludefrom eq. (3.1) and comparison
betweenthe 8~,8~-16 and 12~latticesthat finite-size effects are small, andthat
the extrapolationof (,~x>to the infinite volume lies within the errorbarsof the
resultson the 12~lattice. For /3 > /3~no such extrapolationformula is known.
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In ref. [1]we havegiven a heuristicderivationof the effectiveaction.The mean
field approximationto this (truncated)actiongavethe equationof state

m=2wcr+4~o-
3, (3.2)

whereo = (,~,y>,and K, ~ areanalyticfunctionsof /3 in thevicinity of the critical
point. Recall that in the chiral limit, m — 0, o = — K/2~ if K is negativeand

= 0 otherwise.The critical point is the value of /3 at which K changessign. We
found that our previousdatacould well be fitted by eq. (3.2).This we regardedas
an indication that the theory is non-interactingin the continuumlimit. Closerto
the critical point eq. (3.2) can, however,not be expectedto hold anymore if our
interpretationis’ correct:it will receivelogarithmiccorrections,dueto renormaliza-
tion, causingthe(renormalized)coupling constant~to vanishat the critical point.
Thesecorrectionscan be computedin the 0(n)-symmetriclinear o-model [23]
underlyingthe effectiveaction. As a result,we are led to the following modifica-
tion of theequationof state(3.2) for small u:

0~
m=r~~

1~ii +°lnI~_1I’ (3.3)

where r, 0 are analytic in /3. For n = 2, which correspondsto the U(1)x U(1)
symmetryof the original action,one obtainsp = 0.4. We shall keep p as a free
parameter,becausewe do not knowyetwhat the symmetryis atthe critical point,
and also for a consistencycheckof the approachwe havetaken. Eq. (3.3) means
that thecouplingconstantvanisheslike 1/ln o- 1

We havefitted eq. (3.3) to the data on our largestlattices in table 1. The
parametersT, 0 havebeenparametrizedas follows:

(3.4)

(3.5)

The reasonfor this choice is to guaranteethat ~ 2 is regular on the axis m = 0.
The resultof the fit is shown in fig. 1. We obtain /3~= 0.186(1) and p = 0.61(1).
(For the other parametervalues see the caption to fig. 1.) The latter value is
roughly what one expectsfrom the renonnalizationgroup of the 0(n) model,
indicating perhapsthat the symmetry is higher than n = 2. In order to makethe
critical behaviorvisible directly, we haveshowna slightly modified versionof the
scalingplot, introducedin ref. [1],in fig. 2. The fact, that the datapointsfall on a
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0.6 •

(ix)

0.14 0.16 0.18 0.20 0.22 0.24

/3
Fig. 1. (ix> asa functionof /3. We comparethedatawith a fit from eq.(3.3). Thesymbolsrefer to the
different masses:m = 0.01 (a),0.02. (v), 0.04 (0), 0.09 (D) and0.16 (r~).All errorsaresmallerthan
the symbols.The lattice sizesare ~ 16 (m = 0.04, 0.09)and8~(m = 0.02,0.16)for /3 = 0.16 and 12~for
/3 = 0.17—0.22.Thedashedcurveis theextrapolationto m= 0. Thefit did not includethe datavaluesat
m = 0.16. The parametersof the fit are = 0.186(1), p = 0.61, r~= —0.84(1), O~= 0.59(1) and

= —0.30(2).

universalcurvenearthe critical point, indicatesthat eq. (3.3) is a good description

of the data. Consequently,

ln~”~”~1o~i (/3/3)1/2 for /3~f3~, (3.6)

o-=0 for /3~I3~

on the critical line m = 0 and

o- ln~”3Io-’I ~m”3, (3.7)

at /3 = /3C• We conclude,altogether,that the data are in good agreementwith
mean-field theory plus logarithmic corrections.The significanceof logarithmic
corrections was also noticed in recent analytic work based on truncated
Schwinger—Dysonequations[12].

The shift of ~ relative to our old value [1] is due to the new data points at
m = 0.01. We have tried to fit our new databy the mean-fieldequationof state
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0.25

0

(i3~—i3)
u

2ln9~Ia1~ 0

00

0.0
B

0

00

0

-0.25 -

0

0

-0.50 I I

0.0 1.0 2.0 3.0 4•Q 5.0

Fig. 2. Scalingplotof(I3~— /3)/if2 ln”’ o~I againstm lnIo~’I/~3for /3~= 0.186 andp = 0.61 on
the 12~lattice. If thecritical indiceshavemean-fieldvalueswith logarithmiccorrectionsasdescribedby

theequationof state(3.3), all datanearthephasetransitionshouldlie on a universalcurve.

(3.2) without logarithmic corrections.This gavea worsefit. However,it shouldbe
said that it is possibleto fit the dataalso by an equationof stateas given in ref.
[24], in which the critical exponentsare left as free parameters.Such a fit gave

exponents,whichdiffer slightly from the mean-fieldvalues.That means,it is hard
to distinguish between logarithmic and small power corrections.Conclusions

drawnfrom fits to the equationof statealoneare thusto be treatedwith caution.
All fits led to compatiblevaluesof PC though. In sect. 10 we shall further discuss
the critical exponents.

From the symmetryof the action (2.3)underm —+ — m we infer that

lim (ix) = — lim <,~,y) (3.8)
m’aO m7O

for /3 ~ /3Crn Thus,the line m = 0, /3 ~ /3~is a line of first orderphasetransitions.In
sect.5 we shall seethat the renormalizedfermion mass mR vanisheswhen ~
vanishes.That is the case on the line m = 0, f3 ~ /3g. As the vanishing mass
correspondsto the diverging correlationlength ~ = l/mR, this line is a line of
second-orderphase transitions. Hence, the critical point is a tricritical point
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00

m

o

_000 13

Fig. 3. Thephasediagram.The dashedline representsthe second-ordercritical line, whereasthe solid
line representsthefirst-ordercritical line. The solidcircle marksthetricritical point.

separatingthe first- and second-ordercritical lines. The correspondingphase
diagramis shown in fig. 3.

The successof the equationof state(3.3) suggeststhatchiral symmetrybreaking
is inducedby four- and eight-fermioninteractions,which aregenerateddynami-
cally in the strong-couplingregion. This mechanismof symmetry breaking is
similar to that of the Nambu—Jona-Lasiniomodel [25]. In order that these
interactionsbe relevant in the critical region, the theory must develop large
anomalousdimensions.

4. Staticpotential and phasestructure

Beforewe proceedfurther,we have to investigatethe nature of the different
phases.One could think that QED is confining in the chirally broken phase,
becausethe compact U(1) theory is confining at strong coupling. That could
questionthe notionof the renormalizedfermionmassas usedin ref. [2]andin this
work, at leastnearthe first-ordercritical line.

In order to study the different phases,we considerthe potentialof static test
charges.Becauseof the non-compactnatureof the action,we canprobechargesof
arbitrary (not just integer) strength.The potentialderives from the correlation
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function of Polyakovloopsof oppositecharges

Cq(X) =(Pq(x)Pq*(O)), (4.1)

with

Pq(X) =exp(iq~A4(x)), (4.2)

whereq is the externalcharge(in units of the barechargee). ThePolyakovloop
operator(4.2) projects onto stateswith chargeq at position x. We denotethe
correspondingeigenvaluesof the transfermatrixby A~’kx).Thenwe canwrite

Cq(X) =z_1E(4n)(x))’~4, (4.3)

z= ~(A~)’~’, (4.4)

wherethe sum may encounterdegenerateeigenvalues.The eigenvaluesdefine
potentials

= —ln(A~(x))+ ln Z. (4.5)

We are primarily interestedin the ground-statepotential V~°kx).Usually, the
excitedpotentialsareeliminatedby taking L4 large~‘. Here,however,we canvary
q to investigatethe influenceof excitedpotentials.

If thepotentialis dominatedby singledressedphotonexchange,the ground-state
potentialis expectedto be proportionalto q

2, i.e.

V~°~(x)=q2V(x). (4.6)

The effectivepotentialcanthenbe written

Jeff(X) — ~—~ln Cq(X) = V(x) + j-_~1n[1+ ~ (A(~xvx~))L4I. (4.7)
n>0

The proportionality(4.6) can be tested,andthe contributionof excitedpotentials
be identified and separated,by varying q2. If the effective potential (4.7) is
independentof q2 in a sufficiently large rangeof q2, the contribution of the
excitedpotentialsis negligible. In practicethe rangeof q2 is limited, becausethe
correlationfunction falls exponentiallywith q2 anddisappearsin the noisefor too
largevaluesof q2. A furtheradvantageof variabletestchargeis that onecantune
q2, suchthat the statisticalerrors in Cq(x) areminimized.

* For a discussionof this issuein thecontextof QCD seee.g.ref. [26].
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1.2
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Fig. 4. Theeffectivepotential V~(x)as a functionof q2 on the 12~latticeat /3 = 0.17, m = 0.02. The
bareparameterswere chosenasclose as possibleto the first order critical line, i.e. the phasewhere
chiral symmetry is broken.The symbols refer to different distances:x = (1,0,0) (o), (1, 1,0) (o),

(1,1, 1)(t~)and(6,6, 6) (o).

We have investigatedthe potential on the 8~and 12~lattices.Here we shall
report only on the resultsobtainedon the 12~lattices. (The 8~lattices gave
qualitatively the sameresults.)The calculationwas done for testchargesq = 0.1,
0.2, 0.3, 0.5 and 1.0 and positions x = (1, 0, 0), (1, 1, 0), and (1, 1, 1) with 1 =

1, 2,. . - , 6. On the 12~lattice we did not find any usefulsignalfor q = 1.
Let us first look at the q2 dependenceof the effectivepotential. In fig. 4 we

show Veff(x) as a function of q2 for x = (1, 0, 0), (1, 1, 0), (1, 1, 1) and(6, 6, 6).
Thebareparametersare /3 = 0.17 (<PC)andm = 0.02, which arecloseto the first

ordercritical line. We find that veff(x) is independentof q2 at all distances.The
samewasfound to be the casefor all othervalues of /3 andm for q > 0.2. On the
8~lattices also the q = 1 signal is clearly visible at short distances(x =

1, 0, 0), (1, 1, 0)) and consistentwith the results at smaller values of q. This
indicatesthat excitedpotentialsaresuppressedfor our choiceof q.

We shall now investigatethe potentialquantitatively.Since the statisticalerrors
were found to be minimal for q = 0.3, we havetakenthis valuein the subsequent
analysis.In fig. 5 we show the potentialfor two setsof bareparameterson either
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Fig. 5. Thepotential Veff(x) as a functionof I x I on the 12~lattice for q = 0.3. Thebareparameters
are (a) /3 = 0.17, m 0.02 and (b) /3 = 0.22, m= 0.02. Usually,we shall show our resultsfor thesetwo
parametersets, representingthe behaviorof the theoryin the two different phases.We comparethe
datawith the Coulombpotential.Theopensymbolsareourdata.Thedifferentkind of symbolsrefer to
x = (1,0,0(0), (1,1,0) (0) and (1,1,1) (~)with I = 1,2 6. The solid symbolsare a fit with the
latticeCoulombpotential (4.8),(4.9). The fit did not includethe data pointsat I x I = 1. Thedifferent
kindsof symbolsrefer to thesamex asthe data.The parametersof the fit are (a)~ = 4.35(17),E

0
0.104(33)and(b)e~f= 2.88(7),E0 = 0.147(14).



M. Göckelereta!. / Non-compactlattice QED 727

side of the critical point: /3 = 0.17, m = 0.02 and /3 = 0.22 (>f~C),m = 0.02. We
shall try to fit the potentialby the lowest-orderlattice perturbativeformula

V(x) = — +E, (4.8)
1 2 3 k=(k,O),k*O k

e2 1
E=L~L ~ -~-~+E

0, (4.9)
1 2 3 k=(k,0),k#O k

where

£2 = £~* £~= e
t1’~— 1. (4.10)

The first term on the right-handside of eq. (4.8) correspondsto the one-photon
exchangediagram,whereasE representsthe self-energyof thestatic charges.The
effectivechargeeeff,whichwe treatas a free parameter,is to beinterpretedas the
renormalizedchargeeR, whichwe will properlydefine in sect.6. The constantE

0
in E accountsfor higher-ordercontributionsto theself-energy.The fit of eq.(4.8)
to the data,with fit parameterseeff and E0, is shownby the solid symbolsin fig. 5.
We find thatthe dataarewell describedby the Coulombpotential(4.8). At short
distancesthe datashow someviolation of rotational invariance.This effect is also
reproducedby the latticephoton-propagator.Theeffectivechargesobtainedfrom
the fit aresignificantly lower thanthebarecharges.(Seethe figure caption for the
actual values.)This indicatesthat the barechargesare screened.The parameter
E0 in the formula for the self-energycontribution, eq. (4.9), turned out to be
positive. A positive E0 meansthat the potential is steeperthaneq. (4.8) at very
short distances.This, as well as the systematicdeviationfrom the I x = 1 data
points, may be interpretedas a first sign of running of the effective coupling
constant:the effectivechargehasto increaseat short distancesto accountfor the
data.We will presentamoreaccuratedeterminationof the renormalizedchargein
sect.6. Therewe will alsoshow that the potentialcan be describedquantitatively,
including the self-energycontribution(i.e. without havingto introducethe ad hoc
constantE0), by one-looprenormalizedperturbationtheory.

For integer test chargeseven a confining potential will flatten off at large
distancesand eventuallylook similar to our Coulombpotential in fig. 5, because

the external chargescan combinewith the dynamicalchargesto form neutral
states.In our caseof fractional test chargesthe situationis, however,different.
Here, the external chargescan only be screenedpartly, so that in the caseof
confinementwe wouldstill find a rising potentialat largedistances.This is clearly
not what we see.We concludethat non-compactQED doesnot confine evenin
the chirally brokenphase,contradictingthe scenarioof ref. [27].
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5. Fermionpropagatorandrenormalizedfermion mass

In this section, we discusssome propertiesof the fermion propagatorand
describeour procedure[28] for extractingthe renormalizedfermion massmR.

Since mRis the massof achargedparticle,its computationis not asstraightfor-
ward as, e.g. the determinationof mesonmassesin QCD. This is relatedto the
fact that thefermionpropagatoris not gaugeinvariant: a bareelectronwithout its
Coulombfield (i.e. its surroundingphotoncloud) is not a gaugeinvariant concept.
To maintainmanifestgaugeinvariance,onehasto studystatescontainingnot only
the electronbut alsoits Coulombfield.

Thus,we shall calculatethe fermionpropagatorin a fixed gauge,as is donein
perturbationtheory[29].The renormalizedmassis gaugeinvariant,as is shownin
appendixA. We choosethe Landaugauge,definedby the condition

~z~A~(x) =0, (5.1)

whichcan be implementedexactly. Here 4~denotesthe backwardlattice-deriva-
tive.

However, the condition(5.1) doesnot fix all gauge-likedegreesof freedomof
the action. The action S is alsoinvariant underthe transformation

A~(x)—~A~(x)+4.~a(x),

x(x) —~

e’~~(x), (5.2)

with

2~r

a(x) = ~ -j-~n~x,~~n~ integer. (5.3)

Since a(x) is not a periodicfunction, this is not a gaugetransformationfor the
field. It is, however,a gaugetransformationfor the fermions,becausetheycouple
only to the compactlink variables:~ is periodic. Thus, averagingover these
transformationswould give zerofor the fermion propagator.

Obviously, this invarianceis not eliminatedby the Landau gaugecondition.
Therefore,we add multiplesof 2ir/L~to A~(x),suchthat the lattice average

(5.4)
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fulfills the condition

(5.5)

for all ~. After performingthis procedure,we calculatethe propagator

G~(t)= ~(~(2x+w),~(0)). (5.6)

Here, x is consideredas labeling a hypercube, o denotesa four-vector with
components0 or 1 and t = 2x4 + ~ That is, we computethepropagatorconnect-
ing a lattice point, whosecoordinatesareall even,with all points in the hypercube
basedat 2x. The sumover x then projectsonto zeromomentum.In the actual
computationwe havecalculatedG~for a sourcedistributedoverall pointswith
evenspace-coordinatesin a given time-slice. Subsequently,the averageover all
times was taken.

Thediscretesymmetriesof staggeredfermionsrestrictG~(t) severely.Onefinds
that G~(t)has to vanish for o * 0, and that G0(t) should be real. To seethe
physical implications of this result, we construct flavored Dirac spinors
~/a)(2x), ~k2x) out of the x and .~ fields accordingto [30]

~ x(2x+o)(yr’...yr~)aa, (5.7)

~ k(2x+w)(yr’...y~4):a, (5.8)

1

where a is a Dirac index and a is a flavor index. Their propagator(for zero
momentum)is thengiven by

16~(ipa(2x)~j~b)(o))

= GO(
2X

4) ‘

5a~8ab + ~(G
0(2x4+ 1) + G0(2x4 — 1))(74)apôab

+ 1) — G0(2x4— 1))(75)ap(71Y2Y3)ab. (5.9)

The first two terms are proportional to the unit matrix in the spaceof flavor
indices a, b and, hence,areflavor symmetric,whereasthe last term breaksflavor
symmetry.The existenceof flavor breakingcontributionson the lattice was, of
course,to be expected.However, if the continuumlimit of the above propagator
exists at all, it will be flavor symmetric,becausethe non-symmetricterm contains
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Fig. 6. The background field A~on the 12~latticeat /3 = 0.22, m= 0.02 asa function of configuration
number. Consecutiveconfigurationsareseparatedby 5 trajectories.We seejumpsfrom A

4 = + ~-/12
to A4= —ir/12 andback.

the differenceof G0(t) evaluatedat two pointsseparatedby two lattice constants
without a compensatinglatticeconstantin the denominator,whichwould lead to a
derivative[31].

The numericaldata, however,do not exhibit this form of the propagator:we
observenon-vanishingvaluesof G~(t)for w = 1, ~, 3 andan imaginarypart in
G0(t). So, some of the discrete symmetries,which staggeredfermions ought to
obey,mustbe violated by our configurations.This turnedout to becausedby the
factthat doesnot averageto zero in our ensembles.In fig. 6 we showA4 on a
12~lattice as afunction of computertime for a typical case.Notethejumpsof A4
dueto the constraint(5.5) (~r/12 0.26).The spatialcomponentsof A behavein a
similar way, in spiteof the different fermionicboundaryconditions.

So, it is not surprising that the observedpropagatorsdo not follow the
conclusionsdrawnfrom the completegroupof discretesymmetries:chargeconju-
gation, lattice rotations and reflections are broken by the non-vanishingback-

groundpotentialA,~.But translationalinvariancealonesufficesto establishflavor
symmetryrestorationin the continuumlimit along the lines indicatedabove.

The non-vanishingensembleaveragesof A~couldbe consideredasindicating
insufficient statistics.To obtain ) = 0, it would, however,probablybe neces-
sary to increasethe numberof configurationsatleastby a factor of 10—100.Since
this is far beyondour possibilities,we haveto learnto live with (A~>* 0. To take
the non-vanishing<A~>into account,we fitted thecomputedpropagatorswith the
propagator in a constantbackgroundpotential B~,restricted to the interval
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— ~ <B~~ rr/L~.The only non-zerocontributionsare

G0(2x4)= —jj~~e
2i5I4x4(sin2(p

4+B4) + th2)

1,

4 p4

G
0(2x4+ 1) = — ~__{etB4Go(2x4 + 2) — e~4Go(2x4)}, (5.10)

mR

sin B-
G,(2x4)= —i ~G0(2x4), j=1,2,3,

mR

where

p4=(2~/L4)n, n= ±~,±~,...,±~(L4—1), (5.11)

dueto the anti-periodictemporalboundaryconditionsfor the fermions,and

3

th
2=m~+ Esin2B

1. (5.12)
j=I

This patternof non-vanishingcontributionsis preciselyreproducedby the results
of the Monte Carlo simulations.

Doing the momentumsumone obtains

G0(2x4)= sinh(21) [cosh
2(~jiL

4) — sin2(~B4L4)]-1

x {[cos(~B4L4)cosh(~/iL4)cos(B4(~L4— 2x4)) sinh(/i(~L4— 2x4))

+sin(~B4L4)sinh(~jiL4)sin(B4(~L4— 2x4)) cosh(j.2(4L4— 2x4))]

+i[cos(~B4L4)cosh(~L4)sin(B4(~L4— 2x4)) sinh(ji(~L4— 2x4))

—sin(~B4L4)sinh(fjiL4) cos(B4(~jL4— 2x4)) cosh(i2(~L4— 2x4))]},

(5.13)

wheresinh 2 = th and0 ~ 2x4 <L4. Note that Im G0(t)changessign if B4 jumps
from —~r/L4to +~/L4.

Fitting the computedvaluesof G0(t) with the aboveexpression,we havefour
free parameters:~= 1 sin

2 B~,B
4, mR and an overall amplitude. We did not

attempt to fit also G3 (j = 1, 2, 3), althoughthe numericalresultsappearto be
consistentwith the relation(5.10). Note that mR is given by the ratio of evento
oddtime propagators.
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TABI~3
Therenormalizedfermion massmR on the8~,~ 16 and12~latticesatvariousvaluesof /3 andm as

obtainedfrom a fit with t
0 1. Theerrorsshownarepurelystatistical

/3 m mR

8~ 8~16 12~

0.16 0.16 1.26 (6)
0.09 1.10 (6) 1.02(4)
0.04 0.87(11) 0.81(3)
0.02 0.80 (4)

0.17 0.16 1.160(8)
0.09 0.945(5)
0.04 0.748(6)
0.02 0.636(7)

0.18 0.16 1.08 (4) 1.047(5)
0.09 0.80 (2) 0.85(2) 0.825(4)
0.04 0.63(1) 0.635(3)
0.02 0.46 (5) 0.512(7)

0.19 0.16 0.96 (2) 0.960(5)
0.09 0.75 (1) 0.739(4)
0.04 0.51 (2) 0.537(4)
0.02 0.404(3)
0.01 0.302(4)

0.20 0.16 0.87 (1) 0.883(4)
0.09 0.66 (1) 0.68(2) 0.663(3)
0.04 0.44 (1) 0.43(1) 0.448(3)
0.02 0.29 (1) 0.313(3)
0.01 0.214(4)

0.21 0.16 0.79 (1) 0.814(2)
0.09 0.61 (1) 0.594(2)
0.04 0.386(2)
0.02 0.257(2)
0.01 0.145(3)

0.22 0.16 0.80 (3) 0.754(2)

0.09 0.54 (1) 0.56(1) 0.541(2)
0.04 0.31 (1) 0.32(1) 0.323(2)
0.02 0.18 (1) 0.194(3)

Since the lattice averageA~doesvary (though slowly) from configurationto
configuration,we divided our ensemblesinto setsof 10—20 consecutiveconfigura-
tions. Setswhich includedjumps of A4 by 2~-/L4did not, in general,allow for
stablefits andso havebeendiscarded.The massesareobtainedby averagingthe
massesfoundfrom eachset.Fits to G0(t)startingfrom the initial points t0 = 1, 2, 3
gaveconsistentresults,and for our final estimates,which are givenin table 3, we
took the resultsobtainedusing t0 = 1. Moreover, the fitted valuesof B4 and of

1 ~ B~are found to agreevery well with the (directly) computedvaluesof
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Fig. 7. The real(a)andimaginary(b) partof the fermionpropagatorG
0(t) asa functionof t on the 12~

latticeat /3 = 0.17, m= 0.02 for one setof 20 configurations.Thestarsareour data.The lines are a fit
to the datafor t0 = 1. Becauseof the propertiesof staggeredfermions the even andodd pointslie on

differentcurves.Thesolid(dashed)lines refer to even(odd) t.

A~.The overall amplitudeturned out to be aboutone,which indicatesthat the
fermion wave function renormalizationconstantis Z2 1. Note that in Landau
gaugeZ2 = 1 + 0(4). If the theory were confining for /3 </3C~ we would expect
Z2 = 0 in this region. Typical fits of Re G0(t) and of Im G0(t) on the 12~lattice
for /3 = 0.17, m = 0.02 and /3 = 0.22, m = 0.02 areshownin figs. 7 and 8, respec-
tively. The solid linesbelongto even t, whereasthedashedlinesarethe fit for odd
valuesof t.

For an alternativecalculationof the fermion masssee appendixB. No signifi-
cantdifferenceswere found.
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Fig. 8. Thesameas fig. 7 but for /3 = 0.22, m = 0.02.

Having found the renormalizedmass,we may now confront it with the chiral

condensate.In fig. 9 we haveplotted (ix) as a function of mR. We make the
observationthat the data lie on a universal curve. This indicates that (xx),
althoughbeingan unrenormalizedquantity,is a functionof mR alone.The dashed
curve in fig. 9 showsthe contributionof a free fermion of massmRon an infinite
lattice, i.e.

d4p mR
<kx>=J~ (2n-)4 ~sin2p,

1+m~ (5.14)

It is legitimate to comparethe datawith this formula, becausethe data are



M Göckeleret aL / Non-compactlattice QED 735

0.6

(xx)
0.5

I•I

£

U

0.4 -

I~IIt,

.A

0.0 1.0 - • 1.5

m,fl
Fig. 9. Thechiralcondensateagainstthe renormalizedfermion mass.The symbolsrefer to the different
valuesof /3: /3 = 0.16(,), 0.17(A), 0.18 (.), 0.19(0),0.20(t~),0.21 (c~),0.22(0).The latticesizesare
~ 16 (m = 0.04, 0.09)and8~(m = 0.02, 0.16)for /3 = 0.16 and 12~for /3 = 0.17—0.22.Thesolid symbols
are for /3 valuesbelow$~,while the opensymbolsare for /3 values above/3,,. The dashedline is the

one-looplattice result,asgivenby eq. (5.14),which is includedfor comparison.

practically indistinguishablefrom the infinite-volume extrapolation,as we noted
earlieron. Sincein this limit the backgroundfields disappear,we canignorethem
here.For a moredetaileddiscussionseeappendixC. For small mReq.(5.14) gives

Kxx~= O.6l97mR+ O(m~ln mi). (5.15)

We find good agreementbetweenthe dataandthis curvefor mR� 0.5. Includinga
fermion wave function renormalizationconstantin eq. (5.14) would rescalethis
ratio of proportionalityby a factor of Z

2. The successof (5.15) tells us that Z2 1
for small mR,aswe also found in our fit to the fermion propagator.

The fact, that(~)and mR arerelatedin the sameway on both sidesof /~C’

suggeststhat the main effectof the chiral transitionis simply to give the fermion a
mass,which actsin the sameway as the massintroducedby m in the symmetric
phase.The Miranskymodel [7] predicts(~x~~ m~nearthe phasetransition.We

seeno sign of such behaviorbut find (,~x>~ mR at all valuesof /3. Naively, i.e.
assumingfor the momentthat ~ doesnotmix under renormalization,we would
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Fig. 10. A sketchof ~(p) for soft andhardchiral symmetrybreaking.

conclude from this that ~ has dimensionone, as is also suggestedby the
mean-fieldequationof state(3.3). We shall returnto this questionin sect. 10.

The proportionalityof (,~‘x)and mR for sufficiently smallvaluesof mR leads,
througheq. (3.3),to the scalinglaws

mRcx(/3C—p) for f~’~/3C, (5.16)
mR—O for P?~I3~

on the critical line m= 0 and

maccm’ (5.17)

at /3 = /3,, up to logarithmiccorrections.
We shall now discussthe natureof chiral symmetrybreakingin QED, which, as

we shall see,is quite differentfrom QCD. When chiralsymmetrybreaksin QCD,
the fermion self-energy .~(p)at low momenta acquiresa large value, but at
momentalarge comparedwith AQCD the part of .E(p) due to chiral symmetry
breaking drops off like 1/p2 see fig. 10. If the scalar part of the fermion
propagatordoesbehavethis way, the integral for the bare chiral condensate(in
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continuumnotationfor Nf flavorsand momentumcut-off A)

— A d4p 4N~I(p)

2 2 ‘ (5.18)0 (27~-)C(p)(p +~(p))

will be only logarithmically divergent(becausethe integrandgoesas 1/p4). This
sortof chiral symmetrybreakingis known as soft breakingof chiralsymmetry[32].
For small massesm we would find that the chiral condensatewasproportionalto

A~cD.Hard breaking of chiral symmetry, as seenfor example in the bubble
approximationto the Nambu—Jona-Lasiniomodel [25], leadsto a .~(p)with less
momentumdependence(perhapslogarithmic).The aboveintegral (5.18) for the
chiral condensatelooks much more like the free-fermion integral (5.14). Hard
breakingof chiralsymmetryleadsto achiral condensateproportionalto mR(up to
logarithmic corrections).This is what we see in fig. 9. We concludethat chiral
symmetrybreakingin QED is hard.

An intermediatecaseis providedby the critical behaviorpredictedby Miransky
[7]. In the Miransky solution .~(p)dropsoff like 1/p at largemomenta,and (~/I~r)

is proportionalto m~.

6. Renormalizedcharge

We now cometo the problemof computingtherenormalizedcharge.In ref. [2]
we did not give any detailsor tablesof the results,while in ref. [33] themethodwas

only sketched.In thissectionweshall describein somedetail our approachto this
problem. We have used two different methods. One proceedsvia the photon
propagator,andthe othervia the potential.

6.1. PHOTON PROPAGATOR

Whether we have a lattice or gaugeinvariant continuum regularization,the
Ward identitiesare preserved.This meansthat the fermionwave function renor-
malization constantZ

2 is equalto Z1, the vertexrenormalizationconstant,andso
the chargerenormalizationis givenonly by the photonwavefunction renormaliza-

tion constantZ3. Thus we have

= Z3e
2, - (6.1)

where eR is the renormalizedcharge.So, we canwrite, after fixing the gauge,

f3 - - ___

(A~,,(k)A~(k))=-~-~.6~,,~—(1—AR)~ ~ (6.2)
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Fig. 11. The photon—photoncorrelationfunction 1— D(k), as given by eq. (6.4), as a function of
(kL /2~r)

2on the 12~latticeat /3 = 0.17, m= 0.02. HereL = L~,= 12.

where A~,,(k)is the Fourier transformof A~,,(x),AR is the renormalizedgauge
fixing parameterandthe dots in eq. (6.2) representtermsthatarenot singularas
k —‘ 0. The /3 factor is due to the lattice definition of the action (2.1). Eq. (6.2) is
equivalentto

Z
3= limD(k), (6.3)

k—0

where

D(k) p

1~2(A(k)A*(k))~ (6.4)

The right-handside of eq. (6.4) is simplythe gaugeinvariantpiece of the photon
propagator,aswe choosethe direction p. with k,,, = 0. D(k) is takenas a function
of k2 = k~,k,,,with k,,, = 2irn,,,/L,,,, n,,, = 0,...,L,,, — 1. The sum extendsover all
directionsp. andfor each p. over all momentak, suchthat k,~= 0 and k2 is fixed,
giving N,,, possibilities. (Thus, for examplefor n2 = 1, 2, 3, 4, 5, 6, 7, 8 we have
N,,, = 4, 6, 4, 4, 12, 12, 0, 6 respectively.)We usea latticepropagatorin our defini-
tion of Z

3, becausewe shall laterfind thata comparisonwith thenumericalresults
leadto a far greaterk-regionof applicability.

Let usnow considera plot for D(k). In fig. 11 we show 1 — D(k) againstk
2 for

/3 = 0.17, m = 0.02. We see that there is considerablefluctuation of the data,
especiallyfor small k2. It is clearly very difficult, if not impossible, to try to
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extrapolateto k = 0. The fluctuationsare an inherentdifficulty in computingthe
A,,, fields directly.

Thus, we have abandonedcomputing Z3 via the photon—photoncorrelation
function.Following ref. [34] andexploitingthe fact that the integralof a derivative
vanishes,we find for an arbitraryoperator(1.

— f3 — Ian\
—/3<4~F,,,~(x)Q)+ -z1,.,,(&A~(x)(I)= <J,,,(x)Q) — ~\aA())’ (6.5)

wherethe lattice current j,,(x) is definedby

j~(x) = aA:(x) ~(y)M~~x(z). (6.6)

(From the Ward identity, i.e. invarianceof the actionundergaugetransformations,
ref. [34],we haveAR = A/Z3). We now evaluateeq. (6.5) for 11 =A~,,(0).Takingthe
Fourier transformandsummingappropriately,we can relatethe left-handsideof
eq.(6.5) with eq.(6.2) or (6.4) to give

D(k) = 1- ~ ~ (J~(k)A~(k))~kO. ‘(6.7)

The fluctuationsof the currentwill turn outto be smallerthanthoseof the photon
field.

However,we havethe technicalproblemof numericallyevaluatingeq.(6.7), as
this involves a fermion correlation function. The current J,(x) in eq. (6.6) is

equivalentto

j~(x)= - 3A~(x)~~~= (~‘3~x~)’ (6.8)

whereQ = (M + m 1)t(M + m1), and Tr is the traceover the evenlattice sites(e)
only. This currentcanbe (economically)computedby useof a stochasticestimator

(see,e.g. ref. [20]). Thus, if we take ~ as complex gaussiandistributedrandom
numberswith (~x)4 = 0 and = ~ then

j,,,(x) = ~ (6.9)

where~(r) ~,Q-~((M + m1)t~)),,,. (It can be easilyseenthat (j,,,(x))f =j,,,(x).)
Thus, we take R sets of random numbersand evaluate each ~ using the
conjugate-gradientinverter.Although the currentis not quite as well localizedas
the chiral condensate,we would still expect that the averagingproducesan
acceptableestimatorfor j,,,(x). We have checkedthis pointby evaluating1 — D(k)
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Fig. 12. The current—photoncorrelationfunction 1— D(k), as given by eq. (6.7), on the 12~lattice
evaluatedat the smallestnon-zerovalue of the photon momentum, k

2= (2ir /12)2. This is plotted
againstR, the numberof randomnumbersets.Thebareparametersare/3 = 0.17, m = 0.02.

at the smallestvalueof k2 as a function of R. A typical resultis shownin fig. 12.
(Seealsoref. [33].)We haveusually takenR = 50—100,whichprovedsatisfactory.
The slow oscillationsof the averagecan only be suppressedfor ridiculously large
valuesof R. However, this is not critical becausetheyalways lie within the error
bars. In fig. 13 we plot 1 — D(k) againstk2 for /3 = 0.17, m = 0.02 and /3 = 0.22,
m = 0.02. The new correlatorsfluctuatemuch less than the old ones,and hence
offer a betterprospectof finding Z

3.
It is apparentthat no matterhowwe find D(k), we still havetheproblemof the

extrapolationk —‘ 0. We haveconsideredtwo methods,anextrapolationmotivated
by renormalizedperturbationtheory anda simple polynomial fit. The use of
renormalizedperturbationtheory will bejustified later.

For the first method we need the polarization tensor TI,,,~(k,mR, V). In
one-looporder thisis given by *

11 k — 1 s~(p) cM(p+k/2)cV(p+k/2)~( ,mR, )—~ ~K(p) + K(p+k)K(p)

x ~ + k)s~(p)+ m~)— 2s~(p+ k)s~(p)]}, (6.10)

* For QCD thiswas givenin ref. [35].
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Fig. 13. The current—photoncorrelationfunction 1— D(k) as a function of (kL/2ir)
2 on the 12~

lattice at (a) /3 = 0.17, m = 0.02 and (b) /3 = 0.22, m = 0.02. The opencirclesare our data.The solid
circles are a fit with the one-loop lattice result. The solid diamond is the extrapolation to zero
momentumand infinite volume, which gives us the renormalizedcharge. The error on the latter

quantity is smallerthanthesymbol.

where

s,,,(p) = sin p,,,, c~,,(p) = cosp,,,,

K(p) = ~s~(p) +m~. (6.11)
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We prefer this formula over the correspondingcontinuum formula, becauseit
includescertain lattice effects, suchas the dependenceof H,,,,, on the direction
(andnot only on themagnitude)of k. Furthermore,it canrepresentthe datawhen

k ~ (the cut-off). We first seethat H~,,,,(0,mR, V) * 0 on a finite lattice, which
appearsto give thephotona mass.This, like all finite-sizeeffects, is smallon our

lattices (a exp(—mRL~)).To avoid this problem,we shall in future make the
replacementH,,,,,,(k, mR, V) —~ H,,,,,(k, mR,V) — H,,,,,(0, mR,V). (See also refs.
[36,37]).Performingone-loopperturbationtheory for the photonpropagatorand
thenprojectingout the appropriatecomponentsgives

1 1
e2D(k) =—l—H(k,mR,V), (6.12)

where

H(k, mR,V) = ~— ~ -~[H,,,,,,(k, mR,V) —H,,,,,,(0,mR,V)]~ko. (6.13)

Now, from the definition of e~(in eqs. (6.1), (6.3)) we have

1 1
= —~—~‘(°~mR,~), (6.14)

eR e

andhence

1 1
2 i~i \ = ~ +11(0,mR,~)—H(k, mR,V). (6.15)e ~ eR

Equation(6.15) is the formula thatwe shallfit to the numericalresults,because
we expectthis to keepthe higher-ordertermsas small aspossible.In this form we
have one unknown parameter,namely 1/e~.Indeed, the formula provides a
stringenttest, as for each individual k we could makethe fit. However,we shall
attemptto fit for all k paying specialattentionto the low-momentummodes.

In fig. 13 we also show fits of 1 — D(k) for /3 = 0.17, m = 0.02 and /3 = 0.22,
m = 0.02. In generalthefit is quite good.As notedabove,the fit is for all valuesof
k, which is a hint that one-looprenormalizedperturbationtheory is valid over a
largerangeof distances.The result is not too sensitiveto the largemomenta,as
fitting for half the modesor less doesnotchangeappreciablythevalueof e~.The
resultingvaluesof 4 aregiven in table4. The agreementbetweenthe resultson
the8~and12~latticesindicatesthat eq. (6.15) is a good extrapolationformula.

We have also comparedour datawith H including backgroundfields. See
appendixC. Thechangein 4 was insignificant.
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TABLE 4
Therenormalizedchargeon the8~and 12~latticesatvariousvaluesof /3 and m.Theerrorsarepurely
statistical.Note that theerrorsshouldbecomparedwith fiR — /3, which is thequantity thatis actually

computed

/3 m

8~ 12~

0.16 0.16 0.1803 (4)
0.09 0.1867 (6)
0.04 0.1951(11)
0.02 0.1996(9)

0.17 0.16 0.1942(1)
0.09 0.2028(2)
0.04 0.2141(3)
0.02 0.2220(4)

0.18 0.16 0.2086 (6) 0.2085(2)
0.09 0.2187 (8) 0.2190(2)
0.04 0.2332(4)
0.02 0.2471(12) 0.2455(5)

0.19 0.16 0.2230(7) 0.2224(2)
0.09 0.2351 (8) 0.2347(2)
0.04 0.2535(14) 0.2538(3)
0.02 0.2703(4)
0.01 0.2901(7)

0.20 0.16 0.2358 (7) 0.2359(2)
0.09 0.2530(10) 0.2510(2)
0.04 0.2758(11) 0.2748(3)
0.02 0.3027(11) 0.2988(4)
0.01 0.3241(7)

0.21 0.16 0.2502(2)
0.09 0.2674(2)
0.04 0.2948(3)
0.02 0 3222(6)
0.01 0.3618(6)

0.22 0.16 0.2628 (7) 0.2641(2)

0.09 0.2846 (9) 0.2835(3)
0.04 0.3226(12) 0.3172(4)
0.02 0.3626(13) 0.3517(4)

To checkthe qualityof our results,we havemadea polynomialfit (in k2) to the

data. Thisis doneby including higherandhigher termsin the polynomialuntil a
plateauis reached,whereaddinga new termdoesnot bring a significant improve-
mentin the x2 perdegreeof freedom.Usually, threeto five termsareneeded.A
typical graphis shown in fig. 14. Thisgives resultsin agreementwith useof the fit
formula(6.15).However, the errorsare in generallarger.
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Fig. 14. Polynomial fit to the current—photoncorrelation function 1 — D(k) on the 12~lattice at
/3 = 0.22, m = 0.02.The opencirclesareourdata.Thesolid line is a fourth-orderpolynomialfit.

6.2. POTENTIAL

In sect.4 we havedeterminedthe potentialand the effectivecoupling constant

at the tree level. The valuesobtained are consistentwith the results in table 4,
however,with greaterfluctuations.For example, the valuesobtainedfrom fig. 5
comparefavorablywith the appropriateresultsgivenin the table.

We can now includeone-loopcorrections.This is doneby making the replace-
ment

1 1 1
—-—*— (616)
£2 k2 1+4[H(0,mR,c~)—H(k,mR,V)]

in eqs. (4.8), (4.9) anddropping the constantE
0. It gives thepotential

4 ei~~ 1
V(x) = — L1L2L3 k=(k,O), k~O£2 1 + 4[H(0, mR,~)— H(k, mR,V)] + E,

(6.17)

4 1 1
E = L1L2L3 k=(k,O), k*O £2 1 + 4[H(0, mR, co) — H(k, mR,V)] (6.18)
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Fig. 15. The potentialV.,~(x)as a function of I x I on the 12~lattice for q = 0.3. Thebareparameters
are /3 = 0.17, m= 0.02. We comparethe data with the one-loopcorrectedCoulombpotential,where
Fflf( and e~are taken from tables3 and 4, respectively.The opensymbols are our data. Thesolid
symbolsare the predictionof eqs. (6.17),(6.18). The meaningof the different kindsof symbolsis the

sameasin fig. 5.

The main effect of this substitutionwill be to give a better descriptionof the

I x I = 1 data points and the self-energycontribution. In fig. 15 we show the
potentialtogetherwith the predictionof eqs.(6.17)(6.18).Thevalueof 4 is taken
from table4. Wefind that thepotential is well describedby one-looprenormalized
perturbationtheory.At very small mR we observesome small deviations from
one-loop renormalized perturbationtheory though. They manifest themselves
mainly in a displacementof the point I x I = 1 and a small shift in E. The shift is
an order of magnitude smaller than E0, the shift neededfor the tree-level
potential(4.8), (4.9). Thisshift may signala two-loop contribution.

We concludethat,within errors,we haveagreementbetweenthe two methods

of determiningthe renormalizedcharge.

7. Renormalizationgroup flow and13-function

We are interestednow in the renormalizedchargeat the critical point. The
cut-offdependenceof eR is describedby the Callan—Symanzik/3-function

de
2
R 2

ma— =f3(eR,mR), (7.1)
am e fixed
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where i/mR acts as the cut-off. (Recall that mR is given in units of the inverse
latticespacing.)The bare/3-function /30(e

2, mR) is definedby

ae2
—mR~------— =13

0(e
2, mR). (7.2)

mR e~fIxed

It describeshow the bare chargemust run in order to keep the renormalized
chargeconstant.

If the critical point is a non-trivial fixed point, the Callan—Symanzik/3-function
must have a second(ultraviolet stable)zero at 4 = (e~)2,mR= 0 for e~~
wheree~= 1/ ~ The boundon e~follows from thefact that [34,38]Z

3 ~ 1. The
bare/3-functionmusthavea secondzeroat e

2 = e~,mR= 0 in thiscase.If, on the
otherhand,QED is trivial, we expecttheCallan—Symanzik/3-functionto be given
by renormalizedperturbationtheorynearthe critical point. Forstaggeredfermions

(N~= 4) we obtainon an infinite lattice to one-looporder,combiningeq.(7.1)with
eq.(6.10),

A 2i \ 2i \ 2,’
2 2 4 2 ~ up ‘sC

1~,p)—C1~p)C4~p —
/3(eR,mR)=~eRmRf,T(2~.)4 K

3(p) - (7.3)

It is easyto checkthat eq. (7.3) gives

(7.4)

i.e. the continuum /3-function for four flavors. Up to two loops /3
0(e

2, mR)=

/3(e2, mR), becausethe first two terms in the expansionof the /3-function are
universal.

The datain tables3, 4 areplottedin figs. 16—18. In fig. 16 we show,motivated
by the successof perturbationtheory, 1/4 — 1/e2 asafunction of mR. The data

pointsfall, within a few percent, on a universalcurve. Note in particular that the
datashowthe samebehaviorfor /3 > /3~(opensymbols)and/3 </3,, (solid symbols).

Exact universality would mean a relationship between eR and e as given by
perturbationtheory to one-looporder.TheCallan—Symanzik/3-functionis found
by differentiating the data. The result is shown in fig. 17 together with the
one-loop lattice formula (7.3). At smaller values of mR (i.e. largercut-offs and

smaller eR) the observed/3-function is the same as the one-loop /3-function,
whereasat largervaluesof mR thereis roomfor ~ 10% contributionsfrom higher
orders.The correspondinggraphfor the normalizedbare/3-functionlooksalmost
identical to fig. 17. The dashedcurve in fig. 16 is obtainedby integratingthe
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Fig. 16. Therelationshipbetweene~,,,e2 andmR.Thedata symbolsare thesameasthosein fig. 9. The
latticesizesare8~for /3 = 0.16and12~for /3 = 0.17—0.22.Thesolid symbolsarefor /3 valuesbelow /3,,,
while the open symbols arefor /3 valuesabove /3,. Thedashedline is the predictionof the one-loop
/3-functionshiftedto fit thedatapoint at thesmallestvalueof pii~, whichcorrespondsto /3 = 0.21, m =

0.01.

renormalizationgroup equations(7.1), (7.2), using the one-loop /3-functions as
input. This gives

1 1
—y — —i = —11(0,mR, ~) (7.5)
e~ e

= flnmRd ln rnR /3(4, rnR),/eR. (7.6)

As we saw in fig. 17, the /3-function at large mR is not exactly given by the
one-loopformula. Asweare interestedin extrapolatingour datato lowervaluesof
mR, we havefixed the implicit integrationconstantin eq.(7.6), suchthat the curve
fits the datapointat the lowest valueof mR.(Theshift thisamountsto in eq.(7.5)
is, however, very small: 0.0017 at mR= 0.145, which is about the size of the
symbols in fig. 16.) There is good agreementbetweenthe dataand the one-loop
resultfor mR~ 0.7. In fig. 18we showthe linesof constantrenormalizedchargein
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Fig. 17.TheCallan—Symanzik/3-functiontimes3~,~2/24(i.e. normalized to one at mR= 0, eR= 0) on
the 12~lattice. Thedata symbolsarethe same asin fig. 9. This is comparedwith the one-looplattice

/3-functiongivenby thedashedline.

the planeof bare parameters/3, m. As we know eR only on a grid of points,we
hadto interpolatebetweenthem.For the interpolationin /3 and m we haveused

the formulae 1/4 = a + b/3 and 1/4 = c + d ln m, respectively.(The latter for-
mula is suggestedby fig. 16, given the relationship(5.17) nearthe critical point.)
The uncertaintyis about5% of the spacingbetweenthetrajectories.Whenm, and
so mR, is decreased,/3 mustalwaysbe decreasedto keepeR constant,as a result
of the fact that the /3-functionis positiveoverthe entireparameterrange.We may
useeq. (7.6) to extrapolatethe datadown to m = 0. For /3 a/3,,, mR vanishesas
m —~ 0, andsowe obtain that eR= 0 in this limit. (Seefig. 16.) In particular,eR= 0
at the critical point. For /3 </3,,, mR stays finite as m — 0, and so we obtain a
finite chargerenormalization.Therefore,all trajectorieswith finite eRmustendat
m = 0 on the first-ordercritical line, while eR= 0 on the‘second-ordercritical line.

This implies that for any finite eR thereis a limit on the cut-off. From eq.(7.6)
weobtain,for small mR,

37~.2 1 1
m~’—’l.37exp—---i---- —y—--~ , (7.7)

eR e
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Fig. 18. The renormalization group flow in the critical region. The solid lines are lines of constant
renormalizedcharge, where 4 ranges from 4 = 2.8 (lower right-handcorner) to 4 = 5.4 (upper
left-hand corner) in steps of 0.2. The uncertainty in the position of the flow lines is about 5% of the
spacingbetweenlines. The dashedline correspondsto a cut-off of ~r/mR = 5. The solid diamond

indicatesthe critical point.

wherethe factor in front of the exponentialcanbe readoff from tables3, 4 or fig.
16. According to the small-mR expansionof eq. (7.5), we would find the pre-ex-
ponentialfactor in eq. (7.7) to be 1.3646. To find the bound for small eR, one
substitutese2 by e,,2 in eq. (7.7), becausethe small-eR trajectoriesend near the
critical point. This gives

3~.2

mR~2l.S4exp —-~-—y - (7.8)

Eq. (7.8) implies a cut-off, which is an order of magnitudesmaller than that
implied by the Landaupole.

Takingthe lattice spacingto be ~ over the Planckmass,the bound (7.8) is not
nearly saturatedin nature, even if one considersall known elementarycharged
particles.It tells usthoughthat the fine-structureconstantaR = 4/4ir cannotbe
largerthan 1/50, becausea largeraR would not allow chargedfermionsaslight
as those we see. This assumesthat the integration constantdoes not change
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drasticallywhen going from four to eight flavors (eight is the sumof the charges
squaredin the standardmodelwith threegenerations),andthat the cut-offcan be
pushedto the Planckscalewithout hitting newphysics.

In fig. 18 we have also shown the line ‘w/mR = 5, which correspondsto a
momentumcut-offof five timesthe fermionmass.It gives an idea of how closewe
are to the continuumlimit. The largestcut-off we havereachedis jr/mR 22.

Comparedwith lattice QCD standards,this is a largecut-off, while it remains
rather modest in physical terms. Nevertheless,becausewe have entered the
domain of renormalizedperturbationtheory, wecould makestatementsaboutthe
behaviorof the theoryat the critical point.

8. Fermion—antifermioncompositestates

In orderto studyfermion—antifermioncompositestates,we havecalculated(the
connectedpart of) correlation functions of the local operators,which are well
known from the computation of meson massesin QCD. These correlations
functionshavebeenparametrizedin the following way:

C(t) = (~o)x(o)Ls(x, t)~(x,t)X(x, t))

=A1(emit + e_m1~~4_t))+ (~1)’A~(e_~’2+ e_m2~4_t)). (8.1)

The factors s(x, t), correspondingto different irreduciblerepresentationsof the
lattice symmetrygroup,togetherwith the standard(continuum)quantumnumber
assignments,aregiven below:

s(x, t) particle1 particle2

(_1)x1+~t2~3+t 0;~(PS)

(_1)t 0~(P~) 0~(S)
~((~ 1Y1~2 + (~1)x1±~~~3+ ~ 1)-i~2~3X_1Y 1;(V) 1~(T)

~((~ 1)x1 + (~1)x2 + (~1)x3X_1)t 1~(’~’) 1~~(A) (8.2)

Theindex a(t) refersto the adjoint (trivial) representationof theflavor symmetry
group SU(4), and PS, S, V, A and T refer to pseudoscalar,scalar,vector, axial
vector and axial vector (with oppositechargeconjugation) particles. If flavor
symmetry is restored, the stateswith the same’continuum quantum number
assignmentsshouldhavethe samemass.
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C~) 024681012

Fig. 19. Thecorrelationfunction C(t) for the PS—Schannelas a functionof t on the 12~latticeat (a)
/3 = 0.17, m = 0.02 and (b) /3 = 0.22, m = 0.02. The stars are our data. The errors are smaller than the

symbols. The lines area fit of a singlePS stateto thedatafor t
0 = 1.

ThePS—Scorrelationfunction is shown in fig. 19. We find thatit is dominated
by the pseudoscalarstate, which is the Goldstoneboson associatedwith the

spontaneousbreakdownof the axial U(1) symmetry. No contribution of S is
observed.So,we performedin thiscaseonly a two-parameterfit. The resultsfrom
fits startingat t0 = 1 areshownin table5.The mass~ becomessmallapproach-
ing the first-ordercritical line, as one expectsfor the massof a Goldstoneboson.
Fits startingfrom t0 = 3 leadto slightly lowermasses(differentby lessthan5%) in
the region of small m and large/3 (>/3~),indicatingthat the overlapof the local
operatorwith the wavefunction of the Goldstonebosonis not as high as it seems
to be in the restof the parameterspaceexplored.Notice also that m~5exceeds
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TABLE 5
Themassof theGoldstonebosonmp

5on the8~,8~16 and 12~latticesaswell asthemassof thescalar
particlems on the 12~latticeat variousvaluesof /3 andm as obtained from a fit with t0 = 1. The

errors shown are purely statistical

/3 m mps ms

8~ 8~~16 12~ 12~

0.16 0.16 0.941(3)
0.09 0.720(3) 0.723 (2)
0.04 0.508(2) 0.501 (3)
0.02 0.360(3)

0.17 0.16 0.951(2) 1.96(6)
0.09 0.736(2) 1.54(1)
0.04 0.513(3) 1.32(5)
0.02 0.376(3) 1.23(5)

0.18 0.16 0.961(4) 0.961(2) 1.76(5)
0.09 0.749(8) 0.750 (2) 0.751(3) 1.45(4)
0.04 0.543(3) 0.534 (3) 0.533(4) 1.20(3)

0.02 0.397(5) 0.99(3)

0.19 0.16 0.947(3) 0.973(2) 1.63(1)
0.09 0.768(3) 0.767(2) 1.34(2)
0.04 0.553(3) , 0.552(3) 1.03(2)
0.02 0.447(4) 0.419(4) 0.88(2)
0.01 0.325(9) 0.68(3)

0.20 0.16 0.990(4) 0.986(2) 1.60(4)
0.09 0.787(5) 0.784(17) 0.783(2) 1.30(1)
0.04 0.583(5) 0.584 (4) 0.576(3) 0.96(1)
0.02 0.498(8) 0.454(4) 0.74(1)
0.01 0.365(8) 0.57(7)

0.21 0.16 0.996(3) 0.998(2) 1.53(1)
0.09 0.804(4) 0.798(2) 1.25(1)
0.04 0.595(3) 0.92(1)
0.02 0.468(4) 0.75(1)
0.01 0.434(7) 0.50(5)

0.22 0.16 1.014(4) 1.008(2) 1.49(1)
0.09 0.824(5) 0.819 (3) 0.814(2) 1.19(1)
0.04 0.676(7) 0.646 (4) 0.622(3) 0.87(1)
0.02 0.613(14) 0.525(4) 0.65(1)

2mR at m = 0.01, /3 = 0.21 and at m = 0.02, /3 = 0.22. Presumably,in this region
we aredealingwith an unstableparticle.

The PS—S correlationfunction is shownin fig. 20. The PS statehasthe same
quantum numbersas the Goldstoneboson(PS). So, flavor symmetry restoration
would imply m = ~ Wewerenot ableto checkthis relationon our configura-

tions,becausetheamplitudeof PSbecomesvery muchsmallerthanthe amplitude
of S as m getssmaller.So, a reliable PS masscannotbe extracted.On the other
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Fig. 20. The correlationfunction C(t) for the PS—S channelas a function of t on the 12~lattice at
/3 = 0.22, m= 0.02. The stars are our data. The errorsaresmallerthan thesymbols.The lines area fit

of a singleSstateto thedatafor t
0 = 1.

hand, the S signal is surprisinglyclean.The results for m5 are given in table 5.

However,since S hasthe quantumnumbersof the vacuum,the disconnectedpart
of the correlationfunction should also be takeninto account.Thus, the above
resultscould be modified by annihilationcontributions.Note that suchcontribu-
tions could alsoappearin the otherchannels.It is generallyassumedthat theyare
small in the adjoint channels.

We have made preliminary estimatesof the massescorrespondingto the
remainingcorrelationfunctions.The T andA massesareratherlarge.The V and

massesare found to be of order one, decreasingas one approachesthe
second-ordercritical line (including the critical point), but not as rapidly as m~.
Flavor symmetryrestorationneednot be good for massescomparablewith the
cut-off. We find in mostcasesthat mç exceedsm~by about 15%. We plan to

return to this point in the future.
Thehigh massesindicatethat thefermion—antifermioncompositestatesare not

related to positronium-like bound statesof the various fermion flavors. Indeed,
calculatingthe Bohr radius, rB = 8~r/(4mR),for two particlesof mass mR and
chargeeR, one finds values ranging from 4 at /3 = 0.16, m = 0.16 to 45 at
/3 = 0.22, m = 0.02. So, it seemsvery improbablethat the signalsobservedin the
local correlationfunctionshaveanythingto do with “positronium”. This is particu-
larly true in that part of the phasediagramexploredso far, wherewe expectto be
closest to an approximatescalingregion, i.e. for largervaluesof /3 and smaller
valuesof m.

We would now like to understandthe data. In sect. 3 we havefound that an

equationof statemotivatedby the 0(n)-symmetriclinear o~-modelcould describe
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the behaviorof the chiral condensate.In ref. [1] we also analyzedthe Goldstone
bosonin this context.We now are going to extendthis to include logarithmic
corrections and confront this with our new data, now also including the scalar
particle.

Theeffectiveaction was takento be

SCR= ~ {n[(~o~)
2+ (4,,,lrx)2] — mcT~+ i’~ff(O,, + ~r~)}, (8.3)

wherel’~ is the effective potential.From thiswe derivethe equationof state

0~
m=2o-l’~’ff(o2)=r

1~1_11+°lI1I~ (8.4)

whichwe have identifiedwith eq. (3.3). Thecoefficientsof the quadratictermsin
the expansionof V~aboutthe minimumof the effectiveactiongive the massesas

m2ps = V~f(o-
2) (8.5)

= (1/fl)(V~(r2)+ 2~2V~~(r2)}. (8.6)

Note that a free propagatorwould lead to an exponentialfall-off of the form

exp(— ~/2(cosh~ — 1) t), rather than exp(—mp
55t) as used in eq. (8.1).

However, thecorrespondingchangesin the plots arenot significant.
We allow the wave function renormalizationconstant~j to divergeasymptoti-

cally like a power of In o-. Thus, we have for the pseudoscalarmass,writing
~ =w ln”Io-~I,

m
2 __________m~5— q —1LC00 in o~

We havefitted eq.(8.7) to our dataandfound q = 0.50(5),to = 0.15(2).In fig. 21
weplot ~ againstm/o ln°

5I o~11 The datapoints lie on a line in agreement
with the effective action andthe behavioroneexpectsfrom Goldstone’stheorem.

Let us turn now to the scalarparticleandconsider

— ~ = (2/’q)ff2J’~~(cr2)

2o-2( 0 0 \
+ + ~. (8.8)

~ k4o2ln”~’Io~’I 2lnIo-~I 4ln2Io-11 J

There are no undeterminedparametersremaining. In fig. 22 we have plotted
— ~ against the right-handside of eq. (8.8). For the smaller massesthe
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Fig. 21. m2p

5 as a function of m/a- In°
5I o~~ on the 12~lattice. The datasymbolsare thesameasin

fig. 9.

agreementbetweenour data andthe predictionof the effectiveaction is reason-
ably good.We find that m~— m~

5goesto zero in the chiral limit, as requiredby
chiral symmetry.

Summarizing,we may saythat the pseudoscalarandscalarmassestogetherwith
the chiral condensateare quite well describedby the effectiveaction (8.3), which
treatsa,, and ~ as elementaryfields.

An obviousextensionof this model is to couple the fermion in with a chirally
invariant Yukawacoupling,justas in theoriginal if-model of GelI-Mann andLevy
[39]-

9. To what extent is QED renormalizable?

Before we discussour results,we shall introducesomenotions. A theory is
renormalizable,if, whenthe cut-off is varied,the physicscan bekeptconstantby
making appropriatechangesin the bareparameters.We call a theory strongly
renormalizable,if the cut-off can be taken to infinity, whereas it is weakly
renormalizable,if it is impossibleto takethe cut-off to infinity. A trivial theory is
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Fig. 22. m~— m~
5asa function of the right-hand side of eq. (8.8) with parametersobtained from

previousfits. The datasymbolsarethesameasin fig. 9. The solidline is thepredictionof theeffective
action.

any theory for which the cut-off cannotbe takento infinity without forcing all
interactionsto zero. A trivial theory can be weakly renormalizableor non-renor-
malizable(or perhapsboth in different regionsof bareparametersspace).

Possibleexamplesof someof theseclassesareQCD as a stronglyrenormaliz-
able theory and /~as a weakly renonnalizabletheory.Where should we place
QED in this classification?

In sect.7 we haveseenthat the cut-off cannotbe pushedto arbitrarily high
energiesfor any finite valueof eR.As a result,QED is trivial andcanat mostbe
regardedas avalid theoryup to somefinite energyscale.We nowwant to look for
linesof constantphysics.This means,oneneedsto comparethe flow of different
dimensionlessquantities.

We havealreadyshown the linesof constant eR. We now computethe ratio
mR/mPSon our grid of points and interpolate the results to find the lines of
constantmassratios. For the interpolationin /3 andm we haveusedtheformulae
ln(mR/mPS)= a + b/3 and ln(mR/mPS)= c + d ln m, respectively.In fig. 23 these
lines are comparedwith the lines of constant eR. The two flows are certainly
different. The trajectoriesof constantmR/mPS flow into the critical point, in
contrastto the linesof constanteR,which endon the first-ordercritical line. The
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Fig. 23. The renormalization group flow in the critical region. The dotted lines are lines of constant
renormalized charge already shown in fig. 18. The solid lines are lines of constant mR /mps ranging
from 0.4(lower right-hand corner) to 2.1 (lower left-hand corner) in stepsof 0.1. The uncertainty in the
positionof theflow lines is about10% for the massratio lines. The solid diamond indicates the critical

point.

inconsistencyis most striking for /3 </3,,, wherethe eR trajectoriesmove in the
direction of lower /3 (in accordwith a positive /3 function), while the mass ratio
trajectoriesmove in the direction of larger/3 (asonewould obtainfrom a negative
/3 function). The effect doesnot seemto go away as one approachesthe critical
point, showingthat it is not alatticeartifact,whichwouldvanishas a powerof the
inverseof the correlationlength.The lowestvalueof u/mR in thisfigure is 2.5
(in the upper left corner), whereasthe largestvalue is 22 (in the opposite
corner). Seealso fig. 18 for the line ~r/m~ = 5. The fine-structureconstantaR
variesfrom 0.22 (lower right corner)to 0.44 (upperleft corner).

Having updatedthe flow diagramfrom ref. [2],we now presentsomenew flow
diagramscalculatedfrom the massesof the compositestatesfound in sect.8. We
havecomputedthe ratiosm~5/msand mR/ms.The interpolationwasdoneusing
the same formulae as we used for the ratio mR/mPS.The lines of constant
mp~/m5areshownin fig. 24. They seemto flow into the critical point. The ratio
goes to one, as one approachesthe second-ordercritical line (/3 > /3,,, m= 0),
wherechiral symmetryis restored.For comparison,we haveplottedin fig. 25 the
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Fig. 24. The renormalization group flow in the critical region. The solid lines are lines of constant
mp

5/ms ranging from 0.35 (lower left-hand corner) to 0.85 (lower right-hand corner) in stepsof 0.05.
The uncertainty in the position of the flow lines is about 20% of the spacing betweenthe lines. The

solid diamond indicatesthe critical point.

mean-fieldresult. There is qualitative agreementbetweenthe two figures. It is
apparentthat the quality of the data(in particularfor ms) needsto be improved.

The lines of constantmR/ms are plotted in fig. 26. This flow diagram is
obviously different from thoseof the othermassratios.The largestand smallest
massratios in this plot are 0.6 and 0.3, respectively.It is interestingto note that
thecurvesof constantfermion—antifermionscatteringin thepseudoscalarchannel
found from the Schwinger—Dysonequationsin ref. [14] look the same as the
m~/mp~plot. We would expectthe correspondingscalarscatteringamplitude to
reproducethe flow of mR/ms.Wherewehaveresults,the correspondingflows are
indeedsimilar, but the Schwinger—Dysoncurvesextendto much smallermasses.
This comparisonleadsus to expectthatthecurvesof low massratio(mR/ms~ 0.4)
will all endin the critical point, whereasthoseof high massratios(mR/ms~ 0.4)
will endon the first-ordercritical line. We againfind that differentdimensionless
quantitiesflow alongdifferent trajectories.

Our statementsaboutthe non-renormalizabilityof QED given in our previous
paper [2] have been strengthenedby the calculation of more quantities. In
particular,by comparingfigs. 23, 24 and 26 we can seenon-renormalizability(i.e.
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Fig. 25. The renormalizationgroupflow in thecritical region aspredictedby theeffectiveaction (8.3)
with parametersobtainedfrom previousfits. The solid lines are lines of constantmp

5/ms ranging
from0.25 (lowerleft-handcorner)to 0.9(lowerright-handcorner)in stepsof 0.05.

the non-existenceof lines of constantphysics)in the mattersector, showingthat
this is not merelyan effect of the photon.

We concludethat QED is non-renormalizablethroughouttheparameterregion
we have investigated,althoughit must becomeweakly renormalizablefor small
enoughaR, and we see hints of this nearour smallest aR values (erR� 0.22).
Non-renormalizabilityshowsup long beforethe cut-off reachesits maximal value.

10.Anomalous dimensionsand critical exponents

Though the photon decouplesat the critical point, the matter sector of the
theory maystill interactthroughexchangeof the Goldstonebosonandvia induced
couplings, such as the four-fermion coupling. It is important now to find out,
whether this is the case. One way would be by computing the appropriate
renormalizedcouplings.This hasnot beendoneyet. Another sourceof informa-
tion are the critical exponents.The drawbackhere is that it is difficult to
determine the critical exponentsaccuratelyby numerical methods. A further
quantity of interestis the anomalousdimensionof the operator~ In mean-field
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mR /ms ranging from 0.6 (on the left) to 0.3 (on the right) in stepsof 0.025. The solid diamond

indicatesthecritical point.

theory ~,y is treatedas a quasi-free,elementaryscalarfield of dimensionone.If
this ansatzprovesto be correct,it hasfar-reachingconsequences.

The critical exponentsô, fi (in order to avoid confusionof /3 andthe critical
exponentnamedby the sameletter, we have called the latter /3), v and y are
definedby

aln<,~)—1 , (10.1)
alnm

- alnK,~x>

/3= (10.2)a ln(/3~—/3)~/3c,m0

a ln mR
(10.3)

a ln(/3~—/3)~

alnxm a(,~x)
x = . (10.4)aln(/3~—/3)p,~,, m am m=O
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They arerelatedby the scalingrelations[23,40]

/(6—1)=y, f~(6+1)=4v, (10.5)

so that only two of themareindependent.Theserelationsareprovenfor a certain
classof models and are believed to have a wider range of applicability. The
equationof state(3.3) yields the critical exponents6 = 3, /3 = 1/2 and y = 1, in
agreementwith thefirst scalingrelation.The secondscalingrelationgives,further-
more, z’ = 1/2. Thesevaluesare referredto as mean-fieldcritical exponents.An
independentinformationaboutthe critical exponentscomesfrom the relationship
(5.15) between <ix) and mR for small mR. It implies /3 = v, which gives 6 = 3,
owing to the secondscalingrelation. This agreeswith the mean-fieldformulawe
usedbefore.It shouldbe noted that thereare severallengthscalesin the theory
(e.g. mR and ms),which all can be usedto define a correlationlength and the
exponent r-’. As long as theyscaletogetheras one approachesthe critical point
alongthe first-order critical line, it does,however,not matterwhich lengthscale
wetake.

The critical exponentsareinterrelatedwith theanomalousdimensionsof m and

xx, ‘Yn, andy~,whichwe will discussnow.The discussionwill follow ref. [24].
Let usconsidermassrenormalizationfirst. We write

mR=Zmm. (10.6)

Then Ym is definedby (rememberthat i/mR actsas the cut-off)

a ln Zm
7m — 1 (10.7)a ifl mRp fixed

a In
= —1. (10.8)a In mR ~ fixed

We are primarily interestedin the anomalousdimensionat /3 = /3,,. From eqs.

(5.15) and(10.1) it follows thatat /3 = /3~

Ym61 (10.9)

Our result6 = 3 gives the anomalousdimensiony,,, = 2. We call y,,, the renormal-

ized anomalousdimensionto distinguishit from the bareone
a ln Z

m - (10.10)
fl mRconstant physics

a In
=1 —1. (10.11)

~fl mR constant physics
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Thereare ambiguitiesin this definition (becausethe theory is not renormalizable
in the critical region).Here, in distinctionto v, it matterswhetheronekeepseRor
(e.g.) mp~/m~fixed. For the latter choice eqs. (3.3), (5.15), (8.5) and (8.6) give

= 2. (The samesort of ambiguitiesare presentin defining renormalizedand
bare/3 functions.)

Let usnow considerrenormalizationof the compositeoperator~‘. We write

XXR = + Z~1. (10.12)

This includesmixing with the 1 operator,which is the only mixing expectedfrom
perturbationtheory.The anomalousdimension is givenby

a In Z—
= — a 1 XX (10.13)n mR $ fixed

Becausethe operators~ and 1 transformdifferently underchiral rotations,one
would expect Z ~ to vanish like m. The different scaling laws for bare and
renormalizedmassesat /3 = /3,, (cf. eq. (5.17)) then lead us to expectthat the
operatormixing can beignored.Thuswe have

a ln(~x)
7~x a 1 —3, (10.14)nmR pfixed

wherethe —3 in eq. (10.14)assumesthat /3 = /3,,, is a line of constant(,~XR>/m~
in the limit mR —* 0. This hypothesishasto be checked,andwe plan to return to
this in a future publication[41].Fromeq. (5.15) it follows that

—2. (10.15)

Since m~xis a renormalizationgroup invariant quantity (when consideredin
connectedGreenfunctions, which is preciselywhat concernsus here), we have
Ym + = 0. Thus, we find Ym = 2, and hencefrom eq. (10.9) we obtain 6 = 3.
Note that this resultwas obtainedwithout taking recourseto the equationof state.
So, we have a second,independenthint that 6 = 3. Eq. (10.5) meansthat the
compositeoperatorkx hasdimensionone like anelementaryscalarfield.

It shouldbe notedthat the aboveresultsareonly correctat /3 = /3,,. For /3 > /3~
we find from the equationof state (3.3) and eq. (5.15) that mR ~ m as m —~ 0, so
that y,,, = 0 on the second-orderline. For /3 </3,,, the renormalizedfermion mass
goesto a finite value as m —~ 0, so that y~= ~ on thefirst-orderline. For a direct
evaluationof y,,,, which supportsthisresult, see ref. [42]. It is worth pointing out
that the bare7-functionwe definedin eq. (10.10) is muchsmoother.
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Summarizing,it maybe said that all our results point to mean-fieldcritical
exponents.This suggeststhat the matter sectorof the theory is also trivial. In
accordwith this picture, we havealso concludedthat the compositeoperator,~x
hasdimensionone. This result leadsus to expect,for example,that the four-fer-
mion interactionbecomesa relevantoperator.Sinceit is dynamicallygeneratedin
anycase,it should be includedin the calculationright from the start. In thislight
wehaveonly exploreda single point of a multi-dimensionalcritical surface.So it
might still be possibleto find a non-trivial continuumlimit in a largerspaceof
parameters.

11.Discussion

We have made a comprehensiveinvestigationof non-compactlattice QED.
Becausewe are interested in chiral symmetry properties,we used staggered
fermions.Beforeonecan developa consistentpictureof QED at strongcoupling,
one has to look at the problem from as many sides as possible. Thus, we
investigatedthe following quantitiesand topics. The first itemwe looked at was
the equation of state to find the phase diagram. To settle the question of
non-confinement,we studiedthe potential betweenstatic particles of variable
charge.We thencomputedthe renormalizedmassand chargeof the fermion, in
order to find the Callan—Symanzik/3-function.Next, we computedthe massesof
fermion—antifermioncompositestates,to addressthe issuesof renormalizability
andthe effectiveaction.

With the helpof our resultswe have formed the following picture. There is a
line of first-ordertransitionsrunning from /3 = 0 to the tricritical point at /3 = /3c’

where the chiral symmetry is spontaneouslybroken, and a second-orderline
thereafter.(See,e.g.fig. 3.) This phasetransitionis not a deconfinement—confine-
ment phasetransition. We know this from our study of the potential, which is
Coulombic at all distancesand for all our values of /3. This suggeststhat the
mechanismof chiral symmetrybreakingis not like that of QCD, whereit is closely
associatedwith confinement,but morelike that of the Nambu—Jona-Lasiniomodel
[25],wherethereis chiral symmetrybreakingwithout confinement.

The lines of constanteR, as shownin fig. 18, tendto thefirst-ordercritical line.
We saw that the behaviorof the renormalizedchargecan be well describedby
one-loop renormalizedperturbationtheory. In particular,we found a positive
CaIlan—Symanzik/3-functionandno sign of any secondzero. Perturbationtheory
allowed us to extrapolatethe data. The conclusionwas that, as the correlation
lengthgoes to infinity, the renormalizedchargegoesto zero. Thus, the theory is
trivial. Whencomparingflows of differentphysicalquantities,we seethat the flow
lines cross,showing that the theory is not evenrenormalizablein the parameter
rangewe havestudied.When erR= 1/137 the boundsin eq.(7.8) are, however,so
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largethat thereis no contradictionwith the phenomenalsuccessof QED. How-
ever, erR ~ 1/50would lead to inconsistencieswithin the context of the standard
model. This could bethe reasonwhy the fine-structureconstantis so small.

ColemanandWeinbergwere ledby their work on scalarQED [43]to conclude
that“natureabhorsmasslessparticleswith long-rangeinteractionsbetweenthem”,
andtheyspeculatedthat a symmetrywould breakin such away that this situation
is avoided.They thennoted thattheydid not have the tools to investigatespinor
QED. Our calculationsshed light on this question and indicate that indeed
masslessQED doesnot exist. Onthe first-orderline (i.e. in the brokenphase)the
mechanismis basically as Colemanand Weinbergenvisioned,but on the second
order line nature avoids this “abhorrent” situationby a different mechanism,
namelythe vanishingof the renormalizedcharge.

Furthermore,we havebeen able to relate the fermion—antifermioncomposite
statesto the chiral condensateby meansof aneffectiveaction. The effectiveaction
we used is that of a linear o—model. The coupling constantof this model goes
logarithmically to zerojust like 4. This is consistentwith our belief that QED is
trivial. (It would be interestingto computethe coupling constantsin that action
numerically.)The successof an effective actionthat treatsthe pseudoscalarsand
scalarsaspoint-like suggeststhat the stateswe seearesmall,with the size of order
the cut-off. This is to be contrastedwith the size of a conventionalpositronium
state,whichshouldgo to infinity with the correlationlengthasoneapproachesthe
critical point.

The critical exponentswe see are the same as in the Nambu—Jona-Lasinio
model, and we have notedmany qualitative similarities. For example, the gap
equationof the Nambu—Jona-Lasiniomodel leadsto qualitatively the sameequa-
tion of state[10,36]as derivedfrom the effective action[1]. This could meanthat
QED and the Nambu—Jona-Lasiniomodelarein the sameuniversalityclass.

Onepossibility, that should bementioned,is that, by introductionof additional
interactions,QED could be madeinto a weakly renormalizabletheory. This is
possible,becauseif relevantoperatorsareleft out of a renormalizable(or weakly
renormalizable)lagrangian,the remainingtheorywill exhibit no curvesof constant
physics, but insteadlook like lattice QED, with eachpoint in the spaceof bare
parametershavinguniquephysics.Whatotherlagrangiantermscouldbe relevant?
Many approximationsto strongly coupled QED suggestthat renormalization
generatesa chirally invariant four-fermion interaction[2,14,44].If such a term is
generatedby changingthe cut-off, it mustbe a relevantoperatorwhen addedto
the strongly coupled QED lagrangian. Our indications of a large anomalous
dimensionfor ,~,yalsogive a hint that four-fermioninteractionscould be relevant.

After all this time QED still hassurprisesto offer and merits furtherstudies.

This work was supportedin part by the DeutscheForschungsgemeinschaft.
Most of the numericalcomputationswere performedon the Cray Y-MP at the
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particularly indebtedto E. Laennannfor his collaborationin an earlier stageof
this work and for his help in writing the code for the hybrid Monte Carlo
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Appendix A. Calculating the massesof charged particles

An importantpart of thispaper(andof our previouspaper[2]) is the calcula-
tion of the renormalizedmassof the fermion. In this appendixwe show that,
althoughthe fermionpropagatoris of coursegaugedependent,the renormalized
fermion masstakesthe samevaluein all the covariantgauges(e.g. the Feynman
gauge,Landaugauge,etc.).

In non-compactQED the gaugecan be fixed by addinga gaugefixing termto
the action, exactlyas is done in the continuum.Thegaugefixing term is

SGF= ~ (A.i)

where is thebackwardlattice-derivative.The Landaugaugeis givenby the case
A = 0. The action SG + SF+ SGF is completely local and respects all lattice
symmetries,including time translation,andso hasa transfermatrix. We havealso
checkedthat SGF satisfiesreflectionpositivity.

As is usual [38],we define the chargeof an operatorby its transformation
propertiesundergaugetransformations0: operatorsunaffectedby the transforma-
tion neithercreatenor annihilatecharge,thosethat acquirea factor~i~ø createq
units of charge.This chargedefinition leadsto the current of eq. (6.6), which by
Noether’stheoremis conserved.The correspondingchargeoperatoris given by
summingthe chargedensityj4 over atime-slice

Q(t) = ~j4(x, t)
x

= ~ ( — i)x1~2
4~3~i[k(x, t) eA4~~t)X(x,t + 1)

+~(x,t + 1) ~ t)] . (A.2)

The chargeoperatorQ is gaugeinvariant.This operatorlabelseveryeigenstateof
the transfermatrix with acharge,andit divides the spectruminto superselection
sectors.This chargeoperatorworks on any lattice that admits a global gauge
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transformation,which includes our finite latticeswith periodic boundarycondi-
tions on the gaugefields.

We will now calculate how a propagatorchangeswhen we go from one
covariantgaugeto another.

Ona latticewith V sitesthereare4VA~,fields, so that the field part of the
functionalintegral is a 4V-dimensionalintegral. We can divide theintegrationinto
two parts: there is a (3V+ 1)-dimensionalintegral over physical modesand a
(V — 1)-dimensionalintegralover puregaugemodes.We can seethismode-count-
ing most easily in momentum space. The V — 1 pure gauge modes are the
longitudinalphotons,thosethat arethe (lattice)gradientof somefunction, onefor
eachnon-zeromomentum,and the 3V + 1 physical modesare the four constant
backgroundfields (momentumzero) andthe threetransversephotons(thosethat
satisfythe Landaugaugeconditioneq. (5.1))for eachnon-zeromomentum.When
we makethis two part division, the functional integralfor the partition function
factorizes,becauseSG and SF dependonly on the physical modesAPhYS(that is
what gaugesymmetrymeans),while SGP dependsonly on the pure gaugemodes
Agauge,becauseit is zerofor anyfield that satisfiesthe Landaucondition.Thus we
can write

= f.~2x[AphyS]Det(M + ml) exp( _S
0)f~[Agauge] exp(—SGF). (A.3)

The first integral is very complicated,and has to be done by a Monte Carlo
algorithm, but the secondintegral is gaussianand can be done analytically. This
allows us to find the A-dependenceof propagatorsand other gaugedependent
quantities.In the Landaugaugeexp(— SGF) acts as a 6-function, forcing all the
gauge modes to zero, and so forcing all configurationsto satisfy the Landau
condition exactly. But in the other covariantgaugesevery configurationof the
gauge field can occur. We can label any configuration by giving the Landau
configurationit is equivalentto and the gauge transformation0(x) neededto
makeit satisfythe Landaucondition. The probability that a configurationoccurs
(relative to the equivalentLandau configuration) is simply exp(— SGF) for the
gaugefields generatedby 0. Considera gaugetransformationthat multiplies an
operatorof chargeq by the factore~°~-

1,andexpress0(x) in termsof its Fourier
transform

0(x) =a
0+ ~ [ak coskx+bk sin kx]. (A.4)

k,’O

The gaugefield corresponding to 0 is z~0(x)andhasthe action

2/3V’
SGF(4~8(x))= ~ ~(a~+b~) —(4— ~cos k~) . (A.5)

k#0 p.
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Becausewe can do the integralover puregaugemodes,it is possibleto write
down a relationshipbetweenapropagatorin the Landaugauge(CL) andthat in
anyothercovariantgauge(CA)

J210 exp(iq(0(x2) — 0(x1))) exp(—SGF(4p.0))
CA(x2—xl)= CL(x2—xl)

f~~oexp(—S0~(4p.0))

Aq
2 1—cosk(x

2—x1)
=exp —~ 2 CL(x2—xl)2/3Vk*o (4_ ~cos k~)

2 .-i4; i if
Aq II. UI~ i—cosI~x

2—x1
—~exp —~ 4 2 CL(x2—xl)2/3 1-~(2~)(4- ~cos k~)

EF~(x2—xl)CL(x2—xl). (A.6)

The integral in the above equationbehaveslogarithmically when (x2 — x1)
2 is

large, so that the factor FA behaveslike a power of x
2 — x1 at distanceslarge

comparedwith the lattice spacing.Therefore,the massextractedfrom the expo-
nential fall-off of the propagatorsCL and CA will be identical.We can also see
that the Landaugaugeis the bestof the covariantgauges,in the sensethat in all
the other gaugesthe propagatorwill be smaller, becausethe factor FA is always

lessthanone.
In conclusion,it shouldbepointedout that the resultsof this appendixdepend

heavily on the fact that the theorywe aresimulatingis abelianand non-compact.
Thecomplicationsof gaugefixing in non-abeliantheoriesarewell known,but even
fixing a compactversionof the U(i) Landaugaugeis a delicatematter[45].

AppendixB. An alternativecalculationof thefermionmass

As already pointed out, the fermion propagatoris not gauge independent,
though its mass is. (SeeappendixA.) This hascausedus someunease.So, we
decidedto makean independentdeterminationof mR. We shall now considera
widely separatedfermion—antifermionpair for our secondcalculation.

In order to havea gauge-invariantdescriptionof the fermion—antifermionpair,
one could introducethe appropriateparallel transportersbetweenfermion and
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antifermion.To avoid the fluctuationof a largegaugefield string,we havechosen
to fix the gauge.However, this time we havechosenthe Coulombgauge. The
Coulombgaugecondition

3
~ 41A1(x)= 0 (B.1)
i= I

doesneithereliminategaugetransformationsdependingonly on the time nor the
invariance(5.2). However,by studyingthe correlationfunction of the operator

t9(t) = ~r(x, t),~(x,t)~(x+2d, t), (B.2)

with its (lattice)chargeconjugate

= ~r(x, t)~(x+2d, t)X(x, t), (B.3)

for fixed (t-independent)separation2d (all componentseven),we only have to
deal with expectationvalues of operators,which are invariant under (5.2). The
factor r(x, t) denotesthe sign factorof local “mesonic” operators* (see,e.g.ref.
[46]).

If L1 = L2 = L3 is a multiple of four (as is the case for our lattices), it is
particularly advantageousto choose2d~= L1/2: first, (Coulomb) interaction ef-
fects areminimizedand,secondly,~9(t)transformslike the compositeOperator

~r(x, t),~(x,t)X(x, t) (B.4)
x

under the lattice symmetry group (except for chargeconjugation), so that the
grouptheoreticalanalysisof the local “mesonic” operators[46]applies.

We havecalculated(the connectedpart of) <t9(t)~(0))with 2d1= 6 averaged
over blocks of 20 successiveconfigurationson our 12~lattices for m = 0.04 and
/3 = 0.17, 0.22. Unfortunately, the resultsare rather noisy. Nevertheless,we per-
formed the following two types of fits. First, we employed the standard
parametrization(8.1) of mesoncorrelationfunctions.Secondly,we computedthe
expectation value of t9(t)t~(0)for free fermions in the presenceof a constant
backgroundfield Bp. and usedthe resultingexpressionas a fit function. For even

* Averagingthe correlationfunctionover directionsleadsto the factorss(x, t) given in eq. (8.2).
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times,2t, onefinds

4(L1L2L3)—1 ~ sinh
2(2p~

0(p))(cosh
2(~L

4Mo(p))— sin
2(+L

4B4))—2

x {sin
2(~L

4B4)sinh
2(~L

4p~0(p)) cosh
2(~.e

0(p)(~L4— 2t))

+ cos
2(~

2L4B4)cosh
2(fL

4j.e0(p)) sinh
2(~o(p)(-~L

4— 2t))}

3
x .~~sin

2(p~+B
1)+m~, (B.5)

1=1

whereas for odd times, 2t + 1, one obtains

(L1L2L3)
1 Lcosh2(2~o(p))(cosh2(~L

4,Ao(p))— sin2(~L4B4))
2

x{sin2(~L
4B4)sinh

2(-~L
4p.0(p))sinh

2(p..
0(p)(~L4— 2t — 1))

+cos
2(~L

4B4)cosh
2(~L

4p.0(p))cosh
2(p.

0(p)(~L4— 2t — i))}. (B.6)

Here

/ 3
sinh(je0(p))= 1/m~+ ~ sin

2(p
3 +B~), (B.7)

j=1

andthe coefficient f dependson the sign factor r(x, t) chosenin t9(t). If e~’(t)is
such that the correlation function of the corresponding local operator (B.4) is the
PS—Scorrelation function, one has § = 1. In the case of the PS—Scorrelation
function i’ = —1. For the V—T(V—A) correlation function one gets, after averag-
ing over the three space directions,3’ = 1/3 (3’ = — 1/3).

Taking for the backgroundpotentialthevalueextractedfrom the configurations
under consideration, we endedup in this casewith two free parametersfor each
choice of r(x, t), namely the fermion mass mR and an amplitude.

The rather large errors of the data prevent any definitive conclusion. Neverthe-
less,wecan makethe following statements.Thefirst type of fit leadsto relatively
large masses(>2mR). This is probably causedby the fact that,due to the fixed

fennion—antifermiondistance,stateswith variousrelativemomentacontributeto
the correlationfunction. The secondtypeof fit, usingthe fermionpropagatorin a
backgroundfield, leadsto massvalues,which arecomparablewith thosegiven in
table3. However,it doesnot allow for a precisedeterminationof mR: evenrather
largechangesof the massincreasethe x

2 only slightly, if theamplitudeis modified
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appropriately. Therefore, the method for the calculation of mRdescribedin sect.5
is superior.Nevertheless,we see(at leastqualitatively) that the propagationof a
fermion—antifermionpair created at a distance of 6V~lattice spacings can be
described by the propagation of a free pair of a fermion and antifermion of mass
mR. This finding lends further support to our method of extracting the renormal-
ized fermionmassfrom the fermion propagatorin Landaugauge.

AppendixC. Perturbationtheory in the presenceof backgroundfields

In perturbationtheorywe makean expansionaboutthe large/3 (or /3R) limit of
our theory.Before doing this, we haveto considerthe theory at /3 = co. At infinite
/3 only those A field configurations, for which all plaquettes are zero, can
contributeto the functional integral.The puregaugemodessurvive in this limit,
but they are irrelevant for any gauge invariant quantity. There are, however, four
physical modes that also survive at /3 = cc• Theseare the constantbackground
fields Bp. discussedin sect. 5. Although theyreceiveno actionfrom 5G’ they are
not completelyfree,becausethe fermion determinant,Det(M+ m 1), dependson
Bp.. This is a finite size effect,becauseonly thosefermions,whoseworld-lineswrap
aroundthe torus,can detectBp.. The explicit expressionfor the fermiondetermi-
nant is

f \1/2

Det(M+mIIl)= fl(m2+ Esin2(k~+B~)) . (C.1)
k p.

The product is to run over all momenta (— ~, ~r]consistentwith the boundary
conditions. The determinant takes the form of a product over momentum states,
because the background fields do not break translation invariance. So, the eigen-
vectors of M arestill statesof definite momentum.The effect of Bp. is simply to

change the eigenvalues. Whenwe invert the fermion matrix, we find that the effect
on the fermion propagator of the background field is again to replace k,, by
kp. +Bp..

As an exampleof the results delivered by doing perturbationtheory in a

background, field we give the formula for the chiral condensate at /3 =

— fd4B Det(M+m1)~m(m2+ Esin2(kp.+Bp.)) 1

(xx)= - (C.2)
fd4B Det(M+ml)

An interesting feature of this formula is that it does not depend on whether the
fermion boundary conditions are periodic or anti-periodic. If the boundary condi-
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tion in the ~ direction is changed from periodic to anti-periodic (or vice versa), the
distribution of B given by (C.1) shifts by ir/Lp., so that the condensate(C.2)
remains unchanged. This is a completely general result (holding at all /3-values), a
changein oneof the boundaryconditionsis alwaysexactlycompensatedby adding

to all A fields in that direction [47].Wehave used anti-periodic boundary
conditions in the time direction and periodic in the space directions, but all the
gaugeinvariant quantitieswe presentin this paperwouldbe unchangedif we had
taken another combination of fermion boundary conditions.

Whenwe calculatethe one-looppolarizationcorrectionin sect.6, we alsousea
weightedaverageover backgroundssimilar to (C.2). Both, for the chiral conden-
sateandthepolarizationtensor,wefind that resultson a 12~latticescarcelydiffer
from those on an infinite lattice, and even the difference between perturbation
theory on an infinite and on an 8~lattice is minor. Thus, the influence of the
backgroundfield on thesequantitiesis negligible.

References

[1] M. Göckeler,R. Horsley, E. Laermann,P. Rakow, G. Schierholz,R. Sommerand U.-J. Wiese,
Nucl. Phys.B334 (1990)527

[2] M. Göckeler,R. Horsley, E. Laermann,P. Rakow, G. Schierholz,R. Sommerand U.-J. Wiese,
Phys.Lett. B251 (1990)567 [Erratum: B256 (1991)562]

[3] K. Johnson,M. Baker andR. Willey, Phys.Rev. 136 (1964)111; 163 (1967) 1699;
S. Adler andW.A. Bardeen,Phys.Rev. D4 (1971)3045;
S. Adler, Phys.Rev.D5 (1972)3021

[4] D.A. Kirzhnits andA.D. Linde, Phys.Lett. B73 (1978)323;
P. Olesen,Phys.Lett. B73 (1978) 327;
N.y. Krasnikov, Phys.Lett. B126 (1983)483;
V.B. Berestetskii,Soy. Phys.Usp. 19 (1976)934;
S. Aramaki, Nagoyapreprint DPNU-89-20(1989)

[5] B. Holdom, Phys.Lett. B150 (1985)301; B198 (1987)535;
K. Yamawaki,M. BandoandK. Matumoto, Phys.Rev.Lett. 56 (1986) 1335;
T. Akiba andT. Yanagida,Phys.Lett. B169 (1986)432;
T. Appelquist andL.C.R. Wijewardhana,Phys.Rev.D36 (1987)563

[6] Y. Nambu,in 1988 mt. WorkshoponNew trendsin strongcoupling gaugetheories,ed.M. Bando,
T. Muta and K. Yamawaki(World Scientific, Singapore,1989)p. 3; in Proc. 1989 Workshopon
Dynamical symmetrybreaking,ed.T. Muta and K. Yamawaki(NagoyaUniversity,Nagoya,1990)
p. 1;
V.A. Miransky,M. TanabashiandK. Yamawaki,Phys.Lett. B221 (1989)177; Mod. Phys.Lett. A4
(1989)1043;
W.A. Bardeen,C.T. Hill andM. Lindner,Phys.Rev.D41 (1990) 1647;
W.J.Marciano,Phys.Rev.Lett. 62 (1989)2793;
M. Suzuki, Phys.Rev.D41 (1990) 3457; Mod. Phys.Lett. AS (1990)1205

[7] V.A. Miransky, Nuovo Cim. A90 (1985) 149; Soy. Phys.JETP 61(1985)905;
P.1. Fomin,V.P. Gusynin, V.A. Miranskyand Yu.A. Sitenko,Riv. Nuovo Cim. 6 (1983) 1

[8] J.B.Kogut, E. DagottoandA. Kocic, Phys.Rev. Lett. 60 (1988)772; Nucl. Phys.B317(1989)253;
B317 (1989)271

[9] S.P.Booth, R.D. KenwayandB.J. Pendleton,Phys.Lett. B228(1989) 115
[10] A.M. Horowitz, Phys.Lett. B244(1990) 306



772 M GöckeleretaL / Non-compactlattice QED

[11] K.-I. Kondo, in 1990 Int. Workshopon Strong coupling gaugetheoriesandbeyond,ed. T. Muta
and K. Yamawaki (World Scientific, Singapore,1991)p. 233.

[12] P.E.L. Rakow,in 1990 mt. Workshopon Strongcoupling gaugetheoriesandbeyond,ed. T. Muta
and K. Yamawaki (World Scientific, Singapore,1991)p. 249

[13] S.W. deSouzaandR.D. Kenway, Phys.Lett. B248 (1990)423; NucI. Phys. B354 (1991) 39
[14] P.E.L. Rakow,Nuci. Phys.B356(1991) 27
[15] D. Brydgesand E. Seiler,J. Stat. Phys.42 (1986)405
[16] J.B. Kogut andE. Dagotto,Phys.Rev.Lett. 59 (1987)617
[17] H.C. HegeandA. Nakamura,Nucl. Phys.B (Proc.Suppl.)9 (1989)235
[18] M. Okawa,Phys.Rev.Lett. 62 (1989)1224
[19] 5. Duane,A.D. Kennedy,B.J. PendletonandD. Roweth,Phys.Lett. B195 (1987)216
[20] K. Bitar, A.D. Kennedy,R. Horsley, S. Meyerand P. Rossi,Nucl. Phys.B313 (1989)348
[21] T. JolicoeurandA. Morel, Nucl. Phys.B262 (1985)627
[22]J. GasserandH. Leutwyler, Phys.Lett. B188 (1987)477
[23] E. Brezin, J.C. Le Guillou andJ. Zinn-Justin, in Phasetransitionsandcritical phenomena,Vol. 6,

ed.C. Domb andM.S. Green(AcademicPress,London,1976)p. 125
[24] 0. Schierholz, Nucl. Phys. B (Proc. Suppl.) 20 (1991)623
[25] Y. NambuandG. Jona-Lasinio,Phys.Rev. 122 (1961)345
[26] L.A. Griffiths, C. Michael and P.E.L. Rakow,Phys.Lett. B129 (1983)351;

R. Sommer,NucI. Phys. B306 (1988) 181
[27] S.J. Hands, J.B. Kogut, R. Renken,A. Kocic, D.K. SinclairandK.C. Wang,Phys.Lett.B261 (1991)

294
[281 M. Göckeler, NucI. Phys. B(Proc. Suppl.) 20 (1991) 642

[29] A. Nakamura and R. Sinclair, Phys.Lett. B243 (1990)396
[30] F. Gliozzi, Nucl. Phys.B204 (1982)419;

H. Kluberg-Stern,A. Morel, 0. Napoly andB. Petersson,Nucl. Phys.B220(1983)447
[31] T. Jolicoeur,A. Morel and B. Petersson,Nucl. Phys.B274 (1986)225
[32] Y. Nambu, in Proc. 1989 Workshop on Dynamical symmetry breaking,ed. T. Muta and K.

Yamawaki (NagoyaUniversity,Nagoya,1990)p. 1
[33] R. Horsley etal., Nucl. Phys.B (Proc.Suppl.)20 (1991)639
[34] M. Lüscher, Nucl. Phys. B341 (1990) 341

[35] U. Heller andF. Karsch,Nucl. Phys.B258(1985)29
[36] A. Horowitz, Phys. Rev. D43 (1991) 43
[37] A. Horowitz, Nucl. Phys. B (Proc. Suppl.) 20 (1991) 635
[38] J.D. Bjorken andS.D. Drell, Relativistic quantumfields (McGraw-Hill, New York, 1965)
[39] M. Gell-Mann and M. Levy, NuovoCim. 16 (1960)705
[40] DJ. Amit, Field theory, the renonnalizationgroup, and critical phenomena(World Scientific,

Singapore,1984)
[41] M. Göckeler,R. Horsley,P. Rakow and0. Schierholz,in preparation
[42] G. Schierholz,in 1990 mt. Workshopon Strong coupling gaugetheoriesandbeyond,ed.T. Muta

and K. Yamawaki (World Scientific, Singapore,1991)p. 279
[43] S. ColemanandE. Weinberg,Phys.Rev. D7 (1973)1888
[44] C.N. Leung,S.T. Love andW.A. Bardeen,NucI. Phys.B273 (1986)649
[45] A. Nakamuraand M. Plewnia,Phys.Lett. B255 (1991)274
[46] M.F.L. Golterman,Nucl. Phys.B273 (1986) 663
[47] P. RossiandJ. Sloan, SanDiego preprint UCSD-PTH-89-10(1989)


