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We investigate the ultra-violet behavior of non-compact lattice QED with light staggered
fermions. The main question is whether QED is a non-trivial theory in the continuum limit, and
if not, what is its range of validity as a low-energy theory. Perhaps the limited range of validity
could offer an explanation of why the fine-structure constant is so small. Non-compact QED
undergoes a second-order chiral phase transition at strong coupling, at which the continuum
limit can be taken. We examine the phase diagram and the critical behavior of the theory in
detail. Moreover, we address the question as to whether QED confines in the chirally broken
phase. This is done by investigating the potential between static external charges. We then
compute the renormalized charge and derive the Callan-Symanzik B-function in the critical
region. No ultra-violet stable zero is found. Instead, we find that the evolution of charge is well
described by renormalized perturbation theory, and that the renormalized charge vanishes at the
critical point. The consequence is that QED can only be regarded as a cut-off theory. We
evaluate the maximum value of the cut-off as a function of the renormalized charge. Next, we
compute the masses of fermion-antifermion composite states. The scaling behavior of these
masses is well described by an effective action with mean-field critical exponents plus logarithmic
corrections. This indicates that also the matter sector of the theory is non-interacting. Finally, we
investigate and compare the renormalization group flow of different quantities. Altogether, we
find that QED is a valid theory only for small renormalized charges.

1. Introduction

There is considerable interest in the non-perturbative investigation of QED. In
particular the ultra-violet behavior of QED has become an important issue. Recent
progress in lattice gauge theory, especially in the field of simulating fermions, has
made it possible to attack this problem from first principles. In this work we shall
present an extensive investigation of non-compact, lattice regularized QED in the
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vicinity of its critical point. Preliminary results of this work have been reported in
refs. [1,2].

QED is the best tested of all field theories. It describes the static properties of
electrons and muons to a remarkable precision. But all this success is in the
context of perturbation theory, while it is well known that the perturbations series
is at most asymptotic. Until very recently not much was known about the ultra-violet
behavior, in spite of great calculational efforts [3]. The main obstacle was that the
effective charge grows with increasing energy, so that perturbation theory cannot
be applied.

The prejudice is that QED, together with all other non-asymptotically free
theories, is trivial, in the sense that the renormalized charge vanishes as the cut-off
is sent to infinity [4]. We call this limit the continuum limit. If true, QED can only
be regarded as a cut-off theory. The maximum value of the cut-off is determined
by the magnitude of the renormalized charge. A cut-off theory may be a useful
low-energy theory, if the cut-off can be pushed to reasonably large values without
changing the low-energy physics. Later on we shall call a theory, which has this
property, weakly renormalizable. At the latest at the maximum value of the cut-off
new physics is expected to show up, which makes the cut-off behavior of the theory
an interesting subject to investigate. In pure QED this value is expected to lie far
above the Planck mass, where QED should not be considered in isolation any-
more. So, the problem was regarded to be of academic importance only. In the
standard model with its many charged particles, and even more so in current
composite and supersymmetric models, the cut-off may, however, lie not far from
the Planck mass. In this case a close inspection of the ultra-violet behavior might
give us a clue of what lies beyond the standard model.

Non-perturbative phenomena of non-asymptotically free (gauge) theories play
also a central role in current models of electroweak symmetry breaking. The
possible existence of a critical point with large anomalous dimensions has led to a
revival of technicolor models [5] and inspired the construction of dynamical Higgs
models based on the top quark condensate {6]. QED contains the basic dynamical
structure of such theories. Thus, it provides a useful laboratory for the study of
dynamical symmetry breaking in these theories.

The interest in non-perturbative studies of QED began after Miransky [7]
investigated a truncated Schwinger—Dyson equation for the fermion propagator
and found a continuous chiral phase transition, with chiral symmetry being broken
spontaneously at strong coupling. Though this equation did not include any
vacuum polarization effects, he argued that the critical coupling should be re-
garded as an ultra-violet stable fixed point, at which the theory admits a non-trivial
continuum limit. The existence of a chiral phase transition was confirmed by
numerical studies of non-compact lattice QED in the quenched approximation and
with a small number of dynamical fermions [8]. These early lattice investigations
also claimed to find support for non-trivial critical behavior. The picture changed
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when further studies [1,9,10] found critical exponents, which were consistent with
mean-field theory. Studies of a coupled set of Schwinger—Dyson equations, which
include certain effects of fermion loops [11,12], found also mean-field critical
exponents. Recently, this investigation has been completed by computing the flow
of the renormalized charge in the vicinity of the critical point *, both on the lattice
[2] and from Schwinger—Dyson equations [12,14]. It turned out that the renormal-
ized charge vanishes in the continuum limit, suggesting that the theory is indeed
trivial. Evidence for the non-renormalizability of QED was also seen.

The outline of the paper is as follows. Sect. 2 deals with the technical aspects of
the calculation. In sect. 3 we discuss the phase diagram and determine the critical
coupling. We find a first-order critical line at strong coupling ending in a tricritical
point. On this line chiral symmetry is broken spontaneously. We furthermore show
that the critical behavior is consistent with mean-field theory. For our further
analysis it is important to know, whether the vacuum of the chirally broken phase
is confining or Coulomb-like. We therefore study the potential between static
external test charges in sect. 4. The answer is that there is no sign of confinement.
In sect. 5 we compute the renormalized fermion mass from the fermion propaga-
tor. For this one needs to fix the gauge. We have chosen the Landau gauge. In
appendix A it is shown that the mass does not depend on the choice of covariant
gauge, and in appendix B an alternative method of calculating the fermion mass is
presented. A serious problem is the occurrence of slowly moving background
fields, which have to be treated with special care. The effect of background fields
in perturbative calculations on a finite lattice is discussed in appendix C. Finally,
we compare the renormalized fermion mass with the chiral condensate, in order to
shed some light on the mechanism of chiral symmetry breaking. The renormalized
charge is computed in sect. 6. This proceeds via the photon propagator in
momentum space. Here, the problem is to extrapolate the propagator to zero
momentum. We use various methods, which give consistent results. We use these
results to compute the potential between static charges to one-loop order and find
quantitative agreement with the data presented in sect. 4. In sect. 7 we compute
the Callan—-Symanzik B-function and determine the lines of constant renormalized
charge. These lines end on the first-order critical line, except for the zero-charge
line, which runs into the critical point. We evaluate the maximum value of the
cut-off as a function of the renormalized charge. The masses of fermion-antiferm-
ion composite states are computed in sect. 8. Furthermore, their critical behavior is
interpreted in terms of an effective action. In sect. 9 we investigate to what extent
QED can be regarded as a useful low-energy theory. This requires the existence of
lines of constant physics, which can be found by comparing the flow of different
dimensionless quantities. In addition to the lines of constant renormalized-charge,

* Qutside the critical region the renormalization group flow may be computed by means of large mass
and perturbative expansions [13].
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we compute lines of constant mass ratios, involving the renormalized fermion mass
and various masses of fermion—-antifermion composite states. Does decoupling of
the photon imply triviality of the matter sector also? In sect. 10 we re-examine the
critical exponents and relate them to the anomalous dimension of the mass
operator. Finally, sect. 11 lists our conclusions.

The reader, who is mainly interested in the results rather than in the details of
the calculation, is advised to read the end of sect. 5, sects. 7, 8 and 9 and the
conclusions in sect. 11.

2. Lattice calculation

The non-compact formulation of lattice QED shares all the essential features of
the continuum theory [15]. It has the property that the photon field interacts only
with fermions, whereas the compact theory has monopoles and gives rise to
photon—photon interactions. The compact formulation, furthermore, might belong
to a different universality class. According to refs. [16,17] it leads to a first-order
chiral phase transition at strong coupling and therefore admits no continuum limit
associated with this transition *.

The non-compact gauge field action is given by

SG=%B Z Fuzv(x)’ (21)
X0 <v
with
F, (x)=4,4,(x)—-4,4,(x), (2.2)

where 4, is the forward lattice derivative, g =1 /€2, and e is the bare charge. In
eqgs. (2.1) and (2.2) and in the following the lattice constant has been set equal to
one for convenience, so that all dimensionful quantities are to be understood in
units of the (inverse) lattice spacing. The gauge fields take values on the real line.
As long as one only considers gauge invariant quantities, the functional integral
can always be made well-behaved, in spite of the unbounded range of integration.
Since chiral symmetry plays a major role in this work, a natural choice for the
fermionic variables are staggered fermions. The corresponding action is given by

Sp= L x(x)[M,, +md,,[x(¥), (2.3)
Xy

M, =1Y (- It +xu—1[eiA,L(x)8y ep— TS x_ﬁ] , (2.4)
m

* For the mixed gauge field action with large negative adjoint coupling see, however, ref. [18].
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where m is the bare mass. In the naive continuum limit this action describes four
Dirac fermions (flavors) minimally coupled to a U(1) gauge field. For finite lattice
spacing it has a chiral U(1) X U(1) symmetry at m = 0, while the SU(4) X SU(4)
symmetry is only approximate. This symmetry is restored in the naive continuum
limit. The question of flavor symmetry restoration will be addressed at various
stages of the discussion.

Wilson fermions, on the other hand, have no continuous chiral symmetry. In
QCD the effect of the Wilson term vanishes in the continuum limit due to
asymptotic freedom. In QED this is not so clear, and it is possible that the Wilson
action falls into a different universality class from the continuum action.

The calculations in this paper are based on the action § = S + Sg, where we
have used periodic boundary conditions for the gauge fields and periodic (antiperi-
odic) spatial (temporal) boundary conditions for the fermions. The extent of the
lattice in the u direction will be denoted by L,, so that the four-dimensional
volume is given by V=L L,L;L,.

We have performed calculations on 8%, 83-16 and 12* lattices at B-values
ranging between 0.16 and 0.22 and at masses between 0.01 and 0.16. The actual
values can be read off from the forthcoming tables. We have used the hybrid
Monte Carlo algorithm [19] for updating the gauge field configurations. Some
details of the performance of the algorithm for QED can be found in ref. [1]. On
the 12* lattices we have accumulated O(250) gauge field configurations, each
separated by 5-10 trajectories, for each value of 8 and m. For m = 0.01, however,
we were only able to accumulate O(100) configurations. On the 8* and 8316
lattices our data sample consists of O(100) configurations, each separated by 25
trajectories. The trajectory length + was chosen to be 0.7-1.0 and &7, the
molecular dynamics step-size, was set so that an acceptance of 70-80% was
obtained. On the 12* lattices the most time-consuming runs were those with
m = 0.01, when 87 =0.007, n,=7/87 =100 was chosen. For m = 0.02, 0.04 we
needed 87 = 0.0125, n, = 60 and 87 = 0.02, n = 40, respectively. These are values
for B > B.. For B <B., 67 had to be slightly reduced to maintain the acceptance.
The stopping criterion for the conjugate-gradient inverter was taken as r2 < 1071,

3. Chiral condensate and phase diagram

The first step in our calculation is the determination of the phase diagram. This
includes the determination of the critical coupling and, as far as this is possible, of
the critical exponents.

The quantity of main interest here is the chiral condensate {yx). To compute
{Xx>, we have used a stochastic estimator, as, e.g. employed in ref. [20], which
makes use of one inversion of the fermion matrix for a source vector of random
numbers of mean zero. The results of the calculation are given in table 1. For
completeness we list the average gauge field action per plaquette in table 2.



718 M. Gickeler et al. / Non-compact lattice QED

TaBLE 1
The chiral condensate {x) on the 84, 83-16 and 12* lattices at various values of 8 and m. The errors
shown are purely statistical

B m {xxo
84 8316 124
0.16 0.16 0.4782 (5)
0.09 0.4470 (7) 0.4474(5)
0.04 0.4062(12) 0.4059(7)
0.02 0.3804(16)
0.17 0.16 0.4577 (3)
0.09 0.4194 (3)
0.04 0.3698 (7
0.02 0.3329 (9)
0.18 0.16 0.4380 (5) 0.4375 (3)
0.09 0.3907 (7) 0.3918(5) 0.3910 (3)
0.04 0.3281(11) 0.3264(6) 0.3277 (6)
0.02 0.2790(18) 0.2855 (8)
0.19 0.16 0.4172 (5) 0.4177 (2)
0.09 0.3619 (6) 0.3635 (3)
0.04 0.2850(13) 0.2892 (6)
0.02 0.2255(15) 0.2340 (7)
0.01 0.1835(13)
0.20 0.16 0.3975 (5) 0.3982 (2)
0.09 0.3361 (5) 0.3377(4) 03377 (3)
0.04 0.2483(18) 0.2477(5) 0.2514 (5)
0.02 0.1694(10) 0.1891 (6)
0.01 0.1322(10)
0.21 0.16 0.3798 (4) 0.3798 (2)
0.09 0.3124 (5) 0.3123 (2)
0.04 0.2197 (4)
0.02 0.1550 (6)
0.01 0.0917 (6)
0.22 0.16 0.3618 (5) 0.3624 (2)
0.09 0.2887 (5) 0.2881(4) 0.2898 (2)
0.04 0.1808(10) 0.1845(4) 0.1917 (4)
0.02 0.1012(34) 0.1213 (4)

For B <., where B, is the critical coupling below which chiral symmetry is
spontaneously broken (which will turn out to be B, =0.186), we find that the
finite-size effects displayed by the data are consistent with the formula

L(s)

Cex Y (m, V) = CGex (0, oo)m)—

3
= (xex 2(0, ®) — Py o(V=2), (3.1)
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TaBLE 2
The average gauge field action per plaquette (S /(6V8) on the 84, 8%-16 and 12 lattices at various
values of 8 and m. The errors shown are purely statistical

B m (852 /(6VB)
84 8316 124
0.16 0.16 1.4280 (8)
0.09 1.4018 (8) 1.4005(6)
0.04 1.3739(11) 1.3736(6)
0.02 1.3617(22)
0.17 0.16 1.3376(4)
0.09 1.3093(5)
0.04 1.2832(6)
0.02 1.2669(6)
0.18 0.16 1.2583 (5) 1.2577(4)
0.09 1.2287 (8) 1.2297(6) 1.2303(4)
0.04 1.2031 (9) 1.2013(6) 1.2022(6)
0.02 1.1873(20) 1.1881(6)
0.19 0.16 1.1872 (6) 1.1876(4)
0.09 1.1589 (6) 1.1610(3)
0.04 1.1331(13) 1.1343(5)
0.02 1.1166(11) 1.1194(5)
0.01 1.1106(9)
0.20 0.16 1.1244 (5) 1.1256(3)
0.09 1.1000 (M 1.0990(4) 1.0997(3)
0.04 1.0731 (7 1.0735(5) 1.0739(3)
0.02 1.0592 (6) 1.0617(4)
0.01 1.0548(6)
0.21 0.16 1.0205 (5) 1.0695(3)
0.09 1.0466 (5) 1.0455(3)
0.04 1.0234(4)
0.02 1.0133(4)
0.01 1.0068(4)
0.22 0.16 1.0205 (5) 1.0206(3)
0.09 0.9972 (4) 0.9970(4) 0.9978(2)
0.04 0.9771 (8) 0.9775(4) 0.9779(3)
0.02 0.9679 (6) 0.9692(3)

where s =mV{xx (0, ©) and I (s) is the modified Bessel function. This equation
was derived by Jolicoeur and Morel [21] in the strong-coupling limit, where the
symmetry of the action is U(1) X U(1). In case the chiral SU(4) X SU(4) symmetry
is restored, the formula of Gasser and Leutwyler [22] applies, which gives a factor
of 15 /32 instead of 3 /8 in eq. (3.1). We conclude from eq. (3.1) and comparison
between the 8%, 8%- 16 and 124 lattices that finite-size effects are small, and that
the extrapolation of {yx) to the infinite volume lies within the error bars of the
results on the 12 lattice. For B > B, no such extrapolation formula is known.
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In ref. {1] we have given a heuristic derivation of the effective action. The mean
field approximation to this (truncated) action gave the equation of state

m=2ko + 4{c?, (3.2)

where o= (xx), and k, { are analytic functions of 8 _in the vicinity of the critical
point. Recall that in the chiral limit, m = 0, 0 =y —k/2{ if k is negative and
o = 0 otherwise. The critical point is the value of B at which k changes sign. We
found that our previous data could well be fitted by eq. (3.2). This we regarded as
an indication that the theory is non-interacting in the continuum limit. Closer to
the critical point eq. (3.2) can, however, not be expected to hold anymore if our
interpretation is correct: it will receive logarithmic corrections, due to renormaliza-
tion, causing the (renormalized) coupling constant { to vanish at the critical point.
These corrections can be computed in the O(n)-symmetric linear o-model [23]
underlying the effective action. As a result, we are led to the following modifica-
tion of the equation of state (3.2) for small o:

o 0'3

= +6
"mPlo 1| " Timlol|

m , (3.3)

where 7, 8 are analytic in 8. For n =2, which corresponds to the U(1) X U(1)
symmetry of the original action, one obtains p = 0.4. We shall keep p as a free
parameter, because we do not know yet what the symmetry is at the critical point,
and also for a consistency check of the approach we have taken. Eq. (3.3) means
that the coupling constant vanishes like 1/Injo"!|.

We have fitted eq. (3.3) to the data on our largest lattices in table 1. The
parameters 7, 8 have been parametrized as follows:

B
%:Tl(l—z), (3.4)
1 B
5=00+011_'ﬁc). (3'5)

The reason for this choice is to guarantee that o is regular on the axis m = 0.

The result of the fit is shown in fig. 1. We obtain 8_=0.186(1) and p = 0.61(1).
(For the other parameter values see the caption to fig. 1.) The latter value is
roughly what one expects from the renormalization group of the O(n) model,
indicating perhaps that the symmetry is higher than n = 2. In order to make the
critical behavior visible directly, we have shown a slightly modified version of the
scaling plot, introduced in ref. [1], in fig. 2. The fact, that the data points fall on a
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0.1y 0.16 0.18 0.20 0.22 0.24

Fig. 1. {¥x) as a function of 8. We compare the data with a fit from eq. (3.3). The symbols refer to the

different masses: m = 0.01 (¢), 0.02 (¥), 0.04 (0), 0.09 (O) and 0.16 (). All errors are smaller than

the symbols. The lattice sizes are 8316 (m = 0.04, 0.09) and 8* (m = 0.02, 0:16) for B = 0.16 and 12* for

B =0.17-0.22. The dashed curve is the extrapolation to m = 0. The fit did not include the data values at

m=0.16. The parameters of the fit are B, =0.186(1), p=0.61, 7, =—0.84(1), 6,=0.5%1) and
0, =—0.3002).

universal curve near the critical point, indicates that eq. (3.3) is a good description
of the data. Consequently,

o D2 |g7! | o (B, —B)'? for B<B.,
(3.6)
o=0 for B <P,

on the critical line m = 0 and
ocln 3o aml?, 3.7

at B = .. We conclude, altogether, that the data are in good agreement with
mean-field theory plus logarithmic corrections. The significance of logarithmic
corrections was also noticed in recent analytic work based on truncated
Schwinger-Dyson equations [12].

The shift of B, relative to our old value [1] is due to the new data points at
m = 0.01. We have tried to fit our new data by the mean-field equation of state
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Fig. 2. Scaling piot of (8, — B)/02 In?~!|o~!| against m In|a~!| /0> for B, =0.186 and p = 0.61 on
the 12* lattice. If the critical indices have mean-field values with logarithmic corrections as described by
the equation of state (3.3), all data near the phase transition should lie on a universal curve.

(3.2) without logarithmic corrections. This gave a worse fit. However, it should be
said that it is possible to fit the data also by an equation of state as given in ref.
[24], in which the critical exponents are left as free parameters. Such a fit gave
exponents, which differ slightly from the mean-field values. That means, it is hard
to distinguish between logarithmic and small power corrections. Conclusions
drawn from fits to the equation of state alone are thus to be treated with caution.
All fits led to compatible values of B, though. In sect. 10 we shall further discuss
the critical exponents.
From the symmetry of the action (2.3) under m — —m we infer that

lim {(xx> = — lim {xx) (3.8)
m~NO m20

for B < B.. Thus, the line m =0, B < B, is a line of first order phase transitions. In
sect. 5 we shall see that the renormalized fermion mass my vanishes when {yx)
vanishes. That is the case on the line m =0, B > B.. As the vanishing mass
corresponds to the diverging correlation length £=1/mg, this line is a line of
second-order phase transitions. Hence, the critical point is a tricritical point
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-00

0 B
B

Fig. 3. The phase diagram. The dashed line represents the second-order critical line, whereas the solid
line represents the first-order critical line. The solid circle marks the tricritical point.

separating the first- and second-order critical lines. The corresponding phase
diagram is shown in fig. 3.

The success of the equation of state (3.3) suggests that chiral symmetry breaking
is induced by four- and eight-fermion interactions, which are generated dynami-
cally in the strong-coupling region. This mechanism of symmetry breaking is
similar to that of the Nambu-Jona-Lasinio model [25]. In order that these
interactions be relevant in the critical region, the theory must develop large
anomalous dimensions.

4. Static potential and phase structure

Before we proceed further, we have to investigate the nature of the different
phases. One could think that QED is confining in the chirally broken phase,
because the compact U(1) theory is confining at strong coupling. That could
question the notion of the renormalized fermion mass as used in ref. [2] and in this
work, at least near the first-order critical line.

In order to study the different phases, we consider the potential of static test
charges. Because of the non-compact nature of the action, we can probe charges of
arbitrary (not just integer) strength. The potential derives from the correlation
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function of Polyakov loops of opposite charges

C,(x) =(P,(x)P}(0)), (4.1)
with

P, (x) =exp(iq ZA4(x)), (4.2)

X4

where q is the external charge (in units of the bare charge e). The Polyakov loop
operator (4.2) projects onto states with charge g at position x. We denote the
corresponding eigenvalues of the transfer matrix by A‘;’(x). Then we can write

C(x) =Z L (X)), (4.3)

z=T ()", (4.4)

where the sum may encounter degenerate cigenvalues. The eigenvalues define
potentials

ViP(x) = =In(AP(x)) +1n Z. (4.5)
We are primarily interested in the ground-state potential V¥(x). Usually, the
excited potentials are eliminated by taking L, large *. Here, however, we can vary
q to investigate the influence of excited potentials.

If the potential is dominated by single dressed photon exchange, the ground-state
potential is expected to be proportional to g2, i.e.

VO(x) =q*V(x). (4.6)

The effective potential can then be written

m(1+ ¥ (A2(x)/A9)“]. (4.7

n>0

Vili(x) = - In C,(x)=V(x)+

L,q* L,q?
The proportionality (4.6) can be tested, and the contribution of excited potentials
be identified and separated, by varying g2. If the effective potential (4.7) is
independent of g? in a sufficiently large range of g2, the contribution of the
excited potentials is negligible. In practice the range of g2 is limited, because the
correlation function falls exponentially with g2 and disappears in the noise for too
large values of g2. A further advantage of variable test charge is that one can tune
g2, such that the statistical errors in C(x) are minimized.

* For a discussion of this issue in the context of QCD see e.g. ref. [26).
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Fig. 4. The effective potential V() as a function of ¢> on the 12* lattice at 8 =0.17, m = 0.02. The

bare parameters were chosen as close as possible to the first order critical line, i.e. the phase where

chiral symmetry is broken. The symbols refer to different distances: x=(1,0,0) (o), (1,1,0) (D),
(1,1,1)(a) and (6, 6, 6) ().

We have investigated the potential on the 8* and 12* lattices. Here we shall
report only on the results obtained on the 12 lattices. (The 8* lattices gave
qualitatively the same results.) The calculation was done for test charges g = 0.1,
0.2, 0.3, 0.5 and 1.0 and positions x=(,0,0), (/,£,0), and (I, !, ]) with /=
1,2,...,6. On the 12* lattice we did not find any useful signal for g = 1.

Let us first look at the g? dependence of the effective potential. In fig. 4 we
show Vf(x) as a function of g* for x=(1, 0, 0), (1, 1, 0), (1, 1, 1) and (6, 6, 6).
The bare parameters are 8 = 0.17 (< 8.) and m = 0.02, which are close to the first
order critical line. We find that V(x) is independent of ¢ at all distances. The
same was found to be the case for all other values of B8 and m for g > 0.2. On the
8* lattices also the g=1 signal is clearly visible at short distances (x=
1,0,0), (1,1, 0)) and consistent with the results at smaller values of g. This
indicates that excited potentials are suppressed for our choice of q.

We shall now investigate the potential quantitatively. Since the statistical errors
were found to be minimal for g = 0.3, we have taken this value in the subsequent
analysis. In fig. 5 we show the potential for two sets of bare parameters on either
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Fig. 5. The potential ¥ (x) as a function of |x| on the 12* lattice for g = 0.3. The bare parameters
are (a) B=0.17, m=0.02 and (b) 8 = 0.22, m = 0.02. Usually, we shall show our results for these two
parameter sets, representing the behavior of the theory in the two different phases. We compare the
data with the Coulomb potential. The open symbols are our data. The different kind of symbols refer to
x=(,0,0(0), (1,1,0) (O) and (,,I,]) (A) with I=1,2,...,6. The solid symbols are a fit with the
lattice Coulomb potential (4.8), (4.9). The fit did not include the data points at | x| = 1. The different
kinds of symbols refer to the same x as the data. The parameters of the fit are (a) eZ; = 4.3517), E, =
0.104(33) and (b) €2 = 2.88(7), E, = 0.147(14).
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side of the critical point: 8 =0.17, m =0.02 and B =0.22 (> B.), m =0.02. We
shall try to fit the potential by the lowest-order lattice perturbative formula

PO S (48)
x)=-——= — +E, .
LiLyLy oy, kv0 K°
2
€l 1
E=—— )Y  =+E, (4.9)
LiLoLs j 0y, kvo K*
where
r2_ ¢ ¢ r o Ak
R2=k gk, k,=—etu-1. (4.10)

The first term on the right-hand side of eq. (4.8) corresponds to the one-photon
exchange diagram, whereas E represents the self-energy of the static charges. The
effective charge e, which we treat as a free parameter, is to be interpreted as the
renormalized charge ey, which we will properly define in sect. 6. The constant E,
in E accounts for higher-order contributions to the self-energy. The fit of eq. (4.8)
to the data, with fit parameters e, and E,, is shown by the solid symbols in fig. 5.
We find that the data are well described by the Coulomb potential (4.8). At short
distances the data show some violation of rotational invariance. This effect is also
reproduced by the lattice photon-propagator. The effective charges obtained from
the fit are significantly lower than the bare charges. (See the figure caption for the
actual values.) This indicates that the bare charges are screened. The parameter
E, in the formula for the self-energy contribution, eq. (4.9), turned out to be
positive. A positive E, means that the potential is steeper than eq. (4.8) at very
short distances. This, as well as the systematic deviation from the |x| =1 data
points, may be interpreted as a first sign of running of the effective coupling
constant: the effective charge has to increase at short distances to account for the
data. We will present a more accurate determination of the renormalized charge in
sect. 6. There we will also show that the potential can be described quantitatively,
including the self-energy contribution (i.e. without having to introduce the ad hoc
constant E;), by one-loop renormalized perturbation theory.

For integer test charges even a confining potential will flatten off at large
distances and eventually look similar to our Coulomb potential in fig. 5, because
the external charges can combine with the dynamical charges to form neutral
states. In our case of fractional test charges the situation is, however, different.
Here, the external charges can only be screened partly, so that in the case of
confinement we would still find a rising potential at large distances. This is clearly
not what we see. We conclude that non-compact QED does not confine even in
the chirally broken phase, contradicting the scenario of ref. [27].
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5. Fermion propagator and renormalized fermion mass

In this section, we discuss some properties of the fermion propagator and
describe our procedure [28] for extracting the renormalized fermion mass my.

Since my is the mass of a charged particle, its computation is not as straightfor-
ward as, e.g. the determination of meson masses in QCD. This is related to the
fact that the fermion propagator is not gauge invariant: a bare electron without its
Coulomb field (i.e. its surrounding photon cloud) is not a gauge invariant concept.
To maintain manifest gauge invariance, one has to study states containing not only
the electron but also its Coulomb field.

Thus, we shall calculate the fermion propagator in a fixed gauge, as is done in
perturbation theory [29]. The renormalized mass is gauge invariant, as is shown in
appendix A. We choose the Landau gauge, defined by the condition

L4,4,(x)=0, (5-1)

which can be implemented exactly. Here Z,L denotes the backward lattice-deriva-
tive.

However, the condition (5.1) does not fix all gauge-like degrees of freedom of
the action. The action S is also invariant under the transformation

AM(x) —=A4,(x)+4,a(x),
x(x) = ey (x),

X(x) = e“Wx(x), (5.2)

with

27
a(x)=Y T Fur M integer. (5.3)
“

o

Since a(x) is not a periodic function, this is not a gauge transformation for the 4,
field. It is, however, a gauge transformation for the fermions, because they couple
only to the compact link variables: e’*® is periodic. Thus, averaging over these
transformations would give zero for the fermion propagator.

Obviously, this invariance is not eliminated by the Landau gauge condition.
Therefore, we add multiples of 27 /L, to A#(x), such that the lattice average

A, = %/ZX:A“(x) | (5.4)
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fulfills the condition

w

ko —
—— <A, <— 55
L, L, (55)
for all w. After performing this procedure, we calculate the propagator
G, (1) =Y {x(2x +w)x(0)). (5.6)
X

Here, x is considered as labeling a hypercube, w denotes a four-vector with
components 0 or 1 and ¢ = 2x, + w,. That is, we compute the propagator connect-
ing a lattice point, whose coordinates are all even, with all points in the hypercube
based at 2x. The sum over x then projects onto zero momentum. In the actual
computation we have calculated G, for a source distributed over all points with
even space-coordinates in a given time-slice. Subsequently, the average over all
times was taken.

The discrete symmetries of staggered fermions restrict G (¢) severely. One finds
that G (#) has to vanish for o # 0, and that Gy(¢) should be real. To see the
physical implications of this result, we construct flavored Dirac spinors
$92x), P{P(2x) out of the x and ¥ fields according to [30]

YORxy=5 L xQCx+o)(v¥... ) 0> (5.7)
w“=0,l

- _ *

POR2x)=5 X xQx+o)(vP.. ) ga (58)
w”=0,1

where « is a Dirac index and g is a flavor index. Their propagator (for zero
momentum) is then given by

16 % (u(2x)95P(0))

=Go(2x4)8,58,, + 3(Go(2x,+1) + Go(2x4 = 1))(74) apBas

+3(Go(2x4 + 1) ~ Go(2x, - D)(¥s5) ap{¥17273) ap- (59

The first two terms are proportional to the unit matrix in the space of flavor
indices a, b and, hence, are flavor symmetric, whereas the last term breaks flavor
symmetry. The existence of flavor breaking contributions on the lattice was, of
course, to be expected. However, if the continuum limit of the above propagator
exists at all, it will be flavor symmetric, because the non-symmetric term contains
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number. Consecutive configurations are separated by 5 trajectories. We see jumps from A, =+ 7 /12
to A4 = —m /12 and back.

the difference of G,(t) evaluated at two points separated by two lattice constants
without a compensating lattice constant in the denominator, which would lead to a
derivative [31].

The numerical data, however, do not exhibit this form of the propagator: we
observe non-vanishing values of G (¢) for w = 1,2, 3 and an imaginary part in
Go(t). So, some of the discrete symmetries, which staggered fermions ought to
obey, must be violated by our configurations. This turned out to be caused by the
fact that 4 . does not average to zero in our ensembles. In fig. 6 we show A, sona
124 lattice as a function of computer time for a typical case. Note the jumps of A, 4
due to the constraint (5.5) (/12 = 0.26). The spatial components of A behave in a
similar way, in spite of the different fermionic boundary conditions.

So, it is not surprising that the observed propagators do not follow the
conclusions drawn from the complete group of discrete symmetries: charge conju-
gation, lattice rotations and reflections are broken by the non-vanishing back-
ground potential 4 .- But translational invariance alone suffices to establish flavor
symmetry restoration in the continuum limit along the lines indicated above.

The non-vanishing ensemble averages of A4, .. could be considered as indicating
insufficient statistics. To obtain (A “) =0, it would, however, probably be neces-
sary to increase the number of configurations at least by a factor of 10-100. Since
this is far beyond our possibilities, we have to learn to live with (A, »» # 0. To take
the non-vanishing { A4 . into account, we fitted the computed propagators with the
propagator in a constant background potential B,, restricted to the interval
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—m/L, <B, <m/L,. The only non-zero contributions are

m ) _
Go(2x,) = L—R Zez”’”‘*(sinz(m +B,) + n”zz) 1,
4 p,

1 ‘
Go(2x,+1) = — {e'B:Gy(2x4 +2) — e B:Gy(2x,)},  (5.10)

R

_sin B;
Gf(2X4) = -—1 m

Go(2x,), 7=1,2,3,

R

where
pa=Qmw/L)n, n=+% +3,...,+4(L,-1), (5.11)

due to the anti-periodic temporal boundary conditions for the fermions, and

3
m*=m% + Y sin’ B.. (5.12)

This pattern of non-vanishing contributions is precisely reproduced by the results
of the Monte Carlo simulations.
Doing the momentum sum one obtains

Go(2x,) = [cosh?(32L,) —sin?(3B,L,)] -

2my
sinh(24)
x{[cos(3B,L,) cosh(3iL,) cos(By(3L, — 2x,)) sinh( (3L, — 2x,))
+sin(3B,L,) sinh(34L,) sin(By(3L, - 2x,)) cosh(E(3L, — 2x,))]
+i[cos(3B4L,) cosh(3iL,) sin(By(3L, — 2x,)) sinh( (3L, — 2x,))
—sin(3B,L,) sinh(34L,) cos(B,(3L, — 2x,)) cosh(i(3L, - 2x,))]},
(5.13)

where sinh 4 =m and 0 <2x, <L,. Note that Im G(¢) changes sign if B, jumps
from —7/L, to +7/L,. .

Fitting the computed values of G(¢) with the above expression, we have four
free parameters: L}_, sin’ B;, B,, mg and an overall amplitude. We did not
attempt to fit also G; (j =1, 2, 3), although the numerical results appear to be
consistent with the relation (5.10). Note that my is given by the ratio of even to
odd time propagators.
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TABLE 3
The renormalized fermion mass mpy on the 84, 83-16 and 12* lattices at various values of 8 and m as
obtained from a fit with ¢, = 1. The errors shown are purely statistical

B m mg
8+ 8316 124
0.16 0.16 1.26 (6)
0.09 1.10 (6 1.02(4)
0.04 0.87(11) 0.81(3)
0.02 0.80 (4)
0.17 0.16 1.160(8)
0.09 0.945(5)
0.04 0.748(6)
0.02 0.636(7)
0.18 0.16 1.08 (49 1.047(5)
0.09 0.80 (2) 0.85(2) 0.825(4)
0.04 0.63Q1) 0.635(3)
0.02 0.46 (5) 0.512(7)
0.19 0.16 0.96 (2) 0.960(5)
0.09 0.75 1) 0.739(4)
0.04 0.51 (2 0.537(4)
0.02 0.404(3)
0.01 0.302(4)
0.20 0.16 0.87 (1) 0.883(4)
0.09 0.66 (1) 0.68(2) 0.663(3)
0.04 0.44 (1) 0.43Q1) 0.448(3)
0.02 0.29 (1) 0.313(3)
0.01 0.214(4)
0.21 0.16 0.79 (1 0.814(2)
0.09 0.61 (1) 0.594(2)
0.04 0.386(2)
0.02 0.257(2)
0.01 0.145(3)
022 0.16 0.80 (3) 0.754(2)
0.09 0.54 (1) 0.56(1) 0.541(2)
0.04 0.31 (D 0.32Q1) 0.323(2)
0.02 0.18 (1) 0.194(3)

Since the lattice average A_u does vary (though slowly) from configuration to
configuration, we divided our ensembles into sets of 10-20 consecutive configura-
tions. Sets which included jumps of A, 4 by 2w /L, did not, in general, allow for
stable fits and so have been discarded. The masses are obtained by averaging the
masses found from each set. Fits to G,(¢) starting from the initial points ¢, =1, 2, 3
gave consistent results, and for our final estimates, which are given in table 3, we
took the results obtained using t, = 1. Moreover, the fitted values of B, and of
Y3, sin® B; are found to agree very well with the (directly) computed values of
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Fig. 7. The real (a) and imaginary (b) part of the fermion propagator G,(t) as a function of ¢ on the 124

lattice at B = 0.17, m = 0.02 for one set of 20 configurations. The stars are our data. The lines are a fit

to the data for rjy = 1. Because of the properties of staggered fermions the even and odd points lie on
different curves. The solid (dashed) lines refer to even (odd) ¢.

A «- The overall amplitude turned out to be about one, which indicates that the
fermion wave function renormalization constant is Z, = 1. Note that in Landau
gauge Z, =1+ O(eg). If the theory were confining for 8 < 8., we would expect
Z, =0 in this region. Typical fits of Re Gy(¢) and of Im G(z) on the 12* lattice
for B=0.17, m =0.02 and B =0.22, m = 0.02 are shown in figs. 7 and 8, respec-
tively. The solid lines belong to even ¢, whereas the dashed lines are the fit for odd
values of z.

For an alternative calculation of the fermion mass see appendix B. No signifi-
cant differences were found.
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Fig. 8. The same as fig. 7 but for 8 = 0.22, m = 0.02.

Having found the renormalized mass, we may now confront it with the chiral
condensate. In fig. 9 we have plotted {(xx) as a function of my,. We make the
observation that the data lie on a universal curve. This indicates that {(xx»,
although being an unrenormalized quantity, is a function of my alone. The dashed
curve in fig. 9 shows the contribution of a free fermion of mass my on an infinite
lattice, i.e.

+7 d“p mp

o= (5.14)

o (21T)4 Zsinzpu+m§‘
I

It is legitimate to compare the data with this formula, because the data are
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Mg

Fig. 9. The chiral condensate against the renormalized fermion mass. The symbols refer to the different

values of B: B =0.16(+),0.17 (a), 0.18 (m), 0.19 (O), 0.20 ( 4), 0.21 (¢), 0.22 (0). The lattice sizes are

83-16 (m = 0.04, 0.09) and 8* (m = 0.02, 0.16) for 8 = 0.16 and 12* for 8 = 0.17-0.22. The solid symbols

are for B values below B, while the open symbols are for B values above .. The dashed line is the
one-loop lattice result, as given by eq. (5.14), which is included for comparison.

practically indistinguishable from the infinite-volume extrapolation, as we noted
earlier on. Since in this limit the background fields disappear, we can ignore them
here. For a more detailed discussion see appendix C. For small my eq. (5.14) gives

{Xx> =0.619Tmg + O(m3 In mg). (5.15)

We find good agreement between the data and this curve for my < 0.5. Including a
fermion wave function renormalization constant in eq. (5.14) would rescale this
ratio of proportionality by a factor of Z,. The success of (5.15) tells us that Z, = 1
for small mp, as we also found in our fit to the fermion propagator.

The fact, that {xx) and my are related in the same way on both sides of 8,
suggests that the main effect of the chiral transition is simply to give the fermion a
mass, which acts in the same way as the mass introduced by m in the symmetric
phase. The Miransky model [7] predicts { ¥x ) o m% near the phase transition. We
see no sign of such behavior but find {yx) amy at all values of B. Naively, i.e.
assuming for the moment that xy does not mix under renormalization, we would
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Fig. 10. A sketch of 3( p) for soft and hard chiral symmetry breaking.

conclude from this that yx has dimension one, as is also suggested by the
mean-field equation of state (3.3). We shall return to this question in sect. 10.

The proportionality of {yx) and my for sufficiently small values of my leads,
through eq. (3.3), to the scaling laws

mRa(BC_B)l/Z for ﬁgﬁc’ (516)
mg=0 for B>=B.
on the critical line m =0 and
mg axm!/? (5.17)

at B =B, up to logarithmic corrections.

We shall now discuss the nature of chiral symmetry breaking in QED, which, as
we shall see, is quite different from QCD. When chiral symmetry breaks in QCD,
the fermion self-energy 3(p) at low momenta acquires a large value, but at
momenta large compared with Agcp the part of 3(p) due to chiral symmetry
breaking drops off like 1/p?; see fig. 10. If the scalar part of the fermion
propagator does behave this way, the integral for the bare chiral condensate (in
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continuum notation for N; flavors and momentum cut-off A)

- d* 4N;3
<¢¢>=[A D f (P) (518)

o (2m)* C(p)(p*+3(p)")’

will be only logarithmically divergent (because the integrand goes as 1/p*). This
sort of chiral symmetry breaking is known as soft breaking of chiral symmetry [32].
For small masses m we would find that the chiral condensate was proportional to
A3QCD. Hard breaking of chiral symmetry, as seen for example in the bubble
approximation to the Nambu-Jona-Lasinio model [25], leads to a 3( p) with less
momentum dependence (perhaps logarithmic). The above integral (5.18) for the
chiral condensate looks much more like the free-fermion integral (5.14). Hard
breaking of chiral symmetry leads to a chiral condensate proportional to my (up to
logarithmic corrections). This is what we see in fig. 9. We conclude that chiral
symmetry breaking in QED is hard.

An intermediate case is provided by the critical behavior predicted by Miransky
[7]. In the Miransky solution 3(p) drops off like 1/p at large momenta, and (i)
is proportional to m%.

6. Renormalized charge

We now come to the problem of computing the renormalized charge. In ref. [2]
we did not give any details or tables of the results, while in ref. [33] the method was
only sketched. In this section we shall describe in some detail our approach to this
problem. We have used two different methods. One proceeds via the photon
propagator, and the other via the potential.

6.1. PHOTON PROPAGATOR

Whether we have a lattice or gauge invariant continuum regularization, the
Ward identities are preserved. This means that the fermion wave function renor-
malization constant Z, is equal to Z;, the vertex renormalization constant, and so
the charge renormalization is given only by the photon wave function renormaliza-
tion constant Z,. Thus we have

eh =Z,e°, . (6.1)

where eg is the renormalized charge. So, we can write, after fixing the gauge,

B, . ; z kkx
I—,(A“(k)A:(k)>=,2—§[a,w—(1—AR) =

+..., (6.2)
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Fig. 11. The photon-photon correlation function 1— D(k), as given by eq. (6.4), as a function of
(kL /27)? on the 12* lattice at B =0.17, m = 0.02. Here L = L,=12

where A k) is the Fourier transform of A “(x), Ag is the renormalized gauge
fixing parameter and the dots in eq. (6.2) represent terms that are not singular as
k — 0. The B factor is due to the lattice definition of the action (2.1). Eq. (6.2) is
equivalent to

Zy= lim D(k), 6.3
3 kl o (k) (6.3)
where

1 o) - -
D(k) =Py Y k2 (A, (k) A () oo (64)

The right-hand side of eq. (6.4) is simply the gauge invariant piece of the photon
propagator, as we choose the direction p with k, = 0. D(k) is taken as a function
of k?=k, k, with k, = 2wn,/L,, n,=0,...,L,— 1. The sum extends over all
directions p and for each p over all momenta k, such that k, =0 and k? is fixed,
giving N, possibilities. (Thus, for example for n>=1,2,3,4,5, 6,7, 8 we have
N,=4,6,4,4,12, 12, 0, 6 respectively.) We use a lattice propagator in our defini-
tion of Z,, because we shall later find that a comparison with the numerical results
lead to a far greater k-region of applicability.

Let us now consider a plot for D(k). In fig. 11 we show 1 — D(k) against k2 for
B =0.17, m =0.02. We see that there is considerable fluctuation of the data,
especially for small k2. It is clearly very difficult, if not impossible, to try to



M. Gickeler et al. / Non-compact lattice QED 739

extrapolate to & = 0. The fluctuations are an inherent difficulty in computing the
A, fields directly.

Thus, we have abandoned computing Z, via the photon—photon correlation
function. Following ref. [34] and exploiting the fact that the integral of a derivative
vanishes, we find for an arbitrary operator f2.

B, - ) an
-B(a, “p(x).()>+XAM(AVA,,(x).Q)=(]”(x).(2>—<aA“(x)>, (6.5)

where the lattice current j,(x) is defined by

Ju(x) = aA( Zx(y) yox(2). (6.6)

(From the Ward identity, i.e. invariance of the action under gauge transformations,
ref. [34], we have Ag = A /Z;). We now evaluate eq. (6.5) for 2 = 4 (0). Taking the
Fourier transform and summing appropriately, we can relate the left-hand side of
eq. (6.5) with eq. (6.2) or (6.4) to give

1 - - ,
(k) = 1= 35 T (L)L), -0 (6:7)

The fluctuations of the current will turn out to be smaller than those of the photon
field.

However, we have the technical problem of numerically evaluating eq. (6.7), as
this involves a fermion correlation function. The current j(x) in eq. (6.6) is
equivalent to

julx) = - ??an=—'T”r(Q-1 i ) (6.8)

a
dA ’L( x) 24 ”( x)
where Q = (M + m1) (M + m1), and Tr is the trace over the even lattice sites (e)
only. This current can be (economically) computed by use of a stochastic estimator
(see, e.g. ref. [20]). Thus, if we take ¢ as complex gaussian distributed random
numbers with {(¢,); =0 and (£,£1),=8,,, then

xy?

1 R __ aQ

where 7{” = £, Q. (M +m1)'¢"),.. (It can be easily seen that {j,(x))¢ =7(x))
Thus, we take R sets of random numbers and evaluate each n{” using the
conjugate-gradient inverter. Although the current is not quite as well localized as
the chiral condensate, we would still expect that the averaging produces an
acceptable estimator for j“(x). We have checked this point by evaluating 1 — D(k)
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at the smallest value of k? as a function of R. A typical result is shown in fig. 12.
(See also ref. [33].) We have usually taken R = 50-100, which proved satisfactory.
The slow oscillations of the average can only be suppressed for ridiculously large
values of R. However, this is not critical because they always lie within the error
bars. In fig. 13 we plot 1 — D(k) against k* for 8 =0.17, m =0.02 and B =0.22,
m = (0.02. The new correlators fluctuate much less than the old ones, and hence
offer a better prospect of finding Z,.

It is apparent that no matter how we find D(k), we still have the problem of the
extrapolation k — (0. We have considered two methods, an extrapolation motivated
by renormalized perturbation theory and a simple polynomial fit. The use of
renormalized perturbation theory will be justified later.

For the first method we need the polarization tensor I, (k, mg, V). In
one-loop order this is given by *

1 s2(p) ¢ p+k/2)c,(p+k/2)
Hy.v(k’ mg, V) =I_/§ - “ KD K(p+k)K(p)

X [a,w(zps,,(p +k)s,(p) + mi) —2s,(p+ k)s,,(p)] , (6.10)

* For QCD this was given in ref. [35].
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Fig. 13. The current-photon correlation function 1t — D(k) as a function of (kL /2‘17-)2 on the 12*

lattice at (a) 8 =0.17, m =0.02 and (b) B =0.22, m = 0.02. The open circles are our data. The solid

circles are a fit with the one-loop lattice result. The solid diamond is the extrapolation to zero

momentum and infinite volume, which gives us the renormalized charge. The error on the latter
quantity is smaller than the symbol.

where

s(p)=sinp,, c,p)=cosp,,

K(p)= Y s2(p) +m}. (6.11)
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We prefer this formula over the corresponding continuum formula, because it
includes certain lattice effects, such as the dependence of II,, on the direction
(and not only on the magnitude) of k. Furthermore, it can represent the data when
k = ar (the cut-off). We first see that II,,(0, mg, V) # 0 on a finite lattice, which
appears to give the photon a mass. This, like all finite-size effects, is small on our
lattices (o exp(—mgL,)). To avoid this problem, we shall in future make the
replacement I1,,(k, mg, V) - 11, (k, mg, V) — 1,00, mg, V). (See also refs.
[36,37]. Performing one-loop perturbation theory for the photon propagator and
then projecting out the appropriate components gives

1 1
m‘i:?—ﬂ(k,mR, V), (612)

where
1 1
o(k, mg, V)= A Y 5 [11,,(k, mg, V) —11,,(0, mg, V)] |k“=0. (6.13)

Now, from the definition of e2 (in egs. (6.1), (6.3)) we have

1 1
er €
and hence
1 1
m=g+ﬂ(0, mR,oo)-—H(k, meg, V) (615)

Equation (6.15) is the formula that we shall fit to the numerical results, because
we expect this to keep the higher-order terms as small as possible. In this form we
have one unknown parameter, namely 1/e%. Indeed, the formula provides a
stringent test, as for each individual & we could make the fit. However, we shall
attempt to fit for all k paying special attention to the low-momentum modes.

In fig. 13 we also show fits of 1 — D(k) for B =0.17, m =0.02 and B =0.22,
m = 0.02. In general the fit is quite good. As noted above, the fit is for all values of
k, which is a hint that one-loop renormalized perturbation theory is valid over a
large range of distances. The result is not too sensitive to the large momenta, as
fitting for half the modes or less does not change appreciably the value of e%. The
resulting values of e are given in table 4. The agreement between the results on
the 8% and 12* lattices indicates that eq. (6.15) is a good extrapolation formula.

We have also compared our data with II including background fields. See
appendix C. The change in e3 was insignificant.
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TABLE 4

743

The renormalized charge on the 8* and 12* lattices at various values of 8 and m. The errors are purely
statistical. Note that the errors should be compared with Bz — 8, which is the quantity that is actually

computed
B m Br=1/¢k
84 124
0.16 0.16 0.1803 (4)
0.09 0.1867 (6)
0.04 0.1951(11)
0.02 0.1996 (9)
0.17 0.16 0.1942(1)
0.09 0.2028(2)
0.04 0.2141(3)
0.02 0.2220(4)
0.18 0.16 0.2086 (6) 0.2085(2)
0.09 0.2187 (8) 0.2190(2)
0.04 0.2332(4)
0.02 0.2471(12) 0.2455(5)
0.19 0.16 0.2230 (7) 0.2224(2)
0.09 0.2351 (8) 0.2347(2)
0.04 0.2535(14) 0.2538(3)
0.02 0.2703(4)
0.01 0.2901(7)
0.20 0.16 0.2358 (7 0.2359Q2)
0.09 0.2530(10) 0.2510(2)
0.04 0.2758(11) 0.2748(3)
0.02 0.3027(11) 0.2988(4)
0.01 0.3241(7)
0.21 0.16 0.2502(2)
0.09 0.2674(2)
0.04 0.2948(3)
0.02 0.3222(6)
0.01 0.3618(6)
0.22 0.16 0.2628 (7) 0.2641(2)
0.09 0.2846 (9) 0.2835(3)
0.04 0.3226(12) 0.3172(4)
0.02 0.3626(13) 0.3517(4)

To check the quality of our results, we have made a polynomial fit (in £2) to the
data. This is done by including higher and higher terms in the polynomial until a
plateau is reached, where adding a new term does not bring a significant improve-
ment in the y? per degree of freedom. Usually, three to five terms are needed. A
typical graph is shown in fig. 14. This gives results in agreement with use of the fit
formula (6.15). However, the errors are in general larger.
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Fig. 14. Polynomial fit to the current—photon correlation function 1— D(k) on the 12* lattice at
B =0.22, m = 0.02. The open circles are our data. The solid line is a fourth-order polynomial fit.

6.2. POTENTIAL

In sect. 4 we have determined the potential and the effective coupling constant
at the tree level. The values obtained are consistent with the results in table 4,
however, with greater fluctuations. For example, the values obtained from fig. 5
compare favorably with the appropriate results given in the table.

We can now include one-loop corrections. This is done by making the replace-
ment

1 1 1
1.1 6.16
72 7 T2 1+ eA[11(0, my, @) —TI(K, mg, V)] (6.16)
in egs. (4.8), (4.9) and dropping the constant E,. It gives the potential
2 ikx
R € 1
V(x)=——— Yy —_— +E,
(x) LiLyLy o kv k? 1+ e}[H(0, mg, ®) —I(k, mg, V)]
(6.17)
ez 1 1
E=—2 (6.18)

= v = .
L\LyLy 5 kwo k2 1+ €R[T(0, mg, ) —I(k, mg, V)]
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Fig. 15. The potential V;ff(x) as a function of | x| on the 12* lattice for g = 0.3. The bare parameters

are B=0.17, m = 0.02. We compare the data with the one-loop corrected Coulomb potential, where

mpg and eﬁ are taken from tables 3 and 4, respectively. The open symbols are our data. The solid

symbols are the prediction of eqgs. (6.17), (6.18). The meaning of the different kinds of symbols is the
same as in fig. 5.

The main effect of this substitution will be to give a better description of the
|x] =1 data points and the self-energy contribution. In fig. 15 we show the
potential together with the prediction of eqs. (6.17) (6.18). The value of €% is taken
from table 4. We find that the potential is well described by one-loop renormalized
perturbation theory. At very small myp we observe some small deviations from
one-loop renormalized perturbation theory though. They manifest themselves
mainly in a displacement of the point | x| =1 and a small shift in E. The shift is
an order of magnitude smaller than E,, the shift needed for the tree-level
potential (4.8), (4.9). This shift may signal a two-loop contribution.

We conclude that, within errors, we have agreement between the two methods
of determining the renormalized charge.

7. Renormalization group flow and B-function

We are interested now in the renormalized charge at the critical point. The
cut-off dependence of ey is described by the Callan—Symanzik B-function

dex

=B(e12{, mR), (71)

R
OMR |, fived
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where 1/my acts as the cut-off. (Recall that my is given in units of the inverse
lattice spacing.) The bare B-function B(e?, my) is defined by

de?
am

—mg

=ﬁ0(‘-’2a mR)- (7.2)

R |eg fixed

It describes how the bare charge must run in order to keep the renormalized
charge constant.

If the critical point is a non-trivial fixed point, the Callan—Symanzik B-function
must have a second (ultraviolet stable) zero at e} =(eg)* my =0 for ef <e,,
where e, =1/ \/Bj . The bound on e} follows from the fact that [34,38] Z; < 1. The
bare B-function must have a second zero at e? = e2, my = 0 in this case. If, on the
other hand, QED is trivial, we expect the Callan—-Symanzik B-function to be given
by renormalized perturbation theory near the critical point. For staggered fermions
(N; = 4) we obtain on an infinite lattice to one-loop order, combining eq. (7.1) with

eq. (6.10),

d*p [4ci(p) —ci(p)ci(p) -

w
ex, m e 7.3
ﬂ( R R) R Rf 7(277_)4 K3(p) ( )
It is easy to check that eq. (7.3) gives
4
B(er, 0) = F’ (7.4)

i.e. the continuum B-function for four flavors. Up to two loops By(e?, my) =
B(e?, my), because the first two terms in the expansion of the B-function are
universal.

The data in tables 3, 4 are plotted in figs. 16-18. In fig. 16 we show, motivated
by the success of perturbation theory, 1/e% — 1/e? as a function of my. The data
points fall, within a few per cent, on a universal curve. Note in particular that the
data show the same behavior for 8 > B (open symbols) and B < B (solid symbols).
Exact universality would mean a relationship between ez and e as given by
perturbation theory to one-loop order. The Callan-Symanzik B-function is found
by differentiating the data. The result is shown in fig. 17 together with the
one-loop lattice formula (7.3). At smaller values of my (i.e. larger cut-offs and
smaller eg) the observed B-function is the same as the one-loop B-function,
whereas at larger values of my there is room for < 10% contributions from higher
orders. The corresponding graph for the normalized bare B-function looks almost
identical to fig. 17. The dashed curve in fig. 16 is obtained by integrating the
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1/€4 - 1/€?

mpg
Fig. 16. The relationship between eﬁ, ¢? and my. The data symbols are the same as those in fig. 9. The
lattice sizes are 8* for 8 = 0.16 and 12* for 8 = 0.17-0.22. The solid symbols are for 8 values below g,
while the open symbols are for 8 values above B.. The dashed line is the prediction of the one-loop
B-function shifted to fit the data point at the smallest value of my, which corresponds to 8 =0.21, m =
0.01.

renormalization group equations (7.1), (7.2), using the one-loop B-functions as
input. This gives

1 1
— ~ 2 = ~1(0, mg, ) (7.5)

- _f‘“ ™*d In T B(ek, Mg )/ek- (7.6)

As we saw in fig. 17, the B-function at large my is not exactly given by the
one-loop formula. As we are interested in extrapolating our data to lower values of
mpyg, we have fixed the implicit integration constant in eq. (7.6), such that the curve
fits the data point at the lowest value of my. (The shift this amounts to in eq. (7.5)
is, however, very small: 0.0017 at mg = 0.145, which is about the size of the
symbols in fig. 16.) There is good agreement between the data and the one-loop
result for my < 0.7. In fig. 18 we show the lines of constant renormalized charge in
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Fig. 17. The Callan-Symanzik 8-function times 372 /2e% (i.e. normalized to one at mg =0, eg = 0) on
the 12* lattice. The data symbols are the same as in fig. 9. This is compared with the one-loop lattice
B-function given by the dashed line.

the plane of bare parameters 8, m. As we know ey only on a grid of points, we
had to interpolate between them. For the interpolation in 8 and m we have used
the formulae 1/e3 =a + bB and 1/ex =c +d In m, respectively. (The latter for-
mula is suggested by fig. 16, given the relationship (5.17) near the critical point.)
The uncertainty is about 5% of the spacing between the trajectories. When m, and
so mg, is decreased, B must always be decreased to keep ei constant, as a result
of the fact that the B-function is positive over the entire parameter range. We may
use eq. (7.6) to extrapolate the data down to m = 0. For B8 > ., my vanishes as
m — 0, and so we obtain that eg = 0 in this limit. (See fig. 16.) In particular, eg =0
at the critical point. For B <., my stays finite as m — 0, and so we obtain a
finite charge renormalization. Therefore, all trajectories with finite ez must end at
m = 0 on the first-order critical line, while e = 0 on the second-order critical line.

This implies that for any finite ey there is a limit on the cut-off. From eq. (7.6)
we obtain, for small mp,

3w2[1 1
mg = 1'37 exp| ——|—= - =1|: (7.7
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Fig. 18. The renormalization group flow in the critical region. The solid lines are lines of constant

renormalized charge, where e} ranges from e3 = 2.8 (lower right-hand corner) to eﬁ= 5.4 (upper

left-hand corner) in steps of 0.2. The uncertainty in the position of the flow lines is about 5% of the
spacing between lines. The dashed line corresponds to a cut-off of = /myg =35. The solid diamond
indicates the critical point.

where the factor in front of the exponential can be read off from tables 3, 4 or fig.
16. According to the small-my expansion of eq. (7.5), we would find the pre-ex-
ponential factor in eq. (7.7) to be 1.3646. To find the bound for small ey, one
substitutes e? by e? in eq. (7.7), because the small-e; trajectories end near the
critical point. This gives

32
mg 2 21.54 exp(——z). (7.8)
2egp

Eq. (7.8) implies a cut-off, which is an order of magnitude smaller than that
implied by the Landau pole.

Taking the lattice spacing to be 7 over the Planck mass, the bound (7.8) is not
nearly saturated in nature, even if one considers all known elementary charged
particles. It tells us though that the fine-structure constant ay = eg /47 cannot be
larger than = 1/50, because a larger ap would not allow charged fermions as light
as those we see. This assumes that the integration constant does not change
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drastically when going from four to eight flavors (eight is the sum of the charges
squared in the standard model with three generations), and that the cut-off can be
pushed to the Planck scale without hitting new physics.

In fig. 18 we have also shown the line w/mg =35, which corresponds to a
momentum cut-off of five times the fermion mass. It gives an idea of how close we
are to the continuum limit. The largest cut-off we have reached is =/my = 22.

Compared with lattice QCD standards, this is a large cut-off, while it remains
rather modest in physical terms. Nevertheless, because we have entered the
domain of renormalized perturbation theory, we could make statements about the
behavior of the theory at the critical point.

8. Fermion-antifermion composite states

In order to study fermion-antifermion composite states, we have calculated (the
connected part of) correlation functions of the local operators, which are well
known from the computation of meson masses in QCD. These correlations
functions have been parametrized in the following way:

c() = (ROx(© Zs(x, )x(x, Dx(x, 1))

=A, (e + e ™MLY 4 (=1) A (e M + e ALY (8.1)

The factors s(x, t), corresponding to different irreducible representations of the
lattice symmetry group, together with the standard (continuum) quantum number
assignments, are given below:

s(x, t) particle 1 particle 2
(- 1)x1+x2+x3+t Oa—+(PS) 0;-—(§)
(-1 0;*®S) 0%
%((_ 1)x1 +x2 4 (_ 1)x1+x3 + (__ 1)x2+x3)(_ 1): 1a——(V) 1;_(T)
(=D + (D)2 + (= D¥N-1) 1;7(V) 177 (82)

The index a (t) refers to the adjoint (trivial) representation of the flavor symmetry
group SU4), and PS, S, V, A and T refer to pseudoscalar, scalar, vector, axial
vector and axial vector (with opposite charge conjugation) particles. If flavor
symmetry is restored, the states with the same: continuum quantum number
assignments should have the same mass.
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Fig. 19. The correlation function C(¢) for the PS-S channel as a function of ¢ on the 12* lattice at (a)
B=0.17, m=10.02 and (b) 8 = 0.22, m = 0.02. The stars are our data. The errors are smaller than the
symbols. The lines are a fit of a single PS state to the data for 5= 1.

The PS-S correlation function is shown in fig. 19. We find that it is dominated
by the pseudoscalar state, which is the Goldstone boson associated with the
spontaneous breakdown of the axial U(1) symmetry. No contribution of S is
observed. So, we performed in this case only a two-parameter fit. The results from
fits starting at ¢, = 1 are shown in table 5. The mass mq becomes small approach-
ing the first-order critical line, as one expects for the mass of a Goldstone boson.
Fits starting from ¢, = 3 lead to slightly lower masses (different by less than 5%) in
the region of small m and large B (> B_.), indicating that the overlap of the local
operator with the wave function of the Goldstone boson is not as high as it seems
to be in the rest of the parameter space explored. Notice also that mpg exceeds
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TABLE 5
The mass of the Goldstone boson mpg on the 84, 8316 and 12* lattices as well as the mass of the scalar
particle mg on the 12* lattice at various values of 8 and m as obtained from a fit with ¢, = 1. The
errors shown are purely statistical

B m Mpg mg
84 8316 124 124
0.16 0.16 0.941(3)
0.09 0.720(3) 0.723 (2)
0.04 0.508(2) 0.501 (3)
0.02 0.360(3)
0.17 0.16 0.951(2) 1.96(6)
0.09 0.736(2) 1.54(1)
0.04 0.513(3) 1.32(5)
0.02 0.376(3) 1.23(5)
0.18 0.16 0.961(4) 0.961(2) 1.76(5)
0.09 0.74%(8) 0.750 (2) 0.751(3) 1.45(4)
0.04 0.543(3) 0.534 (3) 0.533(4) 1.20(3)
0.02 0.397(5) 0.993)
0.19 0.16 0.947(3) 0.973(2) 1.63(1)
0.09 0.768(3) 0.767(2) 1.34(2)
0.04 0.553(3) . 0.552(3) 1.03(2)
0.02 0.447(4) 0.419(4) 0.88(2)
0.01 0.325(9) 0.68(3)
0.20 0.16 0.990(4) 0.986(2) 1.60(4)
0.09 0.787(5) 0.784(17) 0.783(2) 1.30(1)
0.04 0.583(5) 0.584 (4) 0.576(3) 0.96(1)
0.02 0.498(8) 0.454(4) 0.74(1)
0.01 0.365(8) 0.57(7
0.21 0.16 0.996(3) 0.998(2) 1.53(1)
0.09 0.804(4) 0.798(2) 1.25(1)
0.04 0.595(3) 0.92(1)
0.02 0.468(4) 0.75(1)
0.01 0.434(7) 0.50(5)
0.22 0.16 1.014(4) 1.008(2) 1.49(1)
0.09 0.824(5) 0.819 (3) 0.814(2) 1.19(1)
0.04 0.676(7) 0.646 (4) 0.622(3) 0.87(1)
0.02 0.613(14) 0.525(4) 0.65(1)

2mg at m =0.01, 8 =0.21 and at m = 0.02, B8 = 0.22. Presumably, in this region
we are ggaling with an unstable particle.

The PS-S correlation function is shown in fig. 20. The PS state has the same
quantum numbers as the Goldstone boson (PS). So, flavor symmetry restoration
would imply M= Mps. We were not able to check this relation on our configura-

tions, because the amplitude of PS becomes very much smaller than the amplitude
of S as m gets smaller. So, a reliable PS mass cannot be extracted. On the other
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Fig. 20. The correlation function C(¢) for the PS—S channel as a function of ¢ on the 12* lattice at
B =022, m=0.02. The stars are our data. The errors are smaller than the symbols. The lines are a fit
of a single S state to the data for £, =1.

hand, the S signal is surprisingly clean. The results for mg are given in table 5.
However, since S has the quantum numbers of the vacuum, the disconnected part
of the correlation function should also be taken into account. Thus, the above
results could be modified by annihilation contributions. Note that such contribu-
tions could also appear in the other channels. It is generally assumed that they are
small in the adjoint channels.

We have made preliminary estimates of the masses corresponding to the
remaining correlation functions. The T and A masses are rather large. The V and
V masses are found to be of order one, decreasing as one approaches the
second-order critical line (including the critical point), but not as rapidly as mg.
Flavor symmetry restoration need not be good for masses comparable with the
cut-off. We find in most cases that my exceeds m, by about 15%. We plan to
return to this point in the future.

The high masses indicate that the fermion-antifermion composite states are not
related to positronium-like bound states of the various fermion flavors. Indeed,
calculating the Bohr radius, rg = 8w /(eimyg), for two particles of mass my and
charge eg, one finds values ranging from =4 at g =0.16, m =0.16 to =45 at
B =0.22, m =0.02. So, it seems very improbable that the signals observed in the
local correlation functions have anything to do with “positronium”. This is particu-
larly true in that part of the phase diagram explored so far, where we expect to be
closest to an approximate scaling region, i.e. for larger values of B8 and smaller
values of m.

We would now like to understand the data. In sect. 3 we have found that an
equation of state motivated by the O(n)-symmetric linear o-model could describe
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the behavior of the chiral condensate. In ref. [1] we also analyzed the Goldstone
boson in this context. We now are going to extend this to include logarithmic
corrections and confront this with our new data, now also including the scalar
particle.

The effective action was taken to be

Serr= 3. {n[(A#ax)z + (Au*rrx)z] - mao, + V‘,,ff(a'x2 + 11',?)}, (8.3)

where V4 is the effective potential. From this we derive the equation of state

(7} 03

, (8.4)

=20V (%) = +6
m o eff(a-) Tlnpla_—ll lnlo,—ll

which we have identified with eq. (3.3). The coefficients of the quadratic terms in
the expansion of V4 about the minimum of the effective action give the masses as

mps = @ (8.5)
m = (1/n) (Var(@2) + 207V a(0?)}. (8.6)

Note that_a free propagator would lead to an exponential fall-off of the form
exp(— y2(cosh mps s — 1) ), rather than exp(—mpgss ¢) as used in eq. (8.1).
However, the corresponding changes in the plots are not significant.

We allow the wave function renormalization constant n to diverge asymptoti-
cally like a power of In o. Thus, we have for the pseudoscalar mass, writing

n=0ln?o!]|,

m

(8.7)

2

mig=——"--70-H—¥——.

B 20wo In?|o! |

We have fitted eq. (8.7) to our data and found g = 0.50(5), w = 0.15(2). In fig. 21

we plot mg against m /o In%°|o~'|. The data points lic on a line in agreement

with the effective action and the behavior one expects from Goldstone’s theorem.
Let us turn now to the scalar particle and consider

m§ —mis = (2/n)o*Vei(0?)

207 pT ]
= + +
n | 40?nP* o7 2Injle 41Inloe 1|

}. (8.8)

There are no undetermined parameters remaining. In fig. 22 we have plotted

m% — mg against the right-hand side of eq. (8.8). For the smaller masses the
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Fig. 21. m3 as a function of m /o In%% o~ | on the 12* lattice. The data symbols are the same as in
fig. 9.

agreement between our data and the prediction of the effective action is reason-
ably good. We find that m2 — m2g goes to zero in the chiral limit, as required by
chiral symmetry.

Summarizing, we may say that the pseudoscalar and scalar masses together with
the chiral condensate are quite well described by the effective action (8.3), which
treats o, and 7, as elementary fields.

An obvious extension of this model is to couple the fermion in with a chirally
invariant Yukawa coupling, just as in the original o-model of Gell-Mann and Levy
[391].

9. To what extent is QED renormalizable?

Before we discuss our results, we shall introduce some notions. A theory is
renormalizable, if, when the cut-off is varied, the physics can be kept constant by
making appropriate changes in the bare parameters. We call a theory strongly
renormalizable, if the cut-off can be taken to infinity, whereas it is weakly
renormalizable, if it is impossible to take the cut-off to infinity. A trivial theory is
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Fig. 22. m§ - m%s as a function of the right-hand side of eq. (8.8) with parameters obtained from
previous fits. The data symbols are the same as in fig. 9. The solid line is the prediction of the effective
action.

any theory for which the cut-off cannot be taken to infinity without forcing all
interactions to zero. A trivial theory can be weakly renormalizable or non-renor-
malizable (or perhaps both in different regions of bare parameters space).

Possible examples of some of these classes are QCD as a strongly renormaliz-
able theory and ¢* as a weakly renormalizable theory. Where should we place
QED in this classification?

In sect. 7 we have seen that the cut-off cannot be pushed to arbitrarily high
energies for any finite value of eg. As a result, QED is trivial and can at most be
regarded as a valid theory up to some finite energy scale. We now want to look for
lines of constant physics. This means, one needs to compare the flow of different
dimensionless quantities.

We have already shown the lines of constant egz. We now compute the ratio
myg/mpg on our grid of points and interpolate the results to find the lines of
constant mass ratios. For the interpolation in 8 and m we have used the formulae
In(my /mpg) =a + bB and In(my/mpg) = c +d In m, respectively. In fig. 23 these
lines are compared with the lines of constant ep. The two flows are certainly
different. The trajectories of constant mpg/mpg flow into the critical point, in
contrast to the lines of constant ey, which end on the first-order critical line. The
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Fig. 23. The renormalization group flow in the critical region. The dotted lines are lines of constant

renormalized charge already shown in fig. 18. The solid lines are lines of constant mg /mpg ranging

from 0.4 (lower right-hand corner) to 2.1 (lower left-hand corner) in steps of 0.1. The uncertainty in the

position of the flow lines is about 10% for the mass ratio lines. The solid diamond indicates the critical
point.

inconsistency is most striking for 8 <., where the ey trajectories move in the
direction of lower B (in accord with a positive 8 function), while the mass ratio
trajectories move in the direction of larger 8 (as one would obtain from a negative
B function). The effect does not seem to go away as one approaches the critical
point, showing that it is not a lattice artifact, which would vanish as a power of the
inverse of the correlation length. The lowest value of 7/my in this figure is =~ 2.5
(in the upper left corner), whereas the largest value is =22 (in the opposite
corner). See also fig. 18 for the line w/my =5. The fine-structure constant ag
varies from 0.22 (lower right corner) to 0.44 (upper left corner).

Having updated the flow diagram from ref. [2], we now present some new flow
diagrams calculated from the masses of the composite states found in sect. 8. We
have computed the ratios mpg/mg and my/mg. The interpolation was done using
the same formulae as we used for the ratio my/mpg. The lines of constant
mpg/mg are shown in fig. 24. They seem to flow into the critical point. The ratio
goes to one, as one approaches the second-order critical line (8 > B,, m =0),
where chiral symmetry is restored. For comparison, we have plotted in fig. 25 the
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Fig. 24. The renormalization group flow in the critical region. The solid lines are lines of constant

mpg / mg ranging from 0.35 (lower left-hand corner) to 0.85 (lower right-hand corner) in steps of 0.05.

The uncertainty in the position of the flow lines is about 20% of the spacing between the lines. The
solid diamond indicates the critical point.

mean-field result. There is qualitative agreement between the two figures. It is
apparent that the quality of the data (in particular for mg) needs to be improved.

The lines of constant mg/mg are plotted in fig. 26. This flow diagram is
obviously different from those of the other mass ratios. The largest and smallest
mass ratios in this plot are 0.6 and 0.3, respectively. It is interesting to note that
the curves of constant fermion—antifermion scattering in the pseudoscalar channel
found from the Schwinger-Dyson equations in ref. [14] look the same as the
mg/mpg plot. We would expect the corresponding scalar scattering amplitude to
reproduce the flow of mg/mg. Where we have results, the corresponding flows are
indeed similar, but the Schwinger—Dyson curves extend to much smaller masses.
This comparison leads us to expect that the curves of low mass ratio (mg/mg < 0.4)
will all end in the critical point, whereas those of high mass ratios (mg/mg > 0.4)
will end on the first-order critical line. We again find that different dimensionless
quantities flow along different trajectories.

Our statements about the non-renormalizability of QED given in our previous
paper [2] have been strengthened by the calculation of more quantities. In
particular, by comparing figs. 23, 24 and 26 we can see non-renormalizability (i.e.
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Fig. 25. The renormalization group flow in the critical region as predicted by the effective action (8.3)
with parameters obtained from previous fits. The solid lines are lines of constant mypg /mg ranging
from 0.25 (lower left-hand corner) to 0.9 (lower right-hand corner) in steps of 0.05.

the non-existence of lines of constant physics) in the matter sector, showing that
this is not merely an effect of the photon.

We conclude that QED is non-renormalizable throughout the parameter region
we have investigated, although it must become weakly renormalizable for small
enough ag, and we see hints of this near our smallest ap values (ag <0.22).
Non-renormalizability shows up long before the cut-off reaches its maximal value.

10. Anomalous dimensions and critical exponents

Though the photon decouples at the critical point, the matter sector of the
theory may still interact through exchange of the Goldstone boson and via induced
couplings, such as the four-fermion coupling. It is important now to find out,
whether this is the case. One way would be by computing the appropriate
renormalized couplings. This has not been done yet. Another source of informa-
tion are the critical exponents. The drawback here is that it is difficult to
determine the critical exponents accurately by numerical methods. A further
quantity of interest is the anomalous dimension of the operator yy. In mean-field
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Fig. 26. The renormalization group flow in the critical region. The solid lines are lines of constant
mg /mg ranging from 0.6 (on the left) to 0.3 (on the right) in steps of 0.025. The solid diamond
indicates the critical point.

theory xx is treated as a quasi-free, elementary scalar field of dimension one. If
this ansatz proves to be correct, it has far-reaching consequences.

The critical exponents §, B (in order to avoid confusion of B and the critical
exponent named by the same letter, we have called the latter B), v and y are
defined by

amixy>] ™"
= ﬂ?_ , (10.1)
dlnm g=p,
dInxx>
= , 10.2
b d ln(ﬁc_B) B7Bc,m=0 ( )
9 In mg (10.3)
- d ln(Bc_B) B/Bc,m=0, .
d1n x,, xx?
VS T B —B) lara’ X" Tom lmeo (104)
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They are related by the scaling relations [23,40]

B(6-1)=vy, B(B+1)=4, (10.5)

so that only two of them are independent. These relations are proven for a certain
class of models and are believed to have a wider range of applicability. The
equation of state (3.3) yields the critical exponents 8 =3, B=1/2 and y=1, in
agreement with the first scaling relation. The second scaling relation gives, further-
more, v = 1/2. These values are referred to as mean-field critical exponents. An
independent information about the critical exponents comes from the relationship
(5.15) between {xx»> and mpg for small mg. It implies B = v, which gives § =3,
owing to the second scaling relation. This agrees with the mean-field formula we
used before. It should be noted that there are several length scales in the theory
(e.g. my and myg), which all can be used to define a correlation length and the
exponent v. As long as they scale together as one approaches the critical point
along the first-order critical line, it does, however, not matter which length scale
we take.

The critical exponents are interrelated with the anomalous dimensions of m and
XX Ym and 7y, , which we will discuss now. The discussion will follow ref. {24].

Let us consider mass renormalization first. We write

Then vy, is defined by (remember that 1/my acts as the cut-off)

Y= — ——— (10.7)
9 In my B fixed
dlnm
=— —-1. (10.8)
d1In mg 8 fixed

We are primarily interested in the anomalous dimension at g =pg.. From egs.
(5.15) and (10.1) it follows that at B =8,

Y =6—1. (10.9)

Our result 8 = 3 gives the anomalous dimension ¥,, = 2. We call y,, the renormal-
ized anomalous dimension to distinguish it from the bare one

a
o InZ, (10.10)
dIn Mg |constant physics
dln m
_alnm 1 (10.11)
d In MR |constant physics
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There are ambiguities in this definition (because the theory is not renormalizable
in the critical region). Here, in distinction to v, it matters whether one keeps ey or
(e.g.) mpg/mg fixed. For the latter choice egs. (3.3), (5.15), (8.5) and (8.6) give
v2 = 2. (The same sort of ambiguities are present in defining renormalized and
bare B functions.)

Let us now consider renormalization of the composite operator yy. We write

XXr=Zg Xx +Z,1. (10.12)

This includes mixing with the 1 operator, which is the only mixing expected from
perturbation theory. The anomalous dimension vy, is given by

B dln Z
Ha—my

Yex =

(10.13)

B fixed

Because the operators yx and 1 transform differently under chiral rotations, one
would expect Z; to vanish like m. The different scaling laws for bare and
renormalized masses at B =, (cf. eq. (5.17)) then lead us to expect that the
operator mixing can be ignored. Thus we have

8 In{xx>

=— -3, 10.14
dIn mg (10.14)

B fixed

Yx

where the —3 in eq. (10.14) assumes that 8 = B, is a line of constant {¥xg)/my
in the limit mg — 0. This hypothesis has to be checked, and we plan to return to
this in a future publication [41]. From eq. (5.15) it follows that

Yoy = — 2. (10.15)

Since myy is a renormalization group invariant quantity (when considered in
connected Green functions, which is precisely what concerns us here), we have
Ym + Y5y = 0. Thus, we find v,, =2, and hence from eq. (10.9) we obtain & = 3.
Note that this result was obtained without taking recourse to the equation of state.
So, we have a second, independent hint that § =3. Eq. (10.5) means that the
composite operator yy has dimension one like an elementary scalar field.

It should be noted that the above results are only correct at 8 = .. For 8> B,
we find from the equation of state (3.3) and eq. (5.15) that my acm as m — 0, so
that v,, = 0 on the second-order line. For 8 < 8. the renormalized fermion mass
goes to a finite value as m — 0, so that vy,, = © on the first-order line. For a direct
evaluation of y,,, which supports this result, see ref. [42]. It is worth pointing out
that the bare y-function we defined in eq. (10.10) is much smoother.
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Summarizing, it may be said that all our results point to mean-field critical
exponents. This suggests that the matter sector of the theory is also trivial. In
accord with this picture, we have also concluded that the composite operator yy
has dimension one. This result leads us to expect, for example, that the four-fer-
mion interaction becomes a relevant operator. Since it is dynamically generated in
any case, it should be included in the calculation right from the start. In this light
we have only explored a single point of a multi-dimensional critical surface. So it
might still be possible to find a non-trivial continuum limit in a larger space of
parameters.

11. Discussion

We have made a comprehensive investigation of non-compact lattice QED.
Because we are interested in chiral symmetry properties, we used staggered
fermions. Before one can develop a consistent picture of QED at strong coupling,
one has to look at the problem from as many sides as possible. Thus, we
investigated the following quantities and topics. The first item we looked at was
the equation of state to find the phase diagram. To settle the question of
non-confinement, we studied the potential between static particles of variable
charge. We then computed the renormalized mass and charge of the fermion, in
order to find the Callan-Symanzik B-function. Next, we computed the masses of
fermion—antifermion composite states, to address the issues of renormalizability
and the effective action.

With the help of our results we have formed the following picture. There is a
line of first-order transitions running from B = 0 to the tricritical point at 8 = 8,
where the chiral symmetry is spontaneously broken, and a second-order line
thereafter. (See, e.g. fig. 3.) This phase transition is not a deconfinement-confine-
ment phase transition. We know this from our study of the potential, which is
Coulombic at all distances and for all our values of B. This suggests that the
mechanism of chiral symmetry breaking is not like that of QCD, where it is closely
associated with confinement, but more like that of the Nambu-Jona-Lasinio model
[25], where there is chiral symmetry breaking without confinement.

The lines of constant eg, as shown in fig. 18, tend to the first-order critical line.
We saw that the behavior of the renormalized charge can be well described by
one-loop renormalized perturbation theory. In particular, we found a positive
Callan—Symanzik B-function and no sign of any second zero. Perturbation theory
allowed us to extrapolate the data. The conclusion was that, as the correlation
length goes to infinity, the renormalized charge goes to zero. Thus, the theory is
trivial. When comparing flows of different physical quantities, we see that the flow
lines cross, showing that the theory is not even renormalizable in the parameter
range we have studied. When ay = 1/137 the bounds in eq. (7.8) are, however, so
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large that there is no contradiction with the phenomenal success of QED. How-
ever, agy > 1/50 would lead to inconsistencies within the context of the standard
model. This could be the reason why the fine-structure constant is so small.

Coleman and Weinberg were led by their work on scalar QED [43] to conclude
that “nature abhors massless particles with long-range interactions between them”,
and they speculated that a symmetry would break in such a way that this situation
is avoided. They then noted that they did not have the tools to investigate spinor
QED. Our calculations shed light on this question and indicate that indeed
massless QED does not exist. On the first-order line (i.e. in the broken phase) the
mechanism is basically as Coleman and Weinberg envisioned, but on the second
order line nature avoids this “abhorrent” situation by a different mechanism,
namely the vanishing of the renormalized charge.

Furthermore, we have been able to relate the fermion—antifermion composite
states to the chiral condensate by means of an effective action. The effective action
we used is that of a linear o-model. The coupling constant of this model goes
logarithmically to zero just like e2. This is consistent with our belief that QED is
trivial. (It would be interesting to compute the coupling constants in that action
numerically.) The success of an effective action that treats the pseudoscalars and
scalars as point-like suggests that the states we see are small, with the size of order
the cut-off. This is to be contrasted with the size of a conventional positronium
state, which should go to infinity with the correlation length as one approaches the
critical point.

The critical exponents we see are the same as in the Nambu-Jona-Lasinio
model, and we have noted many qualitative similarities. For example, the gap
equation of the Nambu-Jona-Lasinio model leads to qualitatively the same equa-
tion of state [10,36] as derived from the effective action [1]. This could mean that
QED and the Nambu-Jona-Lasinio model are in the same universality class.

One possibility, that should be mentioned, is that, by introduction of additional
interactions, QED could be made into a weakly renormalizable theory. This is
possible, because if relevant operators are left out of a renormalizable (or weakly
renormalizable) lagrangian, the remaining theory will exhibit no curves of constant
physics, but instead look like lattice QED, with each point in the space of bare
parameters having unique physics. What other lagrangian terms could be relevant?
Many approximations to strongly coupled QED suggest that renormalization
generates a chirally invariant four-fermion interaction [2,14,44]. If such a term is
generated by changing the cut-off, it must be a relevant operator when added to
the strongly coupled QED lagrangian. Our indications of a large anomalous
dimension for yy also give a hint that four-fermion interactions could be relevant.

After all this time QED still has surprises to offer and merits further studies.

This work was supported in part by the Deutsche Forschungsgemeinschaft.
Most of the numerical computations were performed on the Cray Y-MP at the
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particularly indebted to E. Laermann for his collaboration in an earlier stage of
this work and for his help in writing the code for the hybrid Monte Carlo
algorithm. Thanks are also due to U.-J. Wiese for discussions on the problem of
charge on a periodic lattice.

Appendix A. Calculating the masses of charged particles

An important part of this paper (and of our previous paper [2]) is the calcula-
tion of the renormalized mass of the fermion. In this appendix we show that,
although the fermion propagator is of course gauge dependent, the renormalized
fermion mass takes the same value in all the covariant gauges (e.g. the Feynman
gauge, Landau gauge, etc.).

In non-compact QED the gauge can be fixed by adding a gauge fixing term to
the action, exactly as is done in the continuum. The gauge fixing term is

Scr= 2A (ZA M(x))z’ (A1)

where 4 . 18 the backward lattice-derivative. The Landau gauge is given by the case
A=0. The action S5+ Sp+ Sgr is completely local and respects all lattice
symmetries, including time translation, and so has a transfer matrix. We have also
checked that S satisfies reflection positivity.

As is usual [38], we define the charge of an operator by its transformation
properties under gauge transformations 0: operators unaffected by the transforma-
tion neither create nor annihilate charge, those that acquire a factor e’?% create g
units of charge. This charge definition leads to the current of eq. (6.6), which by
Noether’s theorem is conserved. The corresponding charge operator is given by
summing the charge density j, over a time-slice

O(t) = Lia(x, t)
— Z(_l)x1+x2+xséi[i(x’ t) e“‘““"’”x(x, t+ 1)

+x(x, t+1) e =Dy (x 1)), (A2)

The charge operator Q is gauge invariant. This operator labels every eigenstate of
the transfer matrix with a charge, and it divides the spectrum into superselection
sectors. This charge operator works on any lattice that admits a global gauge
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transformation, which includes our finite lattices with periodic boundary condi-
tions on the gauge fields.

We will now calculate how a propagator changes when we go from one
covariant gauge to another.

On a lattice with V sites there are 4V 4, fields, so that the A, field part of the
functional integral is a 4V-dimensional integral. We can divide the integration into
two parts: there is a (3V + 1)-dimensional integral over physical modes and a
(V — 1)-dimensional integral over pure gauge modes. We can see this mode-count-
ing most easily in momentum space. The V' —1 pure gauge modes are the
longitudinal photons, those that are the (lattice) gradient of some function, one for
each non-zero momentum, and the 3V + 1 physical modes are the four constant
background fields (momentum zero) and the three transverse photons (those that
satisfy the Landau gauge condition eq. (5.1)) for each non-zero momentum. When
we make this two part division, the functional integral for the partition function
factorizes, because S and Sy depend only on the physical modes A ;. (that is
what gauge symmetry means), while Sgp depends only on the pure gauge modes
A gauge> Decause it is zero for any field that satisfies the Landau condition. Thus we
can write

Z = [@[ Agys| Det(M +m1) exp( =56) [P Aguuge] XP(—Sce)- (A3)

The first integral is very complicated, and has to be done by a Monte Carlo
algorithm, but the second integral is gaussian and can be done analytically. This
allows us to find the A-dependence of propagators and other gauge dependent
quantities. In the Landau gauge exp(—Sgg) acts as a d-function, forcing all the
gauge modes to zero, and so forcing all configurations to satisfy the Landau
condition exactly. But in the other covariant gauges every configuration of the
gauge field can occur. We can label any configuration by giving the Landau
configuration it is equivalent to and the gauge transformation 6(x) needed to
make it satisfy the Landau condition. The probability that a configuration occurs
(relative to the equivalent Landau configuration) is simply exp(—Sgg) for the
gauge fields generated by 8. Consider a gauge transformation that multiplies an
operator of charge g by the factor ¢4, and express 6(x) in terms of its Fourier
transform

0(x)=ay+ Y. [a; cos kx + by sin kx]. (A4
k+0

The gauge field corresponding to @ is A ”O(x) and has the action

Sce(4,0(x))= X 3(ai+b7) ﬂl(4— Y cos k#)z]. (A5)

k+0 A




M. Géckeler et al. / Non-compact lattice QED 767

Because we can do the integral over pure gauge modes, it is possible to write
down a relationship between a propagator in the Landau gauge (C;) and that in
any other covariant gauge (C,)

fgo exp(ig(0(x;) — 6(x,))) exp( —Sgr(4,6))
Cxy—x,) = Cu(xy—x)
[90 exp(—Sor(4,8))

Ag? 1—cos k(x,—x,)
k=0 (4— Y cos k#)
I

Ci(xy—x)

= exp| —

q’ d*k 1—cos k(x;,—x,)
2
- (2m)* (4— Y cos k“)
7

Cr(x;—x,)

=F\(x,—x)Cr(x, — xy). (A.6)

The integral in the above equation behaves logarithmically when (x, —x,)? is
large, so that the factor F, behaves like a power of x,—x; at distances large
compared with the lattice spacing. Therefore, the mass extracted from the expo-
nential fall-off of the propagators C; and C, will be identical. We can also see
that the Landau gauge is the best of the covariant gauges, in the sense that in all
the other gauges the propagator will be smaller, because the factor F, is always
less than one.

In conclusion, it should be pointed out that the results of this appendix depend
heavily on the fact that the theory we are simulating is abelian and non-compact.
The complications of gauge fixing in non-abelian theories are well known, but even
fixing a compact version of the U(1) Landau gauge is a delicate matter [45].

Appendix B. An alternative calculation of the fermion mass

As already pointed out, the fermion propagator is not gauge independent,
though its mass is. (See appendix A.) This has caused us some unease. So, we
decided to make an independent determination of mg. We shall now consider a
widely separated fermion—antifermion pair for our second calculation.

In order to have a gauge-invariant description of the fermion—antifermion pair,
one could introduce the appropriate parallel transporters between fermion and
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antifermion. To avoid the fluctuation of a large gauge field string, we have chosen

to fix the gauge. However, this time we have chosen the Coulomb gauge. The
Coulomb gauge condition

A,A,(x)=0 (B.1)

it

-

does neither eliminate gauge transformations depending only on the time nor the
invariance (5.2). However, by studying the correlation function of the operator

a(t)= Y r(x, y(x, t)x(x+2d,1t), (B.2)

x

with its (lattice) charge conjugate

o(t)=Yr(x, )x(x+2d, t)x(x,t), (B.3)

X

for fixed (z-independent) separation 2d (all components even), we only have to
deal with expectation values of operators, which are invariant under (5.2). The
factor r(x, t) denotes the sign factor of local “mesonic” operators * (see, e.g. ref.
[46D.

If L,=L,=L, is a multiple of four (as is the case for our lattices), it is
particularly advantageous to choose 2d; = L,/2: first, (Coulomb) interaction ef-
fects are minimized and, secondly, #(t) transforms like the composite operator

Lr(x, )X(x, t)x(x, t) (B4)

X

under the lattice symmetry group (except for charge conjugation), so that the
group theoretical analysis of the local “mesonic” operators [46] applies.

We have calculated (the connected part of) {#(t)#(0)) with 2d, = 6 averaged
over blocks of 20 successive configurations on our 12* lattices for m = 0.04 and
B =0.17, 0.22. Unfortunately, the results are rather noisy. Nevertheless, we per-
formed the following two types of fits. First, we employed the standard
parametrization (8.1) of meson correlation functions. Secondly, we computed the
expectation value of #(¢)#(0) for free fermions in the presence of a constant
background field B, and used the resulting expression as a fit function. For even

* Averaging the correlation function over directions leads to the factors s(x, ¢) given in eq. (8.2).
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times, 2¢, one finds

4(141142[43)_1 Zsinh_2(2/.L0(p))(coshz(%L4;1.o(p)) - sinz(%L4B4))_2

X {sin?(3L,B,) sinh?(3L,po( p)) cosh®(ro(p) (3L, —2t))

+c0s?(3L4B,) cosh?’(3L4pq(p)) sinh®(po(p) (3L, — 2¢))}

i n?(p,+B;) + m |, (B.5)

whereas for odd times, 2¢ + 1, one obtains

(LleL3)_1 ECOSh—Z(ZILo(P))(COShZ(%LuJ«o(P)) - sinz(%L4B4))_2

X {sin?(3L4B,) sinh?(3Lpo( p)) sinh?(mo(p) (3L, — 2 — 1))
+c0s?(3L4B,) cosh?(3L,uo( p)) cosh?(po(p)(3L,— 2t —-1))}. (B.6)

Here

sinh(po(p)) = 1/my + 23: sin*(p; + B;) , (B.7)
i=1

and the coefficient § depends on the sign factor r(x, ¢) chosen in #(¢). If #(¢) is
such that the correlation function of the corresponding local operator (B.4) is the
PS-S correlation function, one has §=1. In the case of the PS-S correlation
function § = —1. For the V-T (V-A) correlation function one gets, after averag-
ing over the three space directions, §=1/3 (§= —1/3).

Taking for the background potential the value extracted from the configurations
under consideration, we ended up in this case with two free parameters for each
choice of r(x, t), namely the fermion mass my and an amplitude.

The rather large errors of the data prevent any definitive conclusion. Neverthe-
less, we can make the following statements. The first type of fit leads to relatively
large masses (> 2my). This is probably caused by the fact that, due to the fixed
fermion—antifermion distance, states with various relative momenta contribute to
the correlation function. The second type of fit, using the fermion propagator in a
background field, leads to mass values, which are comparable with those given in
table 3. However, it does not allow for a precise determination of my: even rather
large changes of the mass increase the y? only slightly, if the amplitude is modified
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appropriately. Therefore, the method for the calculation of my described in sect. 5
is superior. Nevertheless, we see (at least qualitatively) that the propagation of a
fermion—antifermion pair created at a distance of 6v3 lattice spacings can be
described by the propagation of a free pair of a fermion and antifermion of mass
myg. This finding lends further support to our method of extracting the renormal-
ized fermion mass from the fermion propagator in Landau gauge.

Appendix C. Perturbation theory in the presence of background fields

In perturbation theory we make an expansion about the large 8 (or B) limit of
our theory. Before doing this, we have to consider the theory at 8 = . At infinite
B only those A field configurations, for which all plaquettes are zero, can
contribute to the functional integral. The pure gauge modes survive in this limit,
but they are irrelevant for any gauge invariant quantity. There are, however, four
physical modes that also survive at 8 =«. These are the constant background
fields B, discussed in sect. 5. Although they receive no action from S, they are
not completely free, because the fermion determinant, Det(M + m1), depends on
B,. This is a finite size effect, because only those fermions, whose world-lines wrap
around the torus, can detect B,. The explicit expression for the fermion determi-
nant is

Det(M+ml)=T1 (m2 + Y sin*(k, +B,L))l/2. (C.1)
k B

The product is to run over all momenta (—, 7] consistent with the boundary
conditions. The determinant takes the form of a product over momentum states,
because the background fields do not break translation invariance. So, the eigen-
vectors of M are still states of definite momentum. The effect of B, is simply to
change the eigenvalues. When we invert the fermion matrix, we find that the effect
on the fermion propagator of the background field is again to replace kﬂ by
k,+B,.

As an example of the results delivered by doing perturbation theory in a
background, field we give the formula for the chiral condensate at 8 =

-1

fd"B Det(M +ml) Zm(m2 + ) sin’(k, +B“))
3 »

(x> = . (C2)
fd“B Det(M +m1)

An interesting feature of this formula is that it does not depend on whether the
fermion boundary conditions are periodic or anti-periodic. If the boundary condi-
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tion in the u direction is changed from periodic to anti-periodic (or vice versa), the
distribution of B given by (C.1) shifts by w/L,, so that the condensate (C.2)
remains unchanged. This is a completely general result (holding at all B-values), a
change in one of the boundary conditions is always exactly compensated by adding
m/L, to all A fields in that direction [47]. We have used anti-periodic boundary
conditions in the time direction and periodic in the space directions, but all the
gauge invariant quantities we present in this paper would be unchanged if we had
taken another combination of fermion boundary conditions.

When we calculate the one-loop polarization correction in sect. 6, we also use a
weighted average over backgrounds similar to (C.2). Both, for the chiral conden-
sate and the polarization tensor, we find that results on a 12* lattice scarcely differ
from those on an infinite lattice, and even the difference between perturbation
theory on an infinite and on an 8* lattice is minor. Thus, the influence of the
background field on these quantities is negligible.
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