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The ground-state projection multigrid method is studied for computations of slowly decaying bosonic propagators 
in four-dimensional SU(2) lattice gauge theory. The defining eigenvalue equation for the restriction operator C is 
solved exactly. With the Galerkin choice .4 = C* for the interpolation operator, the critical exponent z is not reduced 
in nontrivial gauge fields. Nevertheless, a considerable speedup is obtained compared to conventional relaxation, and 
the conjugate gradient algorithm is outperformed. Simulations with an "optimal" interpolation kernel .4 eliminate 
critical slowing down for any value of the gauge coupling. This proves that ground-state projection is a good choice 
of C (i.e., of the blockspin). 

In Monte Carlo simulations of  lattice gauge theo- 
ries with fermions the gauge field dependent fermion 
propagator S needs to be computed anew for each 
new gauge field configuration. Therefore it is im- 
portant to have an efficient method to do so. More 
precisely one needs u = S f ,  where f are given 
functions. The conjugate gradient (CG) algorithm 
is state of  the art. Great hopes to do better are at- 
tached to the multigrid (MG) method [1-6] .  The 
ground-state projection method is particularly attrac- 
tive. There, the averaging operator C from a grid to 
the next coarser grid is a projector on the ground 
state of  a local hamiltonian. Initial results in 2D 
U ( l )  [3,4] and (approximate ground-state projec- 
tions) in 2D and 4D U ( l )  and 2D SU(2)  gauge 
fields [3,5] are encouraging, but applications in 4D 
non-abelian gauge fields remain a challenge because 
of  the difficulty of  finding the projector. 

Here we present the first ground-state projection 
MG computation of  a gauge covariant propagator 
in 4D, for SU(2)  gauge fields. We consider the 
bosonic propagator ( - A  + m E)-I ,  where A is the 
gauge covariant lattice laplacian. The MG method is 
of  interest near criticality, i.e., for slowly decaying 
propagators. For nontrivial gauge fields we enforce 
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slow decay by choosing m 2 negative and very close 
to the negative of  the lowest eigenvalue --mE o f - A .  

The method used for finding the projector C de- 
pends essentially on the absence of  degeneracies of  
the eigenvalues of  the local hamiltonian (modulo the 
intrinsic two-fold degeneracy discussed below). This 
nondegeneracy condition can also be fulfilled for 
staggered fermions, provided the averaging is cho- 
sen such that it leads to staggered fermions on the 
coarse lattice again (unlike in ref. [4]) .  However, 
staggered fermions have special problems associated 
with flavor symmetry breaking. Therefore it seemed 
worthwhile to do a bosonic computation first. 

We divide the original hypercubic lattice A of  lat- 
tice spacing a (set = 1) into hypercubes ("blocks") 
x of  L 4 sites z E A, with Lb = 3. We identify each 
such hypercube x with the site J at its center. These 
sites 5c form the first block lattice A ~ with lattice 
spacing Lba, and so on. The averaging C is sup- 
posed to map two-component functions on A into 
two-component functions on A I. Its kernel C(x ,  z)  
is a 2 × 2 matrix. We demand that C ( x , z )  = 0 
unless z E x. Mack's version of  the projective MG 
method will be used, It is briefly reviewed below and 
described in some detail in refs. [7,8]. The "local 
hamiltonian" on hypercube x is -AN,x. This is a dis- 
cretized version of  the gauge covariant laplacian with 
Neumann boundary conditions on the boundary of  
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hypercube x.  Explicitly 

Z [ U ( z , w ) f ( w ) - f ( z ) ]  (1) (AN, x f ) ( z )  = 
ff~ n.n. Z, 

WEX 

for z E x,  and 0 otherwise. Summation runs over 
the nearest neighbors w of  z which are in the same 
hypercube x, U ( z , w )  E SU(2)  is the lattice gauge 
field attached to link (z, w) .  

We introduce the notat ion C* (z, x )  = C (x, z)  t 
( t  is the adjoint  of  a 2 × 2 matr ix) .  For  each x the 
averaging kernel C (x, z) is determined as a solution 
o f  the gauge covariant  eigenvalue equation 

(--AN,x C*)  ( Z , X )  = ,~o(X) C* ( z , x )  . (2) 

The laplacian acts on z, and 20(x)  is the lowest 
eigenvalue of  the posit ive (semi-)defini te  operator  
--AN.x. When eq. (2) is regarded as an equation for 
a two-component  vector in place of  a matrix,  then it 
has two degenerate solutions, for any gauge field. To 
see this suppose that (c~, C12, C2h C 2 2 , . . . ,  CV1, Cv2)T, 
V = /_~, is an eigenvector of  --AN,x corresponding 
to an eigenvalue 2. By using the fact that the ele- 
ments of  (a mult iple of) an SU (2) matr ix (Uij) i  j= 1,2 
fulfill UEl = -Ui2 ,  U22 -- Ul--~, one proves that 
( -c-~,  c11, -c22, CEl . . . . .  -~-~v2, ~-k-?vl ) T is also an eigen- 
vector of  --AN,x with the same eigenvalue 2. The two 
independent  two-component  solutions may be com- 
bined into a 2 × 2 matrix C* (z, x )  The freedom of  
taking linear combinat ions reflects itself in the free- 
dom of  taking C*(z , x )  ~ C*(z ,x ) f~(x) ,  where 
f~(x)  is an arbitrary 2 x 2 matrix. This freedom is 
el iminated by imposing the normalizat ion condit ion 

CC* = I ,  

i.e., ~-~ C ( x , z ) C * ( z , y )  
z 

= Zb-4~x,y[ ( 3 )  

and 

C ( x , ~ )  = r ( x ) I ,  w i t h r ( x ) > 0 r e a l .  (4) 

The second condit ion ensures that the averaged field 
• (x) = (C~) (x )  on A 1 transforms under gauge 
transformations like the field ~b on A at block center 
~. An efficient algorithm for solving eq. (2) was 
described by the author in ref. [7], and was used in 
this work. 

In the M G  approach one introduces a sequence 
of  lattices A = A °, A l, A 2 . . . .  of  increasing lattice 
spacing ai, viz. ai+l = L b a i  with a0 = a. We wish 
to solve an inhomogenous l inear equation 

D0uo = J ~  (5) 

on the fundamental  lattice A = A °, for given J~. 
In our case, Do = - A  + m 2. After some relaxation 
sweeps on A ° one gets an approximat ion ro to u0 
which differs from the exact solution by an error  
e0 = Uo - rio. The fundamental  idea of  the M G  to 
the solution of  part ial  differential (or difference) 
equations [9] is that the error eo should become 
smooth very fast, although it may become small very 
slowly because of  critical slowing down (CSD).  The 
error satisfies the equation 

D0e0 = ro (6) 

which involves the residual r0 = Jo -D0f io .  I f  e0 is 
smooth, it is determined to a very good accuracy by 
a function el on the next coarser lattice A ~, and can 
be represented in the form 

eo = .Ael (7) 

with an interpolat ion map A which should be so 
chosen that it maps functions on A ~ into smooth 
functions on A °. Conversely, el can be obtained 
from e0 with the help of  an averaging map C which 
satisfies 

CA = I .  ( 8 )  

It follows that el = Ceo. Inserting eq. (7) into eq. 
(6) and acting on the result with C, we see that el 
will satisfy the equation 

Dle l  = rl (9) 

with 

Dl = CD0.A, rl = fro .  (10) 

The problem has been reduced to an equation on 
the coarser lattice. I f  there is still too much CSD 
at this level, one may repeat the procedure, going 
to coarser and coarser lattices. Instead, eq. (9) on 
the coarser lattice was solved exactly by CG. This 
suffices to test the power of  the M G  method. In 4D 
with Lb = 3, A ~ has 81 t imes fewer points than A °. 
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In bosonic gauge theories, the natural definition of  
smoothness of  a function e on A ° is that its covariant 
derivative V~ e should be small: 

IIVuell 2 - (Vue,  Vue)  = ( e , - A e )  << ( e , e ) .  (11) 

Except for a pure gauge, the lowest eigenvalue of  - A  
is strictly positive. It can be regarded as a measure 
of  disorder of  the gauge field. Thus, in a disordered 
gauge field there is a limit to how smooth a function 
can be. 

Given the averaging kernel C, there exists an 
ideal choice of  the interpolation kernel .4. It is 
determined as follows. For every function ("block- 
spin") • on A 1, ~ = . 4 ~  minimizes the action 

= (~b,(-A + mZ)~b) subject to the constraint 
C~b = ~ .  With this choice of  .4, D~ is guaran- 
teed to be self-adjoint. A good "choice of  block- 
spin", i.e., of  C, is characterized by the fact that 
the ideal kernel .4 (z, x)  (z E A °, x E A l ) associ- 
ated with it has good locality properties. This means 
that .4 (z, x)  is big for z E x, and decays expo- 
nentially in ] z -  Jc I with decay length 1 block lat- 
tice spacing a~. Computations of  the ideal kernel ,4 
were done and it was verified that the choice (2) 
of  C is a good choice of  blockspin in this sense, 
and that the exact D~ of  eq. (10) is to a good ap- 
proximation of  the same nearest neighbor form as 
Do = - A  + m 2. I f x  and y are nearest neighbors then 
D l ( x , y )  = ~ " ~ z C ( x , z ) D o ` 4 ( z , y )  = C D o ` 4 ( x , y )  
can be regarded as a dielectric lattice gauge field 
[10] on the link ( x , y )  of  A 1. It is equal to an 
SU (2) lattice gauge field multiplied with a fluctuat- 
ing positive real factor ("fluctuating length"). 

The interpolated solution e0 = `4el of  eq. (9) is 
supposed to be added to the approximate solution 
u0 of  eq. (6) to obtain the true solution u0. With 
the ideal choice of  .4, there is complete decoupling 
between layers #1 . But the exponential tails of  the 

,1 This means the following: We may regard eq. (5) as an 
eq. (5') for the high frequency part u~ = up-.ACuo of 
u0. This equation is noncritical and therefore iteration 
of (5') should converge quickly to yield u~ accurately. 
If it has converged in this sense, then addition of the 
interpolated solution of eq. (9) produces the true so- 
lution u0 of (5). There is no need to repeat the whole 
procedure. 

ideal .4 make it impractical for actual simulations, 
and too costly to compute over and over again. 

If  we approximate ,4, maintaining C A  = I and 
retaining the exact D~ (for the moment) ,  then the 
interpolated solution e0 = .Ael of  eq. (9) will yield 
the right correction of  the low frequency part of  u0, 
but it re-introduces an error in the high frequency 
part. To eliminate this error, one has to go back to 
A ° and do iterations there again. In other words, the 
whole two-grid cycle has to be iterated. We adopt 
the Galerkin choice (variational coarsening, VC) 

`4 = C*. (12) 

Without knowing the exact kernel `4, one cannot 
compute the exact "effective difference operator" 
D1. Knowing that D~ is approximately of  nearest 
neighbor form as described above, one can try to 
approximate it. The choice 

D1 = ~ - ICDoC*  (13) 

yields another dielectric lattice gauge field D~ (x, y )  
which also has the right gauge covariance properties. 
Its fluctuating length can be adjusted to fluctuate 
around the "right" value (of the exact D l ( X , y ) )  
by adjusting the real parameter ~. One could think 
of  adjusting also m 2 in D~, but it turned out that 
this leads to no more than a ,~ 5% acceleration of  
convergence. 

The exact kernel .4 can be used to carry out sys- 
tematic investigations o f  the question where one buys 
what error and how it affects convergence speed. 
Such studies were also done and will be discussed be- 
low. First we report on the performance of  a scheme 
based on the choice (2 ) - (4 ) ,  (12), (13). 

To get good performance it is essential to choose 
an efficient iteration scheme on A °. We used damped 
Jacobi iteration and successive over-relaxation 
(SOR) with an adjustable relaxation parameter to. 
(The notation for 09 is standard, see e.g. ref. [ 11 ].) 
This includes Gauss-Seidel relaxation as a special 
case (to = 1 ). 

Numerical work was done on 94 and 184 lattices 
A with SU(2)  gauge fields equilibrated with the 
Wilson action at various values of  p. We compare 
damped Jacobi iteration on a single layer (Jac), 
SOR-iteration on a single layer (SOR), conjugate 
gradient on a single layer (CG) and two versions of  
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Table 1 
MG with VC: optimum values of 8 and o9 in a 4D pure gauge (mc2r = 0) and demonstration of elimination of CSD. 

A l g o r i t h m  a n d  O p t i m a l  J O p t i m a l  co 

l a t t i c e  s ize  

Relaxation time z for m 2 = 

1.0 0.1 0.01 10 -3 . . . . .  10 -1° 

MG Jacobi on 94 1.8 0.96 3.6 6.4 7.1 7.2 
MG Jacobi on 184 1.8 0.94 4.0 6.4 6.9 7.0 
MG SOR o n  184 1.7 1.09 2.3 2.5 2.8 2.9 

ln(llr(n)ll 
-5.0 

-10 .0  

- 1 5 . 0  

-20.0 

(a) ln(llr(")ll) 

-5 .0  
m 2 = mZ~ * 0.1 

• /~=lo.o 

20 40  60 80 i00  120 
# i t e r a t i o n  n 

-10 .0  

-15 .0  

- 2 0 . 0  

(b) 
, . , , , . , 

m 2 = m~r + O1 

c .  
0 20 40 60 80 i00  120 
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ln(llr(n) H) ln(llr(n)ll 
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# i t e r a t i o n  n 

Fig. 1. Convergence on an 184 lattice in quenched SU(2) gauge fields at (a) fl = 10.0, and (b) fl = 2.7, with 
m2r = -0.1533739, respectively -0.7554339. (MG with VC.) 

two-grid cycles, MG Jac and MG SOR with checker- 
board updating. One iteration of the two-grid cycle 
consists of exact solution of the residual equation 
on the 34 respectively 64 block lattice A 1 by CG, 

followed by one sweep through the lattice A ° using 
either Jacobi or SOR. The computational work done 
in one iteration of all schemes is comparable. The 
propagator was computed, i.e., A is a Kronecker ~. 

Relaxation times z (in number  of iterations) 
were determined as follows. Let r u> be the resid- 
ual on A ° after the ith iteration. The RMS residu- 

als Ilr(i)ll - {IA°1-1 ~zeA0 ½Tr [ rU) ( z )*r t i ) ( z ) ] }  u2 

were computed, and z was determined from an expo- 

nential fit after II r (i + 1 ) II/II r") II has become constant 
with an accuracy of better than 10 -4 for at least 50 

iterations. 
For pure gauges, complete el imination of CSD was 

observed in the MG iterations, and CG which has 
CSD was clearly outperformed. Results are in table 1. 
The results were also checked for gauge covariance. 

For nontrivial  gauge fields the lowest eigenvalue 
- - m  2 cr > 0 of - A  was first determined by inverse 
iteration to an accuracy of 1 0  - 7  o r  better (see data in 
fig. 2). Propagators ( - A  + m 2)-1 were computed for 

4 8 8  
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values of  m 2 close to criticality, m 2 = m2~ + A m  2, 

A m  2 = 1, 0.1, 0.01, 0.001 . . . . .  10 -7 .  Optimum 
values of  co and ~ are (i) fl = 10.0: ~ ,~ 2.3, to ,,~ 
0.99, 0.96, 1.25 for MG Jacobi on a 94, on an 184, 
and for MG SOR on an 184 lattice respectively; 
(ii) fl = 2 . 7 : 6  ~ 2.8, to ,,~ 0.99, 0.99, 1.51 for 
algorithms as above. These values were determined 
at ~ m  2 = 0.01 and retained for all values of  m 2. 

For pure gauges, performance of  the MG schemes 
depends little on 6, but for disordered gauge fields, 
the relaxation time decreased with increasing ~ up 
to a maximum value where the M G  algorithms start 
to diverge suddenly. 

In fig. 1 the approach to convergence o f  the various 
algorithms is compared for two nonpure gauge field 
configurations (fl = 10.0 and fl = 2.7) for values 
Am 2 = 0.1, 0.01, with to, 3 in MG as given above, 
o9 = 0.99 in Jac, o9 = 1.91 in SOR. The initial 
guess for the propagator is zero in case of  CG and 
t~z,0 CO/(8 + m 2 ) for the relaxation algorithms. In the 
literature, convergence is considered achieved when 
the natural logarithm of  the RMS residual has gone 
down by 10 (dashed line in fig. 1 ). It is seen that 
MG SOR outperforms CG. 

Smaller values o f  A m  2 may seem to be o f  no 
practical importance because the correlation length 
determined by the propagator becomes comparable 
to or larger than the lattice extension, and finite size 
effects are important. But it is nevertheless important 
to study very small A m  2 in order to understand the 
operation and limits of  the MG algorithms. 

In fig. 2 the relaxation time for various algorithms 
is shown as a function o f  A m  2, a t  fl = 2.7. One sees 
that CSD is not eliminated in the MG modes. The 
relaxation time behaves like z cx (Am2) -z/2 with 
z = 2 both for MG Jac and MG S O R  t*2 . ( C G  has 
no well defined z.) At fl = 10.0 the same qualitative 
behavior was found as in fig. 2. Computations at 
other fl's down to 2.2 were also done. Surprisingly 
it was found that the value of  A m  2 at which CSD 
sets in (i.e., z starts to increase) depends little on 
ft. This contradicts the scaling hypothesis of  ref. 
[5]. Basically the only dependence on fl was found 

#2 r's for relaxations on a single grid are known func- 
tions of mE, and agree extremely well with with our 
numerical results. This will be discussed in more detail 
elsewhere. 

" r  

10 s ', ', o 

10~ • • o 
~=2.7 

o 10 4 • • Q 

o 10 3 • q~ 
o : Jac • o 

0 

101 o : SOR o a ~  • 
• : MG SOR e ~  # 

10 ° ...... ' ........ ' ........ t ........ , ........ , ........ , ........ , 

. . . . .  '_1 . . . . . . .  p~ . . . . . . . .  I . . . . . . .  ' l  . . . . . . . .  I . . . . . . . .  I . . . . . . . .  L . . . . .  

10' 10-7 10-o 10-~ 10-4 10-a 10-z 10-.1 10 o 
Am z 

Fig. 2. Relaxation times r (in comparable work units) of 
iterative algorithms on an 184 lattice in a quenched SU(2) 
gauge field at fl = 2.7, with m2r = -0.7554339. (MG with 
vc . )  

for the constant of  proportionality in the scaling 
relation of  T. Compared with fl = 2.7, its value is 
nearly doubled for fl = 2.2, and roughly reduced by 
a factor o f  3 at fl = 10.0. 

A tentative interpretation of  the permanence of  
CSD might be as follows: mE is a natural gauge 
invariant measure of  smoothness (see above). For 
fl ~< 10 the lowest eigenvalue --mE o f - A  appears 
to be too large to consider any function on A ° as 
smooth. Therefore the basic hypothesis o f  the MG 
method, namely smoothness of  the slow modes, is 
not fulfilled, and therefore one cannot expect MG 
to work in an optimal fashion. There would be no 
problem if one had restricted attention to propaga- 
tors ( - A  + m 2 )  -1 with m 2 >t 0. This propagator is 
critical only when - A  has a very low eigenvalue, and 
then smooth functions exist. 

One might believe that basically one is paying 
the prize for having introduced criticality artificially 
into a frustrated system. However, investigations 
with Mack's optimal interpolation kernel ,4 [ 12,8 ] 
showed that this is not the case. 

The optimal A was computed for gauge fields on 
9 4 lattices at fl = o0, 2.7, 2.5, 2.2, 1.8, 0 . . 4  is the 
solution of  the equation 

( [ - A + m 2 r  + x C * C ] . 4 ) ( z , y )  = K C * ( z , y )  (14) 

for large x. This .4 (z, y ) is not translational invari- 
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Table 2 
Results of the idealized MG algorithm with lexicographic 
SOR on 94 lattices A °. 

fl m2r optimal to z for Am 2 ~< 10 -3 

o~ 0 1.27 1.6 
2.7 -0.8210607 1.38 1.9 
2.5 -0.9477085 1.40 1.9 
2.2 -1.2218471 1.45 1.9 
1.8 -1.7567164 1.57 2.5 
0 -2.7480401 1.69 5.2 

ant (except for U = I )  and has support  on all 9 4 

sites z of  the fine lattice, for all 34 sites y of  the 
block lattice. The use of  this kernel for product ion 
runs is impractical,  but  it is important  to answer 
questions of  principle. (These investigations had to 
be done on small 94 lattices because of  storage space 
requirements. ) 

It turned out that CSD is completely el iminated 
at any value of  fl when DI = CDoA and el is 
interpolated by A .  Results are in table 2. Relaxation 
times in the opt imal  M G  scheme are less dependend 
on 09 than in VC. Also, no damping parameter  ~ is 
required. The fact that  CSD is completely el iminated 
in the idealized M G  algorithm proves that ground- 
state projection is a good choice of  C (i.e., o f  a 
smooth blockspin of  the low frequency components)  
in gauge theories. 

Finally, it is interesting to note that  CSD is 
not el iminated in nontrivial  gauge fields when not 
all ingredients are optimal.  Choosing either D~ = 
~-~CDo`4 but using C* instead o f , 4  for interpola- 
tion, or approximating DI = f i-1CDoC* but  retain- 
ing ,4 for interpolation, both fail to el iminate CSD at 
finite ft. This is unlike the case fl = c~, where also 
these two modif icat ions of  the idealized algorithm 
succeed in fighting CSD. When no gauge fields are 
present, the lowest mode o f  - A  is a constant. In this 
case the simple variat ional  M G  scheme is success- 
ful, because then C* interpolates the lowest mode 
o f - A  correctly. The same is true for the opt imal  
,4, since it fulfills (Lba)  4 ~--'~y~n I ,4 (z,y) = 1 for all 

z E A °. In the trivial  case U = I the interpolat ion 
of  a constant function on A l with ,4 is unnecessarily 
complex, because there are nonvanishing contribu- 
tions from all y C A ~. However, the above results 
show that indeed more complicated choices of  D~ 

and of  the interpolation map ,4 are necessary to 
obtain z = 0 in bosonic gauge theories. 

With  staggered fermions the situation is different 
from the bosonic one in principle. The gauge covari- 
ant  Dirac operator  ~7 has an eigenvalue close to zero 
in disordered gauge fields, and there exist therefore 
functions which are smooth in the sense that  [I ~'ell 2 
is small. Unfortunately,  it is costly in memory and 
storage space to try to exploit this - see the discus- 
sion in ref. [8]. Therefore the result of  this paper  
that schemes based on "laplacian smoothness" (11 ) 
work well enough suggests that one may not have to 
pay this prize. 
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