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We proposea classof once-subtracteddispersionrelationsfor the vacuum-polarization
functionsof massivefermions, in which the subtractionconstantsaredeterminedexplicitly
from Wardidentities.We showthat in perturbationtheoryto O(s) andO(wss) this ap-
proach,thealternativedispersionrelationsproposedby Chang,Gaemersandvan Neerven,
anddimensionalregularizationall give the samecontributionsto electroweakobservables
suchas L~pand~r. The thresholdbehavioursof the subtractionintegrandsare, however,
verydifferentandthe two dispersionmethodsareexpectedto leadto significantly variant
estimatesof contributionsarising from non-perturbativett thresholdeffects.

The study of radiative corrections of 0 (ctas) has become a matter of
considerableinterestin electroweakphysics. In fact, it has beenshownthat
QCD correctionsto the vacuum-polarizationfunctionsassociatedwith theW~
andZ°bosonsaresignificantfor largemt values [1—51.This in turn affectsthe
detailedstudy of such basiccorrectionsas E~pandEsr and, as a consequence,
the predictedvalueof mw andthe mt upperbound.

One approachin the study of the QCD correctionshas beenthe pertur-
bativeevaluation,using dimensionalregularization,of the two-loopdiagrams
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involving the top andbottom quarksandavirtual gluon [1]. An alternative
method,basedon dispersionrelations,goesback to the pioneeringwork of
Changet a!. [61.Writing the vacuum-polarizationtensorsfor vectorandaxial
vectorcurrentsas

H~”(q, m1,m2)= H\
T~~(s,m

1,m2)g,(v + ~ (1)

wheres = q
2 and m

1 and m2 denote the massesof the two virtual quarks,
theseauthorsproposedthe dispersionrelations

m1,m2)

— ~ 1A
2 d ~1m~”~’(s’,m

1,m2)
— ~ J(mj+m2)2 S~Sl6

— 1 ( ~A
2 th’ ImH”(s’,m

1,mi) + ds’ ImHV(s/,m2,m2)’~. (2)
2 ~ J4m2 S J4m~ S’ J

The subtractionterms removethe quadraticallydivergent part of the first
term; thereremainsa logarithmicallydivergentpart,which is regulatedby the
cutoff A

2. The peculiarform of the subtractionterms was predicatedon the
groundsthat,at the one-looplevel, the resultingexpressionsamountto finite
renormalizationsof the correspondingresults obtainedthrough dimensional
regularizationandthe observationthat suchtermscancelin physicalquantities
such as the correctionsto the vector-bosonmasses.

In thepresentpaperwe proposea new classof dispersionrelationsin which
the subtractionconstantsarederivedexplicitly from Ward identities. Writing

H~~(q)= _ifd4xei~(olT*[J~(x)J~(0)] 10), (3)

where T* denotesthe covarianttime-orderedproduct,J,~representsvectoror
axial vectorcurrents,andwe havesuppressedfor brevity the dependenceon
m

1 and m2, we obtain the Ward identity

q’~H,~V(q)= fd4xe~(OIT[ J,j(x)Jrt(0)]I0) Ez~s)q~, (4)

Combiningeqs. (1) and (4), we have

H(s) = —)L(s)s-i-z\(s). (5)

We now observethat both A(s) and~\(s) are only logarithmically divergent.
In the caseof A(s) this is dueto the extractionof two powersof the external
momentumin eq. (1). In the caseof t~(s) this arises from the fact that J,~
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is brokensoftly by massterms (so that &J~L involvesoperatorsof canonical
dimension3) and the furtherpoint that one power of the external momen-
tum is extractedin eq. (4). Our proposalis to evaluatethe logarithmically
divergent quantitiesA(s) and ~ (s) by meansof unsubtracted(but regular-
ized) dispersionrelations.The quadraticallydivergent quantityH(s) is then
uniquelydeterminedby the Ward identity of eq. (5), namely

VA ~ , ImAV,A(sFmim2)H ‘ (s,ml,m2)= — — ds
~ J(m1+012)2 5’ — S — 16

+ ~ 1A
2 ds’ Im~’~A(~F m

1 m2) (6)
~J(mi+m2)2 5’s16

Eq. (6) canbe written in the equivalentform

~ (s,m1,m2)
= 11A

2 ds’ (ImH~(s,rni~m
2)+ ImA (s’mim2)~.(7)

~ (m1-~-m2)

2 ‘\ 5’ —5 — 16 J

For vector currentswith m
1 = m2, O’

1.J,
1(x) = 0; thereforeEs(s) = 0 holds,

ImA is relatedto ImH by eq. (5), andoneverifies that eqs. (2) and (7)
are identical. For vector currentswith unequalmassesand for axial vector
currents,the subtractionterms in eqs. (2) and (7) are, at first hand, very
different. We will see later on that this is expectedto lead to significantly
variant estimatesof non-perturbativethresholdeffects. However, as far as
purely perturbativecalculationsare concerned,we will now show that (i) the
prescriptionsof eqs. (2) and (7) coincide for arbitraryvaluesof m1 and m2
at the one-loop level; (ii) for axial vector currentswith m1 = m2 or vector
andaxial vectorcurrentswith m2 = 0, eqs. (2) and (7) differ at the two-loop
level, i.e. to leadingorder in QCD, by finite renormalizationsthat cancel in
E~~pand~r. (iii) Both calculationsgive the samecontributionsto Esp andE~r
as dimensionalregularization.

At the one-loop level, a simple procedureis to evaluatedirectly H,1~from
eq. (3) using dimensionalregularizationand then to extractthe imaginary
partsof H\T,A(s,mi,m2) and2’~~k(s,m1,m2),as theseareindependentof the
regularizationprocedure. (An equivalentmethod is to evaluatedirectly the
imaginarypartsby meansof Cutkosky’srule.) As a check,we havecalculated
also ti(s) q0 via eq. (4) and verified that, as expected,the Ward identity
of eq. (5) is satisfied in dimensionalregularization. In these calculations
we normalize the currents so that J~= W2Y~W1 for vector currents and

= W2YpY5W1 for axial vector currents, where çu1 and W2 are the field
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operatorsdescribingquarksof massm1 andm2,respectively.Forthe imaginary

partsat lowest orderwe find, whens> (rn1 + rn2)
2:

Im2~’(s,m
1,rn2)= 43 [s2 + s (m~+ mO —2 (m~— m~)

2], (8)

ImH~’(s,m
1,m2) = —sIm2~’(s,rn1, rn2)

— L(mi — rn2)
2 [s_ (mi + m

2)2] (9)

wherethe subscript0 means“lowestorder”, we haveincludedthe colourfactor
3, andw [s — (rni + rn2)

2] [s — (rn
1 — rn2)

2]. (Note that ~ /~7~is
the momentumof eitherparticlein the centre-of-masssystem(c.m.s.)defined
by q = (q°,O).)Comparisonwith eq. (5) showsthat the secondterm in eq.
(9) equalsImA~’(s,rn

1,rn2).
Due to y~reflection symmetry,we haveHA(s,rni,rn2) = H”(s,rn1,—m2)

andAA(s,rni,rn2) = )Y(s,rn1,—m2) up to O(ct~).Thus we seefrom eqs. (8)
and (9) that, althoughImH~’~ ImH~~,ImA~’= ImA~.The reasonis easy
to understandmathematically:when propagatorsare rationalized,the only
odd terms in rn2 are proportionalto rn1rn2 and,at the one-loop level, their
cofactorsinvolve only two y matrices.Therefore,afterthe tracesareevaluated
they becomeproportionalto g,~and thus contributeto Im H’

T” but not to
Im f”,~’ Sincesuch oddtermsarethe only ones thatdistinguishthe vectorand
axial vectorfunctions,ourpreviousconclusionsfollow. However, the equality
Im X’T = Im AA is not expectedto survivein higher orders.

Using eq. (8), we find by explicit calculation,for arbitrary rn
1 and rn2 and

A
2 >> rn?, rn~,that the constantin eq. (7) is given by

11A
2 th’ImA~(s’rnirn

2) = —~ [A2 —3 (rn~+ rn~)]. (10)

~ (m1+m2)

2 4ir

As ImH~’(s,m,rn)= —sIm2~”(s,m,rn),it immediately follows that the
subtractionconstantsin eqs. (2) and (7) are identicalat lowestorder.

In order to extendthe analysisto the level of theleadingQCD corrections,
it is convenientto write

H””’(s,rn
1,rn2) = H0”~’(s,rn1,m2)+ ~~!H~’”’(s,rni,rn2) + ... , (lla)

VA VA ~s VAA ‘ (s,rn1, rn2) = A0’ (s,m1,rn2) + — A1’ (s,rn1, rn2) + . .. . (1 ib)

Thereal andimaginarypartsofH~(s,rn1, rn2) havebeenextensivelystudied
in the literature. In order to evaluateImA\~~Awe haverestrictedourselvesto
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the two casesof greatestcurrentinterest,namelyrn1 = m2 andm2 = 0, which
to very goodapproximationcanbe applied to the t-b isodoublet.We find

ImA~(s,m,rn) = — ~‘—ImH~(s,rn, rn), (12)

ImA~(s,rn,m)= ImA~’(s,rn,rn)— ~ (~+ ~Il_!), (13)

irImA~(s,rn,0)= ~ (1 + 2) (i - 1)2 [2Li2 (‘ 1~ + fl(a + fi)]

a( 2 2\ /31 5 3 \( l\~
-—~ 1+———) +—1 1 + —-~i ii——
3~ x xj 3\ x 2xJ\ X

if i\f 3 16\ (14)
4\ XJ\ x 3xj

wherer s/(4rn
2), x s/rn2, ~ ln(~/~+ ~/~~T) = arcosh~/~,a lnx,

/3 mln(x—1), andLi
2(z) — f~dtln(l—zt)/t is the dilogarithmicfunction.

Eq. (12) follows from the Ward identity of eq. (5). Eqs. (13) and (14) have
beenobtainedby applyingCutkosky’s rule to the relevanttwo-loopdiagrams.
We notethat ImA~(s,rn,rn)~ ImA~’(s,m,m).The secondterm in eq. (13)
givesa finite contributionto the subtractionconstantin eq. (7) and, indeed,
we find

1 ~42 1 42 2
— / th’ImA~(s’,m,rn)= — I ds’ImA’~(s’,m,rn)—
~ J4m2 it J4m2 ~ (15a)

Furthermore, eq. (14) leadsto

1 ~ / v.a. rn
2 / A2 3 A2 1

—j dsImA
1’ (s,rn,O)=—---T(-—--~+—ln--—~-f-—

itJm2 it ~4rn 2 rn (15b)

Comparisonwith the subtractionconstantsin eq. (2) showsthat thedifference
betweenthe approachesof eqs. (2) and (7) is given by the terms —m

2/ir2
in eq. (15a) and —rn2/(4x2) in eq. (l5b). We now explainwhy, in spite of
thesedifferences,the two methodsas well as dimensionalregularizationgive
the sameperturbativeresults for the contributions of the t-b isodoubletto
convergentquantitiessuchas Ap andAr. Detailedexaminationshowsthat in
the threeapproachesthe vacuum-polarizationfunctionscanbe written as

it2
—H,”(s,rn,m) = rX,+V,(r), (16a)
rn2

A-_~.J1~(s,rn,rn) = rX,+Y~+A
1(r), (l6b)

= —(xX1-~-Y1)+F~(x), (16c)
rn

2 4
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where i = 0,1 labels the one-and two-loop results, l/,(r), A,(r), and F,(x)
are finite functionslisted in ref. [4], and X, and 1’, are divergentconstants.
The exactexpressionsfor theseconstantsdependon the regularizationscheme.
For example,in the dimensional-regularizationschemeA’0, Yo, andX1 contain
terms proportional to e and 60 while Y~involves also contributions of
O(~2).

Calling L ln(A
2/rn2), onefinds X

0 = = L and Y0 = —3L/2 in both
dispersiveapproaches.However, Y1 = 3L

2/2 — 9L/2 in the caseof eq. (2)
and Y

1 = 3L
2/2 — 9L/2 — 1 in the caseof eq. (7). The importantthing to

note is that the X
0, Y0, X1, and Y1 cancel identically amongthemselvesin

the evaluationof convergentquantities such as Ap and Ar, independently
of their specific representations.We illustrate this point by consideringthe
contributionof the t-b isodoublet(with rnb —* 0) to Ar. Onefinds

~tb) = s~(4H”(0,mt,rnt)+ H’T’(O,O,O))

+ —~- (H~(O,rnt,O~— ReHV(rn~,mt,0))rn~

c
2 1

+ 2 W Re H’T(rn~,rnt,0)— — (vt2H’T(rn~,rnt,rnt)s~rn~ 4

+H”(rn3~,rnt,rnt)+ v,~H”(rn~,0,0)+ H1’(rn~,0,0))], (17)

wherethe derivativesin the first term arewith respectto s andareevaluated
at s = 0, and Vt = 1 — 8s~/3and ‘0b = —l + 4s~/3are the neutral-current
vector couplingsof t and b, respectively.As usual,c~,= 1 — s~,= ~
Strictly speaking,H”(O, rnb,rnb) exhibitsamasssingularity for rnb —f 0. This
difficulty is usually circumventedby writing

H~(0,0,0) = ReH~”(rn~,0,0)+ (Hv’(O, 0,0) — ReH”(rn~,0,0Y’~
rn~ m~ ~(l8)

wherethefirst term is perturbativelywell-definedandthe expressioncontained
within the parenthesesis ultraviolet-finite andcanbe relatedto experimental
dataof a (e+e_ —b bb) via a conventionalonce-subtracteddispersionrelation.
Inserting eqs. (l6a—c) into eq. (17), one verifies that the X, and Y, cancel
identically, proving the equivalenceof the three methodsfor perturbative
calculationsof 0(a) andO(aa

5).
Although the above mentionedagreementbearswitness to the ingenuity

of the authorsof ref. [61, some important featuresof the subtractionsin
eq. (2) are, in our view, surprisingandperhapsunphysical.Onenotices,for
example,that the subtractionsin eq. (2) involve in manycasesquantitieswith
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differentchannels,thresholds,andcurrentsthanthedirect dispersionintegral!
To put it more directly: if we are interestedin evaluating, for example,
the W-bosonvacuum-polarizationfunctions, which involve the tb channel,
why should we subtractquantitiesthat seemto describecompletelydifferent
physics,namelythe t~tandbb channels?In contrast,the subtractionconstants
in eq. (7), derivedexplicitly from Ward identities, involve the samecurrents
andchannelsas the direct integral. Becauseof thesefacts, the integrandsof
the subtractionconstantsin eqs. (2) and (7) have, in general,very different
thresholdbehaviours.To illustrate this point, we give the leadingthreshold
behavioursof the relevantvacuum-polarizationfunctions:

it V VA 3
—~ImH0(s,rn,rn) = —4itrImA0’ (s,rn,rn) = ~v + 0(v ), (19a)
1~ImH

1~(s,rn,rn)= v
3 +0(v5), (l9b)

—~ImH~(s,m,rn)= —4irrIm2~’(s,rn,rn)= it2 + 0(v), (l9c)

!~ImH~(s,m,m)= ~it2v2+0(v3), (19d)
rn 3

—4irrImA~’(s,rn,m)= it2 +0(V), (19e)

whereV = ~/l — 1 /r is the velocity of eitherquark in the c.m.s.The constant
behaviourin eqs. (1 9c) and (1 9e) is due to the well-known Coulombeffect
which is proportional to (1/v) times the lowest-ordercontribution. In the
rn

2 = 0 casewe have

—~ImH~(s,rn,0)= ~V2 + 0(v
3), (20a)

itImA~”(s,rn,0) = —3v2+0(v3), (20b)

~ImH~(s,rn,0) = v2(_3ln(2v)+ ~it2+ ~+0(v~lnv),(20c)

= v2(6ln(2v)_~:2_1i)±0(V3lnv), (20d)

wherev = (x — 1)/(x + 1) is the velocity of the massivequark in the c.m.s.
In the equal-masscasewe seethat the integrandsof the subtractiontermsin

eqs. (2) and (7) havethe sameleadingthresholdbehaviour.However, in the
unequal-masscase(with rn

2 = 0) the situationis completelydifferent: while
the contributionof ImA~~A~(s,rn, 0) is greatly suppressedat threshold,that of
ImH,”(s,m,rn)/s is not.

Over the last several years, a numberof authorshave pointed out that
there are interestingand possibly significant effects associatedwith the t~
threshold.These may arisefrom resonancesin the tt system [2] or from the
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resummationof Coulombic effects nearthreshold [71.As theseeffects are
usually expressedin termsof contributionsto theabsorptivepartsof vacuum-
polarization functions, a dispersiveapproachseemsto be most suitable in
order to determinethe correspondingreal parts. It is apparent,however,that
eqs. (2) and (7) givequalitativelydifferentanswersfor such“non-perturbative
effects’ While eq. (2) tells us that the vector and axial vector partsof both
ReHZZ (s, rn, m) andReHWW(s,rn, 0) obtainpotentially significantUthresh-
old contributionsfrom the subtractionconstants,eq. (7) informs us that this
is only the casefor ReHZZ (s,rn, rn)! As eq. (7) is constructedexplicitly from
Ward identities and involvessubtractionconstantsassociatedwith the same
channelsas the direct integrals,we believeit providesaconsistentframework
to study such non-perturbativethresholdeffects. It should be emphasized,
however,that the applicationof eq. (7) requiresthe evaluationof the non-
perturbativethreshold effects on Tm A~’,A(s,rn, rn). While Tm A” (s,rn, rn) is
relatedto ImH”(s,rn,rn)/s by the Ward identity of eq. (5), ImA’~(s,rn,rn)
may require a specialanalysis. Specific numericalstudiesof perturbativeand
thresholdeffectsbasedon eq. (7) will be given in aseparatecommunication.

The authorswould like to thank Sergio Fanchiotti for very useful con-
versations.Instructive communicationswith HansKuhn andMichael Peskin
regardingrefs. [2,7] were appreciated.One of the authors (B.A.K.) would
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