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We propose a class of once-subtracted dispersion relations for the vacuum-polarization
functions of massive fermions, in which the subtraction constants are determined explicitly
from Ward identities. We show that in perturbation theory to O(a) and O(aas) this ap-
proach, the alternative dispersion relations proposed by Chang, Gaemers and van Neerven,
and dimensional regularization all give the same contributions to electroweak observables
such as Ap and Ar. The threshold behaviours of the subtraction integrands are, however,
very different and the two dispersion methods are expected to lead to significantly variant
estimates of contributions arising from non-perturbative tt threshold effects.

The study of radiative corrections of O(acas) has become a matter of
considerable interest in electroweak physics. In fact, it has been shown that
QCD corrections to the vacuum-polarization functions associated with the W+
and Z° bosons are significant for large m, values [1-5]. This in turn affects the
detailed study of such basic corrections as Ap and Ar and, as a consequence,
the predicted value of mw and the m,; upper bound.

One approach in the study of the QCD corrections has been the pertur-
bative evaluation, using dimensional regularization, of the two-loop diagrams
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involving the top and bottom quarks and a virtual gluon [1]. An alternative
method, based on dispersion relations, goes back to the pioneering work of
Chang et al. [6]. Writing the vacuum-polarization tensors for vector and axial
vector currents as

ITA (g, my,my) = ITVA(s,my,my) gu + AVMs,mi,my) quq,, (1)

where s = g2 and m, and m, denote the masses of the two virtual quarks,
these authors proposed the dispersion relations

VA (s, my, my)

—_ l /A2 dsl Im”V’A(S,’ml’mZ)
| Jim,+m,)2 e Il 1
2 2
1 4 ds’ Im I7V(s’, my, m) N Ards’ Im 17V (s'.mp m5) \ @
2 4mf s 4m% s’

The subtraction terms remove the quadratically divergent part of the first
term; there remains a logarithmically divergent part, which is regulated by the
cutoff A4%2. The peculiar form of the subtraction terms was predicated on the
grounds that, at the one-loop level, the resulting expressions amount to finite
renormalizations of the corresponding results obtained through dimensional
regularization and the observation that such terms cancel in physical quantities
such as the corrections to the vector-boson masses.

In the present paper we propose a new class of dispersion relations in which
the subtraction constants are derived explicitly from Ward identities. Writing

M (q) = —i / d*x /(0|7 [7,(x)J§ (0)]10), (3)

where T denotes the covariant time-ordered product, J, represents vector or
axial vector currents, and we have suppressed for brevity the dependence on
m, and m,, we obtain the Ward identity

a1l (q) = / d*x e *(0|T [0, (x)J}(0)]10) = A(s) gy, (4)
Combining eqs. (1) and (4), we have

I (s) = —A(s)s + A(s). (5)

We now observe that both A(s) and A(s) are only logarithmically divergent.

In the case of A(s) this is due to the extraction of two powers of the external
momentum in eq. (1). In the case of A(s) this arises from the fact that J,
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is broken softly by mass terms (so that 8#J, involves operators of canonical
dimension 3) and the further point that one power of the external momen-
tum is extracted in eq. (4). Our proposal is to evaluate the logarithmically
divergent quantities A(s) and A(s) by means of unsubtracted (but regular-
ized) dispersion relations. The quadratically divergent quantity /7 (s) is then
uniquely determined by the Ward identity of eq. (5), namely

oVA s, my,my) = — = ds’ - :
7 S (i, 2 s’ —5— g

1 //‘2 ImAV-A(s', my, my)
(

2
s /" ImAYVA(s', my, my)
(

ds’ .
my+my)? —s— 5 — e

n

(6)
Eq. (6) can be written in the equivalent form

oVA(s,my, mp)

A? VA (o
= l/ d' (AR My ma) g VA L ms) ). (T)
T J (my4m,)? s'—s5—1le

For vector currents with m; = my, 8#J,(x) = 0; therefore A(s) = 0 holds,
ImA is related to ImI7 by eq. (5), and one verifies that egs. (2) and (7)
are identical. For vector currents with unequal masses and for axial vector
currents, the subtraction terms in eqs. (2) and (7) are, at first hand, very
different. We will see later on that this is expected to lead to significantly
variant estimates of non-perturbative threshold effects. However, as far as
purely perturbative calculations are concerned, we will now show that (i) the
prescriptions of eqs. (2) and (7) coincide for arbitrary values of m; and m;
at the one-loop level; (ii) for axial vector currents with m; = m, or vector
and axial vector currents with m, = 0, egs. (2) and (7) differ at the two-loop
level, i.e. to leading order in QCD, by finite renormalizations that cancel in
Ap and Ar. (ii1) Both calculations give the same contributions to Ap and Ar
as dimensional regularization.

At the one-loop level, a simple procedure is to evaluate directly /7,, from
eq. (3) using dimensional regularization and then to extract the imaginary
parts of ITV-A(s,m,, m,) and AV2(s, m|, m;), as these are independent of the
regularization procedure. (An equivalent method is to evaluate directly the
imaginary parts by means of Cutkosky’s rule.) As a check, we have calculated
also A(s)q, via eq. (4) and verified that, as expected, the Ward identity
of eq. (5) is satisfied in dimensional regularization. In these calculations
we normalize the currents so that J, = y»y,w; for vector currents and
Ju = wayuysyr for axial vector currents, where y; and y, are the field
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operators describing quarks of mass m; and m,, respectively. For the imaginary
parts at lowest order we find, when s > (m; + m;)%

Vo :
ImAJ (s,m;, my) = ~Ans3 st +s (mf + m%) —2 (m% —m%) ] > (8)
Im I7yf (s, my, my) = —sImAg (s, my, m)

3w

where the subscript 0 means “lowest order”, we have included the colour factor
3, and w = [s— (m; + my)?] [s — (m; — my)?]. (Note that |p| = §/w/s is
the momentum of either particle in the centre-of-mass system (c.m.s.) defined
by g = (q°,0).) Comparison with eq. (5) shows that the second term in eq.
(9) equals Im A (s, m;, my).

Due to ys reflection symmetry, we have ITA(s, m, my) = IV (s, m;, —m;)
and AA (s, m;, my) = AV (s, m;, —m3) up to O(as). Thus we see from eqgs. (8)
and (9) that, although Im /1) # Im/7§, ImAy = ImA%. The reason is easy
to understand mathematically: when propagators are rationalized, the only
odd terms in m; are proportional to m;m, and, at the one-loop level, their
cofactors involve only two y matrices. Therefore, after the traces are evaluated
they become proportional to g, and thus contribute to Im 178’ A but not to
Im AX’A. Since such odd terms are the only ones that distinguish the vector and
axial vector functions, our previous conclusions follow. However, the equality
ImAY = ImAA is not expected to survive in higher orders.

Using eq. (8), we find by explicit calculation, for arbitrary m, and m, and
A2 > mf, m%, that the constant in eq. (7) is given by

1 1

— "ImAYA (s = —— [A* = 2 2)1. (10

n/(m|+mz)2ds MAg™ (5%, 1, 2) 42 [A 3(m1 +m2)] (10)
As Im11y (s,m,m) = —sIm1X’A(5, m,m), it immediately follows that the

subtraction constants in eqs. (2) and (7) are identical at lowest order.
In order to extend the analysis to the level of the leading QCD corrections,
it is convenient to write

VA (s,my,mp) = A s,my,my) + 22T (s,myma) + ..., (11a)
WA s mima) = AR (s mi ma) + VA (s mima) 4+ ... (11b)

The real and imaginary parts of I7 1V A (s, my, m,) have been extensively studied
in the literature. In order to evaluate Iml}"A, we have restricted ourselves to
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the two cases of greatest current interest, namely m; = m, and m, = 0, which
to very good approximation can be applied to the t-b isodoublet. We find

ImAY (s,m,m) = -%Imﬂlv(s,m,m), (12)

Iml}’(s,m,m)—#(%+\/l—%), (13)

2
alm A" (s, m,0) % (1 + %) (1 - %) [ZLiz (L) + fl—a + ﬂ)]

Im A9 (s,m, m)

l1—x
o 2 2 B 5 3 1\*
"3(”}“?)%(”;—2—)@)(1”;)
1 1 3 16
7(“})(”;‘55)’ (14)

where r = 5/(4m?), x = s/m?, ¢ = In(\/r + Vr—1) = arcoshy/r, o = Inx,
B =In(x 1), and Liy(z) = — f, dt In(1 - z¢)/¢ is the dilogarithmic function.
Eq. (12) follows from the Ward identity of eq. (5). Egs. (13) and (14) have
been obtained by applying Cutkosky’s rule to the relevant two-loop diagrams.
We note that ImA? (s, m,m) # ImAY (s, m,m). The second term in eq. (13)
gives a finite contribution to the subtraction constant in eq. (7) and, indeed,
we find
1 A? A? 2

~ [ A& mom) = = [ ds'ImAY(s, m,m) — 2.
T Jam? T Jam? 7[2 (153)

Furthermore, eq. (14) leads to

1 m2
~ [ ds'ImA)*(s',m,0) = ——
T S n?

2]

£ 3 A
dm?2 "~ 27 m? 4

(15b)

Comparison with the subtraction constants in eq. (2) shows that the difference

between the approaches of egs. (2) and (7) is given by the terms —m?/z?
in eq. (15a) and —m?/(4a?) in eq. (15b). We now explain why, in spite of
these differences, the two methods as well as dimensional regularization give
the same perturbative results for the contributions of the t-b isodoublet to
convergent quantities such as Ap and Ar. Detailed examination shows that in
the three approaches the vacuum-polarization functions can be written as

2

%H,-V(s,m,m) = rX; + Vi(r), (16a)
2

TN, mum) = rX, + Y5+ Ai(r), (16b)

n? 1
— "2 (5,m,0) = 7 (XX + Y)) + Filx), (16¢)



146 B.A. Kniehl, A. Sirlin / Vacuum-polarization functions

where / = 0,1 labels the one- and two-loop results, V;(r), A;(r), and F;(x)
are finite functions listed in ref. [4], and X; and Y; are divergent constants.
The exact expressions for these constants depend on the regularization scheme.
For example, in the dimensional-regularization scheme X, Y;, and X, contain
terms proportional to ¢~! and &° while Y, involves also contributions of
O(e~2).

Calling L = In(A%/m?), one finds Xy = X, = L and Yy = —3L/2 in both
dispersive approaches. However, Y; = 3L?/2 — 9L/2 in the case of eq. (2)
and Y; = 3L%?/2 - 9L/2 — 1 in the case of eq. (7). The important thing to
note is that the X,, Y, Xi, and Y; cancel identically among themselves in
the evaluation of convergent quantities such as Ap and Ar, independently
of their specific representations. We illustrate this point by considering the
contribution of the t-b isodoublet (with m;, — 0) to Ar. One finds

2 ’ !
55 Ar®) = 22 (411 (0, m) + 11¥1(0,0,0))

T

+ — (1V(0,m;, 0) ~ Re 1V(m}y, m,, 0))

L
miy

Q%/ V(2 1 217V 1,2
+ S&,m\ZNRe I (mWSmIaO) - Z ('UtH (mz,mt,mt)

+ITA(m3, my, my) + 02TV (m3,0,0) + T4m3,0,0))], (17)

where the derivatives in the first term are with respect to s and are evaluated
ats =0, and v, = 1 —8s2/3 and v, = —1 + 4s2/3 are the neutral-current
vector couplings of t and b, respectively. As usual, ¢2 = | —s2 = mj,/m3.
Strictly speaking, I7 Vo, my, myp) exhibits a mass singularity for my, — 0. This

difficulty is usually circumvented by writing

V(m3 V(12
HV’(O,O,O) = ReH (n;Z’O’O) + (HV/(O, 0’0) _ RQH (n;:lZ:0,0)\,
mz i 7 (18)

where the first term is perturbatively well-defined and the expression contained
within the parentheses is ultraviolet-finite and can be related to experimental
data of o (ete~ — bb ) via a conventional once-subtracted dispersion relation.
Inserting eqgs. (16a—c) into eq. (17), one verifies that the X; and Y; cancel
identically, proving the equivalence of the three methods for perturbative
calculations of O(«) and O(aay).

Although the above mentioned agreement bears witness to the ingenuity
of the authors of ref. [6], some important features of the subtractions in
eq. (2) are, in our view, surprising and perhaps unphysical. One notices, for
example, that the subtractions in eq. (2) involve in many cases quantities with



B.A. Kniehl, A. Sirlin / Vacuum-polarization functions 147

different channels, thresholds, and currents than the direct dispersion integral!
To put it more directly: if we are interested in evaluating, for example,
the W-boson vacuum-polarization functions, which involve the tb channel,
why should we subtract quantities that seem to describe completely different
physics, namely the tf and bb channels? In contrast, the subtraction constants
in eq. (7), derived explicitly from Ward identities, involve the same currents
and channels as the direct integral. Because of these facts, the integrands of
the subtraction constants in egs. (2) and (7) have, in general, very different
threshold behaviours. To illustrate this point, we give the leading threshold
behaviours of the relevant vacuum-polarization functions:

%Imﬂa’(s,m,m) = —4nrIm Ay * (s, m,m) = %v +0(v?), (19a)
;nn—zlmﬂé"(s, m,m) = v®+0®’), (19b)
%Imﬂl"(s,m,m) = —4nrimAY(s,m,m) = n* + O(v),  (19c)
T ImITp (s, mom) = 2n%v? 4 O(v?), (19d)
m 3

—4nrIm At (s,m,m) = 7% + O(v), (19¢)

where v = /1 — 1/r is the velocity of either quark in the c.m.s. The constant
behaviour in eqs. (19¢) and (19¢) is due to the well-known Coulomb effect
which is proportional to (1/v) times the lowest-order contribution. In the
m, = 0 case we have

%Imﬂ(}"A(s,m,O) = %vz +0(?), (20a)

alm A (s,m,0) = —3v2 + O(v3), (20b)

S Am T (s,m,0) = v? <—3ln(2v) + §n2 + %) +0(v3Inv),(20c)

nImlv’A(s,m,O) = v? 61n(2v)—i7z2—11 +O@3Inv), (20d)
! 3

where v = (x — 1)/(x + 1) is the velocity of the massive quark in the c.m.s.

In the equal-mass case we see that the integrands of the subtraction terms in
egs. (2) and (7) have the same leading threshold behaviour. However, in the
unequal-mass case (with m; = 0) the situation is completely different: while
the contribution of Im ).,Y’A(s, m, () is greatly suppressed at threshold, that of
Im 7Y (s,m,m)/s is not.

Over the last several years, a number of authors have pointed out that
there are interesting and possibly significant effects associated with the tt
threshold. These may arise from resonances in the tt system [2] or from the
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resummation of Coulombic effects near threshold [7]. As these effects are
usually expressed in terms of contributions to the absorptive parts of vacuum-
polarization functions, a dispersive approach seems to be most suitable in
order to determine the corresponding real parts. It is apparent, however, that
eqs. (2) and (7) give qualitatively different answers for such “non-perturbative
effects” While eq. (2) tells us that the vector and axial vector parts of both
Re I1%% (s,m,m) and Re IT"" (s, m, 0) obtain potentially significant tf thresh-
old contributions from the subtraction constants, eq. (7) informs us that this
is only the case for Re I74% (s, m,m)! As eq. (7) is constructed explicitly from
Ward identities and involves subtraction constants associated with the same
channels as the direct integrals, we believe it provides a consistent framework
to study such non-perturbative threshold effects. It should be emphasized,
however, that the application of eq. (7) requires the evaluation of the non-
perturbative threshold effects on ImAY-A(s, m, m). While ImAY (s, m, m) is
related to Im ITY (s, m, m)/s by the Ward identity of eq. (5), ImAA(s, m, m)
may require a special analysis. Specific numerical studies of perturbative and
threshold effects based on eq. (7) will be given in a separate communication.

The authors would like to thank Sergio Fanchiotti for very useful con-
versations. Instructive communications with Hans Kithn and Michael Peskin
regarding refs. {2,7] were appreciated. One of the authors (B.A.K.) would
like to express his sincere gratitude to the Phenomenology Institute at UW-
Madison for the great material and immaterial support he received during his
two-year stay there.

References

[1] A. Djouadi and C. Verzegnassi, Phys. Lett. B195 (1987) 265;
A. Djouadi, Nuovo Cimento 100A (1988) 357

[2] B. A. Kniehl, J. H. Kiihn and R. G. Stuart, Phys. Lett. B214 (1988) 621, in Polarization
at LEP, ed. G. Alexander et al.,, CERN Yellow Report CERN 88-06, Vol. 1 (1988) p. 158;
B. A. Kniehl, Comp. Phys. Commun. 58 (1990) 293

[3] B. A. Kniehl and J. H. Kiihn, Nucl. Phys. B329 (1990) 547

[4] B. A. Kniehl, Nucl. Phys. B347 (1990) 86

[5] F. Halzen and B. A. Kniehl, Nucl. Phys. B353 (1991) 567

[6] T. H. Chang, K. J. F. Gaemers and W. L. van Neerven, Nucl. Phys. B202 (1982) 407

[7] M. J. Strassler and M. E. Peskin, Phys. Rev. D43 (1991) 1500



