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Two-loop quantumgravity
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We prove the existenceof a nonrenormalizableinfinity in the two-loop effective action of
perturbativequantumgravity by meansof an explicit calculation.Our final result agreeswith
that obtained by earlier authors.We use the background-fieldmethod in coordinatespace,
combinedwith dimensionalregularizationanda heatkernel representationfor the propagators.
Generalcovarianceis manisfestlypreserved.Only vacuumgraphsin thepresenceof an on-shell
backgroundmetric need to he calculated.We extendthe backgroundcovariantharmonicgauge
to include terms nonlinear in the quantum gravitational fields and allow for general
reparametrizationsof thosefields. For a particulargaugechoiceand field parametrizationonly
two three-gravitonandsix four-gravitonverticesarepresentin theaction. Calculational labor is
further reducedby restricting to backgrounds,which are not only Ricci-flat. but satisfy an
additional constraint bilinear in the Weyl tensor. To handle the still formidable amount of
algebra, we use the symbolic manipulation program FORM. We checked that the on-shell
two-loop effectiveactionis in fact independentof all gaugeandfield redefinitionparameters.A
two-loop analysisfor Yang—Mills fields is includedas well, since in that casewe can give full
detailsaswell as simplify earlier analyses.

1. Introduction

it is generallyagreedthat finding a consistentquantumtheoryof gravity is one
of the outstandinggoals of theoreticalphysics. The applicationof conventional
ideasof quantumfield theory to generalrelativity haslongbeenknown to fail (see
refs. [1,21),since it leadsto a nonrenormalizabletheory. In the absenceof both
matterfields anda cosmologicalconstant,gravity with the Einstein—Hilbertaction
actually doesgive rise to a finite one-loopS-matrix [3]. However, it hasalso been
shown by explicit computation that perturbative quantum gravity diverges in
two-loop order [4].
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Widely varying opinionshavebeenheld in regardto this problem(see ref. [5]
for a review). A conservativeattitude,in the contextof perturbationtheory, was to
suggestthat with the addition of the correctmatter fields, one would obtain a
perturbativelyfinite and hopefully uniquetheory [6]. The searchfor such a theory
indirectly led to the discoveryof supergravity[7]. Due to the local supersymmetry,

supergravityis in fact two-loop finite [8]. Yet, also here oneanticipatesnonrenor-
malizabledivergences,starting in three-looporder [91,althoughtheir presencehas
never been explicitly verified. More recently, superstringtheory [10] has been
proposedas a starting point for a sensible theory of quantum gravity. General
relativity should emergein the low-energy limit of this theory. A rather different
attitude is to maintain the Einstein—Hilbert action as the point of departure,but
try to define a nonperturbativeapproach.We mention here the recentrevival of
the canonicalapproachto quantumgravity [11]and the approachof ref. [12].

in view of the importanceof the failure of perturbativequantum gravity, we
haverecently repeatedthe two-loop calculationof ref. [4], using rather different
methods.Our final answeris in completeagreementwith that obtainedearlier. In

this paperwe will give a rathercompletediscussionof our two-loop calculation.
The Einstein—Hilbertaction is given by

2
SEH= __~~fd4xfii~R, K2=321T2G, (1.1)

where R is the Ricci scalar,g is the determinantof themetric ~ with signature
(— + + +) and G is Newton’s constant.Due to the negativemassdimensionof
the gravitationalcoupling constantK, oneexpectsthis theory to be nonrenormaliz-
able. Namely, upon quantizingvia the path integral, K occursonly in the combina-
tion (K2hY multiplying the action. Therefore,a perturbativeexpansionof the
effective action in powersof h is the sameas an expansionin powersof K2. As is
well known, an L-loop graphgets a factor hi~t, so the divergent terms in the
effective action F to this order mustbe of the form

htF~) (hK2)Ltfd4x~R~1, (1.2)

whereR is now a symbolicnotationfor the Riemanntensoror its contractions,the
Ricci tensoror scalar,or R may representa pair of covariantderivatives.Here,we
tacitly assumedtheuse of the so-calledbackgroundfield method,to be reviewedin
sect.2. At this point, the readerneedonly know that this methodyieldsa covariant
effective action, unlike the effective action one obtains with conventionalfield
theoretical methods.Clearly, the numberof possiblecounter terms neededto
cancelthesedivergencesproliferatesas well and the theory appearsto be hope-
lesslynonrenormalizable.Nevertheless,it is in fact one-loopfinite. Namely, by the
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abovereasoning,the divergentpart of the one-loopeffectiveaction must takethe
form

= — fd4x~(c R~+ c2 R’~”R,~~+ c3Runuu1~~R,~,,1pq), (1.3)

where the c are some constantsandwe use dimensionalregularization[13] with

e = 4 — d. This is not of the form of the classical action. However, in four
dimensions,the linear combination

R
2 — 4R~’R + ~inhIP~~ ~14inn inn jitj

forms in fact a total derivative[3], so that onecanremovethethird term in (1.3) in
favor of the other two terms.Since the latter vanish on-shell,where R

1~1,1= 0, they
can be removedvia a nonlinear,but local, field redefinition of the background
metric. Therefore,at one-looporder, the S-matrix of pure gravity is finite [3]. It
wasalso shown in ref. [3] that addingmatterin the form of a scalarfield destroys
the one-loop finiteness. The one-loop finiteness of pure gravity seems to be
accidental,in that it is not dueto any symmetryof the action.For example,it was
shown that in six dimensions,pure gravity is no longer one-loop finite [14]. One
may neverthelessfeel encouragedby this positive result, but then onenext has to

facepossibledivergentterms in the on-shell two-loop effective action.From (1.2),
theymust take the form fR

3, where R standsfor the Weyl tensorC,,,,,~,or a pair
of covariantderivatives.The Weyl tensorhasthe samesymmetriesasthe Riemann
tensor,but is in addition completely traceless.This still seemsto allow several
invariantsof the form fC3 or fCVVC. However,usingthe symmetriesof the Weyl
tensor, the field equation and the Bianchi identities, only one independent
invariant remains [15]. In two-loop order, the divergent part of the on-shell
effective action must thereforetake the form

I~j~= —h2K2fd4x~C~/ilIlC,n
1f~Cj,qH. (1 .5)

The absenceof a double pole in � follows from the finiteness of the theory in
one-looporder [16]. Lacking any further symmetry argument,one should expect
the residuec of the pole to be nonzero. In view of the greatcomplexity of the
multi-graviton interactionsthat oneobtainsfrom (1.1), onemight hopethat there
is a hidden symmetrywhich would ban all divergencesand renderperturbative
quantumgravity finite. The only way to be really sure that onehas not overlooked

such a symmetry, is to calculatethe residueof the pole. This exceedinglycompli-
catedcalculationwasperformedfor the first time in ref. [4] with theresult that c is
nonzero.Thisimplies that the S-matrix of perturbativequantumgravity indeedhas
a nonrenormalizabledivergencein two-loop order.
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Before delving into the details of our calculation,we outline the methodsused
in this work and comparethem with thoseused in ref. [4]. A first issue concerns
the covarianceof the calculationalprocedure.The background-fieldmethod was
devised[21with the purposeof maintainingmanifestcovarianceand as such it is
eminentlysuitedfor quantumcalculationsin gravity. Indeed,the calculationin ref.
[41was performedwith this method (as well as with the usual field-theoretical
formalism). However, manifestcovariancewas lost in expandingthe background
metric about flat spaceso as to allow the use of conventionalmomentum-space
techniques.in this approachto the background-fieldmethod, one expandsthe
effective action in powersof the backgroundfields. For instance,in Yang—Mills
theories this leads one to calculate the two-point function for the background
vectorfield [17], sincethis suffices to fix the coefficient of f tr ~ But in gravity,
upon linearizing the invariant in (1.5), one needsto determinethe three-point
function. This leads to a rather large numberof two-loop graphs(although by
embeddingthe ghostfields in the gaugefields a Ia Kaluza—Klein [4], this could be
improved somewhat).We will use insteadthe Schwinger—DeWittmethod [18,191,

or heat-kernelexpansion, in euclideancoordinate space,which is manifestly
covariant and nonperturbative in the backgroundfields. In this approachone
calculatesonly vacuumbubbles with propagatorswhich are exact in the back-
groundfield. Thereare thenessentiallyonly two two-loopgraphsto be considered.

To keepcovariancemanifest,oneis forced to generalizethe conceptof a tensorto
so called hi-tensors [20], which dependon two points. Such conceptsmay be
unfamiliar, but this method is well establishedand has beenshown to work for
renormalizablefield theories in four dimensionsthrough two-loop order ([21—23]
andreferencestherein,seealso ref. [24]). The heat-kernelexpansionwill allow us
to work consistentlyon-shell,i.e. in a Ricci-flat space.It will permit us to impose
an additional constraint bilinear in the Weyl tensorwhich, without implying the
vanishing of the invariant in (1.5), simplifies various geometricalquantitiesthat
appearin the two-loop calculation. Imposingconstraintson backgroundfields so
as to simplify the evaluationof the effective action datesback to Schwinger’s
original work [18].

A secondpoint concernsthe choice of background—quantumsplitting and the
choice of gauge. In ref. [4] the usual linear background-quantumsplitting (i.e.
replacing g,~117by ~ + Kh,nn in (1.1)) and harmonicgaugechoice wereused.We
will allow nonlinearbackground-quantumsplitting and nonlineargaugefixing. in
this way we can achievea major simplification of the quantumaction. Schemati-
cally, our gaugeconditionsareof the form

Fm = (Vh),~+ K(hVh),~1+ K
2(hhVh),~+ ..., (1.6)

where the leading term correspondsto the harmonicgaugeand we haveadded
terms nonlinearin the quantumfields. In addition, we will permit redefinitionsof
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the quantumfields of the form

—s + K(h
2)~

111+ K
2(h3),~

1,1+ . . . . (1.7)

Alternatively, this canbe thoughtof asnonlinearbackground—quantumsplitting.
As is well known,point transformationsmay changeoff-shell Greenfunctionsand
the off-shell effectiveaction,but theydo not affect the S-matrix [25].We will show
that for a particular choice of gaugeand parametrization,the three-pointgauge
field interactionsreduceto

S3 = — fd4x~hfuul(h“;in( h,J,.(/ — ~hpqi,) + ~ (1 .8)

Here, h,,,, is the tracelesssymmetric quantum field and 4, representsits trace.
Since to leadingorder our gaugechoiceis identical to the harmonicgauge,there
will be no 4,h propagator.There are therefore really only two three-graviton
vertices present in (1.8). This should be comparedwith a total of thirteen
three-point interactions in the harmonic gauge and with the standard field
parametrization.Especially for the overlappingtwo-loop graphs, for which the
amount of calculationallabor growsquadraticallywith the numberof three-point
vertices,this provesto be a significant simplification. Note that it is the negative
massdimensionof the gravitationalcouplingconstantK, that allows suchnonlinear
gaugefixing and field redefinitions. Of course, it is well known that there is
considerablefreedom in what one considersto be the gravitational fields. We
mention ref. [26], where the tensor density ~,/~~g”” was selectedas the field
variable and it was notedin ref. [27] that this reducesthe numberof three-point
interactionsto six. Also in nonlinearsigmamodels[28] and supersymmetricfield

theories in superspace[291, one frequently encountersnonlinear background—
quantumsplitting. However, it appearsthat a systematicsearchin the present
context was never undertaken.It may seemthat thereis a price to pay for the

simplicity of (1.8), in the form of a more complicatedghost action. Three-point
verticesof the form antighost—ghost—gravitonare alreadypresentin the harmonic
gaugeandwe will find that in the gaugewhich achieves(1.8), their numberdoes
not increase.Note that, dueto the nonlinearityof our gaugechoice,new four-point
couplingsof theform antighost—ghost—(gaugefield)

2will appear.Wewill presenta
simple argumentshowingthat such interactionscan not contributeto the on-shell
effective action in two-loop order. Therefore,we may as well omit theseinterac-
tions from the action.

In view of the exceedinglycomplicatedalgebrainvolved, in ref. [4] all algebra
had to be performedon a computer.It was found that existingstandardalgebraic
manipulationprogramswere incapableof handling the task (see ref. [30] for an
attemptin this direction).Instead,the authorsof ref. [4] resortedto writing special
purposeprogramsin the C-language.Their calculationtook less than threedays
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CPU time on a VAX 11/780, at least when the backgroundis on shell. The
simplificationspresentin our covariantapproachinitially gaveus the hopethat the
two-loop calculationmight now be feasibleby hand.While we are ableto evaluate

some two-loop graphsby hand, in general we must resort to the heat-kernel
expansionand this still leadsto a rather formidableamount of algebra(but see
also our conclusions). Hence, we also turned to an evaluation by means of
computer.However,we find that the algebraicmanipulationprogramFORM [31]
caneasilyhandlethe task andthe requiredCPU time on a Silicon GraphicsIRIS
4D/2205 is about2 hours,or twice that amount of time on a VAX 6000-410.

An outline of this paper is as follows. In sect. 2, we give a brief review of the
background-fieldmethod.We treatthe heatkernel expansionin sect.3, including
an evaluation, basedon this expansionand dimensionalregularization, of the
divergencesof two-loop graphsfor a generalquantumfield theory in d = 4 curved
space.In sect. 4, we consider the expansionof the Einstein—Hilbert action to
fourth order in the quantumfields. We introduceour nonlineargauge-fixingand
field redefinition procedures.In sect.5, we digressand discussthe analysisof the

short-distancedivergencesof non-abeliangaugetheoriesin two-looporder. In this
casewe can presentour methodscompletely.Our discussionclosely follows refs.
[21,22], butby makinguse of Ward identitieswe cansimplify theformal expression
for the two-loop effective action considerably,before applying the heat-kernel

expansionfor the remainder. In sect. 6, we return to two-loop gravity and
summarizethe completequantumaction to fourth order in quantumfields for a
particularly convenientchoice of gaugeand quantum field parametrization.We
presentthe expressionsfor the few two-loop graphcontributionsto the effective
action. We demonstrate,by means of explicit examples, that also here some
two-loop graphscan be evaluatedeasily by hand.For the remaining“hard core”
graphs, we outline the procedure followed in their evaluation by means of
computer.In sect.8, we give our conclusions.A numberof appendicesfollows. We
discussthere how to obtain various geometricalquantitieswhich appearin the

heat-kernelexpansion, include a complete list of singular products of certain
Greenfunctions andpresentthe divergencesof all possibleoverlappingtwo-loop
graviton graphs.

2. The background-field method

We begin with a brief review of the backgroundfield method [2,17,32—38].We
work in d-dimensionaleuclideanspace,with metric g,,,,,.

Supposeone is given a classicalaction S[F], dependingon some gaugefields
F,(x), with i a generic index. In the background-fieldmethod one replacesF by
F, +f~,where F, are now the backgroundfields and the fluctuations f, are the

quantumfields. For instance,for a Yang—Mills theorywith gaugefields A,,,, the
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initial gauge invariance 6.4,,,= D,~A= 0,,,A + [A,,,, A] can be divided between
backgroundand quantumfields as

= D,,,A, 6a,,, = [a,,,, A], (2.1)

called the backgroundgaugeinvariance,or as

6Am = 0, 6a,,, = D,,,A + [a,,,, A], (2.2)

known as the quantum gauge invariance. One defines the quantum theory by
performinga path integraloverthe quantumfields a,,,,which requiresfixing of the
quantum invariance(2.2). However,manifestbackgroundgaugeinvariancecanbe
maintainedby choosingthe gauge-fixing condition such that it transformscovari-
antly under(2.1). An exampleis the backgroundcovariantFeynmangaugecondi-
tion F = D”a,,,. One must also require the Faddeev—Popovghosts b and c to
transform covariantly under (2.1). In general, the generatingfunctional W of

connectedgraphsis then definedby

e WlJ,Al/h = f[Da][Db][Dc] ~ ±al—S,,~-Srp+Ja)/ti (2.3)

where onecouplesonly the quantumfields to the sourceJ,,,(x) throughthe term

j a = fdi J”a,,,, di~= ddx%/~, (2.4)

where di~denotesthe invariant volume element in d dimensions. A functional
Legendretransformtakesoneto the one-particleirreduciblegeneratingfunctional

6W
F[â, A]= W[J, A]—J.â, a = -~, (2.5)

where a denotesthe expectationvalue of the quantum fields. Note that the
backgroundfields remain unaffected. The background field effective action is
obtainedby setting a = 0 in (2.5), i.e.

F[A] =F[0, A]. (2.6)

The extensionof the background-fieldmethod beyondone loop [37,38] and its
relation to the usual methods and to the S-matrix [34,39] are by now well

understood.
In most applications,one can evaluatethe background-fieldeffective action

only perturbativelyin a ioop expansion. Performing a Taylor expansionof the
action

6S[A] 625[A]
S[A+a]=S[A]+ 6A a+~a 6A6A’ a’+..., (2.7)



316 A.E.M. Lan de Ven / Two-loopquantumgraLily

taking the backgroundfields to be on shell, i.e. 6S[AI/6A = 0, and adding the
gauge-fixingterm this becomes

S[A + a] + ~ = S[A] + Jdv ~a~a + 510,[A, a]. (2.8)

Here, the terms quadratic in the quantumfields involve the wave operatorz.1[A]
and the termsof higherorder in thosefields havebeenlumped togetherinto the
interactionpart of the action. Insertingthe expansion(2.8) into (2.3), one finds a
loop expansionfor the background-fieldeffective action

F[A] = ~, F~’-)[A]. (2.9)
L =0

For the first two ordersonefinds

= S[A], F~[A] = ~hfdL’ tr In ~.t[A]. (2.10)

In practice,besidesexpandingin the 1oop order L, oneoften further expandsF~

in powers of the background field and evaluates,for instance, the two-point
function. Forthe usualmomentum-spacetechniquesto be applicable,oneexpands
in the action the backgroundmetric aboutflat space,i.e. oneputs g,,,,, = 6,~,,,+f,,,,,.
For instance,for a scalar field kinetic term one finds to first order in the weak
backgroundfields f,,,,

fdr ~gfhn8,,,4,a,,4,= fddx(~(a,,,4,)
2— (fm,

1 — ~fkka,,,,,)a,,,4,0,,4,+...). (2.11)

One canthenusethe flat-spacepropagator1/p
2 andtreatthe higher-orderterms

as interactionswith theweak backgroundfield. A disadvantageof this procedureis
that it is not generally covariant. For a non-abelian gauge theory in a flat
background,oneviolatesYang—Mills covarianceupon expandingcovariantderiva-
tives as in D,,,(p) =p,,, +A,,,(p). Also note that in gravity, all one-loopgraphsare
equally divergent,independentof the numberof backgroundfield lines. This is
becauseeachvertex involves two derivatives,which counteractthe 1/p2 of the
extra propagator.

In the problemat hand,expandingp(2) in (1.5) about flat spaceshows that the
three-pointfunction will haveto be calculated.Actually, dueto the identity

f dL’ C~/iflnC,flflh)~CpqkI= — 3f dv ~ (2.12)

it would appearthat a calculationof the two-point function shouldsuffice. That
this is not the casefollows from (1.4),which implies that at thelevel of the on-shell
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two-point function CV2C is a total derivative. One thereforeturns to the three-

point function. But putting eachbackgroundfield on shell, i.e. with momentap~
andpolarizationse~,suchthat for i = 1, 2, 3

= 0, ~ = 0, �~,,, = 0 (2.13)

leadsalso to a kinematicproblem,forcingoneto eitherkeepall threebackground
fields actually off-shell (first article in ref. [14]), or to turn to the on-shell
four-point function.As noted in ref. [4], a third option is to continuethe momenta

p~to complexvalues,so that they needno longerbe collinear.
These complicationscan be avoided and covariance can be maintained by

working nonperturbativelyin the backgroundfields. One then uses the exact
propagatorin the presenceof the background,obtainedby taking the inverseof
the wave operatorLI. Higher-loopcontributionsto the effective action are found
by evaluatingvacuumbubbles,using LI -‘ for eachquantumfield propagatorand
readingoff the vertices from SI~~[A,a]. This is all rather formal, and we haveto
give some meaningto LI —‘ andalso regularizethe theory. Thiswe will do in sect.

3, by meansof the heat-kernelexpansionanddimensionalregularization.

3. Heat-kernel expansionand background constraint

In thissectionwe review the heat-kernelexpansionin d-dimensionaleuclidean
space.We closely follow and extendthe discussionin refs. [21,22](note that our
notationdiffers from [21,22] in someminor respects).We use this to discussthe
short-distancedivergencesof generic two-loop graphs. Dimensionalanalysis indi-
catesthat for a two-loop analysisof gravity we will needto know quite a bit more
about the heat-kernelcoefficients than is the casefor renormalizabletheories.A
lot of work can be savedby imposing a constraintbilinear in the Weyl tensor,in
additionto Ricci-flatness,which doesnot imply the vanishingof the invariant fC3
in (1.5), but which doesfacilitate the intermediateanalysis.

In d-dimensionaleuclideanspace,we assumethe part of the quantum action
quadratic in the fluctuation to consistof a sum of terms of the form

52f~ ~f
1LI~1f1, (3.1)

where the fields f1 in our case will be scalars,vectors or symmetric traceless
tensorsand the elliptic operatorsLI take the form

—LI =D
2 +X, D2 =DmDm~ Dm =IVm +Nm, (3.2)

where X and Nm are a matrix-valued potential and vector gauge connection
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respectively.The gravitationallycovariantderivativeV,,, involves affine connection
termsas needed,dependingon the type of field. We suppressall internal indices
i, j and display only the Lorentz indices.Note that the sign of X is oppositeto
that of most authors,but it conformswith the conventionsof ref. [33].

The exact propagatorLI—’, or Greenfunction G(x, x’) satisfies

LIG(x, x’) =16(x, x’), (3.3)

where I is a unit matrix for the internal indices and the d-dimensionalbi-scalar

6-function satisfiesfor any f

fdv’ 6(x, x’)f(x’) =f(x). (3.4)

An exact solution for the Green function is possibleonly for special background
fields (but see also our conclusions). However, for the purposeof studying the

short-distancebehavior of the Green function, a convenient representationis
provided by

G(x, x’) = f dT ~(x, x’, T), (3.5)

where the so-calledheatkernel ~‘ satisfies

a
+LI ~‘(x, x’, r) =0, .~(x,.r’, 0) =16(x, x’). (3.6)

aT

DeWitt’s ansatzfor the heatkernel[19] in d dimensionsis given by

~
1”~2(x x’)

~‘(x, x’, r) = d/2 e x )/2i~ ~ a
1(x, x’)T

3. (3.7)
(4~T) j=0

To motivate this somewhatformidablelooking Ansatz and to introduce the new
quantities appearing on the right-hand side, consider first the simplest case

LI
0 = ~2 in flat d-dimensionalspace.The associatedheatkernelis easilyverified

to be

~0(x, X, = d/2~ (3.8)(4~rT)For more general elliptic operatorsas in (3.2), but still in flat space,one mayassumethe heatkernelto take the form

~‘(T) =~‘0(T)F(T), F(T) = ~ a~T

3, (3.9)
j~0
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where the coefficients a1(x, x’) are known as the heat-kernelcoefficientsfor the

operatorLI. On generalizingfurther to a curved space,oneintroducesthe geodetic
interval bi-scalaro-(x, x’) in order to maintaingeneralcoordinateinvariance.This

quantityis definedto be half of the squareof the geodesicdistancebetweenthe
points x and x’. In addition one introducesthe bi-scalar Van Vleck—Morette
determinant~(x, x’), definedby

1
= ,,—__ det(—cr,,,,,), (3.10)

v gg

wherewe follow DeWitt in using(primed)subscriptsto indicatecovariantdifferen-
tiation at (x’) x. Note that covariantdifferentiationsat different points commute.
The Van Vleck—Morette determinantmeasuresthe rateof convergenceor diver-
genceof nearbygeodesicsemanatingfrom x. If desired,v ~~l/2 can be adsorbed
into a redefinitionof the a.

Substituting(3.7) into the heatequation(3.6) and equatingequalpowers of T,

onefinds that the following equationsmustbe satisfied

= 2cr, (cr”,, — d) i’ + 2cr” v,,1 = 0, (3.11)

and

= 0, a0 = I, (u”D,,, +1) a1 = — r’ ‘LI( va1 ,). (3.12)

In general,we usea verticalbar to denotethe so called diagonallimit x’ =x, as in
a0 = a0(x, x). Eqs.(3.11), (3.12)form the basisfor a derivation,givenin appendix
B, of the diagonallimits of derivativesof 0-, v andthe a1.The usefulnessof (3.7)
lies in the fact that the short-distancebehaviorof the Green function is deter-

mined by the T —~0 behavior of the associatedkernel ~4’.Substituting(3.7) into
(3.5) and performing the integrationover T yields an expansionfor the Green
function itself of the form

N

G = ~ Ga1 + Hv, (3.13)
j=()

where we suppressthe argumentsx, x’ for each entry and the serieshas been
truncatedat an,at this point, arbitrary level N. Any internal indicesof the Green
function G are carried over by the coefficients a and the rest term H1~.Unlike
the heat-kernelcoefficients and the rest term, the are universal, in the sense
that they are independentof the particularwave operatorLI. They are given by

v F(d/2 —1—I) (—1)’ 2G1= 41+Id/2 (2)J/211 — (I—I)! —(2cr) . (3.14)
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80
(a) (b)

Fig. 1. Topologiesof two-loop graphs.

The secondterm,understoodto be absentfor j = 0, is a subtractionchosenso as

to makethe G~have a well-defined regular limit as � —s 0 [22]. The choice of
truncationlevel N in (3.13) dependson the particularfield theoryunderconsider-
ation and is determinedby the following criterion: upon replacingany one Green

function in a vacuumgraph by the rest term HN, the resultingexpressionshould
haveno overall divergenceanymore.It is not hardto seethat in four dimensions,
N= 2 suffices for a renormalizabletheory. However, for gravity we must take
N = L + 1, SO the truncationlevel increaseswith the loop order.

We now turn to a preliminary discussionof divergencesof two-loop graphs.In
this order thereareonly two topologiesto beconsidered,shownin fig. 1. We have

(a) = fdv G 2 (b) = ffdv dv’ G(x, x’)3, (3.15)

where we suppresssymmetryfactors,internal indicesand also possible(covariant)
derivativesat both x and x’. Observethat in the “figure 8” graph, the diagonal
limit has alreadybeentaken. This makes it rather easyto evaluatethe divergent
part of any such graph. We will always subtractfor subdivergentintegralson a
loop-by-loop basis, also known as the R-operation(see ref. [41] and references
therein).This avoidsthe needto calculateone-loopgraphswith externalquantum
field lines. It alsoallows us to show that nonlocaldivergenttermsinvolving the rest

term ‘~‘N will always be absentfrom the two-loop effective action. Namely, for a
“figure 8” graph, after subtractingfor the two subdivergences,the overall sign
changesand each G gets replacedby G = G — H. Subdivergencesin graphsof
type (b) are obtained by replacing one of the three Green functions by the

correspondingrest term H. The R-operationthen replacesH by — G. Caremust
be taken in applying the minimal subtractionprocedure.The residueof the pole

causedby the subdivergenceis to be evaluatedat d = 4, before proceedingwith
the remainingloop in d dimensions(an explicit exampleof this will be given in
sect. 5). Therefore,to evaluatethe divergentpart of graphsof type (a), or the
subdivergentpart of graphsof type (b), we require only the following expressions:

GI ~=2a
1I, (3.16)

DmG~~=2Dma,I, (3.17)
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D,,DmG I = 2D,,D,,,a1 —g,,,~a2I, (3.18)

D,,D,,,D/DkG I ‘~ 2DnDmDlDkaI — ~Ck(,,,,,)/a2 +

— ( ~ I + ~ ~,,, D ,,~ D 11a2 +g,~,,D(D~a2 ). (3.19)

Here,and also in (3.20), the dot indicatesthat we omit a factor(16~
2eY’on the

right-handside. Eqs.(3.16)—(3.19)wereobtainedby rewriting (3.13) as G =

and usingthe following nonvanishingdiagonallimits

G, 2, G
2k/ —gkl,

I — ~ G3k1,,,,, I 2g(kI g ,,,,,~. (3.20)

Thesewere found by analyticcontinuationin d from d < 2. We note that the form
of (3.16)—(3.20)is as expectedfrom dimensionalanalysis.We haveincluded(3.17)
and (3.18), since in gravity a four-point vertex involves up to two covariant
derivatives.For graphsof type (b), a subdivergentloop may contain up to four
covariantderivatives,so we will also need(3.19).Actually, some of the derivatives
in (3.17)—(3.19)may carryprimes, i.e. theyrefer to the point x’. Onecaneliminate

suchprimedcovariantderivatives,whentheyoccur undera diagonallimit, by using
that for any bi-tensorT (see also appendixA)

(D,,,T) = —(D,,,T)I +D,,,(Tl). (3.21)

For the overlappingdivergencesin graphsof type (b), we haveto work much
harder.We insert for eachGreenfunction a heat-kernelexpansionas in (3.13).
Sincethe short distancebehaviorof the G, is given by

G1—lncr, G1=u’’, i*1, (3.22)

it follows that a genericgraphof type (b) with j derivativesat x and j’ derivatives
at x’ containspotentiallysingularproductsof the form

ffdv dc’ V’V’~’G~G1G~ffdL’ di’ ~hI+t2+13_3J/2_i’/2 (3.23)

Here we suppressedall heat-kernelcoefficients,since they and their derivatives
are regular in the short-distancelimit. A non-integrablesingularityoccurswhen-
ever the exponentof a- in (3.23) is lessor equal to —2 (recall that in flat space
a- = (x —x’)

2/2), i.e. when

+ + i
3 ~ 1 +1/2 +j’/2. (3.24)
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Incidentally, the subdivergences,alreadydiscussedabove,canbe accountedfor by
settingone of the ~k equal to one. In gravity, a three-pointvertex containstwo
covariantderivatives,or noneif they occurin the form of a background-fieldWeyl
tensor.Therefore,after distributing any such derivativesat eachvertex, j and j’
eachcan takethe valueszero, one or two, since some derivativesmay act on the
heat-kernelcoefficients. Hence, the following singularproductsmay occur

(a) G~,G~G1,G~, j, I’ = 0, 1, 2,

(b) G~G2,G~G0,G~G1, j, j’ = 1, 2,

(c) G~G3,G~,G1G2,G~,G0G2, G~, 1=1’ = 2.

Notice that a productof threeG0’s is singularevenwithout any derivativesacting
on it, while a productof two G0’s and a G3 becomesonly divergentwhen all four
derivativesact on it. In renormalizabletheories,thereis at mostonederivativeat

each three-pointvertex, so in that casesingular productscorrespondto (a) with
J, J’ = 0, 1 and(b) with j =j’ = 1. Since the singularproductsof the G~dependin
no way on the particularwave operatorsunderconsideration,they can be tabu-
latedonceand for all. A simpleexampleis providedby the productG~.Thisyields

a pole in �, with a residuegiven by a 6-function

2 6. (3.25)
8ir �

We refer to appendixC for a derivation. Covariant differentiationof this expres-

sion gives

= 2 V~,,6. (3.26)
16~-�

In general,theremay be covariantderivativesactingon the 6-function,as required
by dimensionalanalysis.The sameis true for triple productsof the G1 except that
then also a double pole may appear.A complete list of all caseswith up to four

derivativescan be found in appendixC. To deal with expressionswith primed
covariant derivatives involves the use of a bi-vector gki,(x, x’), which effects
parallel displacementalong the geodesicbetweenx and x’. Its defining equation
is

= 0, gk1, I = 6”~. (3.27)

In particular, it is covariantly constant along the geodesic.it follows that the
parallel displacementbi-vector carriesthe tangentvectora-k into the reverseof the
tangentvectora-1

cr1 = _a-~gk1,. (3.28)
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This we use to eliminate primedderivativesof any G,, which involve exactlysuch
derivativesof cr, as is clear from (3.14) (see appendixC for the details).Expres-
sionsfor singularproductsof the G. with up to two covariantderivatives,but for a
general Riemann space,appearedbefore in appendixA of ref. [22] (note the
rather drastic simplifications upon restricting to a Ricci-flat space). We have

imposeda further covariant constraint on the background,bilinear in the Weyl
tensor.We now turn to a discussionof this new constraint.

We are of course free to impose further covariant constraintson the back-
groundspace,as long as sucha constraintdoesnot imply the vanishingof the fC3

invariant in (1.5). Schwinger[18] evaluatedthe effectiveaction due to fermion or
bosonloops in the presenceof a constantelectromagneticbackgroundfield, (this
was extendedin ref. [42] to the non-abeliancasewith D

12~,,,,= 0). The analogous
constraintin the caseof gravity would be a symmetricspaceV,,Ck/,,,,,= 0. Unfortu-
nately this constraintis unacceptable,since the associatedintegrability condition
implies that the fC

3 invariantvanishes.We thereforeconsiderpossibleconstraints

bilinear in the Weyl tensor.With this purposein mind, we considerthe tensor U
definedby

Uki,,,,, = ~ (3.29)

Our new constraintconsistsof the requirementthat UkI,,,,, shall havethe symme-
tries of the Weyl tensor Ck/,,,,,. Note that U is already symmetric under pair
interchangeof ki with mn andtracelesson km and in. Also note that whenever
two Weyl tensorsarecontractedtwice with eachother,wecanassumewithout loss
of generalitythat the resulting tensorcan be written in terms of U. To motivate
this new constraint, we observe that whenever the tensor U appearsin our
calculations it must eventually get contractedwith anotherWeyl tensor (and
integratedover) to produce a scalar proportional to the invariant fC3. As an
SO(d)representation,U containsvariousfour-indexrepresentations,but only the
Weyl tensorrepresentationwill survive this final contraction.Therefore,nothing is
lost upon imposingthis new constraint.Someimmediateconsequencesare

C~f~C~,,pq= 2Uk,,fl,,, C~lIP~C/,,pq= 0, C”°”Cmnpq= 0, (3.30)

andfor secondcovariantderivativesof the Weyl tensor

Cklm~np = —3Ukl,,,fl, Cklm,,J’p = ~6Uklmn. (3.31)

We now return to the problem at hand, namely a determination of the
overlappingdivergencesfor graphsof type (b). If necessary,partial integrations
will remove any covariant derivatives from the 6-function, after which a local
expressionis obtained,involving the diagonallimits of the heat-kernelcoefficients
and their derivatives. Dimensional analysis shows that we need to know the
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diagonallimits of D~a1with dimension less or equal to six, i.e. 2i +1 � 6. In a
generalRiemannspace,onehasfor the first few cases

a0I =1, (3.32)

a1 I =~, (3.33)

a21 =~
2+~D2~+i~Y2

+ ISQ(R Rklmn — Rk!Rki — V72R)I, (3.34)

where

X=X— ~IR, DmX= V,,,x+ [N,,,, X], (3.35)

Y,,,,,=[D~, D,,], y2ymny (3.36)

Note, that in eqs. (3.32)—(3.34)no traceover internal indices or integrationover
spacehasbeenperformedyet. It is the integratedtrace of the secondheat-kernel

coefficient, which appearsin the well known expressionfor the divergentpart of
the one-loopeffectiveaction [19,33],namely

1
— 2 fdv tr a

21. (3.37)
l6ir �

To proceedandfind the diagonallimits of a3 andthe derivativesof a0, a1 and
a2,we needto know in turn the diagonallimits of derivativesof a- and v through
eighth and sixth order respectively.For a general Riemannspace,theseexpres-
sions get quite involved and are not evenknown beyondthe sixth derivativeof a-

or fourth derivative of v. But, upon restricting to a Ricci-flat spacewith the
CC-constraint (3.29), the task becomesmanagable.We now give a list of the
diagonallimits of the relevantheat-kernelcoefficientsfor such spacesand refer
the readerto appendixB for a derivation.For a~,we find

a,, I = I, DkaO I = 0, DkDlaO I = ~~k1’ (3.38)

DkDIDmao I = ~D(kYI)m, DkDID
2aO = 7(k111’l)p~ (3.39)

andfor ai

a, I =X, Dkal I = ~DkX, Dk,al I = 4Dk
1X+ ‘(k~”l)p~ (3.40)

Herewe usetheshorthandnotationDkk2 . kN for the totally symmetrizedproduct
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DkN) of N covariantderivatives.In the expressions(3.34) for a2 I in a
generalRiemannspace,we can drop all explicit curvatureterms,so that

a2 I = ~-X~ + -~D
2X+-~Y2. (3.41)

In additionwe needa few integratedandtracedexpressions,namely

fdv tr Dk,,,,flD2aOI = — fdir tr(~[D(k , ~“] [Dm, Y,,)p] + CP(kj ayoy,,)q),

(3.42)

fdv tr Dk,,,,flal I = 4fdv tr(Dk/~flD2a(, I ~ I I), (3.43)

fdv tr Dkla
2I = ~fdv tr(DklD

2aI I +XD k/a, I). (3.44)

The last two expressionsaredefinedrecursively.In practiceall internalindicesare
Lorentz indices and we can then chooseto contract the explicit Lorentz indices
with eachotheror with the internal indicesor in a mixed way, so as to producea
scalar.The notationtr is to be understoodin this generalsense.Notice that since
such a trace will alwaysbe taken, we needonly the diagonal limit of scalarsixth
derivativesof v. In particular, we find (see appendix B)

Jdv(V2)3v I = ~j~fdv C3, (3.45)

andthe diagonallimits of all lower derivativesof the Van Vleck—Morettedetermi-
nantvanish! It follows in particular that the order of the covariantderivativeson
the left-handside of eq. (3.45) is irrelevant.

Finally, we also need the integratedand traced diagonallimit of the third
heat-kernelcoefficient,namely

fdv tr a
3I = ~fdv tr(X

3+ ~XD2X+ ~XY2+ ~Y3+ ~CYY+(2/7!)C3I),

(3.46)

where the following abbreviationswere used

= ~‘m”~i”~p” CYY=Ck~m~iYklYmfl. (3.47)

The result for the third heat-kernelcoefficient is a specialcaseof the expression
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first found in ref. [43] (see also ref. [14]). The aboveexpressionswill be appliedto
two-loop gravity in sect. 6.

4. Action, nonlinear gauge-fixing and field redefinitions

The classicalaction in d-dimensionaleuclideanspaceis given by

= (2/~~)fdvR. (4.1)

It is invariantundergeneralcoordinatetransformations

= ~ + ‘~m’ (4.2)

with gaugeparameteri,,. In anticipationof the use of dimensionalregularization,
we will perform all algebrain d dimensions.

We initially choose a linear background—quantumsplitting by making the
replacement

g,,,,, —sg,,,,,+ KHmn, H,,,,,= hmn +g~~4,. (4.3)

From here on g,,,,, will play the role of the background metric, while 4, and hmn

are the quantumfields, the latter being tracelesssymmetric with respectto the
backgroundmetric, i.e. gmnh~,,= 0. Indiceswill be lowered and raisedby means
of the backgroundmetric grnn and its inverse gmn respectively.The operator V
now denotes the background covariant derivative. The quantum gauge invariance

is then (cf. eq.(2.2))

1(64, = (2/d)(V7P~~+hP~Vp~q), (4.4)

Kôhmn = 2(V(m~n)+ h(m~Vn)~p)+ ~~Vphmn— Kg~,,64,, (4.5)

and the backgroundmetric doesnot transform.In the following, we will use the
semicolon notation F;,,, for [Vm, F]. When F is a scalar, we often omit the
semicolon.We also usethe abbreviationhm~n= hm.

Sincewewish to evaluatetwo-loop graphs,we needto expandthe action in (4.1)

to fourth order in H. For details of our procedure we refer to appendix D.
Subsequently,wemust adda backgroundcovariantgauge-fixingterm to breakthe
quantum gauge invariance (4.4), (4.5). We will considerthe following class of
nonlineargaugeconditions

Fm = hm — ~(d — 2)4,,,, + K(a
14)4)m + a2hkthk/m

+cr3çbh,,,+ a4h~”4,~+ ashtdhmk.l+ aÔh,,/<hk). (4.6)
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The termslinear in K involve six new gaugeparameters.Settingall of them equal
to zero recoversthe harmonicgauge.Evidently, the gauge-fixingterm

5fix = fdv ~ (4.7)

will contain terms of higher than secondorder in the quantum fields. By a
judicious choice of the gaugeparametersa, we can exert some control over the

form of the three-quantuminteractions.We may considerthe addition of 0(K2)

terms to the gaugecondition in (4.6), leading to an additional fourteen gauge
parameters,which we can then use to simplify the quartic gaugeinteractions.
However, we will demonstratebelow that all such quartic terms, as well as the
associatedghost interactions,are irrelevant in the sensethat they cannot con-
tribute to the two-loop on-shell effective action. Previousauthorshaveconsidered
linear gaugechoices,of the form

F,,., = aH,,,”.,, — ~ (4.8)

which generalizesthe harmonic gauge(see e.g. ref. [44]). Theseare the most
generallinear gauges,but, except for a = /3 = 1, the wave operatorsare then no
longer of the elliptic type assumedin (3.2). Since this makes the heat-kernel
expansioninapplicable,we do not considersuch gauges.We havealso considered
yet more generalgauge-fixingof the form

5fix = fdv F,,,M’~”F,,, M’~” = g”°’(l + /3,4,) + /3
2h’~~+ .... (4.9)

However, it is not hardto seethat the/3-parametersin (4.9) canbe absorbedinto a
redefinition of some of the a-parameters.We note that the Nielsen—Kallosh
ghosts [45] associatedwith this type of gauge-fixing would be nonpropagating.
From hereon we set K = 1.

With thesechoices,and with the backgroundon-shell,we find the following

termsquadratic in the quantumgaugefields

S2~1+1~~= fdv(~d(d— 2)4,V
24, — ~hA~V2hk/+ C””~hk/h,,,,,). (4.10)

To arrive at this result, we also made use of

fdv 2h
1,k.[k h” ‘1 = fdi’ ~ (4.11)

The wave operatorsin (4.10) are indeedof elliptical type, unlike what one finds
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whenworking with the reduciblequantumfields H,,,,,. The wave operatorfor the
tracelesssymmetric tensoris known as the Lichnerowiczoperatorandwe have

Ikim,, =
6k(m6ln) — (1/d)gHg~,,, j

2 = I, Tr I = d — 1)(d + 2). (4.12)

In particular, I is idempotent,as it shouldbe.Observethat the kinetic term of the
scalarfield hasthe “wrong” sign (we will fix its normalizationlater). This is known
as the conformal factor problem, i.e. the functional integral over the conformal
scalar is unbounded,making the euclideanfunctional integral meaningless.Since
we restrict ourselvesto a perturbativeanalysis,we can ignore this problem. We
taketheGreenfunctionfor the scalarfield to be minus the Greenfunctionfor the

elliptic operator — V2. Equivalently, in momentumspaceand perturbingin the
backgroundas in (2.11), every scalarpropagatorcomeswith a minus sign, but so
doesevery scalar—scalar—backgroundvertex. So a one-loopscalargraphdoesnot
changeits sign, but an overlappingtwo-loop graphwith onescalarpropagatorand
two gravitonpropagatorsdoeschangeits sign.

We next turn our attention to the three-point interactions. In general,we
removeinteractionswith both covariant derivativesacting on one quantumfield

via partial integration,droppingsurfaceterms.But, as in ~2’ we should take note
of the specialcasesin which two covariantderivativesform a commutator.In S

3
thereare two instancesof this, namely

fdv(2(4,h,~”~,,,+ h~m4,1,~)h1)n,,1— CPn(Pa)~4,h~,,hpq)= 0, (4.13)

fdv(2(h~’h,~”1,,,+ hq’~h”p;1,n)hP~n1— Cm(P~)nh,~~hpThq~)= 0. (4.14)

We might use theseidentitiesto eliminate in eachcaseon two-derivative interac-
tion in favor of an interactionwithout derivatives. Instead,we accountfor these
linear dependencesby addingmultiplesof (4.13) and(4.14) to S3 with parameters

A, and A2 respectively.
We will also allow for nonlinearquantumfield redefinitionsof the form

(4.15)

hmn —~ (1 + a-24,)h~n+ a-4(h,,,”h,,0— (1/d)g~,,h”Thj,q), (4.16)

wherewe takecareto keephmn tracelessin d dimensions.Wenote that since this

is a point transformation,the associatedjacobian is trivially equal to one,andno
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extra ghosts need to be introduced. Including the extra terms we get from
performingtheseredefinitions in 5,’ wefind

53.cl±fix = fdv((2 — d) [~(d — l)( d — 6) + a
1 + da-, ] 4,4,”4,,,,

+ d — 2)(d —3— 2a4)h”4,~4,,,

+ [~(d — 2)(d —6— 2a3)+ 2a1]4,4,”h,,,

+ [~(d —6) +

+ [d — 3 — (d — 2)(a7 + da-3) +

+ (2cr7 — A, )C”(”)”43h,,,,,h,,q

+ (2 a3 + A,) 4,h”h,,, — [~( d — 6) + A1 ~

+ [2a4 — (d — 2)(1 + a6) + A,]h”°’4,,,,h,,

— [d — 4 + (d — 2)a3+ A1] h’~”4,”h,,,,,,,

— ~hi)~.,,,hpq;,,+ (2a2— 1)h°h,,,,,~+ (2cr4 — 1)h,,f~’h,,1,,,

+ (2cr4 — A2)C~~1(~~)h1h11rh0,+ (2a6+ A2)h,,,h,,+ (1 — A~)h,,,””h,,q.j,

+ (2a5+ A2)h°h~,,,.,,+ (2— A2)h,,,’~”h0a.,,}). (4.17)

The three-quantuminteractionscan be divided into four classes,namely h
3(7),

h24,(6), h4,2(2)and 4,~(I),where the numberof independentverticesof eachtype
is given in parentheses.Since thereis no h4,-propagator,Wick contractionscan
only be performedbetweenpairs of vertices within a given class. We note that
thereis one h3 interactionwith a coefficient that cannotbe affectedat all. Also,
eitherthe h3 interactionwith coefficient (1 — A

2) or that with coefficient (2 — A,)

must be present.Hence, theremust be at least two h
3 interactions.What may

seemmoresurprising is that therealso needbe no more than two such interac-

tions, as the following particularly convenientchoiceof gauge-and reparametriza-
tion-parametersshows

A, = — ~(d —6), A
2 = 1, a1 = — ~(d — 6)(d —2), a2 =

a3_4(d6), a4=~(d—4), a5=a6= —~

2cr1 = a-2 = — ~(d —6), a-3 = 1/4d, a-4 = ~. (4.18)
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This choiceyieldsnamely

53,cI+fix = fdr’ ~h’~~((d — 2)4,m4,n— hP~,,,(hpq.,,— 2h,,~.
0)). (4.19)

This shouldbe comparedwith a total of thirteen differentverticesin the harmonic

gaugewith a linear background—quantumsplitting, obtainedby settingall parame-
tersto zeroin (4.17). Keepingthe backgroundoff-shell, as in ref. [4], increasesthe
numberof three-quantuminteractionsfurther to twenty. Note that in (4.19), the
4,3 and h

24, interactionsare absent. This reducesthe number of graphsto be
computed.

We now turn to the quartic interactions.The pure gaugefield vertices can be
divided into five classes,namely h4(19), h34,(13), h24,2(8), h4,3(2)and 4,~(1),with
their multiplicities given in parentheses.In the ghostsector,to be discussedbelow,
we should expectbch2, bch4, and bc4,2 interactions,due to our nonlineargauge
choice.The h34,, h4,3 and bch4, interactionscan all be discarded,without further
ado,sincethereis no h4,-propagator.Lessobviousis that we canalso discardthe
h24,2, 4,4 andbc4,2 interactions.This follows from the preliminaryanalysisin sect.
3, where we showed that the divergentpart of any “figure 8” graphcan only
involve a

1 I, Vkal I, Vk/a, I or a2 I. But from (3.40), (3.41) it follows that these
coefficientsvanish for the scalar, sinceboth X and ~k/ vanish in that case.The
sameis true for the vectorfields, as follows from the fact that XkI vanishes,while

~ is proportional to the Weyl tensor Ck/m,,. In particular, the last term in
(3.40) vanishesdueto the CC-constraint.Thereforewe candrop the bch

2 vertices
too, and no quartic interactionsinvolving the ghost remain at all! Only the h4

verticesremain,but alsoof thesewe candiscardquite a few by making useof the
following Ward identities:

VkGk/,+ GV
1 = 0, (4.20)

+ G,,,(/r Vn’) — (1/d) g1,,V,,,G = 0, (4.21)

which relate the spin-zero,spin-oneandspin-two Greenfunctions.Theseidenti-
ties follow by integrationof the identicalequationsfor the heatkernels.The first
oneis well known (ref. [46] andfirst article in ref. [20]) andwe generalizedit to the
caseof spin-two. This secondWard identity allows us to discard any h

4 vertex
which involvesa factor h,,,. This is becausefor suchavertexat least oneof thetwo
graviton loops of the associated“figure 8” graphcan be replacedby a ghostor
scalar loop and thesevanishas we havearguedabove.Equivalently, this is what
the extra 0(1(2) gauge parametersin (4.6) would have achieved.Namely, new
quartic termsin (4.7) would then havecomefrom the crosstermsof these0(1(2)

termsin F,,, with its leadingterms.Hence,such termswould havecontainedeither
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a factor h,, or a 4,~.But such quartic interactionsand the associatedghost
interactionsare irrelevant,as we havejust shown. Incidentally, this demonstrates
the gaugeindependenceof the on-shell effective action for thesefourteengauge
parameters!Therenow remain thirteenfour-point vertices.Among these,we have
the following relations,arrivedat by partial integrationandcompletingthe V2 into
the Lichnerowiczlaplacian

fdi h”(hk,h’~”!~h,,,,,.J)+ 2hk,Ph””h,,,,, + 2C ~“1)”hIkh,fl,,hpq)= 0, (4.22)

fdvh~(h’~”hk,,,?h/,,.P+ 2h”.phk,,,:°h/fl+ 2Ck(Pq),,,h”hl,,h~’~)= 0. (4.23)

Finally, thereare threerelationswhich follow from commutingcovariantderiva-

tives, namely

fdv h~(hk/h”!’h,,,P.fl+ 2hk/,,hm1l.Ph,,,P+ C~~(P0)~hk/h,fl,,hpq)= 0, (4.24)

fdv hkl(hlmhmn?hkp;n+ hlm;,,hmn!1hkp+ h~mh’~”.lhkp;n+ Cm(Pa)nhkmhlflhpq)= 0,

(4.25)

fdv hkm(2hmflhk~mh
1~~— 2ht,,.mh[kPh l]p;~

+Cm(nP)khlflh!ahPC— Cm(n7P)Ih~/h,,~hpq)= 0, (4.26)

wherewe droppedtermsinvolving hm. Allowing for eqs.(4.22)—(4.26)we find that
S4 caneffectively be reducedto the following six terms:

S =

1d’ Ihkl(hphmn h~ 2 ~ / Ic ,n[n;p]

+hmn((1/8d)(d — 2)hk/;~h,,,fl;p— ~hk,flPh/fl;p +h~mh,,
1i.pi)). (4.27)

Here,the scalarandvectorfields arecompletelyabsent.
We haveyet to determinethe Faddeev—Popovghost action,but only through

third order in the quantumfields. Sincewe havealreadyusedup all parametersin
making the gaugefield couplingsas simple as possible,we will have to take the
ghostinteractionsas they come.We will show that our ghostaction is nevertheless
as siiiiple as that in the harmonic gauge. It is obtained by a straightforward
application of the Faddeev—Popovprescription, using the quantum transforma-
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tions (4.4), (4.5). We neednotworry hereaboutthe field redefinitions(4.15), (4.16)

sincethey only generateirrelevantbch2 vertices.Wethusfind for the ghostaction
in an arbitrarygaugeand to third order in the quantumfields

S2+3gh= fdv(_b~nV2cm+ b’~’~c’~h,,,,,;j,— (2/d)(a
3 — a4)bmc~);ph,,,

— 1)b”.~c,,,,,+ (1 + a5)b”,,,c,,.0+ a5b~’;mcp.,,

+ (1 + a6)b,,,!~c,,0+ aobmPcp.,,+ (2/d)(a4 — a5 — ao)bm;,,c1);p]

+ 2(a3 — a6)b” (c(,,,;n)hfl — C(fl;P)hm,,.p)), (4.28)

where we haveomitted all bc4, interactions,since they are irrelevantas well (see

sect. 6 for the proof). In the harmonicgauge,i.e. taking all a’s to be zero, there
are four bch vertices.In the nonlineargauge(4.18) we find instead

52+3,gh = fdv(_b”V2c,,, + b’~’~C~hm,,;p+hmn(bP,m+

— 2)(h’~~b,,,;n+ ~h°’b,,,)c”.~). (4.29)

Observethat our choicesa
2 = ~ and a3 = a6 were beneficialfor the ghostaction

as well. We can simplify this yet further by eliminating the interaction for which
the two covariantderivativescontractwith eachother.This is best explainedas a
general procedure, so consider such an interaction with arbitrary fields f1, f2 and
f-,. Partial integration can always bring the derivativestogether

fdVfif2mf3m = ~fdv(fi;’~mf2f3 f1f2
mmf

3fif2f3
mrnY (4.30)

We next rewrite the V2’s as

V2f
1= —LI~f1—X1f1, nosumoveri, (4.31)

where LI1 is the wave operator for the field f,. This procedure has the advantage
that when we perform a Wick contraction of such a vertex with any other

f1f2f3-vertex, the LI, term will act on the f1 Greenfunction and it can then be

0=8
Fig. 2. A ~ pinchesa “e” graphinto an “8” graph.
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replaced by I~6.The 6-functions pinches the overlapping graph into a “figure 8”
graph, see fig. 2. In general, the X, term remains, but the associated graph has two
derivatives less.

Applying this procedure to the case at hand, we find

fdv h”~b,,,!’C,,;p= ~fdv b,,,c,,V2hm~1= fdv C’~~’1~b,,,c,,hpq. (4.32)

In the first step,we droppedthe terms whereV2 acts on the ghostfields, since in
those casesany graphwill get pinched to a vanishing “figure 8” graph. In the
second step we rewrote V2 as the sum of the Lichnerowicz laplacian and the Weyl
tensor. The former pinches any graph to a “figure 8” graph with two ghost loops,
which vanishes. We conclude that, for our purposes, we can freely replace the
left-hand side of eq. (4.32) by its right handside. Finally,we shouldnot forget the

relations

fdv b,,,
1~(co ;,,1h”~+ h”” ,,1~P) = fdLr ~C~~l(P~)nb,,,C,,hpq, (4.33)

Jdv b~.1,,,(c” ;j,1h’~,, + h~”~1c,,)= 0, (4.34)

and their conjugates.We use the first of these two identities to eliminate the
C—bch vertexagain,sincethis leadsto some cancellations.We then find

52+3gh = fdv( _bmV2Cm+ bm;(nC~h’~~p)+ b0.,,,C[,,;p]h”’~ + ~bmCn;nhm). (4.35)

Here we have, with some hindsight, permitted ourselves to set d = 4 in the
coefficients of vertices which can produce only a simple pole when Wick con-
tractedwith any othervertex.This reducesthe numberof bch verticesto just five.

We also consideredfield redefinitions, similar to those in (4.15), (4.16), for the
ghostsof the form

CIc —‘ (1 + ~,4,)c~ + ~

2hk

mCm + ... (4.36)

with analogous transformations for the antighosts. However, it is evident that
making such redefinitions in the kinetic term bkV2ck can only give rise to
irrelevantthree-pointvertices.

5. Yang—Mills

The purpose of this section is to presentour methodsfor evaluating the
divergent part of the two-loop effective action by means of a simple example,
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namely Yang—Mills theory. Wefollow closely ref. [21] (see also the first article in
ref. [23]) and point out some simplifications. We restrict ourselves here to pure
Yang—Mills in flat space, so that dv = ddx in this section.

The euclidean classical action is given by

s~i= — —~-——fdv~ tr F,,,2,,, (5.1)

g C
2

where the field strength is defined by

F,,,,, = [D,,,, D,,], D,,, = ia,,, + Am. (5.2)

The gaugeconnectionA,,, =A~,,,T,,is in the adjoint representation(Ta)i,c = fahc’

with quadratic Casimir defined by tr(TaT6) = — C26,,,,.
The background-field method is implemented by shifting the gauge connection

Am —*A,,,+ga,,,, where the new A,,, is the background field and a,,, is the quantum
field. In the backgroundcovariantFeynmangaugeF = Dma,,,, the quantum action,
including the scalar Faddeev—Popov ghosts b and C, reads

15qu = — —~--__fdvtr(bLIC +g[D,,,, b][am, C]g C
2

+~amLIm,,a,,+g[D~, an][am, a,,] + ~g
2[am, a,,]2), (5.3)

where

LI = —D2, LIm,, = — (6mnD2 + 2Fmn). (5.4)

Therefore

X 0, 1”kl = Fk/, Xkl = 2Fk/, (Yk/)mn = Fkl6mn (5.5)

for the scalar and the vector respectively. From this we easily find for the
corresponding second heat-kernelcoefficients

fdv tr a
2 I = — ~g

2C
2S~,, fdv tr a2kk I = — 4(d— 24)g

2C
2S~1,(5.6)

where, with a slight abuse of language, we write a2kk I for a2k/~ I
6k1~ We are

keeping track of the d-dependence,since we will also use theseexpressionsin

two-loop order. Adding the vector and scalarcontributions,with a factor —2 for
the ghosts,we obtain the well-known one-loopresult *

1 22 g2C
2

~1IV ~3 16~2~~’ (5.7)

* Note that if one keepsthe d-dependencein (5.6), the factor 22 in (5.7) becomes26— d. Therefore,

the one-loopchargerenormalizationvanishesat d = 26, as expectedfrom (open)string theory [481.
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8e~TT,:
(a) (b) (c)

Fig. 3. Thewavy (dashed)line representsthevector(scalar)Greenfunction.

which implies in particular the asymptotic freedom of non-abelian gauge theories
[47].

The two-loop contributions to the effective action are shown in fig. 3. We
denote the scalar and vector Green functions by G(x, x’) andGk/(x, x’), respec-
tively. We have

(a) = ~g2fdi~((tr TaGk! 1)2 + tr[(TaGI/’ 1)2 — (TGkk’ 1)21). (5.8)

As was discussed in sect. 3, it is easy to evaluate the divergent part of graph (a)
and we find

2
(a)dV=24 2 ~ (5.9)

16~E

For graphs (b) and (c) the Wick contractionsproduce

(b) = ~g2ffdv dv’((DkG,,,,,D/, Gk,,r, G,,,

1~)— (DkG,,,,,’D,~,Gk/’, G,,,,,~)

+ ( DkG,,,/,GIc,, si’, G,,,,,) 2(DkG,,,,,’, Gk,,’ ~ G,,,1~)

+(DkG,,,,,~,G,,,,,D1,Gk/’)), (5.10)

(c) = — ~g2ffdi; dv’(DkG, G1~1,, Gkfr). (5.11)

Herewe use the notation[21]

(A, B, C) fah(fa’h’(.~4,B11,C, (5.12)

This productis totally symmetricin A, B, C. The expressions(5.10) and(5.11)are
identical to those found in ref. [21], except that we noted that in (5.10) two terms
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are equal after some relabeling. Further simplicification can be achievedby
making useof the Ward identity (cf. (4.20))

DkGk/ + GD1 = 0, (5.13)

relatingthe scalarandvectorGreenfunctions.We useit to eliminatebothscalar
Greenfunctionsin graph (c). We next perform some partial integrationsand find

(c) = — ~g2ffdLr dv‘((DkG,,,,,~~ Gk,,, Gmi’) + 2(DkG,,,,,, Gk,,rD/, G,,,1)

+ (DkG,,,/’, Gk,,~D1, G,,,,,)). (5.14)

The sum of (b) and (c) simplifies and after a further partial integrationto remove
the remaining second derivative of a Greenfunction, we obtain

(b) + (c) = ~g2ffdv dv’((DkGk/, G,,,,,D/~,Gm,,’) + 2(DkGm,,’, G,,,,,D1~,GIl’)

_4(DkG,,,,,’, Gk,,rD/., ~ (5.15)

To evaluate the divergent contribution from the first term is easy. Namely, we
partially integrate the D1 and use

DkGk/rD, = D
2G = 16, (5.16)

as follows from the Ward identity (5.13).The 6-function turns the double integral
into a single one and we obtain for this term

ffdv dv’(DIGI,, ~ G,,,,,) = — ~fdv( I, G,,,,,, G,,,,,~)I

~ 2
4 gC

2

= ~(16~2)

5cv (5.17)

There are only two terms left to evaluate,but here the Ward identity is of no
further use.We thereforeturn to the heat-kernelexpansion.Eachterm is of the
form (see fig. 4)

Tkl’ = ffdv dv’(D
1G, Gb~,G), (5.18)

where now we suppressall indiceson the Greenfunctions.
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~

Fig. 4. Two two-loop patterns.

For eachGreenfunction we insert a heat-kernelexpansion

G = G,,a,, + G~a,+ G2a2+ H, (5.19)

and distribute the covariant derivatives. In general, the three G’s may be different,
so we must take care to maintain the order of the a1. Keeping only singular terms,
we find

TIcir = ffdv dv’ (G~(a0k, a0,, a0) + L [G,kG~( a,, a0/, a,,)

+G,/~G~(aOk,a1, a,,)] + GOkGOGI((aO,a11, a,)) + (a0, a0~,a,))

+ G,,,G0Gi(( aOk, a1~,ai) + (alk, a,~,a0)) + E [GOkGO,G,(a,,, a~~,a,)

+ GOkG,/rGO(aO, a,, a,,)+ G,kG,,/G,,(a,,a,,, a,,)] + G,kGUrGO(a,, a~,a0)

+ G,kG,,,rG,(ai, a0, a,) + G~kG,1G i( a,), a1,a,) — G01G,,((a,,,O1r, a0)

+ (ao, a01,G)) — GO/rGO((Gk, a,,, a,,)+ (aok, a,,, 0))

a,,,0) — G,,kGI,r(a,,,a,, 0) — Gi1G,,,(a,, a~~,0))

(5.20)

where we use the shorthand notation G,,k= BkG,), ~ = Dka,,, etc. We dropped
the term with G,)kG,)/G,,,sinceit canyield only totally symmetrizedderivativesof
a,1, which havevanishingdiagonallimits. We also droppedterms involving G~G,,

or G~in the subdivergences since, by dimensionalanalysis, their singular part
involves no derivativesand it multiplies at least one Da,,, which vanishesin the
diagonal limit. Products of the form G~G0or G~G2are singular only when both
derivatives act on them (and therefore not on the a). As was alreadynotedin sect.
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3, the subtractions can always be combinedwith a correspondingrest term H in
such a way that only G = G — H occurs.

Next, we insert for each product of G1 the correspondingsingular expression
(see appendix C, but with V = 3) and integrate any derivatives off the 6-function
onto the heat-kernel coefficients. Wethus find the following local expression:

1
Tklr = 2 2 fdv(E(a,,kJ), a0~0,a0) + 4�[(a,, aOl!, a,,) + (aok,, a,, a,,)]

(l6ir �)

— 4�[(a0, b,k/, a,,)+ (b,k/, a,,, a,,)] — 4eg11(a,, a1, a0)

+ (4/d) [(a,,, a,k,,a0) + (a,11,a,), at,) + (a,,, a,,kl, a,) + (a,,11, a0, a,)]

—2[(â0, alkl, ~0) + (a,11, a,,, a,,) + (a0, â,,~,,a,) + (a,,k,, a0, a,)]

— 4(1 — ~E)(a0, a,,, b,kf) + 4(a,,,a0, b,kl)

— (2/d)g~/[(a0,a,, a,) + (a,, a,), a,) + (a2, a0, a0) + (a,,, a2, a,,)]

+g11[(a0, a,, a,) + (a,, â,~, a,) + (a2, a,,, a,,) + ~ a2, a0)]

+(2/d)g~,(a,,,a0, a2) —(1— 4E)g11(â0, a0, a2)) I. (5.21)

Here, the diagonallimit, indicatedby the I at the end, has beentaken. We also
defined

b,11 = Dkla, + 4g~fD
2a,. (5.22)

The hats are thereto remind us to evaluatethosecoefficients at d = 4, before
proceedingwith the remainderin d dimensions.Note that, due to the R-oper-
ation, the sign of every double pole gets reversed.From dimensionalanalysiswe
expected all D~a,I with 2i +1 ~ 4 to appear on the scene. However, we do not
need D3a

0 I and Da, I, since they can only appear together with Da,, I, which
vanishes. Also, D

2a, I and a
2 I come with a factor a,, I a0 I, i.e. a product of

Kronecker deltas. So, for expressions of dimension four, we need to know only the
integrateddiagonallimits. A completelist thereforeconsistsof

a0I, D1a0D1I, a,I, fdvDkla,I~ fdva2t. (5.23)

The nonvanishing coefficients of this type are given by (5.6) and furthermore

a0 I = 1, Dka,,1
5/r I = 4Fk/, fdv tr D2a, I = 4fdv tr F,~,,, (5.24)
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for the scalars, whereas for the vector

I = 6,,,,,, D
1a,,m,,rDjr I = 4F116,,,,,, aIm,, I = 2F,,,,,, (5.25)

(1/d)fdv tr D
2a,kk I = fdv tr DIclalkir I = 4fdv tr F,,,2,,. (5.26)

A straightforwardcalculationthengives

1 34 ~2~

2 2

~iiv 2 ~c~’ (5.27)
� 3 l6ir

previously obtained in ref. [49]. As a test case for gravity, we have written a
programin FORM, which performs the abovestepsandwhich canbe applied to
any graph of the type in fig. 4. This allows many crosschecks and the entire
two-loop calculationtakesa few seconds.

This way of proceeding,i.e. first usingpartial integrationsandWard identities

to simplify things and doing the remaindervia the heat-kernelexpansion,will be
also useful in the gravitational case, to which we now return.

6. Effective action

We now returnto two-loop quantumgravity. A final rescalingof the scalarfield

4,-sv’2/d(d 2)4,, (6.1)

gives it a canonicallynormalizedkinetic term. The completequantum action to
fourthorder in the quantumfields, with theparameterchoicesmadein (4.18)and
omitting termswhich do not contribute in two-loop order (4.10), (4.19), (4.27),
(4.35), canthen be summarizedas

5qu2~53~54~”’ (6.2)

S
2 = f dv(44,V

2c6 — bkV2Ck— 4h1’V2h
1,+ Ckm~lh1ihm,,), (6.3)

53 = fdv(hh1((1/d)4,~4,/+ hmtl;k(hl,fl.,, —

+bk.(I C’~h~. + b1~kC[l.m]hkl + 4b”C~.,,hm), (6.4)

5 = f,.~, ij,kl(~~p~,m,,j,

4 J 2 1 k ,,,[,,;p]

— 2)hkI~hm,,;p— 4hkm.Phf,,.i) + hkP;mh,,[/;p])). (6.5)
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A generalfour-point interactionof the form

fdv hklh,,,,,hpq;thrs;u (6.6)

contributes

f dLr((G~jprqr.trI Gm,,r,,,r I +kl —-- mn) + Gk,,flr,,r I Gpqrs;tur I) (6.7)

with divergent part

— (16~2f)2 Jdv(4(a,k,pq;, I a,m,,rrsr;u I +ki ~--- mit)

+
2a,k,m,, I (a2pqrrsr I — 2a,pqrrsr;tu I + 2a,pqrsr;t I ;u))~ (6.8)

where we used eqs. (3.16)—(3.18) and also a,.kI =a,.kI. The hat on the back-
ground metric ge,, indicates that we must set d = 4, whenever t and u are

contracted.Sincemetrictensorsdo not appearin the coefficientsin (6.8) (cf. (6.22)
etc.), any interactionas in (6.6) yields only a double pole (but note that, sinceits
coefficient in the action can be d-dependentas in (6.5), it may still contribute a
1/e pole).

For the overlappinggraphs(fig. 5) we find

(b) = — 4ffdv dv’ GP’5’;~
1r(4Gpq~r,;~,,GkPfl/~fl+

—2G ~‘ G
1”” — 2G “ Gkm~” — 2~ “,,‘ ~kmpq s’;mn’ r’ pq r’;m s’;,, pq ;m

+ GkpI’s,;mn,Gmqn’r,+ Gkpn’r,;mGmql’s,.n,+ Gmqt~,;pGk~nr,,;,,

+Gmqls,;p,,,Gkm~r,+ 2Gmqn~,;pGk~lr
5,;,,,), (6.9)(c) = — (1/d2)ffdv dv’ Gkml’~’Gk/G mn (6 10)

8eO~TT~’
(a) (b) (c) (d)

Fig. 5. The wavy, plain and dashedlines representthe graviton,its traceandthe ghosts,respectively.
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(d) = 4ffdv ~

+ 4GkP~rnr;~lr(Gmq,;~,,,Gp,,+ 2Gmq,;n,Gpi,;m)+

+ Gp~r;kI’(2Gm[P~ q’(l’: ~‘G klnr).m + 4Gkmq,n’G[m/,;~1],,,+ 4Gkm[lr ~‘G~qrj;?fl,,,)

+ 4GkP~nl’.~/r(4Gmq,;~Gp~’;,,,+ G’~qr.m,,rGp~’+ GThq,,Gpfl~~)j. (6.11)

The sum of graphs (a) through (d) yields the complete on-shell two-loop effective
action for perturbative quantum gravity. Note that thereare only ten terms in the
expressionfor graph(b), to be comparedwith five termsfor the analogousgraphin
(5.10)for thecaseof Yang—Mills fields. We now needto isolatethe divergentpart

of these expressions.We begin with applying the Ward identities (4.20, 21).
Differentiating them once more, we find

d—2
V1~G

11V
1’= 6, V1G

1,,,1,,,,V”= 4g,,,,,6 + 2d ~,,GV,,. (6.12)

The second identity can be directly applied to the last three terms in graph (d),
which are then seento vanish(see the discussionat (6.31)). Forthe remainderthe

Wardidentitiesareunfortunatelynot of much use,at leastnot in a straightforward
way. Recall that we could simplify mattersin the case of Yang—Mills fields by
eliminatingderivativesof spin-zeroGreenfunctionsin favor of thoseof spin-one.
in the presentcase, there would still remain some terms which can only be
handled by means of the heat kernel expansion. We have therefore chosento
programthe calculationof genericoverlappinggraphswith up to two derivativesat
each vertex. This permits many checks and in fact also a calculation of the
two-loop effective action in an arbitrary nonlineargaugeand with arbitrary field
parametrization.

We now discussin generaltermsthe procedure,analogousto that in sect.5, for
finding the divergent part of any two-loop graphcorrespondingto the following
two patterns:

kl’m,,’ = ffdv dv’ G;k/rG.m,,rG, T2 kl’m,,’ = ffdv dv’ G;kl~G.,,,G,,, (6.13)

where all indices on the G’s are now suppressed. We includeda third patternfor
partial integration checks, i.e. the sum of T~,T2 and T3 must vanishfor all cases
(see fig. 6).

As in sect. 5, we insert for each Greenfunction a heat-kernelexpansion,but
now through third order

3

G = ~ G,a, + H, (6.14)
i==0
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:~:. ~
Fig. 6. Patternsfor two-loop graphsin gravity.

and distribute the covariant derivatives, taking care to maintain the order of the a,.
In eachcasethis generatescloseto onehundredsingularterms.Next we insertthe
list of singular expressionsfound in appendix C and integrate all covariant
derivativesoff the 6-functions.At this stageT, and T2 each haveclose to one
thousandterms. To proceed, specific choiceshave to be made for eachGreen

function. This is done by inserting sets of labels for each of the three Green
functions.Subsequently,we substitutethe following list for the heat-kernelcoeffi-

cients,obtainedfrom the genericexpressionsat the endof sect.3.
(i) Scalar:We note that

a,,(x, x’) = 1, (6.15)

evenoff the diagonal.The only othernonvanishingheatkernelcoefficientsare

4fdv V
4a, I = fdv V2a

2 I = 3fdv a3 I = fdv(1/7!)C3. (6.16)

In a Ricci-flat space,whenactingon a scalar,onehas(V
2)2 = V” VaVpVq = V~V2VJ,,

so the order of the derivativesin the fourth derivativeof a, is irrelevant.
(ii) Vector: The off-diagonalzerothcoefficient is given in termsof the parallel

displacementbi-vector (see(3.27) and (3.12))

aoki,(x, x’) = g1
1~(x x’), (6.17)

andotherwise

(1/d)fdv V
4a

1
1

1,I = fdv V
4k/a,~’I = 4fdv(1/7!)C3, (6.18)

(1/d)fdv V2a
2

1k I = fdv Vkla
2kt’ I = fdv(1/7!)C3, (6.19)

fdv a3
1’

1 I = 4dfdv(1/7!)C3. (6.20)

In the fourth derivativesof a,, the order of differentiationsis irrelevantsinceany

commutatoryields a Weyl tensor times a lower derivative of a1, and theseall
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vanish in the diagonal limit. Therefore, also for the vector fields, almost all
heat-kernelcoefficientsvanish.This is due in part to the CC-constraint,sincethe
diagonallimit of the secondderivativesof a, doesnotvanishin a generalRicci-flat
space.

(iii) Tensor:

~ x’) = gk(,,,,( x, x’)g1,,)(x, x’) — (1/d)g11(x)g~,,(x’). (6.21)

It is straightforwardto verify that this expressionsatisfiesthe defining equation
(3.12)with the correctboundarycondition. For the first coefficientwe have

alklmr,,r I = 2Ck(,,,,,)l, (6.22)

a lklm’~~’;pI = — Ck(,,,,,)I:P, (6.23)

— 2 ç’ I ~ rf’ ‘~,-‘ r ç’a lkl~~i’,,’:pq — — i4~k(,,,,,)1;(pq) ~ (p q),1 ‘i) ~L,,,,,,Xk 1)rpq~

The secondderivative of a~will always appearwith one contractionand then it

canbe written in terms of the tensorU. We havegiven the genericexpressionfor
the secondderivative,sincethe list of all possiblesinglecontractionsis ratherlong.
Longeryet is the list of the diagonallimits of the fourth derivativesof a

1 andwe

only give the following threecases:

4d( d + 2)fdv V
4

11,,,,a1!m’~’I = df di’ V
4k/ai~’ I

= fdv V4a,1’
11 = 4 tr Ifdt’(I/7!)C3. (6.25)

All othercasesfollow from commutingcovariantderivativesandusingthe diagonal
limits of the lower derivativesof a~.For the secondheat-kernelcoefficient we
obtain

a21~,,,,, I = — 4Uk(,,,,,),, (6.26)

and

f di’ V11a2
1”~,I = (~~tr i — ~)fdv C3, (6.27)

fdt’ V2a
2~’11,I = (~tr i — 4)fdv C

3. (6.28)

Finally, the third heat-kernelcoefficient is given by

f dv a
3 1’!’ I = tr if dv( l/7!)C

3. (6.29)
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Checks are an important issue in a calculation of this complexity. In the
noncovariant calculation of ref. [4], a strong check was provided by the fact that
the final expression indeed corresponded to the linearized version of the JC3
invariant. Furthercheckswere providedby extendingthis analysisto includesome
off-shell divergences. Our procedure guarantees a covariantanswerandchecksof
this type are therefore meaningless. Instead, a stringent check is providedby our
verification that the final answer is completely independentof all gauge- and
field-redefinition parameters.Upon leaving all such parametersfree, there are,
besidesthe graphsin fig. 5, also the two-loop graphwith two graviton and one
scalar propagator andthat with all scalarpropagators(the latter actuallyvanishes,
as we will shortlyshow). In general,eachtwo-loop graphthen hasa double anda
singlepole where the residueof eachpole is now a quadraticpolynomial in the
parameterswith complicatednumericalcoefficients.We havecheckedthat in the
sum of all two-loop graphs,the doublepolescancelandour final answeris

1 209 1
(2) — — — r m~, pq k/ 6 30

div 2 kI “1,, pq
� 2880 (16~r2)

in agreementwith the final result obtained previously in ref. [4]. The factor 209 can
be decomposed as 11 >< 19 and it is temptingto speculatethat, as in the one-loop
Yang—Mills result in sect.5, the factor 11 is really a factor (26 — d)/2, as expected
from closedstringtheory(to actuallyconfirm this, onewould haveto keeptrackof
some finite partsof the two-loop graphs,which we did not do). The result (6.30)
also providesanotherinstanceof the generaltheoremthat the on-shell effective
action mustbe gaugeandfield parametrizationindependent[34]. A disadvantage
of this check is that it canbe performedonly at the very end of the calculation.
Intermediatechecksinvolvedverifying relationsamongdifferent Wick contractions
implied by the Ward identities(4.20), (4.21)andby partial integrations(seeremark

after(6.13)). It is importantto note here,that the heat-kernelexpansiondoesnot
automaticallysatisfy the Ward identities.As discussedin sect. 5, these identities
often bypass the use of the cumbersome heat-kernel expansion. Wewill now give

somefurther examplesof this.
First, considerthe three-scalarvertex 4,4,.’~4,;~.By (4.30), (4.31), this is also

equalto — 44,2V24,.Therefore,Wick contractionof thisvertexwith a copyof itself
producesvanishing“8”-graphs(we usethat in dimensionalregularization6”(O) = 0

[501).Similarly, among the bC4, vertices,we can omit the threecaseswhere the
derivativescontractwith eachother.This leaves

bm;,,,C~,,4,, bm.,,C~.,,,4,, bmC~,,4,;~,bmC~.,,,4,.,, (6.31)

andalso the conjugatesof the last two vertices.Among thesethereis the following
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on-shell relation:

fdv(b”1,,, C” ;,zj4, + b’~C”.1,,4, ;,,,~)= 0 (6.32)

and its conjugate.PerformingWick contractionsamongthe remainingfour inde-
pendentvertices is easy. In almost all caseswe can use the Ward identity (4.20),
reducingthe graph to a vanishingall-scalargraph. The only nontrivial integral is

ffdv dv’ GGkl’.,,,,,,Gmn~i’kf, (6.33)

and a tedious but straightforward heat-kernelcalculation shows that this also
vanishes.This provesour earlier assertionthat all bC4, verticescan be dropped.
Next, we considerthe 4,4,h vertices,namely

hfl !4, 4,,, , h~7I4,,,,4,. (6.34)

By partial integration,the secondvertexequals — 44,2 V”h,,,,,. The Ward identity
(4.21) showsthat bothWick contractionsof this vertex vanish.The first vertexhas
a nontrivial Wick contractionwith itself, namely

11 1
ffdv dv’ GkPfll’fl’G.k/~G;,,,,,r= — — 2 fdc C

3. (6.35)
� 1440 (16ir2)

This yieldsthe divergentpartof graph(c) (fig. 5) in (6.10).Wenext turn to the bCh

vertices.For thosewith contractedderivatives,we haveeffectively

bk!~~Cl.,,,hkl= — bkCl.~~~h
1l.,,,= C

1”h
1 C1h,,,,,. (6.36)

This leaves

b” kC ‘h b’~
1C~ h b’~ k l~,,,,~ kI’ ; ;,,, kI’ .,,,C kl’

j.~k / j~ j~k /j., ~k I jC •~ ‘1’ Ck; i~, ii C ;k ‘I’

~k ln,j, j.,k /,iij,C. km;/’ C. Im;k’

and, except for the first case, also their conjugates.In addition there are the
relations(4.33), (4.34).The Ward identitiesimply that any Wick contractionamong
the verticesin the secondline of (6.37)vanishes.The sameis truefor contractions
betweenb”;mC’Yhk/ and the vertices on the secondline. This provides stringent
checkson thecalculationsbasedon the heat-kernelexpansion.Wewill not discuss
the h24, or h3 vertices,but we do include a list of the results for every possible
Wick contractionamongthe h3 verticesin appendixE.
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7. Conclusions

We haveshown by meansof a fully covariant calculation, that thereexists a

nonrenormalizabledivergence,see (6.30), in the two-loop effective action of
Einsteingravity. This confirms andcomplementsthe earlier studyof ref. [41,where
noncovariant methodswere used. We verified that our final answer (6.30) is
independentof a largenumberof gauge-andfield-redefinitionparameters.In our
opinion, this shows conclusivelythat perturbativequantum gravity, basedon the
Einstein—Hilbertaction, indeedhasincurableshort-distancedivergences.

In our work, we could reduce the number of three-gravitoninteractionsto
merely two by choosing a novel nonlinearbackgroundcovariant gaugeand by
allowing nonlinearbackground—quantumsplitting. This comparesfavorably with
twenty off-shell three-gravitoninteractionsin the backgroundcovariantharmonic

gaugein ref. [4]. By imposing, in addition to Ricci-flatness, a new constraint
bilinear in the Weyl tensor,see(3.29), we were able to determineall heat-kernel
coefficients and singular products of Green functions by hand. Making use of
Ward identitiesandpartial integrationsallowed manychecksandfurthersimplifi-
cations(also in the much studiedcaseof purenon-abeliangaugefields). Unfortu-
nately, in generalwe still had to resortto the use of the heat-kernelexpansionand
this carriesus outside the domain of hand calculations.However, the use of the
covariant heat-kernel expansion brings the problem in easy reach of some existing
symbolicmanipulationprograms.The use of FORM [31] provedto be invaluable,
especiallyin extending our calculationsto the case where all gaugeand field
redefinition parameterswere left free. At presentour calculationstakesapproxi-
mately two hours CPU time on a Silicon GraphicsIRIS 4D/220S, or about twice
that amount on a VAX 6000-410.This comparesfavorably with the CPU time
requiredin ref. [4], namelyaboutthreedayson a VAX 11/780, althoughin view of
the different machinesused,such comparisonsare at best indicative.

Further simplificationsin the evaluationof the two-loop divergenceof Einstein
gravity may yet be possible. In fact, we will now show that in d = 4 our CC-con-
straint (3.29) implies that spacemust be half flat, i.e. it has either selfdual or
anti-selfdualWeyl tensor! * Using SU(2) notation, with spinor indices a, h,... for
the first SU(2) (and with primes for the second SU(2)), the Weyl tensor gets
replacedby the totally symmetric Weyl spinorsW

1,,,~1j and w,1,~11.We then find
for the tensor U

Uk,,,,,,
2WahcdW;rh’er(/r + ( Wac’tWh,/efEarhr�c.rdr + w w’). (7.1)

* It has been suggestedto us by M. Roèek that this constraint may thereforeprovide a sensible

generalizationof self-duality to dimensionsotherthan four.
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The term bilinear in w can be decomposed into its irreducible pieces as in

Wac’~Wis,iei= c~/)ef—
4Ea(c�,j)hW2~ w2 = WCdW,,/,Cd. (7.2)

If we want the tensorU to havethesymmetriesof the Weyl tensor,thenwe should
require that w’ = 0 and w2 = 0, (or w = 0 and w’2 = 0). The first condition
requiresspaceto be half flat andtherefore also Ricci flat. Incidentally, selfduality
also implies the vanishingof theBel—Robinson tensor,which in spinor notation is

just the ww’ term in (7.1). A further side effect of the CC-constraintis that both
the Euler and Pontryagin number vanish, simply becausethe corresponding
densitiesvanish. It is well known that exact Greenfunctionscanbe found for fields
propagatingin an instantonbackground.Although our backgroundis topologically
trivial, similar methodsmay yield a much simpler derivation of the two-loop
effective action for gravity. We shouldnote, however,that a selfduality constraint
may invalidate the use of dimensionalregularization.

Unfortunately,a selfdualityconstraintis not allowed for the three-loopcalcula-
tion required to settle the finitenessissue of N = 1 supergravity.We nevertheless
feel that with methods similar to those advocatedhere, suitably extended to
superspace,this calculation may be within reach. But, to quote ‘t Hooft and
Veltman [3], “a certain exhaustionpreventsus from further investigation,for the
time being”.

I wish to thankthe institute for Theoretical Physics at Stony Brook for a visiting
position and its hospitality. Special thanks go to Martin Roèekfor useful discus-
sionsandfor believing I could do it, whenI wasnot so suremyself. I also thankJos
Vermaserenfor interestingdiscussionsandfor inviting me for a stayat NIKHEF-H
in Amsterdam.

Appendix A. Notation

Indices i and j representgeneric labels, while k, I, m, it... denoteworld
indices. We use ellipses and squarebrackets around indices to indicate sym-
metrizationand anti-symmetrizationrespectively,and include a factor 1/N! for a
total of N indices.We useboth the operatorand semicolonnotationto indicate
covariant differentiation. For a scalar 4, we may omit the semicolon, so that

= 4~m= [Vm,4,]. Note that the operatorV actson everythingto its right. Our

curvatureconventionsare

[Vm, V,,]A”=R1im,,A1, Rm,,=R~m,,p, R=gm~R~,,. (A.1)

Besidesordinary tensors,we also considerbi-tensors,which dependon two
points x and x’. The simplestcase is provided by a bi-scalar, e.g. the geodetic
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interval a-(x, x’). In general,bi-tensorstransform as indicatedby their indices,
with primed indicesreferringto the point x’. For instance,thebi-vector g”1(x, x’)
transformsas a product A”(x)B1(x’) of a covariantvectorat x and a contravari-
ant vector at x’. When no confusioncan arise, the argumentsx and x’ will be
suppressed.Indicesreferring to the point x can be lowered and raisedwith the
metrictensorg1’1(x) andits inverse,idem ditto with primes.Covariantdifferentia-
tion at x’ is indicatedby putting a prime on the index,as in V1. The relativeorder
or unprimedandprimed indicesis irrelevant,since covariantdifferentiationsat x
and x’ commute.E.g. in cr11,,,,, we can freely move the primed index to the end.
For any bi-tensorT(x, x’) we denoteits diagonallimit, T(x, x), by T I. Note that

the chain rule of covariantdifferentiation implies that

TIm = T.,,, I +T.,,,~I, (A.2)

which statesthat differentiating aftertaking the diagonallimit is the sameas first

differentiatingwith respectto both argumentsandthen taking the limit. Reading
this as an equationfor Tm I allows one to eliminate derivativesat x’ in favor of
those at x. Written in that form it is known as the Synge—Christensentheorem
(secondarticle in ref. [20]).

For totally symmetrizedproductsof covariantderivatives,we usethe following
notation:

Vkkk = ~ Vk... Vk5,). (A.3)

Wheneverpairs of contractedindicesoccur in such an expression,we omit them
andwrite insteadan exponentto indicatethe total numberof covariantderivatives
presentin the symbol. For instance

V
2 = g”V,,V, , V3

1 = g”’V~~~,,V,,,, (A.4)

where the first case coincides with common usage. The following reduction

formula is then useful:

rykr,~ “k,k,...kN ~ k1k,...k~

+ (1/(N + 1)) ~ (N—I +
1)~k, ...k

11 [Vk, V1] Vk.~,...kN). (A.5)

Appendix B. Diagonal limits

In this appendixwe derive expressionsfor the diagonal limits of covariant
derivativesof a-, v and a,. In two-loop gravity calculations, such objects with
overall dimensionless or equal to six can appear,as we discussedin sect.3.
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The defining equationfor the geodeticinterval u(x, x’) is

a-tma-,,, = 2a-, a-I = 0, a-,,, I = 0, (B.1)

where —a-” is the tangentvector at x, pointing towards x’, with length equalto
the length of the geodesicbetweenthe two points.Evidently, both a- and a-,,, must
vanishin the diagonallimit, whereas

a-,,,,, I =g,,,,,. (B.2)

It follows from eq.(A.2) that a-mn’ I = —g,,,,, We wish to find the diagonallimit of
some higherderivativesof a-. Note, that since a- has dimension —2, we will need
to go as far as the eighth derivative.They are found by taking repeatedcovariant
derivativesof the defining equation(B.1) and subsequentlytaking the diagonal
limit. Forinstance,differentiating threetimes, taking the diagonallimit andusing

(B.1) and (B.2)yields

a-m(,,p) I = 0. (B.3)

To arrive at (B.3), we alsousedthat we canfreely interchangethe first two indices
of a-, sinceit is a scalarat x. Upon addingto (B.3)

1 1a-m[,,p] I = ~ I R,,,,,,,,= 0, (B.4)

we seethat its solution is simply

a-mflp I = 0. (B.5)

Using this result,the next two casesbecomelinear in a-, namely

I +O~,flp,,q I +a-,,,q,
1p I = 0, (B.6)

0,n,,pqr I +0~mpnqr I +0,nq,,pr I +a-mr,,pq I = 0, (B.7)

with solutions

a-,,,,,pqI = ~Rm(pq),,, a-m,,pqr I = ~ (B.8)

Note that in a Ricci-flat space,the expressionsin (B.8) vanishupon contractionof
any index pair. The equations for the sixth and higher derivativesof a- are
nonlinear in a- and their solutions for a general Riemann space are rather
complicated. However, as we discussedafter (3.29), we can restrict to spaces
satisfyingthe CC-constraint.Furthermore,in practice,the diagonal limit of the
sixth derivative occurs always with at least one pair of derivativescontracted.
Consider the particular case where the first pair of indices of 0k/m~pqI are
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contracted, first without the CC-constraint.In a Ricci-flat space, this tensor is
totally symmetricon its remainingfour indices,as follows from a-”1,,,,, I = 0. It can
thereforeonly havethe following form:

a-

1km,,J,q I C
1,,,,,, ICkpq)/, (B .9)

but thisvanishesupon imposingthe CC-constraint.Othercasesareeasilyobtained
from this “boundarycondition” by commutingcovariantderivatives.For instance,
in a-”km I, the order of the first threeindices is in fact irrelevant. Furthermore

k _4 I ——4U I ——8U~ kpq — 3 ,,,(pq),, cr~,,,,,,kq — ,,,(pq),, ‘ °~~inpqk — ,,,( paIn

(B.10)

etcetera.Once again, any further contractionof theseexpressionsvanishes.The

seventhderivativeis not needed,butwe do requirethe integrateddiagonal limit of
the fully contractedeighth derivativein a Ricci-flat space,namely

fdv(V2)
4a-I = _24Ofdv(1/7!)C3, (B.11)

wherewe usethe abbreviation

C3 = C “’NC “C ki (B 12
1/ ,,,,, pq

We have allowed partial integrations,dropping boundary terms, and used the

Bianchi identitiesto simplify (B.11).
The squareroot v of the Van Vieck—Morette determinant~ satisfies

(a-”,,, — d) v + 2cr”t,,, = 0, t’ I = 1. (B.13)

By repeatedlydifferentiating this equationwe can solve for the diagonallimits of
the derivatives of v, giventhoseof a-. However, in a Ricci-flat space,dimensional
analysis suffices to find the solutions. Namely, the jth derivative of v has
dimension j. It follows that the diagonallimits of the secondany third derivatives

of v vanish.This in turn implies that the limits of the fourth and fifth derivatives
mustbe totally symmetric.Furthermore,sinceit is clear that explicit metric tensors
cannotappear,we musthave

vm,,pq I Ck(m,, Cpq)1, 1’mnpqr I v,m,,pqI;r)’ (B.14)

but theseexpressionsvanish upon restricting to spacessatisfying the CC-con-
straint.This leavesonly the sixth derivativeof v to be determined.We needonly
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the fully contractedversion. Differentiating (B.I3) with (V2)3 and dropping all
terms involving less than six derivativesof i’ yields

v( V2)4a- + l2a-~~z~(V2)2v,,,,,= 0. (B.15)

Taking the diagonallimit, integratingandusing(B.11) producesthe result

f dv(V~)3cr I = 2ofdv(1/7!)C3. (B.16)

Note that the order of covariant differentiations is immaterial. Thus, in spaces
which satisfy the CC-constraint,we haveto go as far as thesixth derivativeof v to
find a nonvanishingdiagonallimit.

The zerothheat-kernelsatisfiesthe definingequation

a-”D,,,a,,= 0, a,
1 I = I, (B.17)

andwe obtain

Dka,,I =0, DkDfa,,! = 4~’kl’ DkDID,,,a,,I = 4D,1 Y11,,, (B.18)

D1 D1D,,, D,, a,, I = 4 ( D~D1}’,,,, + Dk D,,,Y,,, + D1 D,,,‘~“kn)

+ 4 ({ Y11, ~,,,,}+ { Y~.,,,,Y1,,} + { Y0,,, Yk,,))

+ 4R[~,,,,,,1YI)~— 4R(~11,,,,Y,,~p— 4Rk,[,,, “Y ,,~‘,. (B.19)

Observethat the totally symmetrizedexpressionsindeedvanish.The aboveexpres-
sions hold for an arbitrary Riemann space.On-shell D”Y11= 0, and hence any
contraction of the third derivative vanishes. Contractions of (B.19) yield, in a
Ricci-flat space

D1D1D
2a,, I = ~ “Y,

1,,, (D2)
2a,, I = 4Y11Y

1, 4Y
2. (B.20)

We do not needthe fifth derivativeof a,, and about the sixth derivativewe only
needto know that

fdv D
11,,,,,D

2a,, I = — fd v(4 [ A Y
10] [D,,,, Yfl )P] + C,,,1, ~,,‘ Y,,11). (B .21)

This is enough,becausein practice a~~has at most four indices(for the graviton),
so we can assumethereto be at least one contractedpair of indices amongthe
derivatives.Eq. (B.21) was obtainedas follows. We first differentiate(B.17) with
D

2/2 to obtain

+ a-”Dpqa,, + 4a-1”
0D~a,,= 0. (B.22)
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Next, we differentiatethiswith Dk,,fl,,, which amountsto a binomial distribution of
its indices.Due to varioussymmetry propertiesof lower derivativesof a- and a,,,
only threeterms survive in the diagonallimit, namely

I +
2D(k,,fl D2D ,,)a,, I + 6cr”~

11I D ,,,,,,DpqaoI = 0. (B.23)

For instance,the last term in eq. (B.22) does not contribute at all. We now
integrateand eliminatethe secondterm in eq.(B.23) via

fdv D,k/,,, D
2D ,,

1a,, I

= fdv(D11,,,,,D
2a,,I + 4 [ D,

1 , Y1~][D,,,, Y,,)p] + 4C,,(k/ a~,,Py,,1q),(B.24)

which we obtained by commuting the D
2 on the left hand side through the D,,.

Contractionsof (B.21) yield

fdv Dk,(D2)2a,, I = 4f dv(2Y~,fY~+ C(k”~~Y/),,)Y,,O, (B.25)

fdv(D~)3a
0I = 4fdv(2Y3 + CYY), (B.26)

wherewe introducedthe abbreviations

Y~ = Y,,” Y,” Y,,”, CYY= C”
1” Y

11Y. (B .27)

For the higherheat-kernelcoefficients,we start from the equation

(ci”D1, +j)a1 = —t’~LI(va1~,). (B.28)

It is easyto see that no error is made if we set v(x, x’) = 1, exceptwhen we
determinethe fourth derivativeof a,. In the latter casewe mustkeepthose terms
which can give rise to a sixth derivative of v, i.e. keep a3.,V

2v. We find the
following iterative equations:

a
11 = —~LIa1,, (B.29)

D,,,a1I = — ~DmLIaj_,, (B.30)

D,,,,,a1I = T~~Dm,,Ltthj_1~ (B.31)
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Eq. (3.40)is just the specialcaseI = 1 of theseexpressions.The third derivativeof
a~is not needed,but we do require the integratedfourth derivative. It is easiest,
andsufficient, to determinethe totally symmetrizedfourth derivative.Differentiat-

ing (B.28) with D11,,,,, and usingthat a-”,k, . , I = 0 for two or more symmetrized
indices,we find

fdv Dk/,,,,,a, I = kfdv(D11,,,,,D2a,,I +v~,,k/,,,,,I I). (B.32)

Sincethis expressionoccursin practiceonly with all indicescontracted,we do not
needto know the sixth derivativeof v with free indices. Contractingoneor two

pairs of indices andusing(B.25), (B.26) yields

fdv Dk/D
2a, I = fdLr(4~,

1 “Y111, + 4Dk/(D2)
2a,, I + 4t”y~ I i), (B.33)

fdv(D~)2a,I = fdv(4XY2+ ~Y3 + ~CYY+ (4/7!)C31). (B.34)

Taking I = 2 or 3 in (B.29), we obtain (3.41) and (3.46). The first derivativeof a
2

doesnot appearin our calculationsandfor the secondderivativewe find

fdv D11a2 I = 4fdv(D11D2a,I +XDk/a, I), (B.35)

fdv D
2a

2 I = fdv(~XD2+ !~2 + ~y
3 + ~C~+ 1C31). (B.36)

The parallel propagatorsatisfies

= 0, gk
1, I = 6kg. (B.37)

As this is just a special caseof a11, namelyfor a vector field, we can apply (B.18)
andfind

g
1’

1~.,,,I = 0, gk1, I = — +RkI,,,,,, g
1

1 I = — ~Rk/,,,(,,.,,).(B.38)

So far, this is true for a generalRiemannspace.The fourth derivativesappearin
practicealways with at least one contraction.For a spacewhich also satisfiesthe
CC-constraint,they are givenby

~k p I = 0 k ~ I = — I ~‘ =

~ 1’; p,,,,, O l’ nipn g 1’: ,,,,,p 2 k!,,,,,

k p .....i k p .....i I p .....~g ~ ~ — 2g ~,,, ,,,, — 3g ~ ,, — kl~,,,,
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Herethe first casefollows from (B.20) andthe arrow indicatesthat theother cases

follow by commutingcovariantderivatives.Similarly, (B.19) yields

P —O=~ =0g k’;plm,, — g k’;/pmn g k’;/mpn — 2 km,,/’

gk’;/m,,j, I = Uk(,,,,,),. (B.40)
The diagonal limits of the fifth derivatives are not neededand for the sixth
derivativesthe following integratedcasessuffice (see the discussionbefore (C.16)):

fdv VmV4V~g/(~,I = 2fdv V~V4V’g”/ I = — 4fdv C3, (B.41)

fdv VmV~,,V~g/<
1,I = — fdv VmV~

4/V~gMI = 4fdv C3 (B 42)

fdv VmV,~~~Vlg/c,,I = fdv V
1V~’,,V”’g” I = ~fdv C

3 (B 43)

fdv V/V,~,,Vmgkj,~=0. (B.44)

Thesewere derived as follows. We first obtain a “boundary condition” from eq.
(B.25), namely

fdv ~,,,,(V2)2gk,, I = 0. (B.45)

Next, we commute the covariant derivatives and subsequentlytake traces in

variousways. A further usefulpropertyof the parallel displacementbi-vector is

— k ,,,k’ — 1’
~, ~,,,,,— ,, g g,,,,—

Appendix C. Short-distancesingularities

In this appendix we give a completelist of expressionsfor singular productsof
up to threeG, functionsandwith up to a total of four covariantderivativesacting
on them. We restrict attention to Ricci-flat spaces,which satisfy in addition the
CC-constraint(cf. (3.29)).The expressionswith no morethan two overallcovariant
derivativeswere givenbefore in ref. [22] for a generalRiemannspace.

We begin with determiningthe singularbehaviorof 1/(x2)0 in flat d-dimen-
sional space.Fourier transformingthis yields

1 F(d/2—~) k2 4-d/2

fddx (x2)P e’1’ = ~d/2 (~) . (Cl)
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We are interestedin poles of the right-handside,which occur wheneverf3 — d/2
equalsa naturalnumberj. Applying the inverseFourier transformandusingthat

the residueof the Euler gammafunction at —I equals(— F/i!, we obtain

(x2)0 j~.d/2p +1 F(d/2 +1) (ç)~6. (C.2)

In particular,for ~ = 2 — a�/2,where � = 4 — d and a is aconstant,we must take
I = 0 to find a pole, namely

1 2~r2 6. (C.3)
(x2)2”~’2 (a — l)E

To generalizethis to a curved d-dimensionalspace,we rewrite it in manifestly

covariant form simply by replacing x2 on the left-hand side by 2cr. Covariant
expressionsfor moresingularcasesare then found from

V2 1_,, =2p(2p+2—d) (C.4)
(2cr) (2cr)

as follows from cr’~o,,= 2cr and a-fl’,,, = d (the latter holds as long as we can
consider v to be equal to 1). We now read (C.4) from right to left and set
p = 2 — a�/2 to find for a Ricci-flat spacewith the CC-constraintthat

V26 (C.5)
(2cr)3~~’2 4(a — 1)E

1 ~.2 2

(V2)6 (C6)
(2a-)4”~”2 96(a—l)�

Here are a few exampleswhich illustrate the use of theseidentities. From (3.14)
and(C.3) we find that

1 1 1
= —6, (C.7)

(4.7~.2)2 (2)2_* 8~2�

where we could safely assumethat v = 1. The same is true in the following
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less-trivial example:

1 4a-1u,

G,)kGO/GO= (4~.2)3 (2cr)
53~’2

1 1 1

= (4~2)3 ~ (Vk, + 4a-k/V2)(2a-)33~2

=

2(VkI+4a-klV)V6

(l6’ir �)

= (16~2�)2 ~(V11V2 + 4gk,V
4 + 4VPaC~pqj)6. (C.8)

Here we used that the result of commuting a-
11 inward through the covariant

derivativesis (use(B.8))

a-kIV
6 =g~,V46+ ~VP~C

1pqj6, (C.9)

and also that (V
2)26 = V46. In general,we commute a (bi)-tensor T through a

totally symmetricderivativeby using

TVk, ...kN6 = ~ (~)N_I(~)~k k T;
11~,...kN)6, (C.1o)

=

afterwhich we can takediagonallimits. If we now further usethat

VkIV
26 = (V,~,— 4VP~Ckpq/)6, (C.11)

thenwe find the rathersimpleresult

G,,kG,)IG,, = 2 ~(V
11 + 4g11V

4)6. (C.12)

(163r �) 4.

In general,we havethe relations

VmGj = — 4O-~,,G
11, (C.13)

and

1 (—cr/2)’
2

— V2G,,= 6, — V2GJ=jG
1.., — 16’ir

2 (1—2)! (C.14)



A.E.M. vande Ven / Two-loopquantumgravity 357

where the last term is absent for I = 1. Here, we have assumedthat v = 1
identically, which holds as long as its sixth derivative cannotoccur (but seeeqs.

(C.36)—(C.39)).
As the above examplesillustrate, there is considerablefreedom in how we

chooseto write the more complicatedexpressions,since we can alwayscommute
some covariant derivatives, adding extra terms involving the Weyl tensor. We
preferthe following “normal ordered”form:

(V’ + V’2C + V’3C’ + V’4(C” + CC) + .. .)6, (C.15)

with only totally symmetrizedderivativesto the left of any Weyl tensors.Using this
form has several advantages.First, in calculating the graphs, we remove the
covariant derivatives from the 6-function by partial integration. They are then

distributedbinomially over the heatkernel coefficients,after which we can take
the diagonallimit for eachterm. This producesmany termswhich vanish immedi-
ately, due to the fact that all totally symmetrizedcovariantderivativesof a,, have
vanishing diagonal limit. An a,, coefficient can only survive, if it was already
differentiatedbefore thesepartial integrationsare performed. Since only the two
patternsin (6.15) occur, such an a~~coefficient hasat most two derivativesacting
on it, as in a,,.,~.It follows in particular that all sixth derivativesof a

0 which
appearmust be of the form a,,.k(,,,,,00), I and thosewere listed in (B.41)—(B.44).
Second, to find expressionsfor singular products of the G involving primed
covariantderivatives,such as in G,,kG,,/~G(,,we use

= —G,~g”,, (C.16)

as follows from (3.28), with the sameproviso as made after (C.14). This leavesa

known product of the G, without primes,times a parallel displacementbi-vector.
We can then commute this bi-vector for free through the totally symmetrized
derivativesand replaceit by a Kroneckerdata. The net effect is just to changethe
overall sign of the expression.Primedcovariantderivativescan also appearas in
G,1,. Differentiatingeq. (C.16)gives

= — G,1,,g”, — G,,,g”,.1. (C.17)

The first term is handledas easily as before, but for the secondterm we needto
keepderivativesobtainedby commuting g”,’.~towardsthe 6-function (see (B.38)

etc.).
In the following we will sometimesuse the abbreviations

= V1, + 4g11V
2, (C.18)

Vk/,n= V
11,,, + ~g,1’1V,,,,, (C.l9)

= VkIm,, +

3~,k/V4m,,)+ ~g(k/ g m,,)V. (C.20)
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Cl. SUBDIVERGENCES

In eqs. (C.21)—(C.30),we omit a factor 1/(16ir2�)on the right-handside

Products with structureG
0G0:

G~= 26, (C.21)

GOkG,,,= 4(VkI + 4g1’1V
2)6, (C.22)

G,,k/rG,,= — 4(Vkl— 4gk/V2)6, (C.23)

G~kl’Gl)m= 4(~k,,,,~ + 4VPCP(kl)m)6, (C.24)

G
011G,,~,,~=TgV

7kIm,,6— ~ +g,,,,,V~)6

_ir7PaI r’

36 ,n(pq),, g,,,,, k(pq)l

+ ~(V2Ck(,fl,,)l + 2V~,

1 C /~mn)p+
2V~tmC fl)(kI)p)6

~4V~Ck(m,,)I;P6 — 4Uk(m,,)l6. (C.25)

Productswith structure G
0G,:

GOkGI, = G011G,= G,11G0= 4g~/6, (C.26)

GOkIrGIm = 4gk,Vm6 g(1’lV~)6, (C.27)

GIkIrGOm = 4g1jVm6— 4g(~/Vm)6, (C.28)

G01irGimn’ = 2~(k1Vmn)6 — 4(gk/Vm,,+
2g~,,V~

1— Ck(m,,)l)8. (C.29)

Productswith structure G0G2 and G1G,:

GOkjrG2mflr = 2G,11Glmn’ = g ,,,,,)6. (C.30)

C.2. OVERLAPPING DIVERGENCES

In eqs. (C.31)—(C.80),we omit a factor 1/(161T
2E)2 on the right-handsides.

Productswith structure G
0G0G0:

G~= 4EV
26, (C.31)

GOkG,)IG,,= ~E(V4
1’,+ 4g11V

4)6, (C.32)
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G,,11G~= — ~af(V
4k/— 4g~,V4+ ~VP0Ck(Pq)I)6, (C.33)

G
01G01G,,,,,= ~E( V

5
11m+ ~g,1, V

5 ,~,)6, (C.34)

G,,
11~G,,,,,G,,= 2G111G01rG0m+ ~�g11V

5,,,6— ~E( V3pC~(kl)m+ VmP~Ck(pq),)6

+ ~ + ~�V”U
011I1,,,6 + ... (C.35)

In all thesecasesthereis only a simple pole. The dots in the last case indicate

terms of the form CC’6. Thesecan safely be dropped,as they will multiply an
expressionof the form a,) I a1~I ~ I, which vanishes.In caseall four derivatives
act on the G,,’s, the associatedfactor a,,a,,a,,,with the diagonallimit not yet
taken, contracts their indices. Thus we only need to consider the following
integratedexpressions:

ffdv dv’ G,,
1

1G,,’G,,1= ~Efdv( 1/7!)C
3, (C.36)

ffdv dv’ G,,1
1G0

1
1G,,= 0, (C.37)

ffdv dv’ G,,k/GOIG,,I= — 4�fdv(1/7!)C3, (C.38)

ffdv dv’ G,,
11G,,

11G~,= 4�fdv(1/7!)C3. (C.39)

We usedV
2G,,= —6 + G,,v’V2v, insteadof the first eq. in (C.14), sincewe can

now not neglectthe last term, which gives rise to the sixth derivativeof i. The
1-indicesin (C.36)—(C.39)shouldactuallycarry primes.However,as thereis always
a pair of suchindices,partial integration,whennecessary,will bring them together
and usingV’2G,) = V2G,, then removesthe primes.

Productswith structure G
0G0G,:

(C.40)

2

GOGIk = ~,�V16, (C.41)

G0kG,,/GI = 4(1 — ~�)(V11 + 4g11V
2)6, (C.42)

GIkG,,IG,, = 4E(V
1, + 4g1’1V

2)6, (C.43)

G,,k,rG,,G, = — 4(1 + 4�)(V
1,— (l/d)g11V

2)6, (C.44)
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G,11G,~= — 4~(Vk/ — g11V
2)6, (C.45)

G(~kG()IG~m= 5~EVklm6, (C.46)

G,,
11G,,,,G,,= — — g~/V

3,,,+ 4VPCP(k!),,,)6, (C.47)

GIkIG
0,,,G,, = — ~y�(~9k/m — 2g11V

3 + ~V~C )6, (C.48),,, 3 p(kI),n

V~C= — 4(1 — ~c)~kf~6 + 4(1 — ~E)(g
11V

3,,, — 4 ~ (C.49)

GI~/rG()~G~),,r= ~ — ~g�g
11(V

4m,,+ 4g V4~6,,,,, I

+ ~�( V2Ck(,,,,,)/+ g,,,,,V”C
1(~0)/+ 4V” C ,,xkl)p)6

+ ~ + 2CP(k,,(,,,.,,,)6 — ~EUk(,,,,,)/6, (C.50)

G,,k,rGO,,,G,,,r= G,11G,,~G,1,,+ ~�V11,,,,,6, (C.s1)

= ~ — ~g�(g11~,,+ 2g V
4 — Jg

11g V
4~6,nn kI 4 ,,,,, )

+*�(V2C —
k(,nn)/ gm,,V”~C

1,pq,1— 4g1V m(pq),~“~‘C

+V~ C+ ~4~�(2V”,1C l)(,,~n)p (,,~ ,,)~kl~p)6

— ~EV°(Ck(m,,)l.i) + 4~ +

— ~�U1(,,,,,),6, (C.52)

= —L(’ — ~�)V11,,,,,6+ -g11g,,,,,V
46

~ 15 12(1

— -,l — ~g�)(g
1jV

4m,,+ gm,,V4k,)6

+ ~(1 — ~E)(V2C
11,,,,,,i+

2V~(kC /)(m,,)p+ 2V~tmC ,,Xk/)p)6

— r4(1 + ~g�) V’~t(g
1/C,,,(J,0),, + gm,,Ck(pq)l)6

— 4(1 — ~�) V~Ck(,,,,I)I.P6— 4(i — ~E)U1’1,,,,,,16. (C.53)
31,

Productswith structure G0G0G2:

G0G,,kG2/= —G,,kG,,1G2=(
2/d)g~

1
6, (C.54)

G,,klrG,,G
2 = 0, G211~G~= (4/d)g116, (C.55)



A.E.M. vande Ven / Two-loopquantumgravity 361

G,,kG,)
1G2,,,= 4(1 — ~y�)g,11Vm)6, (C.56)

G~kl’G2mG()= G,,11~G,,,,,G2= (2/d)g11~,,6—(1 + 4e)g,11V,,,,6, (C.57)

G211G,,,,,G,,= (2/d)g11~,,6— 4�g,11V,,,,6, (C.58)

= 4�g,11~

— 4(1 — ~�)(g11V,,,,, + 4g~/g,,,,V
2— 4Ck,,,,,,,/)6, (C.59)

G~
1’1rG1~mG2,,r= G211G,,,,,G,,,,+ 4(1 — ~e)g,11 V,,,fl)6, (C.60)

=

4Eg,~f~,,,,,,6—
— 4(1 + 4�)g,,,,,V

116+ 4(1 + ~�)C11,,,,,116, (C.61)

G,,11G,,,,,,,G2= —(1 + ~y�)g~1,V,,,,,,6+ ~(1 — ~+�)g11g,,,,,V
26

+ 4(1 + 4�)(g
11~,,,,+ g,,,,,V~,— 4Ck,,,,,,)f)6. (C.62)

Products with structure G0G,G,:

G,,1G,1G, = (2/d)g116, G,kG,,GO = 4�g1,6, (C.63)

G111~G1G,,= (2 + �)(1/d)6, G,,11G~= (4/d)g116, (C.64)

G,kGIIG,,,,, = 4�g,11V,,,,6, (C.65)

Gi1irG~mGi = (2/d)g1~~,,6—(1 — ~s�)g(1’jV,,,)6, (C.66)

G,k/G ‘~ = J~fg11V~6— 4�g,~fV,,,,6, (C.67)4

G,,11G,,,,G,= (
2/d)g~,~,,6 —(1 + 4�)g,

11V,,,,6, (C.68)

= 4�g,1, ~ — ~�(g1iVm,, + 4g11g,,,,,V

2 — 4Ck,m,,)I)6, (C.69)

G,k,rG,,,,G,,,,r= ~ — 4�g,k/V,,,,,
16, (C.70)

= 4(1 — ~�)g,1, ~ — 4(1 +

—4(1 — ~�)g,,,,,V116+ ~eg11g~,,V
26+ 4(1 + ~�)Ck(m,,)/6, (C.71)

G
11irG1m,,rGt~=

— -~s�(g1iVm,, + g~,,V1’, — 4gk/g~,,V
2— 4C

1,,,,,,,1)6. (C.72)
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Products with structure G0G0G3, G0GJG2 and G,G,G1:

= — G3~/rG~)~,,rG()= G,,11G,,,,,,,~G3

= — G,,11,G1,,,G2,,~= G,,kIrG,,,,,,rG2

= (1/d)g11g~,,6— 4(1 + 4E)g(k1 g ,,,,,)6, (C.73)

G~1irG2m,,rGi= (1/d)g11g~,,6+ 4(1 +
4�)g(kIg m,,)6, (C.74)

= (1/d)g
1jg~,,6+ 4(1 — ~�)g,11 g ,,,,~6, (C.75)

G,klG2,,,G,,,,= —(l/d)g~/g~,,6+ 4(1 — ~E)g(kI g ~,,)6, (C.76)

G,11G2,,,,~G,,= (1/d)g11g~,,6 + 4~g,klg ~,,)6, (C.77)

G2kIrGl,,,G,,,,r = — (1/d)g11g~,,6+ 8�g(kI g ,,,,,,6, (C.78)

G,11G,,,,,,~G,= 4Eg11g~,,6+ 4(1 — -j~e)g,1,g ,,,,,,6, (C.79)

GlkIrG~mG~,,r= — 4�gk/gm,,6+ 4�g(k/g ~,,,6. (C.80)

Appendix D. Background-field expansion

In this appendixwe give some details involved in expandingthe Einstein—Hi!-
bert action to quarticorder in the quantumfields, assumingthe backgroundto be

on-shell. We follow and extendthe approachof refs. [3,40]. We first write the
action as

SEE, = ~ (D.l)

where the Riemanntensoris given in termsof the Christoffel connectionas

R”,,,,,,, = (0,,Fj~,,+ ~ — n ~ q. (D.2)

We begin with a linear splitting, i.e. we makethe replacement

g,,,,, —*g,,,,, + H,,,,,. (D.3)

This implies for the inversemetric the replacement

gm~l—~ g”’ — H”~+ H ~ — H “’~HpqH” + 0(H
4). (D .4)
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It follows that

~ ~/~(exp Tr ln(1 +H))’~2

= \/~(l+4H— 4H”aHpq+ 4H2

+ .4H/)qHqrHrp — 4HHP~Hpq+ 4~H3+ 0(H4)), (D.5)

where H = H”~.The quartic terms in (D.4) and (D.5) are not needed,since they
will multiply R which vanisheson-shell.The shift (D.3) implies for the connection

T—sF+ ~ (D.6)

where

= 4(H”,,,.,, +H~,,m —H~,,!’), F0~”~,,= ~H”qT~”m,,, (D.7)

where a semicolon denotesthe background covariant derivative and the last
equationis to be used iteratively. Note that, as in the Palatini formalism,the F”1
are tensors.The part of the Riemanntensorof order i in the quantumfields is
then given by

R~’~~m,,q= (F(i~mq;,,+ E F(J)PnrF(~_i)rqm) — n —-- q. (D.8)

Substituting(D.4)—(D.7) into (D.1) yields the expansionof the action to quartic
order in H. Notethat when i = 4, we canomit the first term on theright-handside
of (D.8), since it gives rise to a total derivative in the action. Subsequently,we
replaceH,,,,, by hm,, + g~,,4,andperform further field redefinitions, as discussed
in sect. 4.

Appendix E. All overlapping two-loop graviton graphs

In thisappendixwe give the divergentpartsof all possibleoverlappingtwo-loop
pure graviton graphs. Not counting hhthi,,,;phtmk~~,which can be treated as in
(4.31), (4.32), thereare six two-derivativeh3 vertices,which canbe listed as

(1) = hm”h~h,,, (2) = hrnt?h,,,p.~h,,q!), (3) = hm”hPh~,,,.,, (E.1)

(4) = h”’~hmp.~h~q:,,,(5) = ~ (6) = hmhlhPa;,,,hpq;,,. (E.2)
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Denotingthe Wick contractionamongthe ith and Ith verticesby i ~j,we find the
following results,omitting a commonfactor (167r

2�Y2fdv C3:

1~-- . - - 888l -1 — H52O~, 1 2 — 1520�, 1 3 — i-i15,,E, (E.3)

I 099 5549~ 15=0, 1~6=~e, (E.4)

2 2 = — H52O~’ 2~3= + +~�, 2~4= — 44~J~�,(E.5)

2~5= 8~32~’ 26=—~$—�, ~ (E.6)

5 (7993 9 61 33 2933
= — It520~’ = — — T43~5~’ 3 . 6 = — -~-�, (E.7)

4.4 = ~ + -,-~,,�, 4~5= 4 — 4~4E, 4~6 = 6 — ~4�, (E.8)

9 271 9 571 45 51)9

5 ~5= — — -j-

4-44E, 5 . 6 = — ~�, 6 6 = -~- — -,-~�. (E.9)

Theseresultssuffice to find the contributionof graph(b) of fig. 5 in anygaugeand
with any choiceof field parametrization.
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