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Two-loop quantum gravity
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We prove the existence of a nonrenormalizable infinity in the two-loop effective action of
perturbative quantum gravity by means of an explicit calculation. Qur final result agrees with
that obtained by earlier authors. We use the background-field method in coordinate space,
combined with dimensional regularization and a heat kernel representation for the propagators.
General covariance is manisfestly preserved. Only vacuum graphs in the presence of an on-shell
background metric need to be calculated. We extend the background covariant harmonic gauge
to include terms nonlinear in the quantum gravitational fields and allow for general
reparametrizations of those fields. For a particular gauge choice and field parametrization only
two three-graviton and six four-graviton vertices are present in the action. Calculational labor is
further reduced by restricting to backgrounds, which are not only Ricci-flat, but satisfy an
additional constraint bilinear in the Weyl tensor. To handle the still formidable amount of
algebra, we use the symbolic manipulation program FORM. We checked that the on-shell
two-loop effective action is in fact independent of all gauge and field redefinition parameters. A
two-loop analysis for Yang—Mills fields is included as well, since in that case we can give full
details as well as simplify earlier analyses.

1. Introduction

It is generally agreed that finding a consistent quantum theory of gravity is one
of the outstanding goals of theoretical physics. The application of conventional
ideas of quantum field theory to general relativity has long been known to fail (see
refs. [1,2]), since it leads to a nonrenormalizable theory. In the absence of both
matter fields and a cosmological constant, gravity with the Einstein—Hilbert action
actually does give rise to a finite one-loop S-matrix [3]. However, it has also been
shown by explicit computation that perturbative quantum gravity diverges in
two-loop order [4].
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Widely varying opinions have been held in regard to this problem (see ref. [5]
for a review). A conservative attitude, in the context of perturbation theory, was to
suggest that with the addition of the correct matter fields, one would obtain a
perturbatively finite and hopefully unique theory [6]. The search for such a theory
indirectly led to the discovery of supergravity [7]. Due to the local supersymmetry,
supergravity is in fact two-loop finite [8]. Yet, also here one anticipates nonrenor-
malizable divergences, starting in three-loop order [9], although their presence has
never been explicitly verified. More recently, superstring theory [10] has been
proposed as a starting point for a sensible theory of quantum gravity. General
relativity should emerge in the low-energy limit of this theory. A rather different
attitude is to maintain the Einstein-Hilbert action as the point of departure, but
try to define a nonperturbative approach. We mention here the recent revival of
the canonical approach to quantum gravity [11] and the approach of ref. [12].

In view of the importance of the failure of perturbative quantum gravity, we
have recently repeated the two-loop calculation of ref. [4], using rather different
methods. Our final answer is in complete agreement with that obtained earlier. In
this paper we will give a rather complete discussion of our two-loop calculation.

The Einstein—Hilbert action is given by

SEH:—%/cﬁx\/TgR, k?=327G, (1.1)
where R is the Ricci scalar, g is the determinant of the metric g,,, with signature
(—+ ++) and G is Newton’s constant. Due to the negative mass dimension of
the gravitational coupling constant k, one expects this theory to be nonrenormaliz-
able. Namely, upon quantizing via the path integral, k occurs only in the combina-
tion (x?#)~! multiplying the action. Therefore, a perturbative expansion of the
effective action in powers of # is the same as an expansion in powers of 2. As is
well known, an L-loop graph gets a factor #~~!, so the divergent terms in the
effective action I' to this order must be of the form

B ~ ()T [t/ =g RET (1.2)

where R is now a symbolic notation for the Riemann tensor or its contractions, the
Ricci tensor or scalar, or R may represent a pair of covariant derivatives. Here, we
tacitly assumed the use of the so-called background field method, to be reviewed in
sect. 2. At this point, the reader need only know that this method yields a covariant
effective action, unlike the effective action one obtains with conventional field
theoretical methods. Clearly, the number of possible counter terms needed to
cancel these divergences proliferates as well and the theory appears to be hope-
lessly nonrenormalizable. Nevertheless, it is in fact one-loop finite. Namely, by the
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above reasoning, the divergent part of the one-loop effective action must take the
form

h
Fd(ilv) - —/d4x /_g (C1R2 + CZR,n”Rmn + C3Rnuzqumnpq), (13)
€

where the ¢; are some constants and we use dimensional regularization [13] with
e=4—d. This is not of the form of the classical action. However, in four
dimensions, the linear combination

R*—4R™R,,, + R™WPIR, o (1.4)
forms in fact a total derivative [3], so that one can remove the third term in (1.3) in
favor of the other two terms. Since the latter vanish on-shell, where R, = 0, they
can be removed via a nonlinear, but local, field redefinition of the background
metric. Therefore, at one-loop order, the S-matrix of pure gravity is finite [3]. It
was also shown in ref. [3] that adding matter in the form of a scalar field destroys
the one-loop finiteness. The one-loop finiteness of pure gravity seems to be
accidental, in that it is not due to any symmetry of the action. For example, it was
shown that in six dimensions, pure gravity is no longer one-loop finite [14]. One
may nevertheless feel encouraged by this positive result, but then one next has to
face possible divergent terms in the on-shell two-loop effective action. From (1.2),
they must take the form (R, where R stands for the Weyl tensor C,,, ., or a pair
of covariant derivatives. The Weyl tensor has the same symmetries as the Riemann
tensor, but is in addition completely traceless. This still seems to allow several
invariants of the form [C* or [CVVC. However, using the symmetries of the Weyl
tensor, the field equation and the Bianchi identities, only one independent
invariant remains [15]. In two-loop order, the divergent part of the on-shell
effective action must therefore take the form

C
[35/) = ;h;Kzfd4X\/ -8 CklmnCmnpqcqul' ( 1 5)

The absence of a double pole in e follows from the finiteness of the theory in
one-loop order [16]. Lacking any further symmetry argument, one should expect
the residue ¢ of the pole to be nonzero. In view of the great complexity of the
multi-graviton interactions that one obtains from (1.1), one might hope that there
is a hidden symmetry which would ban all divergences and render perturbative
quantum gravity finite. The only way to be really sure that one has not overlooked
such a symmetry, is to calculate the residue of the pole. This exceedingly compli-
cated calculation was performed for the first time in ref. [4] with the result that ¢ is
nonzero. This implies that the S-matrix of perturbative quantum gravity indeed has
a nonrenormalizable divergence in two-loop order.
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Before delving into the details of our calculation, we outline the methods used
in this work and compare them with those used in ref. [4]. A first issue concerns
the covariance of the calculational procedure. The background-field method was
devised [2] with the purpose of maintaining manifest covariance and as such it is
eminently suited for quantum calculations in gravity. Indeed, the calculation in ref.
[4] was performed with this method (as well as with the usual field-theoretical
formalism). However, manifest covariance was lost in expanding the background
metric about flat space so as to allow the use of conventional momentum-space
techniques. In this approach to the background-field method, one expands the
effective action in powers of the background fields. For instance, in Yang—Mills
theories this leads one to calculate the two-point function for the background
vector field [17], since this suffices to fix the coefficient of [ tr F2,. But in gravity,
upon linearizing the invariant in (1.5), one needs to determine the three-point
function. This leads to a rather large number of two-loop graphs (although by
embedding the ghost fields in the gauge fields a la Kaluza—Klein [4], this could be
improved somewhat). We will use instead the Schwinger—-DeWitt method [18,19],
or heat-kernel expansion, in euclidean coordinate space, which is manifestly
covariant and nonperturbative in the background fields. In this approach one
calculates only vacuum bubbles with propagators which are exact in the back-
ground field. There are then essentially only two two-loop graphs to be considered.
To keep covariance manifest, one is forced to generalize the concept of a tensor to
so called bi-tensors [20], which depend on two points. Such concepts may be
unfamiliar, but this method is well established and has been shown to work for
renormalizable field theories in four dimensions through two-loop order ([21-23]
and references therein, see also ref. [24]). The heat-kernel expansion will allow us
to work consistently on-shell, i.e. in a Ricci-flat space. It will permit us to impose
an additional constraint bilinear in the Weyl tensor which, without implying the
vanishing of the invariant in (1.5), simplifies various geometrical quantities that
appear in the two-loop calculation. Imposing constraints on background fields so
as to simplify the evaluation of the effective action dates back to Schwinger’s
original work [18].

A second point concerns the choice of background—quantum splitting and the
choice of gauge. In ref. [4] the usual linear background-quantum splitting (i.e.
replacing g,,,, by g,,, + «h,,, in (1.1)) and harmonic gauge choice were used. We
will allow nonlinear background-quantum splitting and nonlinear gauge fixing. In
this way we can achieve a major simplification of the quantum action. Schemati-
cally, our gauge conditions are of the form

= (Vh),, + k(hVh),, + K2(hhV ), + ..., (1.6)

where the leading term corresponds to the harmonic gauge and we have added
terms nonlinear in the quantum fields. In addition, we will permit redefinitions of
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the quantum fields of the form

h _)hlﬂll+K(h2)””'l+K2(h3)ﬂ”I+"" (1'7)

mn

Alternatively, this can be thought of as nonlinear background—quantum splitting.
As is well known, point transformations may change off-shell Green functions and
the off-shell effective action, but they do not affect the S-matrix [25]. We will show
that for a particular choice of gauge and parametrization, the three-point gauge
field interactions reduce to

S3 = — fd4X\/ —ghm”(hM;,,,(hnp;q - %hpq:n) + %d):md):n)' (18)

Here, #,,, is the traceless symmetric quantum field and ¢ represents its trace.
Since to leading order our gauge choice is identical to the harmonic gauge, there
will be no ¢h propagator. Therc are therefore really only two three-graviton
vertices present in (1.8). This should be compared with a total of thirteen
three-point interactions in the harmonic gauge and with the standard field
parametrization. Especially for the overlapping two-loop graphs, for which the
amount of calculational labor grows quadratically with the number of three-point
vertices, this proves to be a significant simplification. Note that it is the negative
mass dimension of the gravitational coupling constant «, that allows such nonlinear
gauge fixing and field redefinitions. Of course, it is well known that there is
considerable freedom in what one considers to be the gravitational fields. We
mention ref. [26], where the tensor density Jng””’ was selected as the field
variable and it was noted in ref. [27] that this reduces the number of three-point
interactions to six. Also in nonlinear sigma models [28] and supersymmetric field
theories in superspace [29], one frequently encounters nonlinear background-
quantum splitting. However, it appears that a systematic search in the present
context was never undertaken. It may seem that there is a price to pay for the
simplicity of (1.8), in the form of a more complicated ghost action. Three-point
vertices of the form antighost—ghost—graviton are already present in the harmonic
gauge and we will find that in the gauge which achieves (1.8), their number does
not increase. Note that, due to the nonlinearity of our gauge choice, new four-point
couplings of the form antighost—ghost—(gaugefield)? will appear. We will present a
simple argument showing that such interactions can not contribute to the on-shell
effective action in two-loop order. Therefore, we may as well omit these interac-
tions from the action.

In view of the exceedingly complicated algebra involved, in ref. [4] all algebra
had to be performed on a computer. It was found that existing standard algebraic
manipulation programs were incapable of handling the task (see ref. [30] for an
attempt in this direction). Instead, the authors of ref. [4] resorted to writing special
purpose programs in the C-language. Their calculation took less than three days
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CPU time on a VAX 11/780, at least when the background is on shell. The
simplifications present in our covariant approach initially gave us the hope that the
two-loop calculation might now be feasible by hand. While we are able to evaluate
some two-loop graphs by hand, in general we must resort to the heat-kernel
expansion and this still leads to a rather formidable amount of algebra (but see
also our conclusions). Hence, we also turned to an evaluation by means of
computer. However, we find that the algebraic manipulation program FORM [31]
can easily handle the task and the required CPU time on a Silicon Graphics IRIS
4D /2208 is about 2 hours, or twice that amount of time on a VAX 6000-410.

An outline of this paper is as follows. In sect. 2, we give a brief review of the
background-field method. We treat the heat kernel expansion in sect. 3, including
an evaluation, based on this expansion and dimensional regularization, of the
divergences of two-loop graphs for a general quantum field theory in d = 4 curved
space. In sect. 4, we consider the expansion of the Einstein—Hilbert action to
fourth order in the quantum fields. We introduce our nonlinear gauge-fixing and
field redefinition procedures. In sect. 5, we digress and discuss the analysis of the
short-distance divergences of non-abelian gauge theories in two-loop order. In this
case we can present our methods completely. Our discussion closely follows refs.
[21,22], but by making use of Ward identities we can simplify the formal expression
for the two-loop effective action considerably, before applying the heat-kernel
expansion for the remainder. In sect. 6, we return to two-loop gravity and
summarize the complete quantum action to fourth order in quantum fields for a
particularly convenient choice of gauge and quantum ficld parametrization. We
present the expressions for the few two-loop graph contributions to the effective
action. We demonstrate, by means of explicit examples, that also here some
two-loop graphs can be evaluated easily by hand. For the remaining “hard core”
graphs, we outline the procedure followed in their evaluation by means of
computer. In sect. 8, we give our conclusions. A number of appendices follows. We
discuss there how to obtain various geometrical quantities which appear in the
heat-kernel expansion, include a complete list of singular products of certain
Green functions and present the divergences of all possible overlapping two-loop
graviton graphs.

2. The background-field method

We begin with a brief review of the background field method [2,17,32-38]. We
work in d-dimensional euclidean space, with metric g,,,..

Suppose one is given a classical action S[F], depending on some gauge fields
F(x), with i a generic index. In the background-field method one replaces F; by
F,+f., where F. are now the background fields and the fluctuations f; are the
quantum fields. For instance, for a Yang—-Mills theory with gauge fields A4,,, the
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initial gauge invariance 6A4,, =D, A =3d,A +[A,,, A] can be divided between

background and quantum fields as

m?

(SAm:Dm/\’ Samz [a /\]’ (21)

n?

called the background gauge invariance, or as

0A,,=0, da, =D,A+[a,, A], (2.2)

m?

known as the quantum gauge invariance. One defines the quantum theory by
performing a path integral over the quantum fields a,,, which requires fixing of the
quantum invariance (2.2). However, manifest background gauge invariance can be
maintained by choosing the gauge-fixing condition such that it transforms covari-
antly under (2.1). An example is the background covariant Feynman gauge condi-
tion F=D"a,. One must also require the Faddeev—Popov ghosts b and ¢ to
transform covariantly under (2.1). In general, the generating functional W of
connected graphs is then defined by

¢ WA/ = [[Da][Db][De] el =S+ el SnSer sl /h, (2.3)

where one couples only the quantum fields to the source J, (x) through the term

mn

Joa= fdu J"a,,, dv = dxy/g, (24)

where drr denotes the invariant volume element in d dimensions. A functional
Legendre transform takes one to the one-particle irreducible generating functional

N 174
rja, Al=wlJ, A1 -J-a, ﬁzw, (2.5)
where 4 denotes the expectation value of the quantum fields. Note that the
background fields remain unaffected. The background field effective action is
obtained by setting 4 = 0 in (2.5), i.e.

r[A4)=rijo, 4]. (2.6)

The extension of the background-field method beyond one loop {37,38] and its
relation to the usual methods and to the S-matrix [34,39] are by now well
understood.

In most applications, one can evaluate the background-field effective action
only perturbatively in a loop expansion. Performing a Taylor expansion of the
action

&SI'AJ-a . 8%8[4]

S[A+a]l=S[A]+ I e
[A+a]=S[4]+ =~ 24 5464

a'+..., (2.7)
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taking the background fields to be on shell, i.e. 85[A4]/84 =0, and adding the
gauge-fixing term this becomes

S[ A +a]+SﬁX=S[A]+de laAa+S,,[A, al. (2.8)

Here, the terms quadratic in the quantum fields involve the wave operator Al A]
and the terms of higher order in those fields have been lumped together into the
interaction part of the action. Inserting the expansion (2.8) into (2.3), one finds a
loop expansion for the background-field effective action

r[A]= i rf4j. (2.9)

For the first two orders one finds
ro[a]=s(4]l,  TO[A]=ih[dv trin A[A]. (2.10)

In practice, besides expanding in the loop order L, one often further expands 'Y
in powers of the background field and evaluates, for instance, the two-point
function. For the usual momentum-space techniques to be applicable, one expands
in the action the background metric about flat space, i.c. one puts g,,, = 8,,.,, + frun-
For instance, for a scalar field kinetic term one finds to first order in the weak
background fields f

mn

/dL‘ %gmn(?m(ban(b = fddx(%(amd))z - (fmn - %fkkamn)amd)anq‘l) +... ) (211)

One can then use the flat-space propagator 1/p? and treat the higher-order terms
as interactions with the weak background ficld. A disadvantage of this procedure is
that it is not generally covariant. For a non-abelian gauge theory in a flat
background, one violates Yang—Mills covariance upon expanding covariant deriva-
tives as in D, (p)=p, + A, (p). Also note that in gravity, all one-loop graphs are
equally divergent, independent of the number of background field lines. This is
because each vertex involves two derivatives, which counteract the 1/p? of the
extra propagator.

In the problem at hand, expanding I'® in (1.5) about flat space shows that the
three-point function will have to be calculated. Actually, due to the identity

[dv Cme,,, e, = =3 [dv c¥myEc,,,, (2.12)

mn

it would appear that a calculation of the two-point function should suffice. That
this is not the case follows from (1.4), which implies that at the level of the on-shell
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two-point function CV2C is a total derivative. One therefore turns to the three-
point function. But putting each background field on shell, i.e. with momenta p%
and polarizations €!?) such that for i=1,2,3

N (2.13)
leads also to a kinematic problem, forcing one to either keep all three background
fields actually off-shell (first article in ref. [14]), or to turn to the on-shell
four-point function. As noted in ref. [4], a third option is to continue the momenta
P to complex values, so that they need no longer be collinear.

These complications can be avoided and covariance can be maintained by
working nonperturbatively in the background fields. One then uses the exact
propagator in the presence of the background, obtained by taking the inverse of
the wave operator A. Higher-loop contributions to the effective action are found
by evaluating vacuum bubbles, using A4 ~' for each quantum field propagator and
reading off the vertices from S;,[ A, al. This is all rather formal, and we have to
give some meaning to A7 and also regularize the theory. This we will do in sect.
3, by means of the heat-kernel expansion and dimensional regularization.

3. Heat-kernel expansion and background constraint

In this section we review the heat-kernel expansion in d-dimensional euclidean
space. We closely follow and extend the discussion in refs. [21,22] (note that our
notation differs from [21,22] in some minor respects). We use this to discuss the
short-distance divergences of generic two-loop graphs. Dimensional analysis indi-
cates that for a two-loop analysis of gravity we will need to know quite a bit more
about the heat-kernel coefficients than is the case for renormalizable theories. A
lot of work can be saved by imposing a constraint bilinear in the Weyl tensor, in
addition to Ricci-flatness, which does not imply the vanishing of the invariant [C3
in (1.5), but which does facilitate the intermediate analysis.

In d-dimensional euclidean space, we assume the part of the quantum action
quadratic in the fluctuation to consist of a sum of terms of the form

$,= [dv 1fA,f, (3.1)

where the fields f; in our case will be scalars, vectors or symmetric traceless
tensors and the elliptic operators A take the form

-4=D*+X, D?*=D"D,, D,=IV, +N,, (3.2)

where X and N,, are a matrix-valued potential and vector gauge connection
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respectively. The gravitationally covariant derivative V,, involves affine connection
terms as needed, depending on the type of field. We suppress all internal indices
i, j and display only the Lorentz indices. Note that the sign of X is opposite to
that of most authors, but it conforms with the conventions of ref. [33].

The exact propagator A !, or Green function G(x, x') satisfies

AG(x, x') =18(x, x'), (3.3)

where 7 is a unit matrix for the internal indices and the d-dimensional bi-scalar
d-function satisfies for any f

fdu'a(x,x')f(x')=f(x). (3.4)

An exact solution for the Green function is possible only for special background
fields (but see also our conclusions). However, for the purpose of studying the
short-distance behavior of the Green function, a convenient representation is
provided by

G(x.x') = [ dr #(x, x", 7). (3.5)
0
where the so-called heat kernel £ satisfies
d
(8_ +A)?(x,x’,7)=0, Z(x,x",0)=18(x, x"). (3.6)
r

DeWitt’s ansatz for the heat kernel [19] in d dimensions is given by

9]/2()(’ x' ) o .
g(x,x',7)= ———{1/2) e o 2N g (x, x")Tl (3.7)
(4m7) j=0

To motivate this somewhat formidable looking Ansatz and to introduce the new
quantities appearing on the right-hand side, consider first the simplest case

A,= —a% in flat d-dimensional space. The associated heat kernel is easily verified
to be
Ey(x, x',7)= ———1 e (X /A (3.8)
b 2 T . .
0 (47T7)d/2

For more general elliptic operators as in (3.2), but still in flat space, one may
assume the heat kernel to take the form

Z(1) =% (7)F(1), F(m)= E:Oajfj, (3.9)
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where the coefficients a j(x, x') are known as the heat-kernel coefficients for the
operator A. On generalizing further to a curved space, one introduces the geodetic
interval bi-scalar o(x, x’) in order to maintain general coordinate invariance. This
quantity is defined to be half of the square of the geodesic distance between the
points x and x'. In addition one introduces the bi-scalar Van Vleck—Morette
determinant @ (x, x’), defined by

1
@ = det( —a,,,), (3.10)

’

88

where we follow DeWitt in using (primed) subscripts to indicate covariant differen-
tiation at (x’) x. Note that covariant differentiations at different points commute.
The Van Vleck—Morette determinant measures the rate of convergence or diver-
gence of nearby geodesics emanating from x. If desired, v =%'/? can be adsorbed
into a redefinition of the a;.

Substituting (3.7) into the heat equation (3.6) and equating equal powers of T,
one finds that the following equations must be satisfied

m

oo, =20, (o™, —d)yv+2c™r, =0, (3.11)
and

o™D,a,=0, a,l =1, ("D, +j)a;= —v"'A(va;_;). (3.12)
In general, we use a vertical bar to denote the so called diagonal limit x' =x, as in
ayl =ay(x, x). Egs. (3.11), (3.12) form the basis for a derivation, given in appendix
B, of the diagonal limits of derivatives of o, ¢ and the a;. The usefulness of (3.7)
lies in the fact that the short-distance behavior of the Green function is deter-
mined by the 7 — 0 behavior of the associated kernel #. Substituting (3.7) into
(3.5) and performing the integration over 7 yields an expansion for the Green
function itself of the form

N
G= ) Gja,+Hy, (3.13)

Jj=0

where we suppress the arguments x, x' for each entry and the series has been
truncated at an, at this point, arbitrary level N. Any internal indices of the Green
function G are carried over by the coefficients a; and the rest term H. Unlike
the heat-kernel coefficients and the rest term, the G; are universal, in the sense
that they are independent of the particular wave operator A. They are given by

v rdso2-1-j (-1 2 .
G = 4t 1 pds2 (20_),1/271—,' - (j— 1) ;(20') . (3.14)
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3 O

(b)
Fig. 1. Topologies of two-loop graphs.

The second term, understood to be absent for j =0, is a subtraction chosen so as
to make the G; have a well-defined regular limit as € >0 [22]. The choice of
truncation level N in (3.13) depends on the particular field theory under consider-
ation and is determined by the following criterion: upon replacing any one Green
function in a vacuum graph by the rest term H,, the resulting expression should
have no overall divergence anymore. It is not hard to see that in four dimensions,
N =2 suffices for a renormalizable theory. However, for gravity we must take
N =L + 1, so the truncation level increases with the loop order.

We now turn to a preliminary discussion of divergences of two-loop graphs. In
this order there are only two topologies to be considered, shown in fig. 1. We have

()= [de GI?, ()= [[dvde G(x, x'), (3.15)

where we suppress symmetry factors, internal indices and also possible (covariant)
derivatives at both x and x’. Observe that in the “figure 8” graph, the diagonal
limit has already been taken. This makes it rather easy to evaluate the divergent
part of any such graph. We will always subtract for subdivergent integrals on a
loop-by-loop basis, also known as the R-operation (see ref. [41] and references
therein). This avoids the need to calculate one-loop graphs with external quantum
field lines. It also allows us to show that nonlocal divergent terms involving the rest
term H, will always be absent from the two-loop effective action. Namely, for a
“figure 8” graph, after subtracting for the two subdivergences, the overall sign
changes and each G gets replaced by G=G-H. Subdivergences in graphs of
type (b) are obtained by replacing one of the three Green functions by the
corresponding rest term H. The R-operation then replaces H by —G. Care must
be taken in applying the minimal subtraction procedure. The residue of the pole
caused by the subdivergence is to be evaluated at d = 4, before proceeding with
the remaining loop in d dimensions (an explicit example of this will be given in
sect. 5). Therefore, to evaluate the divergent part of graphs of type (a), or the
subdivergent part of graphs of type (b), we require only the following expressions:

G| =2a,l, (3.16)

D,G|=2D,a,l, (3.17)
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D,D,G|=2D,D,a|-g,,a/, (3.18)

DanD/DkG| =2D,D, D;Dya,| - %Ck(mn)laZ |+ %g(k[gmn)a3|
— (8D, D851 +48 4 (D wy D 1@y | +8,,,D,Dyay ). (3.19)

Here, and also in (3.20), the dot indicates that we omit a factor (167%¢)™! on the
right-hand side. Eqgs. (3.16)-(3.19) were obtained by rewriting (3.13) as G = £G4,
and using the following nonvanishing diagonal limits

G, =2, Gowl =81

= 2 - 3
GZklmnl - §Ck(mn)[’ G3k/mn| - Eg(k/ & mny- (320)

These were found by analytic continuation in d from d < 2. We note that the form
of (3.16)—(3.20) is as expected from dimensional analysis. We have included (3.17)
and (3.18), since in gravity a four-point vertex involves up to two covariant
derivatives. For graphs of type (b), a subdivergent loop may contain up to four
covariant derivatives, so we will also need (3.19). Actually, some of the derivatives
in (3.17)—(3.19) may carry primes, i.e. they refer to the point x’. One can eliminate
such primed covariant derivatives, when they occur under a diagonal limit, by using
that for any bi-tensor T (see also appendix A)

(Dm’T)|: _(D)nT)I+D)r1(T|)' (321)

For the overlapping divergences in graphs of type (b), we have to work much
harder. We insert for each Green function a heat-kernel expansion as in (3.13).
Since the short distance behavior of the G; is given by

G,~In o, G1-~cr"71, i#1, (3.22)

it follows that a generic graph of type (b) with j derivatives at x and j’ derivatives
at x’ contains potentially singular products of the form

[[de de' V97G,G, G, ~ [[de det ghtiriaii2mi2 0 (323)

Here we suppressed all heat-kernel coefficients, since they and their derivatives
are regular in the short-distance limit. A non-integrable singularity occurs when-
ever the exponent of o in (3.23) is less or equal to —2 (recall that in flat space
o=(x—x')?/2),i.e. when

i, +is<l+j/2+]/2. (3.24)
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Incidentally, the subdivergences, already discussed above, can be accounted for by
setting one of the i, equal to one. In gravity, a three-point vertex contains two
covariant derivatives, or none if they occur in the form of a background-field Weyl
tensor. Therefore, after distributing any such derivatives at each vertex, j and j’
each can take the values zero, one or two, since some derivatives may act on the
heat-kernel coefficients. Hence, the following singular products may occur

(a) G, GiG,,G§, j,i'=0,1,2,
(b) G(%GZ’G%G(” G()Gp j, J"=1, 2’
(c) G3Gs, GGGy, Gy, G,G,, G}, j=j=2.

Notice that a product of three G’s is singular even without any derivatives acting
on it, while a product of two G’s and a G5 becomes only divergent when all four
derivatives act on it. In renormalizable theories, there is at most one derivative at
each three-point vertex, so in that case singular products correspond to (a) with
J»7'=0,1 and (b) with j=j" = 1. Since the singular products of the G, depend in
no way on the particular wave operators under consideration, they can be tabu-
lated once and for all. A simple example is provided by the product G§. This yields
a pole in e, with a residue given by a 8-function

1
Gil=—-56. 3.25
0 87726 ( )
We refer to appendix C for a derivation. Covariant differentiation of this expres-
sion gives

1

Oom = 167726 Vm

G,G (3.26)
In general, there may be covariant derivatives acting on the 8-function, as required
by dimensional analysis. The same is true for triple products of the G, except that
then also a double pole may appear. A complete list of all cases with up to four
derivatives can be found in appendix C. To deal with expressions with primed
covariant derivatives involves the use of a bi-vector g*.(x, x’), which effects
parallel displacement along the geodesic between x and x'. Its defining equation
is

"V, g% =0, gkl =8%. (3.27)

In particular, it is covariantly constant along the geodesic. It follows that the
parallel displacement bi-vector carries the tangent vector o, into the reverse of the
tangent vector o,

o= —o, 8% (3.28)



A.EM. van de Ven / Two-loop quantum gravity 323

This we use to eliminate primed derivatives of any G, which involve exactly such
derivatives of o, as is clear from (3.14) (see appendix C for the details). Expres-
sions for singular products of the G; with up to two covariant derivatives, but for a
general Riemann space, appeared before in appendix A of ref. [22] (note the
rather drastic simplifications upon restricting to a Ricci-flat space). We have
imposed a further covariant constraint on the background, bilinear in the Weyl
tensor. We now turn to a discussion of this new constraint.

We are of course free to impose further covariant constraints on the back-
ground space, as long as such a constraint does not imply the vanishing of the [C?
invariant in (1.5). Schwinger [18] evaluated the effective action due to fermion or
boson loops in the presence of a constant clectromagnetic background field, (this
was extended in ref. [42] to the non-abelian case with D, F, = 0). The analogous
constraint in the case of gravity would be a symmetric space V,C,,,,,, = 0. Unfortu-
nately this constraint is unacceptable, since the associated integrability condition
implies that the [C * invariant vanishes. We therefore consider possible constraints
bilinear in the Weyl tensor. With this purpose in mind, we consider the tensor U
defined by

Uk/mn = Ckpchlpn([ . (329)

Our new constraint consists of the requirement that U,,,,, shall have the symme-
tries of the Weyl tensor C,,,,,. Note that U is already symmetric under pair
interchange of A/ with mn and traceless on km and /n. Also note that whenever
two Weyl tensors are contracted twice with each other, we can assume without loss
of generality that the resulting tensor can be written in terms of U. To motivate
this new constraint, we observe that whenever the tensor U appears in our
calculations it must eventually get contracted with another Weyl tensor (and
integrated over) to produce a scalar proportional to the invariant [C’. As an
SO(d) representation, U contains various four-index representations, but only the
Weyl tensor representation will survive this final contraction. Therefore, nothing is
lost upon imposing this new constraint. Some immediate consequences are

Cklpqcmnpq = 2Uk1mn’ Cknpqclnpq = 0’ Cmnpqcmnpq = O’ (330)
and for second covariant derivatives of the Weyl tensor
Cklmp;np = _3Uk1mn’ Cklmn;pp = _6Uklmn' (331)

We now return to the problem at hand, namely a determination of the
overlapping divergences for graphs of type (b). If necessary, partial integrations
will remove any covariant derivatives from the §&-function, after which a local
expression is obtained, involving the diagonal limits of the heat-kernel coefficients
and their derivatives. Dimensional analysis shows that we need to know the
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diagonal limits of D’a; with dimension less or equal to six, i.e. 2i +j<6. In a
general Riemann space, one has for the first few cases

agl =1, (3.32)
a, | =X, (3.33)
a,| = 1%+ DX+ Ly?
+ 755 (R"™ R, — R¥R . — V2R)I, (3.34)
where
X=Xx-1IR, D,X=V X+[N,, X], (3.35)
Y,.=[D,,D,], Y*=Yymvy, . (3.36)

Note, that in eqs. (3.32)-(3.34) no trace over internal indices or integration over
space has been performed yet. It is the integrated trace of the second heat-kernel
coefficient, which appears in the well known expression for the divergent part of
the one-loop effective action [19,33], namely

1

(h_ _ ,
I = - de tra,l. (3.37)

To proceed and find the diagonal limits of a, and the derivatives of a,, a, and
a,, we need to know in turn the diagonal limits of derivatives of ¢ and v through
eighth and sixth order respectively. For a general Riemann space, these expres-
sions get quite involved and are not even known beyond the sixth derivative of o
or fourth derivative of v. But, upon restricting to a Ricci-flat space with the
CC-constraint (3.29), the task becomes managable. We now give a list of the
diagonal limits of the relevant heat-kernel coefficients for such spaces and refer
the reader to appendix B for a derivation. For a,, we find

agl =1, Dyayl =0, Dy Djagl = %Ykl’ (3.38)
DyD,D,,a,| = %D(k}ll)m’ D,D,D%ay= 7YY, (3.39)

and for a,
al =X, Dpa,|=3iD,X, Dya,l=3D,X+ Y, Y, (3.40)

Here we use the shorthand notation Dy ., ., for the totally symmetrized product
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D Dy, --- Dy, of N covariant derivatives. In the expressions (3.34) for a,| in a
general Riemann space, we can drop all explicit curvature terms, so that

a,| =1X?+ DX+ Y% (3.41)

In addition we need a few integrated and traced expressions, namely

fdl) tr DklmnDza()| = —/dU tr(%[D(k > }/]11] [Dm’ Y”)P] + Cp(quYmpY”)q)’
(3.42)
fdu 1 Diuny | = § [de tr( Dy D2y | 071 1 1), (3.43)
/dv tr Dya,| = %fdv tr( Dy, D%a | +XDa,l). (3.44)

The last two expressions are defined recursively. In practice all internal indices are
Lorentz indices and we can then choose to contract the explicit Lorentz indices
with each other or with the internal indices or in a mixed way, so as to produce a
scalar. The notation tr is to be understood in this general sense. Notice that since
such a trace will always be taken, we need only the diagonal limit of scalar sixth
derivatives of v. In particular, we find (see appendix B)

Jdo(v3) vl =55 [dv €7, (3.45)

and the diagonal limits of all lower derivatives of the Van Vleck—Morette determi-
nant vanish! It follows in particular that the order of the covariant derivatives on
the left-hand side of eq. (3.45) is irrelevant.

Finally, we also need the integrated and traced diagonal limit of the third
heat-kernel coefficient, namely

Jdv trasl =3 [do (X3 + IXD2X + 1XY 2+ £Y? + 5CYY + (2/7)C),
(3.46)
where the following abbreviations were used
Y =Y,"YPY",  CYY=CH™Y,Y,.. (3.47)

The result for the third heat-kernel coefficient is a special case of the expression
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first found in ref. [43] (see also ref. [14]). The above expressions will be applied to
two-loop gravity in sect. 6.

4. Action, nonlinear gauge-fixing and field redefinitions

The classical action in d-dimensional euclidean space is given by

Sa=(2/x*)[dev R. (4.1)
It is invariant under general coordinate transformations

5gl7ln = Vmé:n + Vngm’ (4'2)

with gauge parameter ¢,. In anticipation of the use of dimensional regularization,
we will perform all algebra in d dimensions.

We initially choose a linear background—quantum splitting by making the
replacement

gmn - gmn + KHmn’ Hmn = hmn + gmnd)' (4'3)

From here on g,,, will play the role of the background metric, while ¢ and #,,,
are the quantum fields, the latter being traceless symmetric with respect to the
background metric, i.e. g""h,,,, = 0. Indices will be lowered and raised by means
of the background metric g,,, and its inverse g™" respectively. The operator V
now denotes the background covariant derivative. The quantum gauge invariance
is then (cf. eq. (2.2))

kdd = (2/d)(VPE, + hPIV £,), (4.4)
K8hy = 2 Vi + P Vs, + €2V B — KE b b, (4.5)

and the background metric does not transform. In the following, we will use the
semicolon notation F., for [V,, Fl. When F is a scalar, we often omit the
semicolon. We also use the abbreviation 4", =h,,.

Since we wish to evaluate two-loop graphs, we need to expand the action in (4.1)
to fourth order in H. For details of our procedure we refer to appendix D.
Subsequently, we must add a background covariant gauge-fixing term to break the
quantum gauge invariance (4.4), (4.5). We will consider the following class of
nonlinear gauge conditions

Fm = hm - %(d - 2)¢m + K(ald)d)m + CKthIhkl;m

+azbh,, +ash, e +ash*h, . +agh, h). (4.6)
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The terms linear in k involve six new gauge parameters. Setting all of them equal
to zero recovers the harmonic gauge. Evidently, the gauge-fixing term

Sfix = de gm”EnEx’ (47)

will contain terms of higher than second order in the quantum fields. By a
judicious choice of the gauge parameters «; we can exert some control over the
form of the three-quantum interactions. We may consider the addition of O(x?)
terms to the gauge condition in (4.6), leading to an additional fourteen gauge
parameters, which we can then use to simplify the quartic gauge interactions.
However, we will demonstrate below that all such quartic terms, as well as the
associated ghost interactions, are irrelevant in the sense that they cannot con-
tribute to the two-loop on-shell effective action. Previous authors have considered
linear gauge choices, of the form

F;‘Vl = aHm":n - %BHHHZWI’ (4'8)

which generalizes the harmonic gauge (see e.g. ref. [44]). These are the most
general linear gauges, but, except for « = 8 = 1, the wave operators are then no
longer of the elliptic type assumed in (3.2). Since this makes the heat-kernel
expanston inapplicable, we do not consider such gauges. We have also considered
yet more general gauge-fixing of the form

Sﬁx=/du F,M™F, M™=g"(1+ Byd) + B, + ... (4.9)

However, it is not hard to see that the B-parameters in (4.9) can be absorbed into a
redefinition of some of the a-parameters. We note that the Nielsen—Kallosh
ghosts [45] associated with this type of gauge-fixing would be nonpropagating.
From here on we set k = 1.

With these choices, and with the background on-shell, we find the following
terms quadratic in the quantum gauge fields

Sy ctaiin = ]dl’(%d(d —2)¢Vih — "' V2hy, + Ck(mn)lhk/hmn)- (4.10)
To arrive at this result, we also made use of

Jde2hf o h? = [de CHoinh (4.11)

mmn-*

The wave operators in (4.10) are indeed of elliptical type, unlike what one finds
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when working with the reducible quantum fields H,,,. The wave operator for the
traceless symmetric tensor is known as the Lichnerowicz operator and we have

M =88 — (1/d) g g,,, 1*=1, Tri=3(d-1)(d+2). (412)

In particular, I is idempotent, as it should be. Observe that the kinetic term of the
scalar field has the “wrong” sign (we will fix its normalization later). This is known
as the conformal factor problem, i.e. the functional integral over the conformal
scalar is unbounded, making the euclidean functional integral meaningless. Since
we restrict ourselves to a perturbative analysis, we can ignore this problem. We
take the Green function for the scalar field to be minus the Green function for the
elliptic operator — V2. Equivalently, in momentum space and perturbing in the
background as in (2.11), every scalar propagator comes with a minus sign, but so
does every scalar-scalar-background vertex. So a one-loop scalar graph does not
change its sign, but an overlapping two-loop graph with one scalar propagator and
two graviton propagators does change its sign.

We next turn our attention to the three-point interactions. In general, we
remove interactions with both covariant derivatives acting on one quantum field
via partial integration, dropping surface terms. But, as in S,, we should take note
of the special cases in which two covariant derivatives form a commutator. In §,
there are two instances of this, namely

Jdv(2(Sh," g+ 1, g Y1y = CTPV b h ) =0, (413)

0. (4.14)

_[dv(z(hpqhqm;[m + hthqn;[m)hpn:n] - Cm(pq)nhmnhprhqr)
We might use these identities to eliminate in each case on two-derivative interac-
tion in favor of an interaction without derivatives. Instead, we account for these
linear dependences by adding multiples of (4.13) and (4.14) to S, with parameters
A, and A, respectively.
We will also allow for nonlinear quantum field redefinitions of the form

¢ > (1+0,0)d+a3h"h,, (4.15)
h,,— (1+0,0)h,,, + 04(hm"h,,p - (l/a’)gm,,h”"h,,q), (4.16)

where we take care to keep #,,, traceless in d dimensions. We note that since this
is a point transformation, the associated jacobian is trivially equal to one, and no
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extra ghosts need to be introduced. Including the extra terms we get from
performing these redefinitions in §,, we find

S3 i+ fix = [dL‘((Z _d)[%(d —1)(d = 6) +a, +do,|p¢"d,,
+3(d =2)(d =3 -2a,)h"",, 9,
+{1(d=2)(d—6—2a;) +2a,]¢pd™h,,

+[5(d —6) + 0, 6™ h

mnip

+[d =3 (d=2)(a +day) + 0] K6

mnip

+ (20,7 _ /\ )Cm(pt/)nd)h

mn [)l]

+(2a3 +A1)¢hmhm _ [%(d _ 6) +/\1]¢hmn:ph

pmn

+[2a,—(d=2)(1 + ) + A |,k

n n

—[d—4+(d~2)as+X|h""$7h

pmsn

+h'7111{ - %h[)q m'ipg;n + (261’2 - l)hphmn;p + (20-4 - l)hmp qhnp:q

+(20-4«/\ )Cm([)q)llh rh + (2a()+A2)h771 n + (1 _A )h P nq;p

+(2as+A)h"h,,,  +(2- )\z)h,,,”:"hpq:"}). (4.17)
The three-quantum interactions can be divided into four classes, namely A*(7),
h?¢(6), hd?(2) and ¢*(1), where the number of independent vertices of each type
is given in parentheses. Since there is no A¢-propagator, Wick contractions can
only be performed between pairs of vertices within a given class. We note that
there is one /> interaction with a coefficient that cannot be affected at all. Also,
either the A* interaction with coefficient (1 — A,) or that with coefficient (2 — A,)
must be present. Hence, there must be at least two /° interactions. What may
seem more surprising is that there also need be no more than two such interac-
tions, as the following particularly convenient choice of gauge- and reparametriza-
tion-parameters shows

M= Hd-6), M=l a=—j(d-60(d-2).  ay=1,
a3=%(d—6), a4=%(d—4), a5=a6=—%

200=0,= —3(d—6), o;=1/4d, o, =1 (4.18)
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This choice yields namely

S3,c|+fix = de‘ %hmn((d - 2)¢m¢n - hpq;m(hpq;n - Zhnp;q))' (419)

This should be compared with a total of thirteen different vertices in the harmonic
gauge with a linear background—-quantum splitting, obtained by setting all parame-
ters to zero in (4.17). Keeping the background off-shell, as in ref. [4], increases the
number of three-quantum interactions further to twenty. Note that in (4.19), the
¢> and h’¢ interactions are absent. This reduces the number of graphs to be
computed.

We now turn to the quartic interactions. The pure gauge field vertices can be
divided into five classes, namely A*(19), #3¢(13), h?¢p*(8), hé3(2) and $*(1), with
their multiplicities given in parentheses. In the ghost sector, to be discussed below,
we should expect bch?, bch¢ and bed? interactions, due to our nonlinear gauge
choice. The h’$, h¢? and bche interactions can all be discarded, without further
ado, since there is no s¢-propagator. Less obvious is that we can also discard the
h%¢p?, ¢* and bed? interactions. This follows from the preliminary analysis in sect.
3, where we showed that the divergent part of any “figure 8” graph can only
involve a,|, V,a,l, V,,a,| or a,|. But from (3.40), (3.41) it follows that these
coefficients vanish for the scalar, since both X and Y}, vanish in that case. The
same is true for the vector fields, as follows from the fact that X, vanishes, while
(Y,),.. Is proportional to the Weyl tensor C,,,,,.. In particular, the last term in
(3.40) vanishes due to the CC-constraint. Therefore we can drop the bch? vertices
too, and no quartic interactions involving the ghost remain at all! Only the A*
vertices remain, but also of these we can discard quite a few by making use of the
following Ward identities:

V4G, + GV, =0, (4.20)

Vka/m'n’ +G A ﬁ",) - (1/d)gl’n'va = 0’ (421)

m(
which relate the spin-zero, spin-one and spin-two Green functions. These identi-
ties follow by integration of the identical equations for the heat kernels. The first
one is well known (ref. [46] and first article in ref. [20]) and we generalized it to the
case of spin-two. This second Ward identity allows us to discard any h* vertex
which involves a factor k,,. This is because for such a vertex at least one of the two
graviton loops of the associated “figure 8 graph can be replaced by a ghost or
scalar loop and these vanish as we have argued above. Equivalently, this is what
the extra O(x?) gauge parameters in (4.6) would have achieved. Namely, new
quartic terms in (4.7) would then have come from the cross terms of these O(«x?)
terms in F,, with its leading terms. Hence, such terms would have contained either
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a factor h, or a ¢, But such quartic interactions and the associated ghost
interactions are irrelevant, as we have just shown. Incidentally, this demonstrates
the gauge independence of the on-shell effective action for these fourteen gauge
parameters! There now remain thirteen four-point vertices. Among these, we have
the following relations, arrived at by partial integration and completing the V2 into
the Lichnerowicz laplacian

fdl“ hk[(hklhm";phmn:p + th/;phm”:phmn + 2Cm(pq)”hlkhmnhpq) = 07 (422)

fdl’ hk,(hmnhkm;ph/n:p + th’l:phkm;phln + 2Ck(pq)mhm”hlnhpq) =0. (423)

Finally, there are three relations which follow from commuting covariant deriva-
tives, namely

A0 B (B b 1+ 205 B Py + C P ) = 0, (4.24)

mp:n mn'tpq

Jdv B (BB Py oy + B B Ry B B & CT PO ) = 0,
(4.25)

jdu R (20 P By = 20 Ry PR
+ O™y Y, — CPl b ) = 0, (4.26)

where we dropped terms involving #,,. Allowing for egs. (4.22)—(4.26) we find that
S, can effectively be reduced to the following six terms:

Sy = [dv gk (hphmm i

mfn;p]

+hmn((1/8d)(d - 2)hkl;phmn;p - %hkm;phln;p + hkp;mhn[lzp]))' (427)

Here, the scalar and vector fields are completely absent.

We have yet to determine the Faddeev—-Popov ghost action, but only through
third order in the quantum fields. Since we have already used up all parameters in
making the gauge field couplings as simple as possible, we will have to take the
ghost interactions as they come. We will show that our ghost action is nevertheless
as simple as that in the harmonic gauge. It is obtained by a straightforward
application of the Faddeev—Popov prescription, using the quantum transforma-
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tions (4.4), (4.5). We need not worry here about the field redefinitions (4.15), (4.16)
since they only generate irrelevant bch? vertices. We thus find for the ghost action
in an arbitrary gauge and to third order in the quantum fields

Syesgn= [dv(=b"V2e, + bR, ~ (2/d)(ay—a)b"c? b,

+hm"[(2a2 - 1)bp;pcm:n + (1 + aS)bp:mcn:p + a5bp:mcll:n

+(1 + a())bm:pcn:p + aﬁbm;pcp;n + (2/d)(6(4 s — a())bm;ncp;p]
+2(a5 - aé)bm(c(m;n)hn - C(n;p)hmn;p))’ (428)

where we have omitted all bc¢ interactions, since they are irrelevant as well (see
sect. 6 for the proof). In the harmonic gauge, i.e. taking all a’s to be zero, there
are four bch vertices. In the nonlinear gauge (4.18) we find instead

Ssvsgn= [AO(=b"V2, + b7 CP .+ h (DY, + by P) Cpy

+(1/d)(d = 2)(h""b,,,, + 5h"b,,)c".,). (4.29)

Observe that our choices a, = 1 and as = a, were beneficial for the ghost action
as well. We can simplify this yet further by eliminating the interaction for which
the two covariant derivatives contract with each other. This is best explained as a
general procedure, so consider such an interaction with arbitrary fields f,, f, and
f5. Partial integration can always bring the derivatives together

/dU fle;mf3;m = %fdb'(fl;rnmf2f3 _f1f2;mmf3 —f1f2f3;mm)- (4.30)
We next rewrite the V2’s as
Vf,=—A,f,—X,f;, nosum over i, (4.31)

where A; is the wave operator for the field f;. This procedure has the advantage
that when we perform a Wick contraction of such a vertex with any other
f1f2f5-vertex, the A, term will act on the f; Green function and it can then be

O -8

Fig. 2. A A pinches a “@” graph into an “8” graph.
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replaced by I,6. The §-functions pinches the overlapping graph into a “figure 8”
graph, see fig. 2. In general, the X, term remains, but the associated graph has two
derivatives less.

Applying this procedure to the case at hand, we find

[dvhmb, e, =1 [deb,e 72 = [de €™ e b, (4.32)
In the first step, we dropped the terms where V2 acts on the ghost fields, since in
those cases any graph will get pinched to a vanishing “figure 8 graph. In the
second step we rewrote V2 as the sum of the Lichnerowicz laplacian and the Weyl
tensor. The former pinches any graph to a “figure 8 graph with two ghost loops,
which vanishes. We conclude that, for our purposes, we can freely replace the
left-hand side of eq. (4.32) by its right hand side. Finally, we should not forget the
relations

Jdv b, (€7 ™ + h™ ye?) = [dv 3C"P"b, b (4.33)

mn'tpg>
[dvbry, (¢ ™, +h™ ) =0, (4.34)

and their conjugates. We use the first of these two identities to eliminate the
C-bch vertex again, since this leads to some cancellations. We then find

Sri3gn= fdu( -b"Vi, + b nC A"y + BTl AT F %b’”c”;nhm). (4.35)
Here we have, with some hindsight, permitted ourselves to set d =4 in the
coefficients of vertices which can produce only a simple pole when Wick con-
tracted with any other vertex. This reduces the number of bch vertices to just five.

We also considered field redefinitions, similar to those in (4.15), (4.16), for the
ghosts of the form

= (V+&d)e, + &R, + ... (4.36)

with analogous transformations for the antighosts. However, it is evident that
making such redefinitions in the Kkinetic term b"Vzck can only give rise to
irrelevant three-point vertices.

5. Yang-Mills

The purpose of this section is to present our methods for evaluating the
divergent part of the two-loop effective action by means of a simple example,
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namely Yang—Mills theory. We follow closely ref. [21] (see also the first article in
ref. [23]) and point out some simplifications. We restrict ourselves here to pure
Yang—Mills in flat space, so that do = d%x in this section.

The euclidean classical action is given by

1 ! 2
Sy=— 7, Jdv i uEL, (5.1)
where the field strength is defined by
F,..=[D,.,D,], D, ,=10,+A4,,. (5.2)
The gauge connection A4,, =A% T, is in the adjoint representation (7,),. = —f,,..

with quadratic Casimir defined by to(7,7,) = — C,38,,,.

The background-field method is implemented by shifting the gauge connection
A, — A, +ga,, where the new A, is the background field and a,, is the quantum
field. In the background covariant Feynman gauge F = D,,a,,, the quantum action,
including the scalar Faddeev—-Popov ghosts b and ¢, reads

m>

Squ="— glez fdu tr(bAc +g[D,, blla,,, c]
+3a,,4,,a,+8[D,, a,]la,, a,] + 3¢l a,. a,]), (5.3)
where
A= —-D?, a4,.,= —(émnD2 +2F,,). (5.4)
Therefore
X=0, Yi=Fus Xy =2Fy, (Yer) mn = FrBmn (5.5)

for the scalar and the vector respectively. From this we easily find for the
corresponding second heat-kernel coefficients

fdu tra,| = —3g°C,S,, fdv tray, | =—3(d-24)g°C,Sy, (5.6)

where, with a slight abuse of language, we write a,;,. | for a8, We are
keeping track of the d-dependence, since we will also use these expressions in
two-loop order. Adding the vector and scalar contributions, with a factor —2 for
the ghosts, we obtain the well-known one-loop result *

(5.7)

* Note that if one keeps the d-dependence in (5.6), the factor 22 in (5.7) becomes 26 — d. Therefore,
the one-loop charge renormalization vanishes at d = 26, as expected from (open) string theory {48].
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(a) (b) (c)

Fig. 3. The wavy (dashed) line represents the vector (scalar) Green function.

which implies in particular the asymptotic freedom of non-abelian gauge theories
[47].

The two-loop contributions to the effective action are shown in fig. 3. We
denote the scalar and vector Green functions by G(x, x') and G,,(x, x'), respec-
tively. We have

(2) = 2&2[de((ir .G 1) + u[(1,G 1) = (TG )]) (59)

As was discussed in sect. 3, it is easy to evaluate the divergent part of graph (a)
and we find

(2)an = 24(g—C2) S.. (5.9)

1672

For graphs (b) and (¢) the Wick contractions produce

(b) =8> [[dv dv’(( DG Drvs Gros Gusr) = (DiG Divs Grs o)

+(DyGppr. G Dy Gpp) = 2( DG G Dy, Gy

+(DyGopts G D> Gt} (5.10)

(c) = —%ngfdl' dU’(DkG, GIS[,,Gk,/). (5.11)
Here we use the notation [21]
(A’ B’ C) :ftlh(‘fa'b’(l"“aa’BI)I)'CCC" (512)

This product is totally symmetric in A, B, C. The expressions (5.10) and (5.11) are
identical to those found in ref. [21], except that we noted that in (5.10) two terms
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are equal after some relabeling. Further simplicification can be achieved by
making use of the Ward identity (cf. (4.20))

DG, +GD, =0, (5.13)

relating the scalar and vector Green functions. We use it to eliminate both scalar
Green functions in graph (c). We next perform some partial integrations and find

(&) = =182 [[dv dv'(( DG Dirs G Gotr) +2( DG G Dy Got!)

+ (DG G Dy G- (5.14)

The sum of (b) and (c¢) simplifies and after a further partial integration to remove
the remaining second derivative of a Green function, we obtain

(b) + () = 3¢*[[ v du'((Dka,,, G Dirs G ) + 2Dy Grs G Dyry Gy

~4( DG, Gro Dy, G- (5.15)

To evaluate the divergent contribution from the first term is easy. Namely, we
partially integrate the D,. and use

DG, D, = —D*G =15, (5.16)

as follows from the Ward identity (5.13). The 8-function turns the double integral
into a single one and we obtain for this term

[[dv d0'(DyGps G Dy G ) = =3 [de(1, G, G|

4 [ g2C,\’
( ) Scl

2\ 1672

Il

(5.17)

There are only two terms left to evaluate, but here the Ward identity is of no
further use. We therefore turn to the heat-kernel expansion. Each term is of the
form (see fig. 4)

T= [[dv dv'(D,G, GD,, G), (5.18)

where now we suppress all indices on the Green functions.
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DI'

Fig. 4. Two two-loop patterns.

For each Green function we insert a heat-kernel expansion
G=Gya,+Ga, +Gya,+H, (5.19)

and distribute the covariant derivatives. In general, the three G’s may be different,
so we must take care to maintain the order of the a,. Keeping only singular terms,
we find

1
_ N 3 2
Ty _/ de dv (G()(a()k’ agy, ag) + 2 [GikG()(ai’ g, dy)
i=0

+Gil’G(2)(a()k’ a;, ao)] + G()kGUGl((a()’ ay, ag) + (ag, ags al))

2
+G o GG i((agr» ag» 1) + @y, ay, ag)) + 2 GG orGilay, ay, a;)
i=1

+G .Gy Golay, a;, ay) + GG Gyla;, ay, a())] + GG Golay, ay, ay)

TG GoGilay, ag, ay) + GGy Gi(ay, ay, a,) = GOkG()((a()7 G,/, a(,)

+(a0, g s G)) - G()I’G()((Gkr ay, ao) + (a()k’ g, G))

_GOkG()l’(a()v g, G) - G()kGl/’(a()’ ay, G) - leG()l’(al’ ag, G) ’
(5.20)

where we use the shorthand notation G, =9,G,, ao, = D,a,, etc. We dropped
the term with G, G, G, since it can yield only totally symmetrized derivatives of
a,, which have vanishing diagonal limits. We also dropped terms involving G3G,,
or G§ in the subdivergences since, by dimensional analysis, their singular part
involves no derivatives and it multiplies at least one Da,, which vanishes in the
diagonal limit. Products of the form G{G, or G{G, are singular only when both
derivatives act on them (and therefore not on the a;). As was already noted in sect.
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3, the subtractions can always be combined with a corresponding rest term H in
such a way that only G = G — H occurs.

Next, we insert for each product of G, the corresponding singular expression
(see appendix C, but with V =4) and integrate any derivatives off the §-function
onto the heat-kernel coefficients. We thus find the following local expression:

1

Ty = ﬁfdu(e(a()kp’ gy ag) + 7€[(ay, aniys ag) + (@ @y, ag)]
(167 %€)

—s€[(ag, biyys ag) + (bipss ags ag)] — €8l @y, ay, ag)

+(4/d)[(a0, Ay ag) + (aygy, ags ag) + (ag, agey, a1) + (aguss g, a;)]
=2[(8y, aypss o) + (arsys Gy, dg) + (8, orss ay) + (Aoigs o a1)]

—3(1 - 1z€)(aqg, ag, bigy) +5(dp, dgs byiy)

—(2/d)gk,[(a(,, a, a))+ (a;, ay, a;) +(ay, a,, ay) +(ay, a,, a(,)]
+2ul(dos 41, a)) + (dy, g, a)) + (ay, 8o, do) + (dgs a5, dy)]
+(2/d) g ag, ay, ay) — (1 — 5€)gu(dy, dqg. az)) l. (5.21)

Here, the diagonal limit, indicated by the | at the end, has been taken. We also
defined

bixi=Dya, +%gk1D2al' (5.22)

The hats are there to remind us to evaluate those coefficients at d = 4, before
proceeding with the remainder in d dimensions. Note that, due to the R-oper-
ation, the sign of every double pole gets reversed. From dimensional analysis we
expected all D’a,| with 2i +j <4 to appear on the scene. However, we do not
need D3a0| and Da,l, since they can only appear together with Da,|, which
vanishes. Also, D%a,| and a,| come with a factor a,la,l, i.e. a product of
Kronecker deltas. So, for expressions of dimension four, we need to know only the
integrated diagonal limits. A complete list therefore consists of

agl, D,ay,D,|, a,l, [du D,a,l, fdu a,). (5.23)
The nonvanishing coefficients of this type are given by (5.6) and furthermore

agl =1, DeagDyl=%Fy, [dot D l=¢[dewEL,  (5.24)
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for the scalars, whereas for the vector

Dka[)m11’51'| =%F‘k1'S 2F, (525)

mn>  Aimn | - mn >

a()mn'l =0

(1/d) [dv tr D2ay0| = Jdetr Dyayl = dfdewEL. (5.26)

A straightforward calculation then gives

2

1 34 ( g2C,
F(2)=——( ) cl»

e 3 11672

(5.27)

previously obtained in ref. [49]. As a test case for gravity, we have written a
program in FORM, which performs the above steps and which can be applied to
any graph of the type in fig. 4. This allows many cross checks and the entire
two-loop calculation takes a few seconds.

This way of proceeding, i.e. first using partial integrations and Ward identities
to simplify things and doing the remainder via the heat-kernel expansion, will be
also useful in the gravitational case, to which we now return.

6. Effective action

We now return to two-loop quantum gravity. A final rescaling of the scalar field

¢ —y2/d(d-2) ¢, (6.1)

gives it a canonically normalized Kkinetic term. The complete quantum action to
fourth order in the quantum fields, with the parameter choices made in (4.18) and
omitting terms which do not contribute in two-loop order (4.10), (4.19), (4.27),
(4.35), can then be summarized as

Squ="S,+8+8,+..., (6.2)

S,= [do(3V 3¢ — b*V2e, = Lh¥'V 2, + C¥""hy ), (6.3)

S3 = fdv(hkl((l/d)(bk¢/ + hm”;k(hlm;n - %hmn;l))
SRR LN L LS VI M (6.4)

Sy = fdu %hkl(hlphmn:khm[n:ﬂ]

+/’1mn((1/8d)(d - 2)hk[;phmn;p - %hkm:ph/n;p + hkp;mhn[l;!)])). (65)
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A general four-point interaction of the form

JAC Bhht P (6.6)

contributes

de’(( kip'q';t’ | Gmnr’s’;u’ | +kl o mn) + lem’n’ | qur’s’;tu’ I) (67)
with divergent part
- %fdl”(é"(alklp'q’;t | Dimnr's' u | +kl o mn)
(167%)
+2alklm'n’ | (aqur’s’ | glu - 2a1pqr’s’;tu | +zalpqr's’;t I ;ll))7 (68)

where we used egs. (3.16)-(3.18) and also a,, | =a,.,|. The hat on the back-
ground metric g,, indicates that we must set d =4, whenever ¢ and u are
contracted. Since metric tensors do not appear in the coefficients in (6.8) (cf. (6.22)
etc.), any interaction as in (6.6) yields only a double pole (but note that, since its
coefficient in the action can be d-dependent as in (6.5), it may still contribute a
1/€ pole).

For the overlapping graphs (fig. 5) we find

(b) — _7[ dv dv’ Grer ‘s’ (%G . ’kaI’n’ + qu[’n';mkar,x,;n'

pqr's’,mn

_ kmn' kml’ _ I'n’ km
2G, /e G*™ = 2G, 0 G 2G, /"G

qs‘mn

k1l mn' kn' m I’ m ' k n
+G G+ GG G (GRL

p s'ymn’

qul’s o’ Gk L+ 2G™, " kal; " ) (6.9)
(C) = ~(1/d2)f,/-dv dv’ ka[,n,G:kl'G;mn” (6.10)
AN
\ ’
(b) (d)

Fig. 5. The wavy, plaln and dashed lines represent the graviton, its trace and the ghosts, respectively.
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(d) =4 [[dv dv' [5G ¥ Gy G

1 ~kpg'n’ I’ m m 1 o~kp n q’ ml’
+ 3G (G oGy +2G™ 1 G ) + 3G 2 G LT G™

C o , Lok — )
+qu & (QG'"[P\ q’(l':nG K arym + 3G mq'n G[ml’;p]n’ +36 m[lfnqu’];mn')

+ 2GR (1G rnG o + G G+ G G (6.11)
The sum of graphs (a) through (d) vields the complete on-shell two-loop effective
action for perturbative quantum gravity. Note that there are only ten terms in the
expression for graph (b), to be compared with five terms for the analogous graph in
(5.10) for the case of Yang—Mills fields. We now need to isolate the divergent part
of these expressions. We begin with applying the Ward identities (4.20, 21).

Differentiating them once more, we find

VG, V=8, V*G,,, VI =1lg .6+ 7\7,,,(;\?,,. (6.12)
The second identity can be directly applied to the last three terms in graph (d),
which are then seen to vanish (see the discussion at (6.31)). For the remainder the
Ward identities are unfortunately not of much use, at least not in a straightforward
way. Recall that we could simplify matters in the case of Yang-Mills ficlds by
eliminating derivatives of spin-zero Green functions in favor of those of spin-one.
In the present case, there would still remain some terms which can only be
handled by means of the heat kernel expansion. We have therefore chosen to
program the calculation of generic overlapping graphs with up to two derivatives at
each vertex. This permits many checks and in fact also a calculation of the
two-loop effective action in an arbitrary nonlinear gauge and with arbitrary field
parametrization.
We now discuss in general terms the procedure, analogous to that in sect. 5, for
finding the divergent part of any two-loop graph corresponding to the following
two patterns:

Ty pmn = [[dv 4t GG oGy Tappie = [[dv dv’ GG, Gy (6.13)

where all indices on the G’s are now suppressed. We included a third pattern for
partial integration checks, i.e. the sum of 7|, T, and T; must vanish for all cases
(see fig. 6).

As in sect. 5, we insert for each Green function a heat-kernel expansion, but
now through third order

3
G=) Ga,+H, (6.14)
i=0
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Vk Vl' Vk V|' vak VI'
Vm Vn' Vn' Vn'

Fig. 6. Patterns for two-loop graphs in gravity.

and distribute the covariant derivatives, taking care to maintain the order of the a;.
In each case this generates close to one hundred singular terms. Next we insert the
list of singular expressions found in appendix C and integrate all covariant
derivatives off the 8-functions. At this stage T, and 7, each have close to one
thousand terms. To proceed, specific choices have to be made for each Green
function. This is done by inserting sets of labels for each of the three Green
functions. Subsequently, we substitute the following list for the heat-kernel coeffi-
cients, obtained from the generic expressions at the end of sect. 3.
(i) Scalar: We note that

ag(x, x"y=1, (6.15)

even off the diagonal. The only other nonvanishing heat kernel coefficients are
i fde Via,| =/du Via,| =3 [duvay| =[du(1/7!)c3. (6.16)

In a Ricci-flat space, when acting on a scalar, one has (V?)? = VPV/V Y = V77>V |
so the order of the derivatives in the fourth derivative of a, is irrelevant.

(i) Vector: The off-diagonal zeroth coefficient is given in terms of the parallel
displacement bi-vector (see (3.27) and (3.12))

a (x, x')=g%(x, x'), (6.17)
and otherwise
(1/d) [dv Véa /b | = [do Voga M| =4 [do(1/7)C?, (6.18)
(1/d) [dv V2a | = [do Ve, | = [du(1/7)C?, (6.19)
[dvaf | =1d[de(1/7DC. (6.20)

In the fourth derivatives of a;, the order of differentiations is irrelevant since any
commutator yields a Weyl tensor times a lower derivative of a,, and these all
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vanish in the diagonal limit. Therefore, also for the vector fields, almost all
heat-kernel coefficients vanish. This is due in part to the CC-constraint, since the
diagonal limit of the second derivatives of a, does not vanish in a general Ricci-flat
space.

(iii) Tensor:

a(]k]m’n’(x’ X’) =gk(m’(x’ x,)gln’)(x’ X’) - (1/d)gkl(x)gm’n’(x’)' (621)

It is straightforward to verify that this expression satisfies the defining equation
(3.12) with the correct boundary condition. For the first coefficient we have

A kim'n’ I == 2Ck(mn)17 (622)

alklm'n';pl = _Ck(mn)l;p’ (623)
_ _ 2 1 r r

alk[m’n’;pq I - 3Ck(mn)/;(pq) + 3Ck(m\([) C qyrlin) + 2C(mn)(k C Drpg - (624)

The second derivative of 4, will always appear with one contraction and then it
can be written in terms of the tensor U. We have given the generic expression for
the second derivative, since the list of all possible single contractions is rather long.
Longer yet is the list of the diagonal limits of the fourth derivatives of a, and we
only give the following three cases:

%d(d + 2)de V4k117111alk[m"l'l = dfdl V4klalkﬂ[,p' |

= [de Vil =41 1fde(1/7)C7. (6.25)

All other cases follow from commuting covariant derivatives and using the diagonal
limits of the lower derivatives of «@,. For the second heat-kernel coefficient we
obtain

Qopepprnt | = _%Uk(mn)h (6.26)
and
1
[dz Vot | = (dFtr l—m)/dz c?, (6.27)
1
Jdv vt = (7' tr [ — )fcu C3. (6.28)

Finally, the third heat-kernel coefficient is given by

fdv arl ) =tr Ifdu(l/7!)C3. (6.29)
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Checks are an important issue in a calculation of this complexity. In the
noncovariant calculation of ref. [4], a strong check was provided by the fact that
the final expression indeed corresponded to the linearized version of the [C?
invariant. Further checks were provided by extending this analysis to include some
off-shell divergences. Our procedure guarantees a covariant answer and checks of
this type are therefore meaningless. Instead, a stringent check is provided by our
verification that the final answer is completely independent of all gauge- and
field-redefinition parameters. Upon leaving all such parameters free, there are,
besides the graphs in fig. 5, also the two-loop graph with two graviton and one
scalar propagator and that with all scalar propagators (the latter actually vanishes,
as we will shortly show). In general, each two-loop graph then has a double and a
single pole where the residue of each pole is now a quadratic polynomial in the
parameters with complicated numerical coefficients. We have checked that in the
sum of all two-loop graphs, the double poles cancel and our final answer is

1200 1
I=—— s~ [dv C,/"C

raC ki 6.30
e 2880 (16772) ( )

mn pqg

in agreement with the final result obtained previously in ref. [4]. The factor 209 can
be decomposed as 11 X 19 and it is tempting to speculate that, as in the one-loop
Yang-Mills result in sect. 5, the factor 11 is really a factor (26 — d) /2, as expected
from closed string theory (to actually confirm this, one would have to keep track of
some finite parts of the two-loop graphs, which we did not do). The result (6.30)
also provides another instance of the general theorem that the on-shell effective
action must be gauge and field parametrization independent [34]. A disadvantage
of this check is that it can be performed only at the very end of the calculation.
Intermediate checks involved verifying relations among different Wick contractions
implied by the Ward identities (4.20), (4.21) and by partial integrations (see remark
after (6.13)). It is important to note here, that the heat-kernel expansion does not
automatically satisfy the Ward identities. As discussed in sect. 5, these identities
often bypass the use of the cumbersome heat-kernel expansion. We will now give
some further examples of this.

First, consider the three-scalar vertex ¢¢."¢.,. By (4.30), (4.31), this is also
equal to — %¢2V2(b. Therefore, Wick contraction of this vertex with a copy of itself
produces vanishing “8”-graphs (we use that in dimensional regularization §(0) = 0
[50D. Similarly, among the bc¢ vertices, we can omit the three cases where the
derivatives contract with each other. This leaves

bm;mcn;nd)’ bm;ncn;mqs’ bmcn;n(b;m’ bmcn;md);n (63])

and also the conjugates of the last two vertices. Among these there is the following



A.EM. van de Ven / Two-loop quantum gravity 345

on-shell relation:
fdv(b'";[m " g + b7 b ) =0 (6.32)

and its conjugate. Performing Wick contractions among the remaining four inde-
pendent vertices is easy. In almost all cases we can use the Ward identity (4.20),
reducing the graph to a vanishing all-scalar graph. The only nontrivial integral is

/ de de’ GGkI :mn'Gm” kI (633)
and a tedious but straightforward heat-kernel calculation shows that this also
vanishes. This proves our carlier assertion that all bc¢ vertices can be dropped.
Next, we consider the ¢¢h vertices, namely

hmnd)m ¢n ’ hmd)m(b' (634)

By partial integration, the second vertex equals — $¢>V""h, .. The Ward identity
(4.21) shows that both Wick contractions of this vertex vanish. The first vertex has
a nontrivial Wick contraction with itself, namely

1

f[dll de’ G*'"G L, G = < 1440 (1677-2) [dv C’.

(6.35)

This yields the divergent part of graph (c¢) (fig. 5) in (6.10). We next turn to the bch
vertices. For those with contracted derivatives, we have effectively

km I _ Bk m _ k(mn)l
b ; € :mhkl— b c. hkl:m =C bkclhmn' (636)

This lcaves

mk ! mk .l m ki
b ey, BT hy, BT hy,

o n
k1 k. 1 k
bc! hy, bre'h,, brclh,,

b"'c’:'"h,(m;,, b"c’;’"h,m:k, (6.37)
and, except for the first case, also their conjugates. In addition there are the
relations (4.33), (4.34). The Ward identities imply that any Wick contraction among
the vertices in the second line of (6.37) vanishes. The same is true for contractions
between b™., c*'h,, and the vertices on the second line. This provides stringent
checks on the calculations based on the heat-kernel expansion. We will not discuss
the h%¢p or h® vertices, but we do include a list of the results for every possible
Wick contraction among the 4% vertices in appendix E.
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7. Conclusions

We have shown by means of a fully covariant calculation, that there exists a
nonrenormalizable divergence, see (6.30), in the two-loop effective action of
Einstein gravity. This confirms and complements the earlier study of ref. [4], where
noncovariant methods were used. We verified that our final answer (6.30) is
independent of a large number of gauge- and field-redefinition parameters. In our
opinion, this shows conclusively that perturbative quantum gravity, based on the
Einstein—Hilbert action, indeed has incurable short-distance divergences.

In our work, we could reduce the number of three-graviton interactions to
merely two by choosing a novel nonlinear background covariant gauge and by
allowing nonlinear background—quantum splitting. This compares favorably with
twenty off-shell three-graviton interactions in the background covariant harmonic
gauge in ref. [4]. By imposing, in addition to Ricci-flatness, a new constraint
bilinear in the Weyl tensor, see (3.29), we were able to determine all heat-kernel
cocfficients and singular products of Green functions by hand. Making use of
Ward identities and partial integrations allowed many checks and further simplifi-
cations (also in the much studied case of pure non-abelian gauge fields). Unfortu-
nately, in general we still had to resort to the use of the heat-kernel expansion and
this carries us outside the domain of hand calculations. However, the use of the
covariant heat-kernel expansion brings the problem in easy reach of some existing
symbolic manipulation programs. The use of FORM [31] proved to be invaluable,
especially in extending our calculations to the case where all gauge and field
redefinition parameters were left free. At present our calculations takes approxi-
mately two hours CPU time on a Silicon Graphics IRIS 4D /2208, or about twice
that amount on a VAX 6000-410. This compares favorably with the CPU time
required in ref. [4], namely about three days on a VAX 11 /780, although in view of
the different machines used, such comparisons are at best indicative.

Further simplifications in the evaluation of the two-loop divergence of Einstein
gravity may yet be possible. In fact, we will now show that in d =4 our CC-con-
straint (3.29) implies that space must be half flat, i.e. it has either selfdual or
anti-selfdual Weyl tensor! * Using SU(2) notation, with spinor indices a, b,... for
the first SU(2) (and with primes for the second SU(2)), the Weyl tensor gets

replaced by the totally symmetric Weyl spinors w,,., and w,.,...,.. We then find
for the tensor U
Uk/mn ~ 2wah('dW¢1”b’(”d’ + (wa('c'tthefea’b’ec"d' twe W’)' (71)

* It has been suggested to us by M. Rocek that this constraint may therefore provide a sensible
generalization of self-duality to dimensions other than four.
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The term bilinear in w can be decomposed into its irreducible pieces as in

Wal Whitor = Wean W carer = 3€ac€an’™s W =w w0 (7.2)
If we want the tensor U to have the symmetries of the Weyl tensor, then we should
require that w'=0 and w?=0, (or w=0 and w’?=0). The first condition
requires space to be half flat and therefore also Ricci flat. Incidentally, selfduality
also implies the vanishing of the Bel-Robinson tensor, which in spinor notation is
just the ww’ term in (7.1). A further side effect of the CC-constraint is that both
the Euler and Pontryagin number vanish, simply because the corresponding
densities vanish. It is well known that exact Green functions can be found for fields
propagating in an instanton background. Although our background is topologically
trivial, similar methods may yield a much simpler derivation of the two-loop
effective action for gravity. We should note, however, that a selfduality constraint
may invalidate the use of dimensional regularization.

Unfortunately, a selfduality constraint is not allowed for the three-loop calcula-
tion required to settle the finiteness issue of N = 1 supergravity. We nevertheless
feel that with methods similar to those advocated here, suitably extended to
superspace, this calculation may be within reach. But, to quote 't Hooft and
Veltman [3], “a certain exhaustion prevents us from further investigation, for the
time being”.

I wish to thank the Institute for Theoretical Physics at Stony Brook for a visiting
position and its hospitality. Special thanks go to Martin Rocek for useful discus-
sions and for believing 1 could do it, when 1 was not so sure myself. I also thank Jos
Vermaseren for interesting discussions and for inviting me for a stay at NIKHEF-H
in Amsterdam,

Appendix A. Notation

Indices i and j represent generic labels, while &, [, m, n... denote world
indices. We use ellipses and square brackets around indices to indicate sym-
metrization and anti-symmetrization respectively, and include a factor 1 /N! for a
total of N indices. We use both the operator and semicolon notation to indicate
covariant differentiation. For a scalar ¢ we may omit the semicolon, so that
¢,, = 9., =1V, ] Note that the operator V acts on everything to its right. Our
curvature conventions are

[V ., V]4k=RK A, R_,=R? R=g™R,,.. (A.1)

Imn mn mnp>
P

Besides ordinary tensors, we also consider bi-tensors, which depend on two
points x and x’'. The simplest case is provided by a bi-scalar, e.g. the geodetic
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interval o(x, x'). In general, bi-tensors transform as indicated by their indices,
with primed indices referring to the point x'. For instance, the bi-vector g%, (x, x")
transforms as a product 4“(x)B,(x') of a covariant vector at x and a contravari-
ant vector at x’'. When no confusion can arise, the arguments x and x’ will be
suppressed. Indices referring to the point x can be lowered and raised with the
metric tensor g,,(x) and its inverse, idem ditto with primes. Covariant differentia-
tion at x’ is indicated by putting a prime on the index, as in V.. The relative order
or unprimed and primed indices is irrelevant, since covariant differentiations at x
and x’' commute. E.g. in a¢y,;,,, we can freely move the primed index to the end.
For any bi-tensor T(x, x’') we denote its diagonal limit, T(x, x), by T |. Note that
the chain rule of covariant differentiation implies that

T | m = T;m | + T;m' |7 (AZ)

which states that differentiating after taking the diagonal limit is the same as first
differentiating with respect to both arguments and then taking the limit. Reading
this as an equation for T, | allows one to eliminate derivatives at x’ in favor of
those at x. Written in that form it is known as the Synge—Christensen theorem
(second article in ref. [20]).

For totally symmetrized products of covariant derivatives, we use the following
notation:

Viko i = Ve Vi, -+ Vi (A3)

Whenever pairs of contracted indices occur in such an expression, we omit them
and write instead an exponent to indicate the total number of covariant derivatives
present in the symbol. For instance

V2 :gmnv v VS] — ganU vd V,,), (A4)

m n? m

where the first case coincides with common usage. The following reduction
formula is then useful:

k _ pk
4 Vk,kz...k =V kiky... k

N N

N
+(1/(N+1) Z (N =j+ DV, |75 W]V (AS)
j=1

Appendix B. Diagonal limits

In this appendix we derive expressions for the diagonal limits of covariant
derivatives of o, v and a;. In two-loop gravity calculations, such objects with
overall dimension less or equal to six can appear, as we discussed in sect. 3.
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The defining equation for the geodetic interval o(x, x') is
a”g,="2a, al =0, o, | =0, (B.1)

where —o™ is the tangent vector at x, pointing towards x’, with length equal to
the length of the geodesic between the two points. Evidently, both o and o,, must
vanish in the diagonal limit, whereas

Tinn | =&wmn- (BZ)

It follows from eq. (A.2) that a,,,. | = ~g,,,. We wish to find the diagonal limit of
some higher derivatives of o. Note, that since ¢ has dimension —2, we will need
to go as far as the eighth derivative. They are found by taking repeated covariant
derivatives of the defining equation (B.1) and subsequently taking the diagonal
limit. For instance, differentiating three times, taking the diagonal limit and using
(B.1) and (B.2) yields

Ty | = 0. (B.3)

To arrive at (B.3), we also used that we can freely interchange the first two indices
of o, since it is a scalar at x. Upon adding to (B.3)

L !
Um[np] ] =20y ] R mnp = 0’ (B4)
we see that its solution is simply

Ty | = 0. (B.5)

Using this result, the next two cases become linear in o, namely

Tonnpa | T Tmpng | + Ongnp | =0, (B.6)
amnpqu+0’mpnq,|+0'mqnp,|+a'mmpql = (), (B.7)

with solutions
o-mnpq ' = -%RM(pq)n’ Umnpqr ' = %Rm(Mlnl;r)‘ (B'8)

Note that in a Ricci-flat space, the expressions in (B.8) vanish upon contraction of
any index pair. The equations for the sixth and higher derivatives of o are
nonlinear in ¢ and their solutions for a general Riemann space are rather
complicated. However, as we discussed after (3.29), we can restrict to spaces
satisfying the CC-constraint. Furthermore, in practice, the diagonal limit of the
sixth derivative occurs always with at least one pair of derivatives contracted.
Consider the particular case where the first pair of indices of o0y,,,,| are
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contracted, first without the CC-constraint. In a Ricci-flat space, this tensor is
totally symmetric on its remaining four indices, as follows from o, | =0. It can
therefore only have the foilowing form:
k Ik
o kmnpq‘ ~ Ck(mn C Pl (Bg)
but this vanishes upon imposing the CC-constraint. Other cases are easily obtained
from this “boundary condition” by commuting covariant derivatives. For instance,

in o*,, |, the order of the first three indices is in fact irrelevant. Furthermore
k _ _ 4 koj— _ Ky _
Tun kpql - 3ljm(pq)n’ Umnp kq | - 4(Jm(pq)r17 Umnpq kI - SIJm(pq)n’

(B.10)

etcetera. Once again, any further contraction of these expressions vanishes. The
seventh derivative is not needed, but we do require the integrated diagonal limit of
the fully contracted eighth derivative in a Ricci-flat space, namely

Jdo(v*) o | = =240 [de(1/7)C?, (B.11)

where we use the abbreviation

C?=C,/mC,MC,x. (B.12)

mn
We have allowed partial integrations, dropping boundary terms, and used the
Bianchi identities to simplify (B.11).

The square root v of the Van Vleck—Morette determinant & satisfies

(O"n’n’d)L7+20"nl",n=0’ l,,'l =1. (Bl3)

By repeatedly differentiating this equation we can solve for the diagonal limits of
the derivatives of v, given those of o. However, in a Ricci-flat space, dimensional
analysis suffices to find the solutions. Namely, the jth derivative of v has
dimension j. It follows that the diagonal limits of the second any third derivatives
of v vanish. This in turn implies that the limits of the fourth and fifth derivatives
must be totally symmetric. Furthermore, since it is clear that explicit metric tensors
cannot appear, we must have

1k s
Umnpq | ~ Ck(mn C pa>s Umnpqu ~ l’(mnpq I;r)’ (B14)

but these expressions vanish upon restricting to spaces satisfying the CC-con-
straint. This leaves only the sixth derivative of v to be determined. We need only
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the fully contracted version. Differentiating (B.13) with (V2)* and dropping all
terms involving less than six derivatives of v yields

p(VH e + 126m(V2) e, = 0. (B.15)

‘mn

Taking the diagonal limit, integrating and using (B.11) produces the result
Jde(v2)'el =20 [du(1/7)C, (B.16)

Note that the order of covariant differentiations is immaterial. Thus, in spaces
which satisfy the CC-constraint, we have to go as far as the sixth derivative of ¢ to
find a nonvanishing diagonal limit.

The zeroth heat-kernel satisfies the defining equation

oD, a,=0, a,l =1, (B.17)

and we obtain

Dya,l =0, Dy Da,! = %Ykl’ D,D,D

m

agl =3Dy Y (B.18)

D, D,D, D,a,| = (DD}, +D,D

m

len + D/DmYkn)

12743
1

+ F({Yk/’ Y;nn} + {Ykm’ Yln} + {y[m’ Ykn})
1 ) 1

+ ?R(pmn)(k YI)I) - ER(I:’\'I)(m Y”)ﬁ - IRk/[m pY"][" (Blg)

Observe that the totally symmetrized expressions indeed vanish. The above expres-
sions hold for an arbitrary Riemann space. On-shell DkYk,= 0, and hence any
contraction of the third derivative vanishes. Contractions of (B.19) yield, in a
Ricci-flat space

DD Day| = 3 "Y1y, (Dz)zau| =3YHY, =577 (B.20)
We do not need the fifth derivative of a4, and about the sixth derivative we only

need to know that

/dl} D/\‘/mnDza()| = fdl'(%[D(A ° )//I’] [Dm’ Y”)I)] + Cp(/\'l q)/mpyll)(l)' (le)
This is enough, because in practice a, has at most four indices (for the graviton),
so we can assume there to be at least one contracted pair of indices among the
derivatives. Eq. (B.21) was obtained as follows. We first differentiate (B.17) with
D?/2 to obtain

1o?DD,ay +a "D, a, + 107 D a,=0. (B.22)
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Next, we differentiate this with D, . which amounts to a binomial distribution of

its indices. Due to various symmetry properties of lower derivatives of o and q,,
only three terms survive in the diagonal limit, namely

Dy yunD?ag| +2Dy,, DD yagl+607%,, | D mm Dy, =0, (B.23)

For instance, the last term in eq. (B.22) does not contribute at all. We now
integrate and eliminate the second term in eq. (B.23) via

de D pm D’D mdg |

= de(DklmnDza(]| + %[D(k ’ Ylp] [Dm’ Y")D] + %Cp(quYmpY'l)q)’ (824)

which we obtained by commuting the D? on the left hand side through the D,.
Contractions of (B.21) yield

2
/dv D (D*) a,l = %/dv(zy(kpy”q +Cu" Y)Y, (B.25)
[du(D?)’a,l =14 [de(2y? + CYY), (B.26)
where we introduced the abbreviations
Y3 = Y;nn an )/pm’ CYY = Ck["lll Ykl)/mn' (B27)
For the higher heat-kernel coefficients, we start from the equation
(¢?D, +j)a,= —v~'A(va;_)). (B.28)

It is easy to see that no error is made if we set v(x, x') =1, except when we
determine the fourth derivative of a,. In the latter case we must keep those terms
which can give rise to a sixth derivative of v, i.e. keep a]-,lev. We find the
following iterative equations:

1
a;| = —TAaH, (B.29)

1
Dal|=-—D Aa. |, B.30
maj| ]+1 m aj*l ( )

(B31)
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Eq. (3.40) is just the special case j =1 of these expressions. The third derivative of
a, is not needed, but we do require the integrated fourth derivative. It is easiest,
and sufficient, to determine the totally symmetrized fourth derivative. Differentiat-
ing (B.28) with Dy, and using that o”,, | =0 for two or more symmetrized
indices, we find

de Dklmnal | = %/‘dU(DklmnDza() | +l"‘p[)k/mn | I) (B32)

Since this expression occurs in practice only with all indices contracted, we do not
need to know the sixth derivative of ¢ with free indices. Contracting one or two
pairs of indices and using (B.25), (B.26) vields

2
Jdv DDy | = [de($XY, 7Y 1, + ED (D) gyl +400,%,,1 1), (B33)

fdv(D2)2a1 | = [de(AXY2+ £Y2 4 5CYY + (4/7)CT). (B.34)

Taking j =2 or 3 in (B.29), we obtain (3.41) and (3.46). The first derivative of a,
does not appear in our calculations and for the second derivative we find

[de Dyayl =4 [de(Dy D%, | +XDya, 1), (B.35)

1
fdu Dla,| = fdu(%XDz FEXYT 4 GV 4 GCYY + - CT ). (B.36)

The parallel propagator satisfies
oV, g4 =0, gk | =8k, (B.37)

As this is just a special case of a,, namely for a vector field, we can apply (B.18)
and find

k — k _ _ I pk k __ _ 2pk
4 ]’;m' - 0’ 4 [’:mnl - ZR Imn> g I’;mnp| - 3R Im(n;p)- (838)

So far, this is true for a general Riemann space. The fourth derivatives appear in
practice always with at least one contraction. For a space which also satisfies the
CC-constraint, they are given by

k p

— k p —_ _ 4k p _ 1
4 [':plnlll_():g A mpn' - g mnpl - ZUk[mn’

k _ 1 _k _ 1 _k —
g /’:mppn| =38 I’:mpnp| =38 /’:mnppl - Uklmn' (839)
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Here the first case follows from (B.20) and the arrow indicates that the other cases
follow by commuting covariant derivatives. Similarly, (B.19) yields

— — _ 1
gpk’;plmn | =0 :gpk’;lpmn | - O’ gpk';lmpn | - EUkmnl’
gpk';lmnp | = Uk(mn)l' (B40)

The diagonal limits of the fifth derivatives are not needed and for the sixth
derivatives the following integrated cases suffice (see the discussion before (C.16)):

fdu VYV, g5 | =2 [de V7Vigh.| = —%/dv c?, (B.41)
fdu vyl vigh | = ~fdv vrvay, gkl | = %fdu C3, (B.42)
[dv vrvi vk, = [dv v yavmes| = 4 [de €3, (B.43)
fdu VIvE Vmgk =0, (B.44)

These were derived as follows. We first obtain a “boundary condition” from eq.
(B.25), namely

fdl' Vlnn(vz)zgk[’l =0. (845)

Next, we commute the covariant derivatives and subsequently take traces in
various ways. A further useful property of the parallel displacement bi-vector is

gkm,g/rn’:6k17 gl"/\"gm[,:ak']“ (846)

Appendix C. Short-distance singularities

In this appendix we give a complete list of expressions for singular products of
up to three G, functions and with up to a total of four covariant derivatives acting
on them. We restrict attention to Ricci-flat spaces, which satisfy in addition the
CC-constraint (cf. (3.29)). The expressions with no more than two overall covariant
derivatives were given before in ref. [22] for a general Riemann space.

We begin with determining the singular behavior of 1/(x%)? in flat d-dimen-
sional space. Fourier transforming this yields

I rds2-p) (k2
fddx(xz)ﬁek’zvd/z——r(ﬁ—)'_(f) . (Cl)
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We are interested in poles of the right-hand side, which occur whenever g —d /2
equals a natural number j. Applying the inverse Fourier transform and using that
the residue of the Euler gamma function at —j equals (—)’/j!, we obtain

1 1 g 1 FERY
( ) (C.2)

(«1f  jtd/2=B+jI(d/2+j)\ 4

In particular, for 8 =2 — ae/2, where € =4 —d and « is a constant, we must take
J =0 to find a pole, namely

1 272 5
(x2)2‘“€/2 (a—l)e )

(C.3)

To generalize this to a curved d-dimensional space, we rewrite it in manifestly
covariant form simply by replacing x? on the left-hand side by 2¢. Covariant
expressions for more singular cases are then found from

1
Vi——=2p(2p+2-4d)

Go) (C.4)

as follows from o™, =2c¢ and o”, =d (the latter holds as long as we can
consider v to be equal to 1). We now read (C.4) from right to left and set
p=2—ae/2 to find for a Ricci-flat space with the CC-constraint that

: LA cs
(20) 7 " a(a-De' (€9)

2
1 T 2

(20)47“/2 = 96(ct — 1)e (V?)'s. (C.6)

Here are a few examples which illustrate the use of these identities. From (3.14)
and (C.3) we find that

1 1 1
Gl= ~ 5, C.7
* (4w’ (20)° 87 (€7

where we could safely assume that v =1. The same is true in the following
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less-trivial example:

1 4o,0;

(477_2)3 (20)5~3£/2

G()kGOIGO =

1 1 1
= (472) E(Vkl + 300V ?) (20) /2
1 2\p2
(1—6—)_ 24 (Vkl AUkIV )V 15
e
1
(1677 )’ 24

(vk,v + g,V +3VPIC,,,.)8.

(C.8)

Here we used that the result of commuting o,, inward through the covariant

derivatives is (use (B.8))

o Vi =g,V + %V”"Ckpq,&

(C.9)

and also that (V2)?6 = V*5. In general, we commute a (bi)-tensor T through a

totally symmetric derivative by using

TVk| 6— Z( )N l( ) (k.. k,T;k1+|'“kN)8’
i=0

after which we can take diagonal limits. If we now further use that
V.,V = (V,f, % Ckpq,)

then we find the rather simple result

1 €
GGGy = (167 ) 41 (V4k1 + %gkzvél)a
G
In general, we have the relations
VmGj = ;a-’"Gj 1
and
. 1 (co/)
-V2G, =34, —Vsz=jGj_]— 3

1672 (j—2)!

’

(C.10)

(C.11)

(C.12)

(C.13)

(C.14)
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where the last term is absent for j=1. Here, we have assumed that v =1
identically, which holds as long as its sixth derivative cannot occur (but see egs.
(C.36)—(C.39)).

As the above examples illustrate, there is considerable freedom in how we
choose to write the more complicated expressions, since we can always commute
some covariant derivatives, adding extra terms involving the Weyl tensor. We
prefer the following “normal ordered” form:

(V/+ V/2C+ VI 3C + VW 4(C" + CC) +...)8, (C.15)

with only totally symmetrized derivatives to the left of any Weyl tensors. Using this
form has several advantages. First, in calculating the graphs, we remove the
covariant derivatives from the &-function by partial integration. They are then
distributed binomially over the heat kernel coefficients, after which we can take
the diagonal limit for each term. This produces many terms which vanish immedi-
ately, due to the fact that all totally symmetrized covariant derivatives of a, have
vanishing diagonal limit. An g, coefficient can only survive, if it was already
differentiated before these partial integrations are performed. Since only the two
patterns in (6.15) occur, such an a, coefficient has at most two derivatives acting
on it, as in a,.,,. It follows in particular that all sixth derivatives of a, which
appear must be of the form @, ,,,,qy | and those were listed in (B.41)—(B.44).
Second, to find expressions for singular products of the G, involving primed
covariant derivatives, such as in G, G;-G,, we use

Gi=—-G;,8%, (C.16)

as follows from (3.28), with the same proviso as made after (C.14). This leaves a
known product of the G, without primes, times a parallel displacement bi-vector.
We can then commute this bi-vector for free through the totally symmetrized
derivatives and replace it by a Kronecker data. The net effect is just to change the
overall sign of the expression. Primed covariant derivatives can also appear as in
G,,,. Differentiating eq. (C.16) gives

G = —Gikpgpl'_ Gipgpl’:k' (C17)

The first term is handled as easily as before, but for the second term we need to
keep derivatives obtained by commuting g”,., towards the é-function (see (B.38)
etc.).

In the following we will sometimes use the abbreviations

‘}klz Vkl"'%g,uvz, (C.18)
VAklm = Vk!m + %g(kl V3m)7 (C]g)
Viimn = Vitmn + 381 vt mny 1 %g(kl 4 mn)V4- (C.20)
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C.1. SUBDIVERGENCES

In egs. (C.21)-(C.30), we omit a factor 1/(161%¢) on the right-hand side

Products with structure G,G,,:

G§ =28, (C.21)
GoxGor=3(Viu+ 381V ?)8, (C.22)
GorrGo= = 3(Vis — 381V %), (C.23)

GorrGom = é(VAkl;n — 8V + %Vpcp(kl)m)(s’ (C.24)

GorrGomp = %SVAklmn8 - —lli(gklvrin + gmnV/?I)S
=%V (8kConparn + 8mnCrpan)
+ %(Vzck(mn)/ + 2Vp(k C IXmmyp t 2Vp(m C n)(kl)p)5
~ 5V Crimmiip® = & Uimny 8- (C.25)

Products with structure G,G,:

GG = Gopr G, = GGy = %gklai (C.26)
GorGim = %gklvma ~ 8kl Vb, (C.27)
G111 Gom = 381Vnd — %g(kl V.o, (C.28)

GorrGmn' = %g(kl VAmn)5 - %(gklvmn + 28Vt = Cicmmy )8 (C.29)
Products with structure G,G, and G,G:

GOkl’G =2G 11O = %g(kl g mm0. (C-30)

2mn’

C.2. OVERLAPPING DIVERGENCES

In egs. (C.31)—(C.80), we omit a factor 1/(1672€)* on the right-hand sides.

Products with structure G,G,Gy:
G; = 7€V 73, (C.31)

GoxGoiGo= 2e(Vi + 18:V)0, (C.32)
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1 4 1 4 2
GG = - Ef(v k™ a8V .?quck(pq)z)‘sr (C.33)
3 5
GoGoiGom= T;GE(VSkIm + 28 v’ m))5, (C34)
1 5 1 3 z
Gk GomGo = 264Gy G t+ €&V im0 ~ ﬁf(v pCp(kl)m + Vm[qck(pq)l)a
1 1 23
+ weV " Cr gm0 T 7€V U, pmd + - (C.35)
In all these cases there is only a simple pole. The dots in the last case indicate
terms of the form CC’8. These can safely be dropped, as they will multiply an
expression of the form a,|aylV,.a,|, which vanishes. In case all four derivatives
act on the G’s, the associated factor a,a,a,, with the diagonal limit not yet

taken, contracts their indices. Thus we only need to consider the following
integrated expressions:

[fdu dv’ G )G Gy = ge[du(l/m)c‘, (C.36)
ffdu dv’ G.Gy,G, =0, (C.37)
[[dv de’ GHG Gy = ~3e [de(1/71)C?, (C.38)
ffdu dv’ GGy Gy = gefduu/ﬂ)c*. (C.39)
We used V3G, = —8 + Gy~ 'V?0, instead of the first eq. in (C.14), since we can

now not neglect the last term, which gives rise to the sixth derivative of v. The
I-indices in (C.36)—(C.39) should actually carry primes. However, as there is always
a pair of such indices, partial integration, when necessary, will bring them together
and using V'°G, = V2G,, then removes the primes.

Products with structure G,G,G

GiG, = (2+¢€)3, (C.40)
G(Q)le = %GVI{S’ (C.41)
GGG =5(1~ 15€)(Vis + 38,V )8, (C.42)
GGGy = te(Viy + 38,V7)8, (C.43)

Gopr GG = — %(1 + %6)(Vk1 - (1/d)gklvz)67 (C.44)
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G Gh= —%E(Vk,—gk,Vz)S, (C.45)
GGG = 2L4€V’\klm5’ (C.46)
GorGmGo= — (Vklm gV + %Vpcp(k/)m)ﬁ’ (C.47)
GirGomGo= — (Vklm 281V + %Vpcp(kl)m)6’ (C.48)
GorrGomGy = — (1 — 3:€)Viyd + o(1 — we)( &V — SVPChiim) 8, (C.49)
GirGonGon = T%EVAklmn5 - ﬁfgkl(vtnn + %gl7lllv4)5

+ 7526V Crpmmy + ¥ "I Coipay + 4V 7 € wxkiyp )8
+ 1556V (Coimmyip + 2Cotiiximm )8 — €Uk mmn 8 (C.50)
GokrGomGiw = G GopnGop + 12()€Vk1mn (C.51)
GokrrGrmnGo %fVAkmm‘S - 4—‘x€(f>kzvmn + 2gmnvk4/ - %gk/g'rlnv4)5
+ % (V2 Crimnt = 8mn¥ " Crtpart = 38" Conparn )8
+ 3€(2V7 4 C ixiommyp + Vi C nyiiyp)d
= w€%"(Cictmmp + 3Cothtxmm + 3Coimaxiin)d
— 155 Uy (C.52)
GGG = 15 (1 = 155€) Vitpund + 7€ 81181,V 43
—m(1- 25'46)(31(1‘74mn +gmnv4k1)8
+35(1 = 35NV Cotmmy T 2V7 C tximmp + 2770 C iy )8
=5 (14 556) V(26 Conpain + &mnCripan )8
—35(1 - %E)V”Ck(m"),;pé - %(1 - %e)Uk("m),ﬁ. (C.53)
Products with structure G,G,G,:
GGGy = — GGG, =(2/d) g8, (C.54)
G GyG, =0, GGy = (4/d) g9, (C.55)
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GGG =3(1— 15€) 81 Vimyd
001V 2m T 2 12€ )8kt V m)0Os
1
GorrrGamGo= —GorrrGo,Gr = (2/d) 84/V,,0 — (1 + Ef)g(kz Voo,

G GomGo=(2/d) 8,V,,8 = 568011 V im)8,

1243

. A
GokrGomGow = 5€8k1 V inm®

Om

- %(l - %E)(gklvhlll + %gklgmnvz - %Ck(mn)l)a)

1 ti 5
GokrGomGan = Gy G Gopr + 3(1 - ﬁf)g(k/ Vom0,

Om Om

min

1 5 1
GokrrGomnGo = 7€8u4i Vim0 — 1:€84/V,,,6
1 1 1 s
- 7(1 + ge)ginnvkla + 5(1 + ﬁe)ck(mn)la’

1 X
GorrGyn G2 = — (1 + ﬁf)g(/\»/ Viumd + %(1 - li‘ze)gklgmnvza

+3(1+ 5€)(8aVn + 8n¥ir = 3 Chimmn )0
Products with structure G,G,G .
GGGy =(2/d) g5, GGGy = 7eg9,
GGGy =(2+€)(1/d)5, GGt = (4/d) g5,
GGGy = %eg(klvm)(s’
GGG = (2/d)84)V,,6 — (1 - lef)g(klvrn>5,

Al 1 1
GGGy = 1€84V,,0 — ng(k/vnz)5,

Im

Gour G, Gy =(2/d) 81V,

(4

0 — (1 + %e)g(k/ V,,,)B,
1 5 1 1 1
Gokr GG i = €8kt Vim0 — Tzf(gklvmn + 388 maV ?Ck(mn)l)(s’

GG imGow =G G

Im

| A
Gln’ - geg(k! an)87

Im

G Gomn Gy = %(1 - %e)g(k,VAm,,)S - %(1 + ée)gklv o

1 1 1 1 1
—5(1 = 12€) £, V1,0 + 2:€8118m,V 8 + 4 (1 + 13€) Crpmny®

_1 5
Gt GimnGo = 5€83t V mn)®

1

1 2 2
125(g/</an + gmnvkl - igklgmnv - §Ck(mn)l)6'
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(C.56)
(C.57)

(C.58)

(C.59)

(C.60)

(C.61)

(C.62)

(C.63)
(C.64)

(C.65)
(C.66)
(C.67)
(C.68)
(C.69)

(C.70)

(C.71)

(C.72)
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Products with structure G,G,G;, G,G,G, and G,G,G,:

G()kI’G()mG3n'

G()kI’GZmn'Gl

= =G GGy = GokrrGomn U3

Omn

= =Gy GGy = GourG

1in

lmn'GZ

= (1/d)gk1gmn5 - %(1 + %G)g(kl g mn)B’

= (1/d)gklgmn5 + %(1 + %e)g(kl 4 mn)87

G0 GonGopw = (1/d) 81181n® + £ (1 = 2€) (ks & mmd,
Gi1G2nGop = —(1/d) 8418,,0 + 1 (1~ 15€) 84 & mm,
Gy GomnGo=(1/d)81/8nd + %eg(kl g mm,

GG 1,Gow = —(1/d) 818,00 + §€8k1 & mm,

GG rw Gy = §€818mnd + (1 — ‘1155)8(/(1 8 mm0,

1 1
GO 1mGiy = = 5€8118mn® + 5€8(k1 & mmyO-

Appendix D. Background-field expansion

(C.73)
(C.74)
(C.75)
(C.76)
(C.77)
(C.78)
(C.79)

(C.80)

In this appendix we give some details involved in expanding the Einstein-Hil-
bert action to quartic order in the quantum fields, assuming the background to be
on-shell. We follow and extend the approach of refs. [3,40]. We first write the

action as

SEH = Zfddx\/ggmn(squpmnq’

(D.1)

where the Riemann tensor is given in terms of the Christoffel connection as

R?a= 0,0, 0T ) —neq.

mng nt gm nrt gm
We begin with a linear splitting, i.e. we make the replacement

g”l" - g"’l}’l + H

mn*

This implies for the inverse metric the replacement

gmn _)gmn — H'mn +HmpHpn _HmpHquqn + O(H4)

(D.2)

(D.3)

(D .4)
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It follows that

Ve — Ve (exp Tr In(1 +H))l/2
=g (1 +3H— {HMH,, + gH*
++H" H/H', — (HHPH, + H* + O(H*)), (D.5)

where H = H?,. The quartic terms in (D.4) and (D.5) are not needed, since they
will multiply R which vanishes on-shell. The shift (D.3) implies for the connection

r—r+ Y ro, (D.6)

i=1

where

r(l)pmn = %(Hpm;n + Hpn;m - Hmn;p)’ F(i+l)pmn = _Hpqr(i)qmn’ (D7)
where a semicolon denotes the background covariant derivative and the last
equation is to be used iteratively. Note that, as in the Palatini formalism, the '
are tensors. The part of the Riemann tensor of order { in the quantum fields is
then given by

i~1
i) - i) ) (=j —_
R(I pmnq_ F(l pmq;n+ erpnrrl J)rqm negq. (D8)
j=1

Substituting (D.4)-(D.7) into (D.1) yields the expansion of the action to quartic
order in H. Note that when i = 4, we can omit the first term on the right-hand side
of (D.8), since it gives rise to a total derivative in the action. Subsequently, we
replace H,,, by A, +g,,,¢ and perform further field redefinitions, as discussed
in sect. 4.

Appendix E. All overlapping two-loop graviton graphs

In this appendix we give the divergent parts of all possible overlapping two-loop
pure graviton graphs. Not counting h*'h,,..h™*7, which can be treated as in
(4.31), (4.32), there are six two-derivative 4> vertices, which can be listed as

W =hr""hh,, y=h""h,, %, ",  (3)=h""h"h

q;

(E.D

pmin

@) =", R, () =R™hPh,, . (6)=h"RPY h (E.2)

wm'tpgine



364 A.EM. van de Ven / Two-loop quantum gravity

Denoting the Wick contraction among the ith and jth vertices by i -j, we find the
following results, omitting a common factor (167r%) %[ dv C*:

1-1= —ige, 1-2— — e, 13 = e, (E.3)
1-4=HEe, 1-5=0, 1-6 = e, (E.4)
22=f- ke, 23=R+ife  24=-fe  (ES5)
2'5=_%+%5, 2'6=_%_%65 3'32%_;115572306’ (Eé)
3a=F-ife  35=-iodhe  36=V-3e (ED)
4-4=1 14 Bl 4-5=1-33¢ 4-6=6-735e,  (ES8)
5.5= 9 Ul 5-6=2— 3, 6:6=%—-%c.  (E9)

These results suffice to find the contribution of graph (b) of fig. 5 in any gauge and
with any choice of field parametrization.
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