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It is shown that the hyperbolic extension of SL(2, ~) can be realized non-linearly in the chiral reduction of simple (N= 1 ) 
supergravity from four dimensions to one dimension. Remarkably, it does not appear to be possible to obtain a non-trivial reali- 
zation of this symmetry without fermions. 

It has been known for a long time that higher-di- 
mensional theories of  gravity exhibit unexpected 
symmetries upon reduction to lower dimensions [ 1 ]. 
In 1971, Geroch was able to show that there is an in- 
finite-dimensional symmetry group acting on the so- 
lutions of  Einstein's equations with two (commut- 
ing) Killing vectors [2] (this group is nowadays 
referred to as the "Geroch group").  This result was 
considerably elaborated and further developed by the 
general relativists in the following years, eventually 
leading to the construction of a linear system (or Lax 
pair) for the dimensionally reduced Einstein equa- 
tions [3,4] (for an overview, see e.g. ref. [5], where 
many relevant references can be found). With the 
advent of  supergravity [6 ] and the remarkable dis- 
covery of"h idden  symmetries" in dimensionally re- 
duced supergravities [ 7 ], particle physicists became 
also interested in these symmetries, although for quite 
different reasons. The connection between these de- 
velopments and the work of the general relativists was 
apparently first realized by Julia [ 8 ], who empha- 
sized the importance of  group theoretical concepts for 
the investigation of  the structural properties of  di- 
mensionally reduced gravity and supergravity theo- 
ries, and showed quite explicitly that the Geroch 
group in infinitesimal form is nothing but the affine 
Kac-Moody algebra AI ~ ), i.e., the (untwisted) Kac-  
Moody extension of SL(2, ~)  #1 [the corresponding 
loop group will be denoted by SL(2, ~ ) ] .  He also 

#~ The standard textbook on Kac-Moody algebras is ref. [ 9 ]; a 
pedagogical introduction from a physicist's point of view is 
given in ref. [ 101. 

demonstrated the presence of a central term, which 
had gone unnoticed by the general relativists. The 
underlying group theoretic structure and the connec- 
tion with the tr-models encountered in particle phys- 
ics were further elucidated by Breitenlohner and 
Maison [ 3,11 ]. These results were subsequently gen- 
eralized to two-dimensional supergravities [ 12]. 
Through this work it has become clear that the 
emergence of infinite-dimensional symmetries in the 
reduction to two dimensions is a generic phenome- 
non; for matter coupled theories the general result is 
that, in two dimensions, the symmetry is enlarged to 
the affine extension of the (finite-dimensional) Lie 
group present in three dimensions, with a central 
charge acting on the conformal factor through a con- 
stant rescaling [ 8,3,11,13 ]. The G / H  coset structure 
observed in higher-dimensional theories (with H the 
maximally compact subgroup of G)  also has a natu- 
ral extension to two dimensions: for instance, the 
space of (suitably regular) solutions of the dimen- 
sionally reduced Einstein equations can be identified 
with the infinite-dimensional coset space 
SL (2, ~ ) /SO (2) oo, where SO (2) o~ is the maximally 
compact subgroup of SL(2, ~ )  with respect to the 
generalized Cartan-Killing metric on SL (2, ~ ). 

It is the purpose of this letter to show that a further 
enlargement of symmetry takes place upon reduction 
to one dimension. According to the empirical rules of  
dimensional reduction [ 8 ], the rank of the symmetry 
group G increases by one as the dimension of  space- 
time is decreased by one. A consideration of the cor- 
responding Dynkin diagrams then suggests the 
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emergence of hyperbolic Kac-Moody algebras in the 
reduction to one dimension [ 14 ]. These algebras are 
special Kac-Moody algebras corresponding to indef- 
inite Cartan matrices with the additional constraint 
that any regular subalgebra (obtained by deleting a 
point from the Dynkin diagram) be either finite or 
affine. Our results confirm the conjecture ofref. [ 14 ], 
however, with an important and perhaps surprising 
modification: the desired enhancement of symmetry 
cannot be realized without fermions, but apparently 
requires the locally supersymmetric extension of Ein- 
stein's theory, i.e., supergravity [6]. An important 
feature of our construction is that it works only for 
chiral reductions, i.e., the remaining space-time 
coordinate must be light-like. Consequently, the full 
algebra acts on the space of supergravitational plane 
waves by non-linear and non-local transformations. 

The present work is mainly motivated by the ex- 
pectation that hyperbolic Kac-Moody algebras will 
play a pivotal role in explaining the unknown sym- 
metry structure underlying (super)string theory. In- 
deed, it has been known for some time that the alge- 
bra of physical string vertex operators (including 
those of the massive states) has a structure reminis- 
cent of a hyperbolic Kac-Moody algebra [ 15 ], but so 
far the precise correspondence remains mysterious. 
In ref. [ 13 ], it was proposed to interpret the one-di- 
mensional chiral reduction of maximally extended 
N= 16 supergravity as a new type of (unidexterous) 
superstring akin to super-Liouville theory; the usual 
(super-)Virasoro constraints are then obtained by 
dimensional reduction of the canonical constraints of 
the higher-dimensional theory. For the correspond- 
ing reductions to higher dimensions (d~> 3), it was 
shown in ref. [ 16 ] that the conserved charges asso- 
ciated with the rigid symmetry G weakly commute 
with the canonical constraints and thus constitute 
physical observables in the sense of Dirac. Extrapo- 
lating these results to one dimension, one sees that 
the generators of the hyperbolic algebra obtained in 
the reduction have all the requisite properties of a 
spectrum generating algebra. Quite independently of 
the question of the possible physical significance of 
our results, however, it should be emphasized that 
they provide the first example of a concrete realiza- 
tion of a hyperbolic Kac-Moody algebra in a physics 
inspired model. This is a significant step in view of 
how little is known about these algebras. Although 

there are a number of isolated results (mostly con- 
cerning root multiplicities [ 9,17 ] ), no concrete re- 
alization parallelling the characterization of affine al- 
gebras in terms of two-dimensional current algebra 
has been found so far. At the very least, it is to be 
hoped that the results described here will pave the 
way towards a better understanding of their so far 
elusive structure. The fact that Einstein's theory and 
its supersymmetric extension may provide some es- 
sential clues in this search is probably quite signifi- 
cant in itself. 

For the sake of simplicity, I will here concentrate 
on ordinary (N= 1 ) supergravity in four dimensions 
[6 ]. Reducing this theory to three dimensions re- 
veals a hidden SL (2, • ); further reduction to two di- 
mensions leads to the affine extension of this group 
as already mentioned above. A crucial role in realiz- 
ing the infinite-dimensional symmetry group on the 
components of the gravitational fields after dimen- 
sional reduction to two dimensions is played by dual- 
ity rotations akin to those leaving invariant Maxwell 
equations in vacuum. The importance of generalized 
duality invariance was, of course, already empha- 
sized in ref. [7], but two dimensions are distin- 
guished by the fact that the dual of a scalar field is 
again a scalar field. For ordinary gravity, duality leads 
to the appearance of two SL(2, ~) groups, the Ehlers 
and the Matzner-Misner groups, whose interplay en- 
gen~ders the infinite-dimensional Geroch group 
SL(2, ~ ), with the associated Lie algebra At ~) . It will 
be shown that, in the final step of the dimensional 
reduction to one dimension, a hyperbolic Kac-Moody 
algebra emerges which can be realized in terms of non- 
linear and non-local transformations acting on the 
components of the vierbein and the gravitino. It is 
characterized by the following generalized Cartan 
matrix: 

(2_2 i) Ao= - 2  2 - 
0 - 1  

(1) 

(the generators are labeled by i, j =  1, 0, - 1 ). The 
generating (Serre) relations read [9] 

[h,, hi] = 0 ,  [e,,£] =~ijhj, 

[hl, eA =A,jej, [h,,£] = - A o £ ,  (2a) 
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(ad ei) l-A'i(ej) = 0 ,  

( a d f )  t-A'J(3~j) = 0 ( i # j ) .  (2b) 

The full hyperbolic algebra is spanned by all multiple 
commutators which do not vanish by virtue of the 
above relations. The Caftan matrix (1) describes the 
simplest example of such an algebra and was already 
investigated in ref. [ 17 ]. Inspection of ( 1 ) reveals 
two important subalgebras: the upper two-by-two 
block gives the Cartan matrix of  the Lie algebra 
A ~ ~ ) associated with SL (2, ~ ) (the Geroch group), 
while the lower two-by-two block yields the Cartan 
matrix of  the Lie algebra Az corresponding to the 
group SL(3, ~).  A central result of this paper ~2 is 
that this SL (3, R ) group can be explicitly realized on 
the components of the vierbein; it is the natural ex- 
tension of the Matzner-Misner group and will hence- 
forth be referred to as the "Matzner-Misner 
SL (3, ~) group". The hyperbolic algebra can then be 
manufactured out of these two building blocks; all that 
remains to be done is to assemble the pieces and to 
make sure that the Ehlers SL(2, ~)  commutes with 
the second SL(2, ~) contained in the Matzner- 
Misner SL(3, R). This suggests that the present con- 
struction can be generalized only to those hyperbolic 
algebras which contain a Matzner-Misner SL (3, ~)  
subalgebra corresponding to the extended roots of the 
Dynkin diagram; the rest of the Dynkin diagram 
would then give rise to the generalization of the Ehlers 
group. Algebras of this type are called "superaffine" 
and have been completely classified [ 18 ]. The most 
interesting example in this class is, of course, E~o, 
which is associated with the dimensional reduction 
of maximally extended supergravity to one 
dimension. 

To describe the dimensional reduction in some- 
what more detail we need some conventions and no- 
tations (such as, for instance, the labeling of curved 
and flat indices); these will be taken over for the most 
part from ref. [ 13 ] or simply stated as we go along. 
It is convenient to consider the reduction from d=  4 
to d=  3 first, dropping the dependence on the third 
(space-like) coordinate x 3. Making partial use of the 
local Lorentz group to fix a triangular gauge, the vier- 
bein is decomposed as follows: 

~2 This result was already anticipated in discussions with Brei- 
tenlohner and Maison. 

A [A-~/2e~" BmA1/2"~ 
EM=~ 0 At/2 j ,  (3) 

with the dreibein e a carrying no physical (i.e. prop- 
agating) degrees of freedom in three dimensions. The 
physical degrees of freedom are described by the sca- 
lar field A and the Kaluza-Klein vector Bm (the fac- 
tor A -1/2 multiplying e~ has been chosen so as to 
obtain the canonical Einstein action in three dimen- 
sions). A decomposition similar to (3) is necessary 
for the gravitino in the case of supergravity. For lack 
of space, I will not discuss the dimensional reduction 
in detail here (which is standard anyhow), but rather 
state the result. After reduction to three dimensions, 
the theory contains a gravitino ga (a complex vector 
spinor), which does not propagate, and a complex 
(two-component) spinor X describing the physical 
states of helicity s=  + 3. In three dimensions, the 
vector field Bm can be replaced on shell by a scalar 
field B through a duality transformation; for simple 
supergravity, the relevant equation reads 

I ~. m n p  pB = ½A2B m'~ + A¢'~P( 3~"~pZ 

+ ti~ -r s - a - a prs~l ~l --~a~?p? ~ - - ) ~  ~p~Ja) " ( 4 )  

This equation is consistent because the divergence of 
the right-hand side vanishes by the equation of mo- 
tion for Bin. The complex field A + iB then represents 
the two (s= + 2) helicity states of the graviton. The 
above equation and its dimensional reduction will 
play an important role below. 

Next, we descend from d= 3 to d= 2, dropping the 
dependence on one more (space-like) coordinate x 2. 
Using local Lorentz invariance again, we can bring 
the dreibein into the form 

e~ = (e~ p A , ) .  (5,  

(Note that, unlike for d> 2, the dilaton factor p mul- 
tiplying the d=  2 Einstein action cannot be removed 
by a Weyl reseating. ) It is advantageous at this point 
to employ light-cone coordinates x -+=(1 /v /2 )  
× (x ° + x ~ ) to parametrize the dependence on the re- 
maining two coordinates, with similar notation for 
the two-dimensional tensor indices. It is convenient 
to choose a diagonal gauge for the zweibein 
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( e  + e ~ _ ) ( 1 0  0 )  4" '~ = (6) 
e u -  e + e v  2 ~  ' 

where the dots temporarily serve to distinguish curved 
from flat indices; I will abandon this convention, 
when there is no more danger of  confusing the two 
kinds of  indices. Note that, in contrast to refs. [ 12, 
13 ], we do not assume the zweibein to be propor- 
tional to the unit matrix (with a conformal factor;t). 
This is because under the new symmetry transfor- 
mations to be introduced below, the lower compo- 
nent 2~ will mix with the other fields, whereas the 
Geroch group acts on it only through the central term, 
scaling it by a constant factor. Notice that the upper 
component 24- has been put equal to unity by a local 

+ and e_-- oppo- SO( l ,  1) rotation (which scales e+ 
sitely). There is a residual invariance under confor- 
real coordinate transformations which must, how- 
ever, be accompanied by a compensating SO ( 1, 1 ) 
rotation to maintain the gauge 24- = 1. By means of 
such a transformation the field p can in principle be 
identified with one of the two-dimensional coordi- 
nates by a conforrnal coordinate transformation, as 
is common practice in the study of stationary axi- 
symmetric solutions of  Einstein's equations [5 ]. The 
vector field A u can be ignored in the purely bosonic 
theory because its associated Maxwell field strength 
is essentially constant; the relevant integration con- 
stant is usually set equal to zero in the literature 
[5,8,3,11 ]. In the presence of fermionic matter, on 
the other hand, A u is auxiliary and can be eliminated 
in terms of fermionic bilinears [ 12,13 ]. It is impor- 
tant that this field can no longer be discarded if one 
wants to enlarge the symmetry to a hyperbolic alge- 
bra, where it appears in the symmetry variations of  
the physical fields. This point will be further elabo- 
rated below. For the gravitino we adopt the gauge 

~//a = (~ot ~b¢, ~//2). (7) 

This was referred to as the "superconformal" gauge 
in ref. [ 12 ], because the condition (7) is preserved 
under residual superconformal transformations. 

Finally, the reduction to d =  1 must now be de- 
scribed. Obviously, the duality equation (4) in- 
volves the Levi-Civita tensor also after the dimen- 
sional reduction to two dimensions. Therefore simply 
dropping the dependence on either x ° or x i will not 

do because with this truncation the duality equation 
collapses to the trivial statement 0=0 .  Rather one 
must perform the truncation with respect to one of 
the l i g h t - l i k e  coordinates x-+, in terms of which the 
duality transformation becomes diagonal ~3. Thus we 
put 

¢(xO, x1)--'~'(~(X + ) ( 8 )  

for all (bosonic and fermionic) fields. Furthermore, 
we require the negative chirality components o fz  and 
~u2 to vanish, i.e., 

(X) - -½Y+Y-X=0 ,  (g2)----½Y+Y-~u2=0, (9) 

while we retain both chirality components for ~u with 

~-½~_y+ ~,, 0-- ½;,+ y_ ~,. (10) 

In accordance with (7), the theory still admits resid- 
ual "superconformal" transformations with parame- 
ter ~_ (x + ), which we will not further consider here. 
However, let us put A+ =B+ =0,  fixing the ordinary 
Kaluza-Klein gauge invariances (note that A_ and 
B_ are gauge-invariant in the chiral truncation). To 
see that these choices are not entirely arbitrary and 
do not adversely affect the physical content of the 
theory, we must examine in somewhat more detail 
the "equations of motion" in the chiral truncation. 
For the physical fields ,4, B2 (or, equivalently, ,4 and 
B), and Z, which incorporate the propagating super- 
gravitational degrees of freedom, these are automat- 
ically satisfied by virtue of  the truncation; hence, these 
fields are arbitrary functions of x +. This is not the 
case for the remaining fields, however, which are 
constrained by the higher-dimensional equations of  
motion. 

The equation relating the field B2 to its dual field 
B reads 

- -  ½,4 -- 1 0 +  B =  1/9 - 1,4 0+  Bz + i~,y+ ~'z - i~2 Y+X 

+ ½i~r+ ~,2 - ½i#2 y+ ~ 0 - 3 ~ + z  ( 11 ) 

and follows directly from (4) by putting m n = 2 - .  

Setting m n =  + - on the other hand, we obtain 

½,42--1(0+B_-A_ 0+B2) 

= itT~o- i(~0 + 2i0x - 2i,~0. (12) 

~3 A chiral truncation of this type was already considered in ref. 
[13]. 
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The equation for A_ reads ~4 

½p22 ~ O+A_ =~O+Oq~+i6~2-itp20. (13) 

These equations clearly demonstrate the need for the 
"wrong" chirality component 0: without it, the right- 
hand sides of  (12) and ( 13 ) would vanish, and we 
would be right back to the bosonic theory. Inciden- 
tally, the last two equations are equivalent to the van- 
ishing of the following components of the dimen- 
sionally reduced four-dimensional supercovariant 
spin-connection: 

¢b+_2 =cb+_3 = 0 .  (14) 

The equations governing the gravitino components 
are obtained by similarly analyzing the Rari ta-  
Schwinger equation of the four-dimensional theory. 
After some work, we arrive at the following equa- 
tions, neglecting cubic spinor terms: 

(0+ .Jl-~4iz~ -1 o+n)o=o (15) 

and 

p - l  ~+ (p~2) q. ~i~-l  0+Bg2 

~---2:1 0+2_ ~ffZ "Ji-ip -10+p~o+iA -~ O+(A-iB)x.  

(16) 

The first of  these equations tells us that 0 is covari- 
antly constant and hence can be taken different from 
zero. This is, of  course, crucial for the right-hand sides 
of (12) and ( 13 ) not to vanish [the covariantly con- 
stant spinor 0 can be thought of  as the superpartner 
of the constant mode in A_, which is the only part of  
A_ left undetermined by eq. (13)] .  The second 
equation (16) allows us to solve for ~0 in terms of the 
physical fields; this is most easily seen in the super- 
conformal gauge g2 = 0 where the equation can be 
solved algebraically. Observe that through the chiral 
reduction, the number of  physical degrees of  freedom 
has been halved, since only the right-moving degrees 
of  freedom are retained; the unphysical fields can 
either be gauged away or solved for in terms of the 
other fields. 

After these preparations we are now ready to list 

*~ Because eqs. ( 11 )- (13) transform into one another under the 
full set of variations given in (17 )-(25 ) below, the fact that 
( 11 ) and (12) are first order forces ( 13 ) to be first order un- 
like the original equation for A t which is second order. 

the transformation rules for all the field components, 
deferring a complete derivation to another paper. The 
explicit determination of the variations involves var- 
ious compensating rotations needed to restore the 
gauge conditions introduced above; these are, how- 
ever, necessary only for the variations withf .  We first 
give the transformations of  the bosonic fields (with 
the notational convention el - ~el etc. for the infini- 
tesimal variations). 

For the Ehlers transformations, one finds 

el (B) = - 1 , 

el ( A) =e, ( B2) =e, (A_ ) =e, ( B_ ) 

=e~(p)=e~(2_ )=O , (17a) 

h ~ ( B ) = - 2 B ,  h~(A) = - - 2 A ,  

hl(B2)=2Bz, h1(B_)=2B_,  

hi(A_)  =hi  (2_)  = ht (p) = 0 ,  (17b) 

f~(A)=2AB, f I ( B ) = B Z - A  2 , 

f~ (A_) =f~ (p) =fl  (2_)  = 0 .  (17c) 

The variationsf~ (B_) andf~ (B2), which follow from 
the duality equations, are more complicated. They can 
be deduced by substituting the above variations into 
the duality equation ( 11 ). In this way we obtain the 
non-local transformations 

0+fl (B2) = - 2 B  0+B 2 +2pA-i O+A 

+4P( ~zT+X+ )CY+~z) (18) 

and 

0 + f l ( B _ ) = - 2 B ~ + B _ + 2 p A  A -l  O+A 

+82_(Oz+~O)+4pA_(f~y+¥z+~zy+X). (19) 

For the Matzner-Misner transformations, we get 

co(B2) = - 1, 

co(A) = eo(B) = co(A_ ) = eo (B_) 

= eo(p) =eo0.  _ ) = 0 ,  (20a) 

ho(B)=2B,  ho(A)=2A, ho(B2)=-2Bz ,  

ho(A_)=A_,  h o ( B _ ) = - B _ ,  

ho(2_) = 2 _ ,  ho(p) = 0 ,  (20b) 
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fo(A)=-2AB2, fo(B2)=B~-p2A -2 , 

fo(A_ ) =B_-B2A_, 

fo(B_ ) =B_B2 --p2A -2 .4_,  

fo(,;t_) = - B 2 2 _ ,  fo(p)  = 0 .  (20c) 

Again,fo (B) is more  complicated. Invoking the dual- 
ity equation once more,  we get 

0+ fo(B)  = - 2//2 0+ B +  2A 0+ ( p ~ - I )  

- 4p(~+ ¢,~ + ¢~r+z) • (21) 

Note that 8p = 0 under  both sets o f  t ransformations,  
and that 2 _ is inert under  the Ehlers group, whereas 
2-1 82_ = ½A- 1 8A for the Matzner -Misner  group. In 
determining the action of  the Ehlers and the Matzner -  
Misner groups on the fermions, we must keep in mind 
that these groups [as well as the new SL(2, ~ )  group 
to be introduced below ] act on the fermions only via 
the induced compensat ing Lorentz rotations. This 
implies that the fermion fields are inert with respect 
to the generators ei and hi. Their  t ransformations un- 
der the operatorsf~ andfo are given by 

A ( z ) =  - ~ i a z ,  A(~,2) = + ½ia~,~, 

A ( ~ ) =  + ½ i ~ ,  A ( o ) =  +½i~o (22)  

and 

fo(z) =-pa-' (~iz+ ~2), fo(~U2) = + ½ipA-~u2, 

f0(o) = -  ½ipa- 'o ,  

fo(~) = +pA- ' (½i~+ 2iz+ ~,D. (23) 

The "off-diagonal" terms in (23)  are a consequence 
of  the fact that  the relevant compensat ing Lorentz ro- 
tation acts not only on the spinor components  but also 
on the vector components of  the gravitino field in four 
dimensions. From previous work we know already 
that the operators ei, hi, fi for i=0 ,  1 obey the gener- 
ating relations (2a)  and (2b)  of  the affine K a c -  
Moody algebra A~ ~). Although this result can in prin- 
ciple be deduced f rom the existence of  linear systems 
for gravity and supergravity, a direct p roof  of  this as- 
sertion by evaluation of  the relevant commuta tors  is 
perhaps more  convincing. For the generators ei and 
hi this is a rather trivial exercise, but the computa-  

tions become progressively more involved as the 
number  of  generators f increases. The most  tedious 
part  o f  the p roof  is the verification o f  the quadrilin- 
ear relations [fo, [fo, boo, fl  ] ] ] = ~ ,  ~ ,  ~ ,  fo] ] ] 
= 0 ~5. As one can see f rom ( 18 ) and (21 ), an infin- 
ity of  dual potentials is needed to realize the full al- 
gebra, as already observed by Geroch. 

It  has already been ment ioned that there is a cen- 
tral charge which acts non-trivially on the conformal  
factor [ 8,3,11 ]. In the present formulation,  the cen- 
tral charge is given by c = ho + h~, and its expected ac- 
t ion on the physical fields and on 2_ is easily veri- 
fied. As is evident from ( 17 ) and (20) ,  however, it 
also acts non-trivially on the new fields A_ and B_ 
[with c(A_ ) =A_ and c(B_ ) = B _  ]. This already in- 
dicates that  the central charge will be deprived of  its 
special status in the full hyperbolic algebra, which is 
also obvious from the fact that  c no longer commutes  
with all the generators. Indeed, since [ c, e_ ~ ] = - e_ 1 
and [c, f_  ~ ] = + f _  ~, the operator  c counts the num- 
ber of  generators e_ ~ and f -1  occurring in a given 
multiple commutator ,  i.e., the "level" of  the corre- 
sponding root [ 9,17 ]. 

Let us now turn to the new transformations,  which 
extend A~ 1) to the hyperbolic algebra characterized 
by the Caftan matrix ( 1 ). These are obtained by per- 
forming an SL(2, ~)  rotation on the " - "  and the 
"2"-components  of  the vierbein, or equivalently the 
dreibein in (5)  (o f  course with appropriate  compen- 
sating rotations for f - l ) .  These t ransformations do 
not act on the fields A and B. On the remaining field 
components ,  they are given by 

e _ l ( d _ ) = -  1 , e _ I ( B _ ) = - B 2 ,  

e_ 1 (B2) =e_~ ( 2 _ )  =e_~ (p) = 0 ,  (24a)  

#5 Which, curiously, do not seem to have ever been explicitly 
checked in the literature so far! Readers willing to try their 
mettle may find the following relations helpful: 

)3(B_) = ~)3(B2)= ~)3(pz t - ' )=0 ,  

(fo)3(W) = (fo)3(a) =0.  

Also, from (18) and (21), 

A (B2) +fo(B) = -2BB2 +2V. 
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h_,(Bz)=B2, h _ I ( B _ ) = - B _ ,  

h _ ~ ( A _ ) = - 2 A _ ,  h_x(p)=p, 

h_l (2_)  = - 2 _ ,  (24b) 

f _ , ( B 2 ) = - B _ ,  f _ , ( p ) = - p A _ ,  

f _ l ( 2 _ ) = 2 _ A _ ,  f_1(A_)=A 2 ,  

f _ l ( B _ ) = 0 .  (24c) 

As is well known, one can now introduce the operator 
d=h~+ho+h_l, which together with the central 
charge operator c is conventionally used to complete 
the Cartan subalgebra of  the finite-dimensional Lie 
algebra to that of  its hyperbolic extension [ 9,10 ]. Fi- 
nally, the fermionic transformations read 

f _  1 (~2)  = --19-12_?_0, 

f_l(%)=f_,(~p)=f_l(O)=O . (25) 

Their derivation requires a compensating local su- 
persymmetry transformation in addition to the usual 
Lorentz rotation. 

One can now check that the enlarged algebra satis- 
fies all the relations (2a) and (2b),  and, in particu- 
lar, the trilinear relations [fo, [9co, f -  1 ] ] = I f -  1, [ f -  ~, 
fo] ] = 0  (the relations involving the generators eo and 
e_ 1 are again trivial). Of  course, it is crucial here that 
the new SL(2, ~)  group introduced in (24) and (25) 
commutes with the Ehlers group; this is, in fact, the 
only part of  the calculation that was not guaranteed 
to work beforehand. Actually, most of the relevant 
commutators vanish trivially, but it is also straight- 
forward to establish the vanishing of the commutator 
[ f ,  f -  1 ] on the fields B_ and B2. In addition, I have 
verified that the "equations of  motion" ( 11 ) -  ( 13 ), 
(15) and ( 16 ) are transformed into one another or 
simply annihilated by the action of all generators and 
hence covariant. 

It is noteworthy that all consistency checks also 
work for the purely bosonic theory. However, drop- 
ping the fermionic contributions from (12) and (13), 
it is immediately obvious that A _ = a  and 
B = aB2 + b, where a and b are constants. Although 
one might contemplate realizing the algebra on the 
remaining bosonic fields and these integration con- 
stants (which, for consistency, must also be varied),  
it seems that one does not get anything interesting in 
this case because the action of (24) on the fields is 

then reduced to trivial rescalings. To further under- 
line this point, note that also [fo, f_~]B2= 
afo(B2) + bB2 in this case, and so the "new" genera- 
tor [fo, f -  1 ] has been reexpressed in terms of an "old" 
one (the same result holds for the other fields). 
Hence, in order to obtain non-trivial transforma- 
tions, we conclude that fermionic matter couplings 
must be taken into account. 

One may wonder where exactly the difficulties in 
characterizing the hyperbolic algebra reside from the 
point of  view taken in this paper. After all, the major 
problem here is to somehow control the multitude of 
generators arising through multiple commutators of  
the basic generators e~ or f .  Sample calculations in- 
volving the generators f quickly reveal the compli- 
cations. It is evident already from (19) that new dual 
potentials must now be introduced over and above 
those already necessary for the realization of the 
Geroch group. In the latter case, the required dual 
potentials could be compactly assembled into the so- 
lution of a linear system through the introduction of 
a suitable spectral parameter. Characterizing the hy- 
perbolic algebra will require a similarly compact de- 
scription of the full set of new dual potentials. Pre- 
sumably, this can only be achieved through a 
linearization of the hyperbolic transformations given 
above and by generalizing the notion of maximally 
compact subalgebras known from finite-dimensional 
and affine algebras, making use of  the generalization 
of the Cartan-K_illing form to the full hyperbolic al- 
gebra [9,17]. 

A more detailed account of the results presented 
here is in preparation. 

I am greatly indebted to P. Breitenlohner and to D. 
Maison for contributing to this work through numer- 
ous and stimulating discussions. I would also like to 
thank P. Slodowy for sharing with me some of his in- 
sights on hyperbolic Lie algebras. 
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