
J. Phys A: Math. Gen. 2.5 (1992) 42114244 Printed in Ihe UK 

Path integration on hyperbolic spaces 

C Groschet 
The Blackett labora~oly.  Imperial College of Science, 'Echnology and Medicine. Prince 
Conson Road, landan SW7 282, UK 

Received IS Augusl 1991 

AbsImcL Quantum mechanics on the hyperbolic spaces of rank one ir discussed using a 
path inlegralion lechnique. Hyperbolic spaces are multi-dimensianal generalizations of 
the hyperbolic plane, i.e. Ihe PoincarC upper half-plane endowed wilh a hyperbolic 
geomelry. We evalwale the path inlegral on SI E SO(n,l)/SO(n) and Sz P 
SU(n,l)/S[U(l) x U(n)] in a panicular coordinate system, yielding explicilly lhe 
wavefunctions and the energy speclrum. Funhermore we can exploit a general property 
of all these spaces, namely that they can k parameterized bj a pseudopolar mordinate 
system. This allows the path integration 10 be separaled inlo one over spheres and an 
additional path integration over the remaining hyperbolic coordinate, effectively yielding 
a path integral for a modified Poschl-Teller potential. Only mnlinuous spectra can 
mist in al l  cases. For all Ihe hyperbolic spaces of rank one we find a general formuln 
for the largest lower bound (zero-poinl energy) of lhe speclrum which is given by 
Eo = (h2/8m)(ma + 2 m ~ , ) ~  (m, and mZa denote the dimensions of the mol 
subspaces mrresponding to the mots a and 2 0 ,  respectively). ?he case, where a 
mnstanl magnetic field on SI is incorporated, is also discussed. 

1. Introduction 

The study of hyperbolic space has a long history, starting with the pioneering work 
of Fricke and Klein [l] and Paincare [Z]. The remarkable property of spaces with 
constant negative curvature (Gaussian curvature IC = -1, Riemann curvature R = 
-2). in particular the hyperbolic plane H (Paincare upper half-plane, Lobaschevsky 
plane, Paincare disc) is that under a group action (Fuchsian group) a tesselation 
of the entire space can be achieved, the actual tesselation consisting of arbitrary 
hyperbolic polyhedrals with geodesics (geodesic planes) as boundaries. The specific 
feature of these geometries e n d b k  one to have finite polyhedrals which may be 
compact as well as non-compact. One of the important mathematical properties of 
the hyperbolic polygons tesselating the hyperbolic plane is that they can be identified 
with Riemann surfaces of a particular genus. 

However, the actual study of Laplacians on these polyhedrals in general, and 
on Riemann surfaces in particular, respectively, turns out to be extremely dilIicult, 
whereas the Laplacians for the free motion (often a constant magnetic field can 
also be included, so-called Maass-Laplacians) on the entire spaces are relatively easy 
to solve, including the determination of the (free) wavefunctions, the (continuous) 
spectra and the energy-dependent Green functions (resolvent kernels). One of the 
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original hopes in the study of trace formulae was that they could provide some infor- 
mation about these spectra. This was one of Selberg's motives [3, 41 for developing 
his famous trace formula for PSL(2,R). 

Only recently have physicists have become interested in trace formulae, in partic- 
ular for Riemann surfaces. This interest emerged from three reasons: 

(i) In bosonic string theory one deals with a path integral formulation due to 
Polyakov [S, q, where in the subsequent integration (see [7] and references therein) 
over metrics one has to sum over all genera of the (closed) surfaces the world- 
sheet can take on, in fact a perturbation expansion, and integrate Over all possible 
deformations of these surfaces for a fied genus which is an integration Over the 
Richmuller space. The closed surfaces can be identified with polygons tesselating the 
hyperbolic plane, cf the uniformization theorem for Riemann surfaces. 

(ii) In the semiclassical regime, trace formulae emerge for classically chaotic 
systems in the context of periodic orbit theory which was systematicaiiy deveioped by 
Gutmiller [SI, and it did not take long before he rediscovered [9] the Selberg trace 
formula, albeit in  a different context, and that furthermore, the Selberg trace formula 
is an e m f  formula. 

(iii) In quantum chaos the study of classical and quantum motion on these Rie- 
mann surfaces emerges quite naturally [lo] because the classical motion is highly 
cnduric anu Iwu-unm"iundi sysrcms art: m r  slmpirri sysir~io WIICIC UID MII occur. 
By a thorough study on the lowest genus g = 2 case Aurich et a1 [ll] achieved much 
in understanding the classical and quantum properties (quantum chaology) of this 
particular system. 

The simplest case of the hyperbolic plane is easy to generalize to higher dimen- 
sions, i e .  hyperbolic space. For example, the metric on the Poincark upper half-plane 
71 = { z  = z + iylz E R ,  y > 0) endowed with the hyperbolic metric 

.....A.. ._a L ~ ~ _  > I  I .-.. ... _I . .  .!-.-,... ... L-.- .L:̂ --- 

d z 2  + dy2 
ds2 = 

YZ 

is generalized to (e.g. [12-201) 

dz: + dz;  + . . . + d z t - ,  + dy2  

Y2 
ds2 = 

with the hyperbolic space 71" P S O ( n , l ) / S O ( n )  defined as 71" = 
{(z,,. . . ,z,,-l,y)~zl,. . . ,z,,-~ E R,y > 0). Of course, we have 71 = 7f2 I 
SO(Z,l)/SO(Z). The space 71" will also be referred to as SI. 

Generally these hyperbolic spaces have a common structure. One considers the 
Hermitean p + q form (see e.g. [21-2.31) 

Q!p,q) = y;z, + . . . y,zp - Y ~ + , E ~ + ,  - . . . - y;+,~,+, = e (1.3) 

and asks for the Lie group of linear operators acting on FP+q which leaves it invariant. 
Here F can be F = 1, F = c or F = H ,  respectiveiy, where ii denotes the iieid of 
quaternions. Of course, z,y 6 F(P+q). For the hyperboloids leading to the study Of 

hyperbolic spaces, we have p = n, q = 1 and e = -1, say. 
In this paper we are going to study the path integral formulation on the 

four multi-dimensional hyperbolic spaces of rank one, namely [I61 SI 7f" 4 
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S O ( n , l ) / s o ( n ) ,  without and with magnetic field, S, % S U ( n , l ) / S [ U ( l )  x 
U(n)] and S, S p ( n , l ) / [ S p ( l )  x Sp(n)], respectively. We can also include 
in our discussion the remaining rank one case, the so-called exceptional space 
S, % F+,,)/Spin(9) 121, 241. The group pairs (SO(n,l),SO(n)). ( S U ( l , n ) ,  
S(U(1) X u(n)l), ( S p ( n , l ) , [ S p ( l )  x Sp(a)])  and (F4(-,,), Spin(9))  form so- 
called Gelfand pairs, e.g. [21]. (Note that the convention whether one uses S O ( n ,  l) 
or SO(1 ,n )  etc, respectively, depends on the signature of the metric one uses in 

We evaluate the wavefunctions and energy spectrum explicitly. Furthermore an 
analytic expression for the Green functions (resolvent kernel) will be given in the 
case of SI. 

Q(P' ' )  
c 9 say.) 

The rest of this paper is organized as follows: 
In the next section, a summary of an appropriate path integral formulation on 

curved spaces is given, and the relevant formulae for time transformation and sepa- 
ration of variables in path integrals, respectively, are cited. 

In the following hvo sections the path integral treatments of the spaces S, and 
S,, respectively, will be given. We evaluate the path integral in the rectangular 
coordinate formulation, generalizing the Paincar6 upper half-plane. For S, a path 
integral treatment in pseudospherical polar coordinate system will also be given, 
thus exploiting the underlying S O ( n )  symmetry. For S, a separation in terms of 
SU(n - 1) polar coordinates is possible and will be presented as well. 

In the fifth section we use some general results from harmonic analysis on hy- 
perbolic spaces of rank one to achieve a complete separation in terms of a path 
integration on spheres and a hyperbolic coordinate. The remaining path integral 
""Cl L'LC "ypCn"U1L WUIUIII'lLC L"l l l .7  "U, L U  UT ,,,c pa,,, "1LCgra, ,U, UlG ,,,U"lllC" 

Poschl-Rller potential which can be explicitly solved. 
As we shall see many recent path integral calculations are needed in order to  

evaluate the present ones, demonstrating the power of the whole technique. The 
sixth section contains a discussion and a summary. 

In appendix A we briefly review, for clarity, how to do the path integration on the 
covering unit sphere of SU(n ,  l), and in appendix B we point out some relationships 
between the path integration of the covering unit spheres of the group spaces of the 
group manifolds S O ( n ,  l), SU(n ,  1) and S p ( n ,  l ) ,  respectively. 

_.". *L- L....-.k,.l:^ e..."- "... .,. I.,. *L- ..".I. :"+-"-"I +-,.- tLr ...-A:G-,I 

2. Formulation of path integrals, time transformations, and separation of variables 

In order to set up our notation we proceed in the canonical way for path integrals on 
curved spaces (25-2.31. We start by considering the generic case where the classical 
Lagrangian corresponding to the line element d s 2  = g O b d q D d q b  of the classical 
motion in some D-dimensional Riemannian space is given by 

The quantum Hamiltonian is construcferl by means of the Laplace-Beltrami operator 
A L E  
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as a definifion of the quantum theory on a CUNed space. Here g = det (gab) and 
( g a b )  = (gab)-'. The scalar product for wavefunctions on the manifold reads 

and the momentum operators which are Hermitean with respect to this scalar product 
are given by 

We now rewrite the metric tensor as a product according to gob = h,,h,, [29]. Then 
we obtain for the Hamiltonian (2.2) 

h2 1 
H =--A 2m LB i- v(Y) = Z;;;hacP,PbhCb + AV(,)+ V ( q )  (2.5) 

and for the path integral 

Ws", 9'; T )  

Here 
j = 1,. . . , N ) .  A V  denotes the well-defined quantum potential 

= q(I )  - q(j - l )  for q(1 )  = q(t '  + j e )  ( e  = (1" - P ) / N  = T / N ,  

(2.7) 
h2 

8 nz 
+ - (2hachb",,, - haC,,hbe,b - hnc,bhbc,a)  

arising from the specific lattice formulation for the path integral, respectively, the 
ordering prescription for position and momentum operators in equation (2.5). In this 
paper we always use the lattice prescription from equation (2.6). 
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In order to discuss time transformations in path integrals we consider the D- 
dimensional path integral 

We perform the time transformation 

a" 

s" = s ( t " )  s ( t ' )  = 0 1 f2[z(s)]ds = T (2.9) 

where the lattice interpretation reads ~ / [ f ( z ( j - ~ ) ) f ( & ) ) ]  = 6(j) G 6. We identify 
" \ " I  d i )  = - -~",",,. .*rcl i \ l  T ~ P  _.._ tnncfnrmatinn L.".." .I...._.._.. fnrmiilae .-.... ".I_ .-. for 2 pcre t;mp va.sf~rmation are, 
according to Duru and Kleinert [30] and Kleinert [31], given by 

where the transformed path integral k(s") has the form 

(2.11) 

ference in comparjson wji'n a "bineG qjg'eiiriie tiaiisfoimatioii, wiieie a facior 
A product lattice formulation is assumed in the path integral (2.11). Note the dif- 

[ f ( ~ ' ) f ( r " ) ] ' / ~  would appear instead [28, 301. 

the potential problem V ( z )  has an exact solution according to 
Finally, I cite the separation technique in path integrals [32]. Lct us assume that 

(2.12) 
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Here 
tinuous states. Now we consider the path integral 

dE,  denotes a Lesbeque-Stieljes integral to include discrete as well as con- 

I C ( Z " ,  z' ,  I", 2'; T )  

(2.13) 

Here ( z , z )  I ( z i , z k )  (i = 1 ,..., d ' ; k  = l , . .  . , d ,  d' + d = D) denote a 
&&mens;ona! Goidinate g, ""A auu LUG C V I I G ~ ~ ~ I U I I I ~  IIICLILL LCIIIIS, anu 
A W  a quantum potential according to equation (2.7). For simplicity we 
assume that the metric tensor gob involved has only diagonal elements, that is, 
gab = diag[gf(z),g:(z), . . . .gf,(z),  f Z ( z ) ,  . . . f2(z)1. Det(g,d = f l d  nL1 9: 
I f 2 d  g(z ) .  The indices i and k will be omitted in the following. As shown m 
[32] the I path integration can be separated by performing a time transformation 

I .lr- ----""---A:-" --*-:- *---- " - 2  

..,.'.,.-a:.." .- I? 0, &---.S. ....A L..-#- ..:?.#A:..- abw~uiug LU I L . ~ ,  LULLN aiiu U ~ L K  ywz~uiug 

K(Z", z ' ,  I", 2.'; T )  

*( t" )=r"  

= [f( z')f( z " ) ] - ~ ' ~  d E,, Q':( z')Q'>( I") 
2 ( t ' ) = z '  

J 

(2.14) 

We will rely strongly on thcse formulae in this paper. The limits ~ ( t ' )  = z' and 
~ ( t " )  = I" etc will be omitted in the following. 

3. Quantum motion on the hyperbolic space 71" 

We Start by considering the n-dimensional generalization an of the Poincark upper 
half-plane H [13-201 

H n = { ( ~ ~ , . . . , ~ ~ - l , Y ) i z l  ,..., .Tn-l € E , Y > O )  (3.1) 
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endowed with the hyperbolic geometry (1.2). We call this parametrization the rect- 
angular coordinate system for 'H". The metric tensor and its inverse are given by 

(3.2) 
1 .  

Y2 
(gab) = -diag( 1 , .  . . , 1 )  (gab) = y2diag( 1 ,... , 1 )  - - 

D - l  times D - l  times 

and its determinant is g = det(gab) = Y - ~ "  = u - ~ ( ~ - ' ) .  The invariant volume 
element reads as d V  = dx,  . . .dz,dy/yD-' .  The classical Lagrangian and Hamil- 
tonian have the form respectively 

According to the prescription given in section 2, the construction of the momentum 
operators and the quantum Hamiltonian is straightforward yielding for the momentum 
operators 

( k  = 1 , .  . . , D  - 1)  (3.4) 
h a  - -_ 

'zk - i ax, 
and for the quantum Hamiltonian we obtain 

1 2  = -Y(P,, + ...+ P:,- ,  + P:)Y + A ~ ( Y )  2 m  
with the quantum potential A V ( y )  given by 

ti2 
A V ( y )  = % ( D  - 1 ) ( D -  3 ) .  (3.6) 

Consequently the path integral for the free quantum motion on 'H" has the form 
Ijn"({,",,'],y",y'; T )  

ti? 
8m 

- - ( D - l ) ( D - 3 )  

t i 2  

8m 
- c - ( D - l ) ( D - 3 )  (3.7) 

and we use once and for all the product lattice formulation. {z] denotes the collection 
of the variables zk ( k  = 1.. . . , D - 2). We evaluate this path integral in three 
alternative ways. 
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3.1. Calculation of the Green $"on 

We perform a time transformation in the path integral (3.7) 

1 - = T.  (3.8) la'' y:;s) 
s ( t )  = 1, y 2 ( s ) d s  s" = 4 1 " )  s ( t ' )  = 0 

This gives the transformation formulae 

IC""({z",z'),y",y';T) = - 1- G"'({z",z'},y",y'; E)e-jET"dE 2mti 
m (3.9) 

G""({~",Z'},V",Y'; E) = i ( y  y U ) ( D - 3 ) / 2  1 k""((zl', zj}, y",y'; ,") ds" 

where we have abbreviated I? = E - ( h 2 / 8 m ) ( D -  l ) ( D -  3 )  and the transformed 
kernel I?( 5")  is given by 

2"" ({z", z'}, y", y'; 5 " )  

= I  D{z(~)}Dy(~)exp{$-~"[~(x~+...+x~ {' 2 - ? + y 2 ) +  Y E l  d l  I 

(3.10) 

Here X = f iJ2mE/t i?  - (D - 2)2/4,  and we have applied the well-known path 
integral identity [33-3.51 

1 1" 
r(t"):r" 1 D r ( t ) p v [ r 2 ]  exp [ % 1, (+' - w2v2)  d l  

p( t ' )=v '  

? l l W d 7 7  m w mwr'r" - - itisin wT e x p  [ - - ( r ' 2 + r 1 ' 2 ) ~ ~ t w T ]  22ti I, ( i h s i n w T )  (3.11) 
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in order to guarantee a well-defined short-time kernel [28, 35, 361. Introducing the 
hyperbolic distance [16] 

i 

(3.13) 

we obtain for the Green function 

Gn"((x",x'},y",y'; E) = - ( Z T ) ' - ~ / '  m 
h 

L m z D / 2 - 2  exp {-rcosh d ( q " , q ' ) } I A ( z ) d r  

( ~ - 3 ~ 2  
Q - + - i J G @ x j / 8  (0-3112 (cosh d ) .  (3.14) 

Here E,, = h 2 ( D  - 2)2 /8m,  and P i .  Qf denote Legendre functions of the first and 
second kind, respectively. A Wick transformation has been performed and use has 
been made of the integra! [37, r n 7171 1-1 

Re(+jD - 2 + A )  > -1 

and the relations 137, p 10061 

(3.166) 

Note that we have chosen the negative sign in the square-root expression in order to 
get the correct retarded Green function. In particular, in order to work with well- 
defined mathematical formulae we assume that E has a small positive imaginaly part 
i e  and write E + iE (with real E and e > 0) instead of E: whenever necessary. The 
result (3.14) is in accordance with 116, 381. Furthermore, this result makes it possible 
to come into contact with the path integral and Green function for the D-dimensional 
pseudosphere AD-'  1381. As has been shown in 1381 the Green function for the D- 
dimensional pseudosphere parametrized by D-dimensional pseudopolar coordinates 
(391 

x, = COSll T 

(3.17) 

x 2  = sinh T . . .sin 0, cos 0, 

xI = sinh r . . . s i n  02sin 0, 
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( 0  < fij < in, j = 1 , .  . . , n  - 2, r > 0) is given by equation (3.14) and the 
corresponding Feynman kernel has the form [I<"'( T )  3 ICAD-' (  T ) ] :  

IC""({z",z'),y",y'; T )  

In particular for D odd one uses the general property 

together with the integral representation [37, p 8191 

(3.18) 

(3.19) 

For D even one has to use the relations (compare (381 for more details, there is a 
sign missing in some formulae, 

(3.2Oa) 

(3.2ob) 

From equation (3.18) we deduce that the spectrum for the free motion on 71" is 
given by 

and the largest lower bound (zero-point energy) of the spectrum is 

(3.21) 

(3.22) 

which is in accordance with 116, 381. 
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3.2. Calculation of the wavefunctions in the rectangular coordinate q t e m  

We investigate the path integral on W” by the separation technique. The zk de- 
pendences (12 = l , .  . . , D - 2) are that of free particles in IWD-2 and we obtain by 
separating them ( I C 2  = Cg;’ k:) 
I P ”  ({z”, z’}, y”, y’; T) 

x exp [-E ( p ’ f  ‘ D - 2 ) 2 ) ]  4 psinh npl~i,(rcy’)rr,,(lcy”) 

(3.23) 

where use has been made of the path integral solution for Liouville quantum 
mechanics [40], i.e. we have performed the coordinate transformation y = 7-9 yielding 
[a, 411 

accompanied by a careful ’hylor expansion in the kinetic energy term of the path 
integral, i.e. 

(3.25) 

where the symbol ‘2’ has bcen used-following DcWitt [26]-to ‘denote equivalence 
as far as use in the path integral if, concerncd’. Ii, denotes a modified Bessel 
function. This gives the wavefunctions on W n  

and the energy spectrum has already bcen givcn in equation (3.21). The orthonor- 
mality and completeness of these wavefunctions have been shown in [40]. 
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The representations (3.14) and (3.23) can be transformed into each other. We 
consider the Green function from the kernel representation (3.23) and introduce 
( D  - 2)dimensional polar coordinates for the scalar product 

k . (2" - z') = IkI, Id' - 2'1 cos 7,lJ 

with + = L(k . (2" - I')). This gives (k2 = Ik12) 

G"'( {z", z'), y", y'; E )  

m 

x / d k l c ( D - 2 ) / 2 J ~ D - 4 , ! 2 ( k 1 1 "  - z'l)li,p(k~')li,p(ky'') (3.27) 

where the integral over dR was, for example, calculated in [28]. Using now [37, p 
6961 

JO 

(3.28) 

where U = (a2 + bZ + c2)/2ab, we obtain 

GH"({z",z'),~",y'; E )  = - 

,I) l o \  (,.A71 

and cosh d denotes the hyperbolic distance in X". The last equation is the energy 
Fourier transformed from equation (3.18) and therefore it (compare [38]) equals 
(3.14). 
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and we have once again used the path integral solution for Liouville quantum me- 
chanics. The Sr are the real hyperspherical harmonics on the (D - 3)dimensional 
sphere S(D-4) [42] and R denotes a unit vector on S(D-4). The wavefunctions 
consequently are given by 

q;,,c,,n, Y) 

= r ( 4 - ~ ) / 2 ~  I , ~ ) s /  (R)  d- y(D-21/21iwi,( ky). 
7r 

(3.33) 

3.4. Incorporation of constant magneric fields 

The incorporation of constant magnetic fields is quite easy and will be presented here 
for completeness. Generalizing properly the case for the Poincark upper half-plane 
[43] we can formulate the path integral on 71" with the (D-1)-dimensional magnetic 
field vector B and vector potential A, respectively, 

em e m  A = - B  b = - - B  
2CY 2c 

(3.34) 

with e the electric charge and c the velocity of light. Similarly as in [44] we obtain 
for the appropriate path integral formulation ( A s  = E ,  0 gauge) 

IP'q { I", z') , y", y'; T )  

m it + . . . + i;-l + y z  
x exp  { 1; [T Y 2  

(3.35) 

and again the product lattice formulation is assumed. Performing a Fourier expansion 
in the I, ( 1  = 1 , .  . . , D - 2)  gives 

(3.37) 
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where the transformation y = e‘ has been made. ?he path integral in the coordinate 
q is now the path integral for the Morse potential 

I 

vM = -(e2g h2V2 - 2aeq) (3.38) 
2m 

which has been treated in [4446]. Setting OL = 12 . b/lk12 we get, therefore, the 
solution of the path integral (3.35) reading 

K H ” , * ( { l ” , I ’ ) , y ” , y ’ ; T )  

+ 1- dpe-%T/hQ ; k ) , p ( { = ‘ ) ,  Y ‘ ) Q { k : , p ( { 4 >  Y“). 

The wavefunctions and the energy spectrum for the discrete spectrum are 

12.b 1 
n=O, ..., N M < - - -  

lkI2 2 

2m 4 

(3.39) 

(3.40) 

( 3 . 4 1 ~ )  

(3.416) 

(3.42) 

2lklY).  

(3.43) 

The L i A ) ( z )  and W,,,(z) denote Laguerre polynomials and Whittaker functions, 
respectively. The orthonormality and completeness properties of these wavefunctions 
have been, for example, discussed in 143, 44, 47, 481. 
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4. Quantum motion on the hyperbolic space SU(n, I)/S(U(I) x U(n)] 

Next we consider the space S,. It has a more complicated structure than SI .  
Following Venkov [16] we take for the metric in the hyperbolic space S, I 
S U ( n , l ) / S [ U ( l )  x U(n)l 

Here we have set zk  = x k  + iyk E C for the ( n  - 1) complex variables. The metric 
tensor in the coordinates (4.1) is given by 

2 2  . . .  -Yn +n 0 

1 2  -+2y2 + ; + y  ... -x2yn X 2 Z n  0 

-Y" Y2Yn -"2Yn ... Y:+Yz -znYn 0 
I, -xny2 x2x, ... -+,yn x:+y 2 0  

\ a  0 0 . . .  0 0 Y2 

2-y2 2 Y2Y2 -y2+n 0 
1 1  

-y2 Y , + Y  -"2Y22 " '  

I 
(4.2) 

where we have ordered the matrix entries according to ( x l ,  z 2 , y 2 , .  . . ,+", y,, y )  x 
( I ~ , X ~ ,  y2 , .  . . , x,,, y,,, y). Its inverse (ga*) is calculated as 

( g a b )  = Y 2  

Y 2 +  c;=,lfkv Y2 -+2 " '  

Y2 1 0 ... -0"" :\ 
0 1 ... 0 0 0 - 2 2  

(4.3) 

: ' O J i  

. .  
0 0 ... 1 0 Yll 

0 0 0 ... 0 0 1 
-I, 0 0 ... 0 1 0 

We call this parametrization the rectangular coordinate system for the space S,. For 
the determinant we have g = det(g,*) = 1/y4"f2. The determinant and ( g " * )  can 
be obtained from ( g a b )  by considering first the case n = 2 and then by induction. 
The hyperbolic distance in S, is measured by [la] 

,'I +4 (+; - +; + C(x)k)y ;  - yzz;) 
n 

k = 2  

(4.4) 
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The classical Lagrangian and Hamiltonian, respectively, have the form 

(4.5a) 

(4.5b) 

According to the general theory we have 

k =  1 ,  ..., n h a  
ax, 

h a  

- P, ,  - 7 -  

PYk - k = 2 ,  ..., n (4.6) - 
7 -  ' 

Therefore we obtain for the quantum Hamiltonian according to equation (2.5) 

h2 a2 B -  1 a a 2  HS' = --Asl - 
2m 

with the quantum potential 

(4.7) 

h2 
A V ( y )  = -(4nZ - 1). 

8m 
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This gives for the path integral 

I C Y { z " ,  Y"l;=2r {x', Y'l;=2,x:, z;, Y", y'; Tj 

We evaluate this path integral in WO alternative ways. 

4.1. Calculation of rhe wavefunclions by (11 - 1)fold two-dimensional polar coordinates 
Introducing polar coordinates according to 

x k  = rk cos  q5k 

y k = r k s i n m k  ( r k  > 0 , 0 $ 4 , < 2 r r , k = 2  ,..., n j  (4.10) 

yields for the path integral I<s2(T) 

h ' s ' ( t ~ " , Y " ~ ; , 2 , { z ' , Y ' l ~ = 2 , ~ ; ' , ~ ; , Y " , Y ' ;  7-1 
Icpsa({r9, T ; ] ; = ~ ,  { 4 i , & ) L 2 , 4 ' , 4 ,  Y",Y'; T )  

(4.11) 

and an additional quantum potential 

(4.12) 

appears due to these polar coordinates 1281. In order to evaluate the path integral 
(4.11) we start with a Fourier expansion in the coordinate z,. This gives 

I C S 2 ( { 4 ! ,  .;};=,, {&, 4;);=2, zy,.;, Y", Y'; T )  

d 12, 
U I .  q e i k l ( z , ' - = i )  

( {1-9, d. 1 .L2, { 4 i ,  4; L2, Y , Y 
= - J  1 -  

2rr -m 
(4.13) 
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and the wavefunctions 

where the R$*(Q)  have been given in equation (4.18) and the @,(y) have the form 

(4.25) 

In particular the energy spectrum with its largest lower bound is Eo = h 2 n 2 / 2 m  
which is in accordance with [16]. 

4.2. Caicuiation of the wavefunctions in S U (  n )  polar coordinates 

Due to the symmetry properties of the space S,, we also can use S U ( n )  polar 
coordinates for the separation. We introduce (49, SO] (2n-1)dimensional SU(n- I )  
polar wordinates according to 

(4.26) 

z 3 -  - re'++, sin a,-1 . , ,sin 0, cos U, 

z 2 -  - re'+* sin an-l . . .s in &sin a, 
with 0 < 48 < 2r,i = 2 ,..., n , O  < U, < ? r / Z , j , =  2 ,..., n- 1 and r 2 0. In 
terms of these wordinates me free ciassicai iagrangian is given by 

~ c l ( ~ , ~ ) ~ ~ c , ( ~ , ~ , t ~ , ~ ~ , { ~ , ~ } )  = + n ~ ( l i 2 1 * +  li31z+ . . .+ 1i,1?) 
= i n i  rz + rz a:-, + cos? U,,-,&', + sin2 a,,-, (. { '  

The corresponding quantum potential has the form [SO] 

(4.27) 

(4.28) 
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?tansforming the path integral into these coordinates and performing the Fourier 
expansion with respect to z, thus yields 

~~,S:({~",Y"};=~,{~',Y');=~,Y I ,  ,Y';T) I ~ ~ ~ ( P " , ~ ' , { ~ ' ' , ~ ' ) , { ~ ' ' , ~ ' ) , Y ' ' , Y ' ; T )  

1 1 1 +...+- x [1+ e,,-l 
(4.29) 

In the appendix we evaluate the path integration over the SU(n  - 1) coordinates. 
Separating (4.29) with respect to these coordinates yields 

ICt;(r", P' ,  { e " ,  e ' ) ,  {4", 4') ,  y", y'; T )  

= *;;I"- 1). ( { e r ,  4 ~ ) ) q y l  ( { O " ,  +"))I<:;,L(r", P' ,  y", y'; T )  
{L) 

(4.30) 

with the kernel I<f ; ,L(T)  given by 

K t ~ , L ( ~ " , ~ ' , ~ ' ' , y ' ;  T) 

= (y"")""r")l-" J VY(t) y2 J V P ( f )  
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with the radial wavefunctions (4.18), and f i -k , ,L ,N(T)  is completely analogous as in 
the path integral (4.19) given by (w = t i lk l l /m)  

= exp --(4n2- 111 ’Dyo 1 ihT 8 m  > “  Y 

with the quantity E,, 

Note that E ,  > 0, due to the construction of the quantity L,  and again only a 
continuous spectrum is allowed [32]. Therefore we have completed an eigenfunction 
expansion of the path integral on S, in terms of S U ( n  - 1 )  coordinates as follows 

with the wavefunctions 
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5. Quantum motion on the hyperbolic spaces of mnk one in pseudospherical polar 
coordinates 

There is one further hyperbolic space generalizing the Poincar6. upper half-plane 
based on an hyperboloid Q?,") on quaternions 116, 51, 521. Following 116) the 
metric in the space S, 2 S p ( n , l )  / [Sp ( l )  x Sp(n ) ]  is given by 

I n l2 
(5.1) )I ' + - dznt1 + C b n t k d z k  - +kdzkt, 

;4 I k = 2  

Here y > 0, t, E Iw, and zk = xk t iyk E a: (k = 2 , .  . . ,2n). However, there seems 
to be no obvious solution in these particular coordinates similar to the WO previous 
cases. But we can use some general results of harmonic analysis on hyperbolic 
spaces to set up a path integral formulation. We consider a hyperbolic space X as 
a quotient space of a Gelfand pair (G,  li), S = G/ I<. This properly allows an 
Iwasawa decomposition according to the direct sum of the algebra on G, G, such that 
G = X + A + N  [16, 52-55]. The root system of the pair (G,A) is denoted by P. The 
LaplaceBeltrami operator (Casimir operator) on X then is the invariant operator 
on X with respect to the group actions. The root system in these spaces can be taken 
with all roots positive (restricted set Pt) and decomposed into two systems, a and 
2a, such that if p E P2a then p / 2  is not a root. The subspaces G(a) and G ( 2 a )  
have the dimensions m, and m,,, respectively. Furthermore, the algebra G can be 
written as a Cartan decomposition G = li + P, P being the orthogonal complement 
of K (note A c P). In the cases in question the subspace corresponding to the 
algebra P+ can be represented as a (m, + m20 + 1)-dimensional sphere, denoted 
as S ( m - t m . ) .  

Following [53, 541 the Laplace-Beltrami operator in terms of pseudopolar mor- 
dinates on a hyperbolic symmetric space of rank one can be rewritten as 

(5.2) 

The operators &'+) and L(?JIJ act on the space of the root systems G ( a t )  (all 
positive roots) and G ( 2 a ) ,  respectively. Now pick a representation, corresponding 
to the algebra 'Pt, i.e. a solution of the Laplace-Beltrami operator on the sphere 

y ~ ; , ~ ' , , ~ , ~ i t , , i B , ~ j , ~ , y )  = - ~ *iL) \ {u ,d j )r -  "-its. ~ - \T)C(pj  

,.r- L-. , . . . . .. .. ~ ~. .. ~. -.~-.,.. . I ,, * 
SU!n- I! '  r I R - ? n ! / 7  -1.+n--?, e i k l = ~  ~-~ $" 

(4.35) 

with QD( y)  as in equation (4.25) and the energy spectrum (4.23) 
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The energy spectrum (5.9) including the zero-point energy (5.6) E, is valid for all 
hyperbolic spaces X = C/ I< of rank one. We now specialize to the four cases of 
hyperbolic spaces of rank one. 

(i) The space SI. In the case of SI we have m, = n - 1 and m,, = 0. We find 
E, as in equation (3.21) ( D  = n - 1) and the radial wavefunctions are the radial 
wavefunctions on the pseudosphere A[%) [41] 

(ii) The space S,. In the case of S, we have m, = 2(n - l ) ,  mzo = 1, we find 
for Ep the value of equation (4.23) and the radial wavefunctions have the form 

n - i p  n - i p  
q i a ( T )  = Nt2(tanh T)R+'-'/2(CoshT)iP2Fl -t - -' ( 2 ' 2  

(5.12) 

(5.1%) 

(iii) The space S,. Having achieved the result for the general case we can now 
also address the case of the space S,, where m, = 4( n - 1) and mzo = 3. Hence 

with the zero-point energy given by 

(5.14) 
h2 

2m 
= - ( 2 n +  I),.  

The radial wavefunctions have the form 

(iv) The exceptional case. We can even manage the exceptional space S, E 
F+,,)/Spin(S) [21, 241. Here m,, = 8 and m.,, = 7. Consequently we have 

with the zero-point energy 

h' 
2m 

E:,". = 121 -. (5.17) 
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The radial wavefunctions are given by 

4237 

6. Summary 

We have discussed path integration of the quantum motion on hyperbolic spaces of 
rank one. For the space SI we have calculated the Green function explicitly 

G7("({z",z'),y",y'; E )  

The energy spectrum was given by 

with the largest lower bound 

h2( D - 2)* 
8 m 

E:" = 

nmis, Mnt;nl,m,r CnPr.rllm nrr..rmrr illn t. .... ~ _." t..".,.~ +L- ...-.. A .._-. :--- - - A  
I U L . L L I . ~ ~ ~  Y ~ - C L L Y . . .  YCCUIICU. v.b 1 1 a v c  C Y ~ I U ~ L G Y  LUG w a v c i i u t i u w m  diiv 

the energy spectrum in rectangular and (D - 2)-dimensional polar coordinates, re- 
spectively. In the case of the incorporation of magnetic fields (3.34) we obtained 
continuous states with spectrum 

(6.4) 

as well as bound states with e n e r a  levels 

In the space S? we determined the spectrum and the wavetunctions in rectangular 
and S U ( n -  1) polar coordinates. respcctively, as well. 
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In all spaces the spectrum and the wavefunctions were determined in an appro- 
priate pseudopolar coordinate system according to the general theory of hyperbolic 
spaces. All cases could therefore be trcated simultaneously and we obtained 

~ ~ G I ~ ( ~ ( ~ + ~ " , ~ c ~ + ~ ' , ~ c 2 u ~ " , ~ c 2 ~ ~ ' , r " , 7 ' ;  T )  

= SI(  Q(o+)") S;(n(a+)') SI(  n(2Q)") Si (  a(2")') 
I 

with the energy spectrum 

(6.7) E , G / ~  = --(ma + 2m2,) 

and the wavefunctions (5.10). Thus we have completed exact path integration in 
further Riemannian spaces with constant negative curvature. 

ti' 
P 2m 8m 

hZp2 EGIK = - + E, 
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Appendix A: evaluation in SU(n - 1) polar coordinates 

We want to evaluate the path integral (4.29) by separating the SU( n-1) coordinates. 
Let us look at  the path integral 
IC;;(n-l) I ,  

( T  , Ti, { e s ,  of), {4i ' ,4r~ ; T )  

1 1 
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Performing the Fourier expansions for the +j  ( j  = 2 , .  . . , n) yields (compare the 
similar procedure in [SO]) 

Ic;X*-l) ( + I  ,. ',tofi,e'),{,f',+');~) 

This gives for the kernel K ~ ~ ~ ; l )  ( T )  

(7'' , T ' ,  {e",  O'}; T) KSU("-') 
h,tO 

n-1 

cos 0; cos Oy(sin a; sin ay)' 

I 1 1; - 
4 +  . . . f r  - 

sin a3 ( cos2a2 +-)...-a]}) sin e2 d t ] .  
. 

('4.3) 

The { e )  path integrations are now interrelated Posch-Rller potential path integra- 
tions. The path integral solution of the Poschl-Mer potential 

was given by Bohm and Junker [57] and Duru [S6] and has the form 

The wavefunctions QkA'x) are given by 

('4.6) 
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The PiA3') denote Jacobi polynomials. Procecding now as in [50] we introduce the 
quantum numbers 

Lz = 2n2 + 1121 + ILI 
L ,  = 2n3 + L, + IL, 

('47) 
L;  = 2n; + Li-1 + lkitll i = 2 , .  . . ,n - 2 

L Ln-l = 2n,- l  + L,,-3 + lL,-ll. 
Performing the successive Poschl-Rller separations we finally obtain 

where { L )  denotes the summation over all quantum numbers, with the radial kernel 

KL(r",  r'; T) 

SU(n-1) and the Q { L )  wavefunctions are given by 

q($h)(e2) , , , qi?-;,t"-3A) (e"- ,  ). ('4 10) 

Hence the separation of the { O , + )  angular SU(n  - 1) variables is achieved. 
Note that we also have [58] 
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Appendix B: path integration on generolized hyperboloids 

Let us briefly discuss same general feature of the quantum motion on hyperboloids 
(nd) 

&-1 > 

(B.1) Q(n.1 )  I = lfilz+If21’+ ~. .+If, l- lfn+i12=-1 

and the numbers f are f = l , e ‘ d z ,  q, corresponding to real numbers, com- 
plex numbers and quaternions with unit absolute d u e s  (a suitable polar decom- 
position of quaternions are, for example, q = (cos &,  i ,sin Q1 cos & , j  sin 
sin $ , c o ~ $ ~ , k s i n  $l sin$*sin$, with (0  4 d ~ ,  < 2n, 0 < < 7r, with 

Now consider a pseudo-polar coordinate system 

. .  . .  iz - - j2 = k2 = -1, z j  = -31 = k, ik  = -ki = j and j k  = - k j  = i). 

fn+i = qn+i cosh 

f, = q, sinh r cos 

f, = qz sinh r . . .sin 9, cos 0 ,  

fl  = q1 sinh r . . . s in  9, sin 0 ,  

( 0  < B j  < fn; j = 1, .  , . , n - 1; r > 0). We attach to this ( n  + 1)dimensional 
pseudo-polar coordinate system, the numbers qi = 1 0’ = 1,. . . , n + l), mm- 
plex coordinates qi = e-+* (i = 1,. . . , n  + l ) ,  or quaternion coordinates qf 
( 1  = 1,. . . , n + I), respectively. That is we consider the free motion on the 
unit spheres of the group manifolds S O ( n ,  l ) ,  S U ( a ,  1) and S p ( n , l ) ,  respectively. 
For q, = 1 (1 = 1 , .  . . , n  + 1) we obtain the known result for the pseudosphere 
AD- l  SI with a pure continuous spectrum 

For qf = e-41 (1  = 1 , .  . . , n + 1) and the covering unit sphere of SU(n, 1) [SO] we 
get the result for the path integration for ‘pure S U ( n , l ) ’  with a continuous and a 
discrete spectrum [SO], the continuous spectrum having the form 

In the next step we take for the qi quaternions, which means that in a separation 
procedure for the path integral covering the unit sphere of Sp(n,  l ) ,  for each set of 
coordinates GI,; ( 1  = 1, . . . , n f 1, i = 1 ,2 ,3 )  we separate a Feynman kernel on the 
S(3)  sphere instead for the case of a circle. The general feature of the SU(u,  U )  path 
integration therefore is not changed at all (in appendix A just replace - i r  and 
4, bytheset$,,; ( 1 = 1 ,  . . . ,  n + l , i =  1,2,3),andweobtainessentiaIlythesame 
result (including some slight modification of some quantum numbers, in particular the 
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Let us stress that, in fact, any coordinate system qn can be attached to the 
pseudopolar coordinates f,, for any hyperboloid Q L p " ) ;  one just has to work out the 
details. However, the nice group structure leading to the consideration of hyperbolic 
spaces of rank one is revealed only for the particular cases discussed here. 

References 

Fricke R und Klein F 1897 and 1912 Vorlesunpen i&r die Zheorie der olrtomorhm Funcrionm I & 
Y 

I1 (leipzig: lkeubner) 
Poincae H 1908 lhkorie des Grou~er Fuchriem: Oevrer Comokies voI II Paris: Caulhiem-Villars) 

pp ioMn 
Selkrg A 1956 1. Indian MO& Sm. 20 47 
Hejhal D A 1976 l h e  Selberg Dace Fornulo f i r  PSL(2,HJ, I (Lecmre Norer in Mmhematics S48) 

Hejhal D A 1981 lhhr Selberg Doace Fonnulo for PSL(2,H). I1 (Lecmre Notes in Morhemotics 1Wl) 

Polyakov A M 1981 Phys. Lerr 1038 207 
Green M B. Schwarz J H and Willen E 1988 Supfrsning lheory vols I and I I  (Cambridge: Cambridge 

D'Hoker E and Phong D H 1988 Reu Mod Phys. 60 917 
Gutzwiller M C 1967 1. Maih Pkys 8 1979; I969 i Moth Phys. 10 1W4; 1970 1 Moth Phys 11 

1791: 1971 1. Mah.  Phys. U 343 
Gutzwiller M C 1980 Phys. Ro! Lett. 45 150 1982 Physico 5D 183; 1986 Contcmp. Morh. U 21s; 

1985 Phvs. SCK T 9 184: 1985 Number lheon, lLecmre N o m  in Marhemarics 12401 Berlin: 

(Berlin: Springer) 

(Berlin: Springer) 

University Pres )  

, .  , .  
Springer) p 230 

B a l m  N Land Voros A 1986 phvs. Reo. 143 109 , .  
Aurieh R, Bogomolny E B and Sleiner F 1991 Physico 48D 91 
Aurich R, Siekr M and Sleiner F 1988 Phys. Rev. Letr. 61 483 
Aurich R and Sleiner F 1988 Physic0 32D 451; 1989 Physico 39D 169; 1990 Physico 43D 155; 1991 

Berezin F A and Gel'fand I M 1962 Am. Moth. Soc. DomL (Sex 2) 21 193 
nkahashi R I963 Bull Soc. Maih. France 91 289 
BCrard-Bergery L 1973 Se'minaires Boubaki (Lecrure Nores in Marhematics 317) (Berlin: Springer) 

Venkov A B 1971 Soviet Morh. DokL 12 1363 
Venkov A B 1973 hoc. Math. hwt. Sieklov 125 6 
Subia N 1975 Anobse Hmnonique sur les Grorrpes de Lie (Lecmres Nores in Mothemarics) (Berlin: 

Ahlfors L V 1981 Mirbius lransformalions in several dimensions Lecmre mles Univenily of Min- 

Elstrod 1. Grunewald F and Mennicke J 1983 Ibrsrim Maih. Surwys 38 137 
lbmaschitz R 1989 Physica 34D 42 
Koornwinder T H 1984 Special Funciiom: Group lheoreticol Aspeclr mid Applications ed R A Askey, 

Helgason S 1978 Differemial Gcomev, t i e  Groups, mid S),in,n,neuic Spaces (New York Academic) 
Wolf J A 1967 Spaces of Co,rrtain Cun.onrre (New York McGraw-Hill) p 333 
Thkahashi R 1977 Non-Com,nutative FImnunic Attalysis (Lecmre Notes 

Physico 48D 445 

Expo& 400-17. p 107 

Springer) p 674 

nesola 

T H Koornwinder and W Schempp (Dordrechl: Reidel) p 1 

Morhcmatics 55'7) (Berlin: 
Springer) p 226; 1977 A,rolyrc Honnonique stir les Groiipes des Lie I1 (Lccrure N o m  i t  Morhemarics 
734) (Berlin: Springer) p 511 

Feynman R P 1948 Ret! Mod Phys. 2Q 367 
DeWitt B S 1957 Rev. Mod Ply$. 29 377 
McLaughlin D W and Srhulman L S 1971 J Math. Plys. 12 2520 
Mayes I M and Dowker 1 S 1972 hoc.  I<. Soc. A 327 131 
Mirrahi M M 1975 I Math Phys. 16 2201 
Gelvais J-L and levicki A 1976 NucL Phys. B 110 93 
Omote M 1977 NucL P l y .  B 120 32.5 



4244 C Grosche 

Marinov M S 1980 Phys. Rep. 6(1 I 
Lee T D 1981 Parricle Physics mid Itinodrmion Io Field lheoty (Chur: Hawood) p 465 

[ZE] Grosche C and Sleiner F 1987 Z. Pltys. C 36 h99 
I291 Gmsche C 1988 Phys. Lea 128A I13 
[30] Duru I H and Kleinerl H 1979 Phys. Lert 848 185; 1982 Fomchr Phys. 30 401 
[31] Kleinerl H 1987 Phys. Lzrt 120A M1 
[32] Grosche C 1990 1 Phys. A: Maik Gen. U 4885 
[33] Peak D and lnomala A 19h9 1 Morh Phys. IO 1422 
[34] Duru I H 1985 Phys. Lzrr. 112A 421 
[3S] Sleiner F 1986 Bielefeld Encounters in Physics arid Mathernutics Vlc Pvrh Inregah From meYto MeV 

[3h] Kleinen H 1989 Phys. L z l L  2248 313 
[37] Gradshleyn I S and Ryzhik I M 1980 Toble oflnregroLr, Series, and Roducts (New York Academic) 
[38] Gmsche C and Sleiner F 1988 Ann Phy& Ny 182 120 
[39] Vilenkin H la 1968 Special Functiom and he i'heoty of Group Representorions (Providence, RI: 

American Malhematica! Sociely) 
[40] Grosche C and Sleiner F 1987 Phys. Lert 123A 319 
[41] Grosche C 1990 Fonrchr Phys. 38 531 
[42] ErdClyi A. Magnus W; Okrhellinger F and n i m m i  F G (eds) 1955 Higher Tronscotdenral Funcriom 

MI I I  (New York: McGraw Hill) 
[43] Comlel A 1987 Ann Phys., NY 173 185 

Comlel A and Houston P J 1985 1. Marh. Phys. 26 185 
[44] Grosche C 1988 A m  Phys., NY 187 110: 1990 Ami. Phy., NY 201 258 

[4h] Dum I H 1983 Phys. Rev. D 28 2h89 
[47] Fay J D 1977 1 Reine A n p .  Marh. 293 143 
[48] Patlenon S 1 1975 Compos Murh. 31 83 
[49] B6g M A and Ruegg N 19h5 J Mnrh. Phys. 6 h77 
[SO] Grosche C 1991 1. Morh. P/ys 32 1984 
[Sl] Bkahashi R 1974 lhdorie du Poienriel er Analyse Honnonique (Lecrure Nores k Marhemarics 404) 

[SZ] Sekiguchi J 1980 Nogoyo Morh 1 79 151 
[53] Hashizume M, Minemura K and Okamolo K 1973 fliroshima Marh 1. 3 81 
[54] Helgason S 1974 1. Funcr. hnoL 17 328 
[SS] Emas A 1987 Homonic Analysis on Sytntnerric Spaces mid Appljcariom 11 (New York Springer) 
[56] Dum I H 1984 Phys. Rm. D 30 2121 
I57 Biihm M and Junker G 1987 1. Moth Phys. 28 I978 
[SE] Feynman R P and Hibbs A 1965 Quanruin Mechonics m d  h r h  lnregrds (New York McGraw Hill) 
i59j junker G and Edim hi i986 fiys. ie r r  iiiri 375 

1985 ed M C Gulzwiller et ol (Singapore: World Scientific) p 335 

p5; r.i P Y, !noK-!r A 2ad W.!ron p. 1983 .P!:p; L m  O M  !!? 

(Berlin: Springer) p 218 


