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Abstracl. Quantum mechanics on the hyperbolic spaces of rank one is discussed using a
path integration technique. Hyperbolic spaces are muiti-dimensional generalizations of
the hyperbolic plane, ie. the Poincaré upper half-plane endowed with a hyperbolic
geometry. We evaluale the path integral on §, = SO(n,1)/SO(n) and S; =
SU(n,1)/S[U(1) x U(r)] in a particular coordinate sysiem, yielding explicitly the
wavefunctions and the energy spectrum. Furthermore we can exploit a general property
of all these spaces, namely that they can be parameterized by a pseudopolar coordinate
system. This allows the path integration lo be separated inlo one over spheres and an
additional path integration over the remaining hyperbolic coordinate, effectively yielding
a path integral for a modified Poschl-Teller potential. Only continuocus spectra can
exist in all cases. For all the hyperbolic spaces of rank one we find a general formula
for the largest lower bound (zero-point energy) of the spectrum which is given by
Ey = (K2/8m)(mq + 2Zm2a)? (ma and my, denote the dimensions of the root
subspaces corresponding to the roots o« and 2o, respectively). The case, where a
constant magnetic field on S; is incorporated, is also discussed.

1. Introduction

The study of hyperbolic space has a long history, starting with the pioneering work
of Fricke and Klein {1] and Poincaré [2]. The remarkable property of spaces with
constant negative curvature (Gaussian curvature K = -1, Riemann curvature R =
—2), in particular the hyperbolic plane # (Poincaré upper half-plane, Lobaschevsky
plane, Poincaré disc) is that under a group action (Fuchsian group) a tesselation
of the entire space can be achieved, the actual tesselation consisting of arbitrary
hyperbolic polyhedrals with geodesics (geodesic planes) as boundaries. The specific
feature of these gecometries enables one to have finite polyhedrals which may be
compact as well as non-compact. One of the important mathematical properties of
the hyperbolic polygons tesselating the hyperbolic plane is that they ¢an be identified
with Riemann surfaces of a particular genus,

However, the actual study of Laplacians on these polyhedrals in general, and
on Riemann surfaces in particular, respectively, turns out to be extremely difficult,
whereas the Laplacians for the free motion (often & constant magnetic field can
also be included, so-called Maass-Laplacians) on the entire spaces are relatively easy
to solve, including the determination of the (free) wavefunctions, the (continuous)
spectra and the energy-dependent Green functions (resolvent kernels). One of the
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original hopes in the study of trace formula¢ was that they could provide some infor-
mation about these spectra. This was one of Selberg’s motives [3, 4] for developing
his famous trace formula for PSL(2, R).

Only recently have physicists have become interested in trace formulae, in partic-
ular for Riemann surfaces. This interest emerged from three reasons:

(i) In bosonic string theory one deals with a path integral formulation due to
Polyakov [5, 6], where in the subsequent integration (see [7] and references therein)
over metrics one has to sum over all genera of the (closed) surfaces the world-
sheet can take on, in fact a perturbation expansion, and integrate over all possible
deformations of these surfaces for a fixed genus which is an integration over the
Teichmaller space. The closed surfaces can be identified with polygons tesselating the
hyperbolic plane, cf the uniformization theorem for Riemann surfaces.

(i) In the semiclassical regime, trace formulae emerge for classically chaotic
systems in the context of periodic orbit theory which was systematicaily developed by
Gutzwiller [8], and it did not take long before he rediscovered [9] the Selberg trace
formula, albeit in a different context, and that furthermore, the Selberg trace formula
is an exact formula.

(iii) In quantum chaos the study of classical and quantum motion on these Rie-
mann surfaces emerges quite naturally [10] because the classical motion is highly
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chaotic and two-dimensional systems are the simplest sysiems where this can occur.
By a thorough study on the lowest genus g = 2 case Aurich et al [11] achieved much
in understanding the classical and quantum properties (Quantum chaology) of this

particular system.

The simplest case of the hyperbolic plane is easy to generalize to higher dimen-
sions, ie. hyperbolic space. For example, the metric on the Poincaré upper half-plane
H={z=z+1ylz € R,y > 0} endowed with the hyperbolic metric

_ dz? + dy2

ds? - (1)
Y

is generalized to (e.g. [12-20])

o def +dal4 . +day; +dy?

ds - (1.2)
with the hyperbolic space H®™ = 80(n,1)/SO(n) defined as H" =
{(21seeestm_p¥)|®y,. .. 2, € R,y > 0}. Of course, we have H = H* =

S0O(2,1)/S0(2). The space H™ will also be referred w0 as 5.
Generally these hyperbolic spaces have a common structure, One considers the
Hermitean p + g form (see e.g. [21-23])

QP! = yiw 4+ YT, — Yy Tprr — oo~ YpggTpag = € (1-3)

and asks for the Lie group of linear operators acting on FP*? which leaves it invariant;
Here F can be ¥ = R, F = C or F = H, respectively, where H denotes ne neid ot
quaternions. Of course, x,y € FP*9). For the hyperboloids leading to the study of
hyperbolic spaces, we have p=mn, g =1 and e = -1, say.

In this paper we are going to study the path integral formulation on the
four multi-dimensional hyperbolic spaces of rank one, namely [16] S, = H™ =
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SO(n,1)/80(n), without and with magnetic field, S, = SU(n,1)/S[U(1) x
U(n)]} and 83 = Sp(n,1)/[Sp(1) x Sp(n)}, respectively. We can also include
in our discussion the remaining rank one case, the so-called exceptional space
S, = F4(_20)/Spin(9) [21, 24]. ‘The group pairs (SO(n,1),50(n)), (SU(1,n),
S[U(1) x U(n)]), (Sp(n,1),[Sp(1) x Sp(n)]) and (Fy_sg, Spin(9)) form so-
called Gelfand pairs, e.g. [21]. (Note that the convention whether one uses SO(n, 1)
or SO(1,n) etc, respectively, depends on the signature of the metric one uses in
QP®), say)

We evaluate the wavefunctions and energy spectrum explicitly. Furthermore an
analytic expression for the Green functions (resolvent kernel) will be given in the
case of 5,.

The rest of this paper is organized as follows:

In the next section, a summary of an appropriate path integral formulation on
curved spaces is given, and the relevant formulae for time transformation and sepa-
ration of variables in path integrals, respectively, are cited.

In the following two sections the path integral treatments of the spaces S, and
S,, respectively, will be given. We evaluyate the path integral in the rectangular
coordinate fofmulation, generalizing the Poincaré upper half-plane. For S, a path
integral treatment in pseudospherical polar coordinate system will also be given,
thus exploiting the underlying SO(n) symmetry. For S, a separation in terms of
SU(n - 1) polar coordinates is possible and will be presented as well.

In the fifth section we use some general results from harmonic analysis on hy-
perbolic spaces of rank one to achieve a complete separation in terms of a path
integration on spheres and a hyperbolic coordinate. The remaining path integral
over the hyperbolic coordinate turns out to be the path integral for the modified
Pschl-Teller potential which can be explicitly solved.

As we shall see many recent path integral calculations are needed in order to
evaluate the present ones, demonstrating the power of the whole technique. The
sixth section contains a discussion and a summary.

In appendix A we briefly review, for clarity, how to do the path integration on the
covering unit sphere of SU(n, 1), and in appendix B we point out some relationships
between the path integration of the covering unit spheres of the group spaces of the
group manifolds SO(n,1), SU(n,1) and Sp(n, 1), respectively.

2. Formulation of path integrals, time transformations, and separation of variables
In order to set up our notation we proceed in the canonical way for path integrals on
curved spaces [25-28]. We start by considering the generic case where the classical

Lagrangian corresponding to the line element ds® = g,,dg°dg® of the classical
motion in some D-dimensional Riemannian space is given by

) m [ds\* n a -
Ley(g,q) = 5 (E?) -Vig)= glgabq ¢ - V(q). (2.1)

The quantum Hamiltonian is constructed by means of the Laplace—Beltrami operator
Arp

h? 1 a8 8
H= g A+ V()= ~gm g ma"Vigo + Vo @2
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as a definition of the quantum theory on a curved space. Here g = det (g,,) and
(g*®) = (g,3) ™" The scalar product for wavefunctions on the manifold reads

(f.9) = /dq\/ﬁf‘(q)g(q) (2.3)

and the momentum operators which are Hermitean with respect to this scalar product
are given by

__h(a_}_&) P oL 2Inyg

Pa=7\3g@ T2 = g @4

We now rewrite the metric tensor as a product according to g,; = h, h_, [29]. Then
we obtain for the Hamiltonian (2.2)

i 1
H=—5—Ag+V(g) = 5-h*p,ph® + AV(g) + V(q) (25)
and for the path integral

K(q",¢;T)

q(t"}:q" ”

- [ vaaoend i |

q(t)=g¢’
m \~NDj2Zl , -

i - | I U/ al gtd)

!\']'Enoo (Qwieh) =1 /dq 9(a)

., N
i m . . . }
X exp {ﬁ E : [_zehbc(qm)hac(qu 1))Aq(1).aAq(J).b
j=1

[%hachcbqﬂéb_v(q)_AV(Q)]dt}

—eV(ql)) ~ eAV(q(j))] } (2.6

Here Agl) = ¢U) — ¢i=1) for ¢') = q(t' + je) (¢ = (¢ - ¢'}/N = T/N,
i=1,...,N). AV denotes the well-defined quantum potential

B2 a
AV = o [¢°°TuTy + 2(9°°T3) b + 9°° s
h? ¢ b b
+ _8_1_ (2hach C.ab _ hac‘ah c,b - hac'bh c‘a) (27)
T

arising from the specific lattice formulation for the path integral, respectively, the
ordering prescription for position and momentum operators in equation (2.5). In this
paper we always use the lattice prescription from equation (2.6).
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In order to discuss time transformations in path integrals we consider the D-
dimensional path integral

K(a" o T) = (L)Nmﬂﬁl'/fn(x(n)dxm
N—ooo 27mieh o

V)
Fr0)
2.8)

. N
X exp {1 Z[ f(;,;: -1) )f(I(J))(;E(J) -~ gli- 1))2

i=1

We perform the time transformation

' de

— —_——l " = o 9 = ]
5= |, F=(e)] s" = s(t") s(t)=0 fo fHz(s)ds =T (2.9)

where the lattice interpretation reads ¢ /[ f(zV~1)) f(x())} = 64) = 6. We identify
e{1) = z[s(1)]. The transformation formulae for a pure time transformation are,

LA RIS AN HNILRHE 1R 0 1L 1w i r- L ]

according to Duru and Kleinert [30] and Kleinert [31], given by

1
K(z",2;T) = SR dE —ETIRG (2", 2'; E)
- ) (2.10)
I 2 el By = 3 20 £ Rt D2 f s K2 2 g™
A CECEIE S i WA F A J, 98 BELERSY
0
where the transformed path integral K(s’) has the form
3‘{3”):.’.{'”
AT I v P AU [ »or
K", 26" = [ Dr(s exp{ ? 2—"(::)-1—12{1)5}(15}
z{M)=z!
(2.11)

A product lattice formulation is assumed in the path integral (2.11). Note the dif-
ference in comparison with a combined bpawumc iransiormation, where a factor
[£(2")f(2")]/* would appear instead [28, 30].

Finally, I cite the separation technique in path integrals [32]. Let us assume that
the potential problem V() has an exact solution according to

'

2(t")=2"
f

Dz(t)exp i

r
’

j (54~ V()] dt}

-~

;.,.[ e

r(t)=gz'

= .[dE)\e'iE*T/hlI'f\(a:’)lIlm(w"). (2.12)
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Here [dE, denotes a Lesbeque-Sticljes integral to include discrete as well as con-
tinuous states. Now we consider the path integral

K(z", 2,2, 2";T)

= lim ( m )ND/QN 1 3200 (g4 dzt?)
= N % \27ien i Hg(z Mz ./H x

. N a’
il m (2G40 20N A2,0)
xexp{hZ[zf(gg,(z )g; (YA,

j=1

d
+ £ (200 ZA%E))

k=1 /

V() | |
_e(f—ﬂ((g-(%)j+W(z(”)+AW(z(“))] . @.13)

Here (z,2) = (2;,2;) (i =1,...,d3k =1,...,d, d +d = D) denote a

n_A. nwal o vl iy
L7-GINEN 1 iy

~ tha A~
uila

3y
/ ﬁlu, g, and [ the wITESpGFdil metfic ferms, and
AW a quantum potenual according to equation (2.7). For simplicity we
assume that the metric tensor g ; involved has only diagonal elements, that is,
9oy = diag[gd(2),03(2), -, 93.(2), F2(2),. -, f2(2)]. Detlg,,) = FHIL ) 97
= f?¢ §(z). The indices ¢ and k will be omitted in the following. As shown in
[32] the = path integration can be separated by performing a time transformation

macsrdinse b
ak

wu.uus w \L 7} lUl I.I.l allu Uabl\ ylblullls
ot .1 _f,
K2, 2", ;T

z(t“):z”

= [F(=") f(2")]~4/2 j 4B, W3 (2)W (=) / VaHD=(1)

z(t)=2'
{ i '/.t
X exp 7
tt

We will rely strongly on these formulae in this paper. The limits x(t') = x' and
z(t") = z" etc will be omitted in the following.

"

L TON 22— z)—- z
[2 g“(z) Wiz)~-AW(z) - e )] dt}
(2.14)

3. Quantum motion on the hyperbolic space H"

We start by considering the n-dimensional gencralization ‘H™ of the Poincaré upper
half-plane ¥ [13-20]

={(xy,. ey, e, ERy >0} (3.1)
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endowed with the hyperbolic geometry (1.2). We call this parametrization the rect-
angular coordinate system for H™. The metric tensor and its inverse are given by

1 . a .
(gab)=—2d1ag(l,...,l) (¢g**) = ydiag(1,...,1) 3.2)
D=1 times D—1 times

and its determinant is g = det(g,,) = y~?* = y~P-1. The invariant volume
element reads as dV = dx, ...dz,dy/y?~!. The classical Lagrangian and Hamil-
tonian have the form respectively '

mzi -+ 2l + 9P 1
5 ” el He = %yz(Pil +.--+ Pin_l + Pi)- (3.3)
According to the prescription given in section 2, the construction of the momentum

operators and the quantum Hamiltonian is straightforward yielding for the momentum
operators

ECI

R 8 ko D-1
= -— k=1,...,D-1 = - [ — — 3.4
b= iae ) n=t(a- 2 (34)
and for the quantum Hamiltonian we obtain
H= R 1 ab\/—
T 2m \/"Bq dgb
R [ 8* a? 8 D-329
Al e — e 22 3.5
2Zm (Ba:f Tt ax,_, + 9y? y ay) (3-5)
1
= 5y(pa, -t po,, T PIY T AV(Y)
with the quantum potential AV (y) given by
ﬁ2
Vv = e _ - 3). .
AV(y)= g—(D~1)(D-3) (3.6)

Consequently the path integral for the free quantum motion on K" has the form

—‘H"({mu,mf}’ yrr, yf; T)
_ Dy(1) i [ [mEl b, +
= ]D{E(i)} yD-1 P{E/t' oY "

-—1)(D—3)]dt}

ﬁ'.?
) NeD-1)f2 Nzl [ peo dy;;y 53
s (0 )

j=1

X exp { Z {"" Alzgy++ "-\“m(a‘).D—z + A%y,
h Yi-n¥)

_685711(0_1)(1)-3)]} 3.7)

and we use once and for all the product lattice formulation. {x} denotes the collection
of the variables =, (k = 1,...,D —2). We cvaluate this path integral in three
alternative ways.
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3.1. Calculation of the Green function

We perform a time transformation in the path integral (3.7)

s = [[vads s=at)  a(t) =0 f & _r @8

This gives the transformation formulae

{eo]
K™ ({z", '}, ¢, ys T) = 21:iﬁ/ G* ({=", '}, y", s E)e FT/MdE
(3.9)

Gﬂn({a“:",m'},y”,y';é)=i(y' n)D 3)/2/ K®" ({:t:" xr} y y s")ds”

where we have abbreviated £ = E — (h*/8m)(D ~1)(D — 3) and the transformed
kernel K{s") is given by

I"{H“({Ifﬂ’xf},yn, yl; SH)
-—-]D{x(s)}vy(s)exp{%[ | T +$Dz+y)+E] }

= [ Dlats) sl IDu(s) exp [‘—;% /. (:i:f+--.+:is?[,_2+y2)dt]

2mVY'y (21r1hs”

D-2
m ! m t
x exp [ 2ihs' (Z(fié -z )+ yr2 +y 2)] 5\ (ihsn y'y') ’
k=1

(3.10)

Here A = +i\/2mE/A2 — (D —2)2/4, and we have applied the well-known path
integral identity [33-35]

(1" )=r" e
Dr(t)p,[r?] exp [ oF f (#? —w?r?) dt]
r(t)=r
mwy ' r! mw 2 3 -
— — . 11
ifisin wT [ 21 f( T )COth] L ihsinwT (-11)

for the radial harmonic oscillator with the functional weight g, [r?]

N
w,[r?] = A;ri—,}}nnﬂv[r(,v—l),.(,v)]
i=t

y N ommpli-tp 2 mpli=1)p) . mru—nru))
_NE"mH( ieh P T v Teh

1=1
(3.12)
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in order to guarantee a well-defined short-time kernel [28, 35, 36]. Introducing the
hyperbolic distance [16]

(fk “mk)2+y'2+y
v'y”

coshd(q¢”,q') = 2 (3.13)

we obtain for the Green function
GH“({::",;B'},y”,y'; E) = I—;—(Qw)l_DN

[oe]
x/ 22732 exp {—z cosh d(q”,¢')}, (2)d=z
0

T(1D-142))
(sinh d)D/2-1

m e-iT (D-3}/2 (D372
T wh i : 3.14
wh (271' sinh d) Q..%_im/h(cosh d) (3.14)

Here E, = k?(D—2)?/8m, and P¥, Q¥ denote Legendre functions of the first and

second kind, respectively. A Wick transformation has been performed and use has
hasn made nf the intearal 117 P 71'%1

peenl mace of |.uv RARW LI |-F iy

m — -
= ?(Zvr)l bfz Pp)a-a(coth d)

o0
/ e—tzf\/z_z:-l'I#(t)tv dt = F(V +u+ 1)(22 _ 1)(V+1]/2P;F(z)
0 (3.15)

Re(3D0 -2+ X)) > -1
and the relations [37, p 1006]

e™iTH Q¥ (cosh 2) = ,/qS ——T(v+pu+1)P7;C 12(coth z) (3.16a)

Tv—p+1),
[’(u+u+1)""

Note that we have chosen the negative sign in the square-root expression in order to
get the correct retarded Green function. In particular, in order to work with well-
defined mathematical formulae we assume that £ has a small positive imaginary part
ie and write E 4 ic (with real £ and € > 0} instead of E whenever necessary. The
result (3.14) is in accordance with [16, 38]. Furthermore, this result makes it possible
to come into contact with the path integral and Green function for the D-dimensional
pscudosphere A”~! [38]. As has been shown in [38] the Green function for the D-
dimensional pscudosphere parametrized by [D-dimensional pseudopolar coordinates
[39]

QH(z) = eTH

£(2). (3.165)

xz, =coshr

x,_; =sinh rcost,_,

T, _, =sinh rsind, _,cosl, _,

(3.17)

&, = sinh r...sin d,cos ¢,

ry = sinh r...sin #4sin 0,
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(0€8 <iw, j=1,...,n—2, 7> 0) is given by equation (3.14) and the
corresponding Feynman kernel has the form [K™"(T) = KA°7(T)):

I(H“({:c",at'}, yn, yl; T)

__1-( 1 )(D-3)/2fmd 1'\( _
= 27 \2wsinhd . P T'(ip)

hT D-2)2
'P,(: 5;/2(cosh d) exp [ 12 (P2 + (———4—&)] . (3.18)

In particular for D odd one uses the general property

dm

me LY = mf
Q) = (" - —

Q.(2)

together with the integral representation [37, p 819]

_ [" ptanh npdp
Py = [ ESETEER, pa). (3.19)

For D even one has to use the relations (compare [38] for more details, there is a
sign missing in some formulae,

( L )(” " Dip+ (D ~2)/2)  s-py2
sinh z

Tip) ip-1/2 {cash 2)
d (D-2)/2
= (—-m) Elpz (320{1)
1 n—1/2 12 - d o
— i = — [ ————] €%, .200
(27: sinh z) @ ip-1/alcosh 2) P (2n'd cosh z) ¢ (3.200)

From equation (3.18) we deduce that the spectrum for the free motion on H™ is
given by

n h2 D_gg
EY =2—7;[p2+———-( 7 )] (3.21)

and the largest Jower bound (zero-point energy) of the spectrum is

KD - 2)?

Em

EX" = (3.22)

which is in accordance with [16, 38].
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3.2, Calculation of the wavefunctions in the rectangular coordinate sysiem

We investigate the path integral on X" by the separation technique. The =z, de-
pendences (k = 1,..., D — 2) are that of free particles in RP~2 and we obtain by
separating them (k? = 3272 k?)

-K‘H” ({‘r”’ :L"}, Ha y" T)

= exp [_—"(D— l)(D 3)] (y"y”)(n 2)/2 H j dkf lk;(:z" —)
f y(t) { %22_ - 5%52.;62] dt}

-2
dk \ x) —x! 2 =
= (4 y") =D H] dky ikital ')?ﬁfg dp

ihT (D - 2)?
2Zm (p + 4

)] psinh mp K (ky') I, (ky")
3.23)

Xe_x_p[

where use has been made of the path integral solution for Liouville quantum
mechanics [40], i.e. we have performed the coordinate transformation y = r¢ yielding
(40, 41]

el 25 v])
=e‘”‘7/5"‘/’l)q(t)exp{ f [% q]dt}
2

=3 [ dpexp [——( + )]psinh‘rrpf('jp(keq')Kip(keq”)
aQ
(3.24)

accompanied by a careful Taylor expansion in the kinetic energy term of the path
integral, ie,

im () — yli=1 L im ich
W —yo D) L im Gy gamnyz (3.25)

Sch yG=1yG) 7 26k &m

where the symbol ‘=" has been used—{following DeWitt [26]—to ‘denote equivalence
as far as use in the path integral is concerncd’. K, denotes a modificd Bessel
function. This pives the wavefunctions on X"

-2
n dk; | 1
v = | ] ==e™ | =2psinl (D=2 (k .26
tho{ehs) (1:: Var' )w peiniTry alky) 029

and the energy spectrum has already been given in equation (3.21). The orthonor-
mality and completeness of these wavefunctions have been shown in [40].
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The representations (3.14) and (3.23) can be transformed into each other. We
consider the Green function from the kernel representation (3.23) and introduce
(D — 2)-dimensional polar coordinates for the scalar product
k(z"—a') = k|- z" - &'|cos ¢
with 1 = Z(k - (2" — 2')). This gives (k? = |k|?)
G‘H" ({xn, mr}’ yn’ yl; E)

_ _Q_hfm psinh wpdp (y'y") P~/
11'2 0 52p2/2m+E0—E

(P2 ryg

X dk; ik'(=”—w’i\ K (kuV K. (ky'™
k;l:{j 27 ) Cip (kYD) K (ky")

— _?_E-/m psinh mpdp (ylyl!)(D-—'Z)/Z
72 J, Rp*f2m+ E,-E

[~ [aq, eikle"-<
-\2—-D EP-34k 1 dq, ekle —=lcos e (ky'

j ﬂbk IP L

= i ___1._.... (D—4)/2(y,y")(D_2)/2 /00 psinh rpdp
- Rp*f2m + E, - E

8

x | dkkP=212J ) (Rl — @) I (ky') Ky (ky") (3.27)
Q

where the integral over d2 was, for example, calculated in [28]. Using now [37, p
696]

oo
f ¥t T, (ex) K (ax) K (bx)dx
0

_ Vre'T(v+ p+ D0 v —p+ 1)73‘”“”2

532 (ab) Fi(uZ — )eAAE amtjz (V) (3.28)
where u = (a® 4+ b? + ¢?)/2ab, we obtain
(D-3)72
n ﬁ 1
H ot "ol -
G2y ) = 2 (‘.Zwsinhd)
= dp Flip+ (D -2/ 3-p)2
: hd

X -/G fi?p:'/Qm + ED - E p(lp) plp-—lfz (COS )
(3.29)

and cosh d denotes the hyperbolic distance in ‘H™. The last equation is the energy
Fourier transformed from equation (3.18) and therefore it {compare [38]) equals
(3.14).
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3.3. Calculation of the wavefunctions in polar coordinates

We can also exploit the natural symmetry of the system. Introducing (D — 2)-
dimensional polar coordinates [42]:

z, =7rcosb,
T, = rsin b, cosf,

xy = rsin 8, sin 0, cos 0,

(3.30)
xp_z=rsintsinld,...sinf,_,cos ¢
Tp_p=7sinfysinf,...sin 6,_,sin ¢

where 00, £ 7 (v =1,...,D0-4), 0 ¢ < 27 and r > 0, we get
K" ({2", &'}, v, s T)
' AT
= exp [—-8~T—F—L—(D— 1)(D—3)]
x (ylyn)(D-3}/2(rrru)(a—D)/zZz S{‘(Q’)S{‘(Q”)
=0 p
Dy(t) i [UTm P+ (I (D-4)/2)" -
x] y? exp ?i_/t; 2 42 Wy 2mr? dt

= exp [-—%(D — 1)(]_) _ 3)] (y:yu)(D-Q)/‘z(r:rn)(z;_.p)/g
ad 0
X Z/O dkJr+(D—4)/2(kf")-]1+(p_4)/2(kr”)
I1=0
Dy(t) i f"' my® Kk,
H ! e " 1 my Atk
x 3 SH@)ST@ ) [ 22 exp{ﬁ R Y

o0 (o]
= (r'p")=D)/2 Zj; dk Jiy(p-ayy2(kT) iy (p_ay o (RT")
=0

% z S;‘(Q')Sf‘(Q”)(y'y")(D_z)/z

I
2 [® inr ., (D- 2)2)
“ 2 ) dpep [‘g—m‘(f’ T3
% psinh wpﬁ’ip(ky’)]fip(ky”) (3.31)

where use has been made of equation (3.11) for w — 0, [37, p 718]

o0 2 1 02 + b2 ab
/0 Pl z“Jp(a:c)Jp(ba:)z:dm = Wexp (— pys: i, (2—p2 (3.32)
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and we have once again used the path integral solution for Liouville quantum me-
chanics. The S| are the real hyperspherical harmonics on the (D — 3)-dimensional

sphere S(P-4) [42] and Q denotes a unit vector on S(P-4). The wavefunctions
consequently are given by

Ui (2, y)

- 1 . —2)/2 5
= pl4 D>/2\/EJH(D_4),2(kr)sr(n)?/zpsmh mpy' P E (ky).
(3.33)

3.4. Incorporation of constant magnetic fields

The incorporation of constant magnetic ficlds is quite easy and will be presented here
for completeness. Generalizing properly the case for the Poincaré upper half-plane
[43] we can formulate the path integral on H™ with the (D —1)-dimensional magnetic
field vector B and vector potential A, respectively,

em em
=—0N0 b= —— 3.34
A= B (3.34)

with e the electric charge and ¢ the velocity of light. Similarly as in [44] we obtain
for the appropriate path integral formulation (A, = B, = 0 gauge)
I(‘Hn’b({m”a T’} 3 y", y': T)

= exp |- p_1y(p-3)| [ 2¥D [p(aa
[ 8m y

X ex ijtf’ mEi ... +Ed_ + 9
P& v L2 y?

_blm:1 + ...+ bD_zl'D-z] dt} (3.35)

¥

and again the product lattice formulation is assumed. Performing a Fourier expansion
inthe z; (I=1,...,D —2) gives

KM ! 2}y s T) = 1 * I\"H"‘b(y”,y"; T)eik-(z”—z')dD-Zk
D=2 {k}
(2m)P=2 J_

(3.36)
with
Ky ' ys T)
. _ 9y2
= (ywyu)(D-z)/E exp [_ﬂ ((D 2) + b2>]

2m 4

i

i ff[m. E?
x/'l)q(i)exp{ﬁft, [?qz——%—-(k-kezq—2k-beq) di

(3.37)
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where the transformation y = e? has been made. The path integral in the coordinate
g is now the path integral for the Morse potential

52;? (€27 — 2are?) (3.38)

VM

which has been treated in [44-46]. Setting « = k- b/|k[* we get, therefore, the
solution of the path integral (3.35) reading

I&’Hn’b({x”, .’L"} , yu, yl; T)

Nas

_ Z e_iE“T/ﬁ\p;lk_}in({w’}’ y;)\p{k}'ﬂ({xu}, yn)
n=0

+ f0 dpe B T/MET (2", ) g0 ({2, 4). (3.39)

The wavefunctions and the energy spectrum for the discrete spectrum are

__ g, B [a, (D=2)°

T

kb
|k}

elk-= \/n!(Qa“cl——Qn ~1)

R=0,..., Ny < g — & (3.40)

Yinnleh ¥) = o7\ SR T alR = )

x (2|kjy)etH=mentty LM =20 =D 3]k y) (3-41a)
_ eik= nH(2alkl-2n-1)
T (2r)P-2)/ 2|k (alk| — n)

X (=1)" Wikl alkfen-1/202(k{y). (3.416)

For the continuous spectrum we obtain

_ R, (D-Q)Q]
Ep‘z—rﬁ[p + b+ (3.42)
elk® . 1\ [psinh2mp
iy pll=hv) = (27)(D-D7/? I (ip— afk| + 3) _"'TM—["‘ Woikip( 21 kly)-
(3.43)

The L“)(z) and W,  (z) denote Laguerre polynomials and Whittaker functions,
respectively. The orthonormahty and completcness properties of these wavefunctions
have been, for example, discussed in [43, 44, 47, 48].
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4. Quantum motion on the hyperbolic space SU(n, I)/S[U(1) x U(n)]

Next we consider the space S,. It has a more complicated structure than S,.
Following Venkov [16] we take for the metric in the hyperbolic space S, =
SU(n,1)/S[U(1) x U(n)]

2
2 h{3

ds? = d_y92_+§152dzkdz; (d;.:l +Imszdzk)
k=2

k=2

dy? 1 & 1 -
= =5+ = 3 (do} + dy}) + — [do? + 2dz; Y (7,dys — vpdey)
v Yy k=2 Y k=2

n 2
+ (Z(wkdyk ~ ykdwk)) ] @.1)
k=2

Here we have set z, = x, + iy, € C for the (n — 1) complex variables. The metric
tensor in the coordinates (4.1) is given by

1 —y . T, R, —Y, x, 0
—¥Yy y% +v —Lally .. Yo Y2 —yz, 0
1 ®y  ~xpy, YR Lz, TyTn 0
)=z ¢ ¢ A P “2)
¥ — _ 2 2 _ 0
Yn  Yoln Taly . Ypty g T
T, ~T,Yy  Tek, ... —T,Y, E2A4yY: 0
0 0 0 0 0 y?
where we have ordered the matrix entries according to (x,, &, %2, .+ » Lps Yp s ¥) X
(T3 Tgy Ugy e sTps Yno ). Its inverse (g2°) is calculated as
R D N L T
Yy 1 o ... 0 0 0
-z, 0 1 ... 0 0 0
(gab) = y2 ’ . ' ‘ . (43)
¥ 0o 0 ... 1 0 0
-z, 0 0o ... 0 1 0
1] 0 0 ... 0 4] 1

We call this parametrization the rectangular coordinate system for the space S For
the determinant we have g = det(g,,) = 1/y*"+2. The determinant and (g“ ) can
be obtained from {g,,) by considering first the case n = 2 and then by induction.
The hyperbolic distance in S, is measured by [16]

2
coshd(q',q") = 4(y' m (Z(r -—a:’k)2+y'2+y”2)

2
(a:l -2\ + Z(:vky}c - y}c'm’k)) jl . 4.4)
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The classical Lagrangian and Hamiltonian, respectively, have the form
m | 2 1 1 e :
Cs’=-~-—+——2 E g :i:+9§ zLE
2 [yg yg et i ki y4 1 s kE*k

m 1. . . .
= —2—{ 2 Z( zy+ yk y4 [xf + 2z, Z(‘Bkyk - yk‘“k)

k=2

2
( (Ikyk ki‘k)) ]} {4.5a)

2 n =
y
H = lpi + 2 (0% Py) + 2 (e, — TPy, )P,
k=2 k=2

+ (y2 + > (=3 + yﬁ)) pil] : (4.55)
k=2
According to the general theory we have

h 8

= — =1
Poi = T8z, k=1,....m
R 8
= - — =2,... .
Py, [ 9y, k R (4.6)

_h E__?n-i—l
BT T\ay T T2y /)

Therefore we obtain for the quantum Hamiltonian according to equation (2.5)

8 2n—-18 i a?
(8_y2 y ) Z(aﬂ?k 3%2)

+2i 0 3)—+(2+Zﬂ:(m2+ 2)‘9—2
k=2 “ Ba, awk kay“" Y k=2 * . 3:7:%

ﬁ?

ﬁz
H% = 2
2m

s
Arg = 5y

1
=5 [ypyy + 3 E(p“ +p2,) +2¢° Z(ykpm TPy, )P,
k=2 k=2

+y2(y2+z(mi+y§))pill +AV(y) 4.7)

k=2

with the quantum potential

2
AV(y) = g—(an? - 1). @3)
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This gives for the path integral

K5 ({z",y" Yizps (2" ¥ e, 2T, 20, 8" 05 T)

= exp [———(4 z 1)] Di(fl)f'f? ;(t)Hf'Dwk t)f‘Dyk(t)

X exp H%/t‘ (%}_ {% ['Q?-i— Z(Sﬂi + y"é)]

k=2

1, Lo, .
+ Iyl {T% + 2z, Z(‘Ukyk — YpTy)
k=2

+ (Z(%Qk - yki’k)) ] }) df]] . 4.9
k=2

We evaluate this path integral in two alternative ways.

4.1. Caleulation of the wavefunctions by (n — I)-fold two-dimensional polar coordinates
Introducing polar coordinates according to

Ty = 1, COS @y
Y = T sin ¢y {(rpy, >0,0< ¢, €2m,k=2,...,n) (4.10)
yields for the path integral K 52(T)
K5 ({z", 4" Vg @' ¥/ Veago 2, 200" 05 T)
= K ({rf, riYico {1, @k Yhan 2o 200" 05 T)

iRT D
= exp [—%5(4112— 1)] / y.gl(_:l) (t)H /T'Drk(t)/‘l)dak(t)
B ! .
X exp ('lﬁft {%[y%z:(ﬁwiéi)]
- k=2
m i.a L 2 3 = 2 2 By? = 1
*gpelitren Lot (Loie) [+ 50 o))

k=2 k=2 k=2
4.11)
and an additional quantum potential
hid ﬁ,?y?
AV = ~ 4,12
kZ=2 8mri (4.12)

appears due to these polar coordinates [28]. In order to evaluate the path integral
(4.11) we start with a Fourier expansion in the coordinate z,. This gives

K2 ({rls i Yesa {0k, @ }Ecns 20, 20, 0", 0 T)
1 ® - n n iky(z! =)
= E;f dkey K ({70 ) Rago {01 04} Rann v, ¥/ T 0070
-0
{4.13)
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and we obtain for the kernel I (T)
I{ff({'f‘:, T;c}z—2’{¢" d’k}k gay sy 1 T)

- ] dafe =20 K ({2, y" iy, {2y ¥ ico 200 24, v 5 T)
~o0o

= y'y" exp [_%(41&2_ ]f’DQL:L(tI) H-[ kDT'k t)‘quk(t)

. 1
X exp {%/; [;;2 (y + Z(rk + rkqﬁk))

k=2

L Y+ 3 2] t}- .14

k=2

Proceeding, we perform a Fourier expansion in the variables ¢, (k = 2,...,n), ie.
I(ks:({rga 7";::”::2, { Za ¢$;}E=2a Y,y T)

(27r)n -1 H Z Ky g (0 midees v, 0 T) 9200 (415)

k=2l =—c0

with the kernel Iy 4, 1(T) given by

n
K32 (ks i) e v 05 T) = [L(rorf) =20y ) 002
ihT Dy(t)
X exp [—%(4112—1)]f—-%—)H/Drk(t)
k=2
. e n
X eXp -l-f i? v+ Zr%
T k=2
ﬁ? TR -3
Z LS Z ~ —QZlkk + By | dty. (4.16)

Tk k=2

Here we have used that in the limit € — 0 we can set f:" — [ which is standard
in path integration technique. We observe that the path integrations in the variables
7y (k= 2,...,n) are that of radial harmonic oscillators with angular number v = [,
and frequency w = |k, [/m [cf equation (3.11)]. Therefore [33, 35]

I'Sz{zk}({’"ks’"k}k » ¥y T)

1 y -
= (y'y")" (H(rgr;; "ZRif*(ri,)Rffk(r}c)) h,f:‘“m}(yu,y,; )
k=2
4.17
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with the radial wavefunctions R (r) given by

R(r) = ,/F—(f%(lkl|r>f" exp(= k) LDk [r?)  (4.18)

and the remaining path integral
K& oy (95 T)
KT Dy(t)
= — {4 z.. =
exp [ Sm( n 1)] j

y
i [mr R,
- bl — E . y? . .
xexp{h./ﬂ 5 4 o Y Ay]dt (4.19)

The quantity E, is given by
B
3= 2 Mk (2ny + 1)+ TRyl = Ry 0] (4.20)
k=2

and we have E, > 0. The path integral (4.19) is now of the type of oscillator-like
potentials discussed in (32] which can be solved by means of the path integral for the
Morse potential (cf section 3). Therefore we obtain (w = Alk}/m)

I(f:.{h,nk_}(y”s y'; T)

h oe )
_Wﬁ dppsinh 7p
1 . BN T,
X F[EE (1+1p+ E)] exp [—é—n—q-(p + n?)

mw mw ,-_:)

2
X W_pg, f2hwip/2 (Ty" ) W_E, /2hw,ip/2 ("—ﬁ"y (4.21)

Note that due to E, > 0 only a continuous spectrum is allowed [32). Combining all
relevant terms we obtain for the path integral solution on S,
K5 ({a" y" Yoo {2’ o 2,y s T)

= K% ({r, 2 {4 S iz 2o, ¥ 5 T)

oc n o0
=/ d’"‘lH Z Z/ AP tney (T 81 20,0)
—o0 k=21ly= k=0

™
e

Ye
r
k

n
k

o 52 oty ,—ITE R
"“I"k,{ak,n,‘}pklffawlzh-&],y )e / (4.22)
with the energy spectrum
2
B, = 5—(p* + 77 (4.23)
m
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and the wavefunctions

1 ; i 1
‘I’ff,{lk.nk},p({""k Bt 2, ¥) = (r’_‘ﬂ')n_/zemlxle”km _;"Rif"(rk)‘pp(y) (4.24)

VT
where the Rf;h(rk) have been given in equation (4.18) and the @ ,(y) have the form

psinhzwp {1 mE\1

_ : A -1 2

Q,(y) = \/W r ‘.5 (1 +ip + -Tk—ll—)J YT W ks paikaip 2Ry 7)-
(4.25)

In particular the energy spectrum with its largest lower bound is E, = A*n?/2m
which is in accordance with [16].

4.2, Calculation of the wavefunctions in SU(n) polar coordinates

Due to the symmetry properties of the space S,, we also can use SU(n) polar
coordinates for the separation. We introduce [49, 50] (2n—1)-dimensional SU(n—1)
polar coordinates according to

— ida
z, = re'®"cosfB,_,
z = re'®r-1sin 0 cos 0
n-1 n-1 n—-2

Zyop = re'®n-2 sin 6,_;sin0, _,cos@ _,
{4.26)

— iga o3 :
zg=re¥sinfd, _, .. .sin 0 cos 0,

2y = re'®?sin @, _, ...sin O5sin 0,

with 0 € ¢, < 2m,i=2,...,n,0€0; <x/2,j=2,....,.n—1and + > 0. In
terms of these coordinates the iTee ciassical Lagrangian is given by

Lai(z,2) = Lo 7, (6,0}, {6, 8)}) = Lm (|2, + 5P + ... + [2,[%)

= %m (1'"2 +7r? {éi_l + cos® 0,1,_1{6,21 + sinzﬁn_l

X [912;_2 +cos?0,_,¢2_ | 4 +sin’ 6,
x (63 + cos? 0,3 + sin? 0,63 .. BE @.27)

The corresponding quantum potential has the form [50]

2
AV(r,{e,qs}):—g*—{w —* T 1+ =

. ] n
m cos? 0, _,  sin~0,_, cos?f, _,

1 1 1
o 1 - — N .28
L sin” Oy ( + cos? 0, + 5111"03) }} (4.28)
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Transforming the path integral into these coordinates and performing the Fourier
expansion with respect to x, thus yields

I(f:({mu, y”}zzz, {II’ yn’}Tkl.:?, y”, yl; T) = I"kslg(r”, T", {BH’ 01’}, {¢H’¢J}’ yH, yf; T)
ikT Dyt
= y'y" exp [—18-”—1(4n2 - 1)] / y2yn(-1) /rz“'"‘?‘Dr(t)

n-1 n
fo cos 0 (sin Ok)zk'a’DGk(t)/H'D¢j(t)
k=2 j=2

i nt m . ' ) .
X exp [E ft' (m {y? + 72 4 7? [Oi_] + cos?® Gn_lqbi +

) . . . . R2 k2
+ sin? @, (93 + cos® 0,03 + sin? 02¢§) . ]} - -ﬁy"
+ Bk, {q’an cos? O, _, +sin20,_, [én_l sin0__, + -

2
+ sin? 03( 5 cos? B, + ¢, sin® 0,) ]} + va"2

1 1 1 1
14—t - — (1 ) atl.
X [ +c0529“_1+ +sin‘03( +c052l92-i-sin2 02) ]) ]
(4.29)

In the appendix we evaluate the path integration over the SU(n — 1) coordinates.
Separating (4.29) with respect to these coordinates yields

K, {07, 0) 46", 91, v",¥'5 T)
= U U ST O S DR Gy T

{L}
(4.30)
with the kernel I';?, (T given by
K3 (" T)
.__(yf H ( trrf)l—mtfpy‘()t) D?"(i)
Y
i ny m;}g-i-’f‘z h ) 9 9 (L+n_2)2"’i
xexp{—ﬁ/v [~2— " ~ oY (klr + s
~2k, 3 L+ kfyg)] dt}
k=2

oo
- (yfyﬂ)u-]/ﬂ(T,fT_H)(S—En)/'Z Z Rl&+n-2(r1)RI&+n—2(Tu)
N=0

x Ky, vy 05 T) (4.31)
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with the radial wavefunctions (4.18), and K ; (T) is completely analogous as in
the path integral (4.19) given by (w = Hh|k,|/m)

K o w7

_ AT ] [ 240
= exp [ Sm(4n l)J | =

i [P Imy? Rk
L R i - dth.
xexp{ﬁf:- [2 Zm? EAy] t}

= dppsinh mp

o
8

1 . ENIP I

x |T [; (1 +ip + h_:?)} exp [—L(p +n )]
mw 2 mw 2
X W_Eg, 125a,ip/2 (Ty" ) W_g, jonw,ipfe ("ﬁ—y' ) (4.32)
with the quantity £,

h‘l

E, = ke, |(f>N+L+n—1)—k1§:l,,c (4.33)
k=2

Note that £, > 0, due to the construction of the quantity L, and again only a
continuous spectrum is allowed [32]. Therefore we have completed an eigenfunction
expansion of the path integral on S, in terms of SU(n — 1) coordinates as follows

oy T

!
ir&¥ »o

= K22 ({07, 0"} (&, & N omn 2l s 2l v, o3 T

[T a3 [T eruizi et 000000

L} NSO

X W2 1y np (05 {070 87} 1y e TR (4.34)

with the wavefunctions

eiklrl n— —on I
‘I’f:,{L],N,p(xla{gv ¢}ry) = "\7’“;,—"‘;“’?% ‘)({00 qb})r(s 2 )/2Rl]{f+ “(”‘)‘I‘(P)

(4.35)

with ®_(y) as in equation (4.25) and the cnergy spectrum (4.23).
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5. Quantum motion on the hyperbolic spaces of rank one in pseudospherical polar
coordinates

There is one further hypetbolic space generalizing the Poincaré upper half-plane

based on an hyperboloid Q‘_"l‘l) on quaternions [16, 51, 32). Following [16] the
metric in the space S; 2 Sp(n,1) /[Sp(1) x Sp(n)] is given by

i 2 dy2 1 g jz¥ i 127, .)
ds? = y? + o7 24202 + A2 dZn)
k=2
1 - 2
+o (d:nc1 +1m ) (z3dz, + z;+kdzk+n))
k=2
| i
+ —4 dz, 4 + Z(zn+kdzk ~ 7 d24n) G-n

k=2

Here y > 0, z, € R,and z;, = =, +iy, € C (k= 2,...,2n). However, there scems
to be no obvious solution in these particular coordinates similar to the two previous
cases. But we can use some general results of harmonic analysis on hyperbolic
spaces 1o set up a path integral formulation. We consider a hyperbolic space X as
a quotient space of a Gelfand pair (G, K'), X = G/K. This property allows an
Iwasawa decomposition according to the direct sum of the algebra on G, G, such that
G = K+ A+ N [16, 52-55]. The root system of the pair (G,.A) is denoted by P. The
Laplace-Beltrami operator (Casimir operator) on X then is the invariant operator
on X with respect to the group actions. The root system in these spaces can be taken
with all roots positive (restricted set P*) and decomposed into two systems, « and
2a, such that if 4 € P,, then p/2 is not a root. The subspaces G(«) and G(2a)
have the dimensions m, and m,,, respectively. Furthermore, the algebra G can be
written as a Cartan decomposition § = K + P, P being the orthogonal complement
of £ (note A C P). In the cases in question the subspace corresponding to the
algebra P+ can be represented as a (m, + m,, + 1)-dimensional sphere, denoted
as S(matmaa),

Following {53, 54] the Laplace-Beltrami operator in terms of pseudopolar coor-
dinates on a hyperbolic symmetric space of rank one can be rewritten as

2
Aféx 88 5 + (mg coth T + 2my, coth_r)—??—_

e Y g (5.2)

I_sinh‘r \sinh?2r sinh*r/

The operators £(**) and £(?#) act on the space of the root systems G(ot) (all
positive roots) and G(2c), respectively. Now pick a represcntation, corresponding
to the algebra P+, 1e a soiunon of the Laplacc—Bcltraml operator on the sphere

e Lamo ) . U TIPSR |
1k1:rl

w;f,{L},N,p(a’:li{éa ﬁb}s L y) = m "U{L} ({ﬁ, d)})r :

with & (y) as in equation (4.25) and the cnergy spectrum (4.23).
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Now introducing in the usual way momentum operators p, according to

E{é& T,
=-\lg=+ = = 5.4
Pr =1 (81’ + 5 ) ', =m, cotht + my, coth2r {5.4)

we obtain the separated Hamiltonian corresponding to the hyperbolic coordinate
as follows

1 B2 (2l+m, +m,, —1)2-1
GIK _ o 2o
H T 2m r+3m sinh?r
200+ m,, —1)%2 -1

with the zero-point energy given by
T
ESIK = g (ma + 2my ). (5.6)

Therefore we obtain for the separated path integral on the hyperbolic space X =
G/K
I(G/K(Q(O:"’)”,Q(a"')l’Q{Zu)”’Q(ZQ}” T”, T‘; T)
= 3 sty spa"y s, (") s Kk FK (1, 2, T)
!
5.7

with spherical harmonics on the subspaces G{ot) and G(2«), respectively, and the
kernel K,(T) given by (cf appendix B) a path integral for a modified Pdschl-Teller
potential

K )

] Y 2
= emiES T/ ¢ 1/ mee W
€ /DT( )EXP{ﬁ v L2 r 8m

2 _ _ 2 _
((‘7[+m + Mgy — 1) 1+(21+m2a 1) 1)](”}

sinh®r cosh?r
= / dpe—LE le/hqulK( r.')‘pG/Kt( r)_ (58)
The energy spectrum has the form
B2 (m_ +2m,)*
GiK — a 2a
Ep oy [ + R E— ] 5.9

and the wavefunctions are given by

‘I’G,K( )= NG/K(tanh -r)r"”2['n 2 )(cosh )P
X Fy{l+5(3m, + 1 —in), §(3m, +1=ip); {4+ 5(m, +my, +1);
tanh?® 7] (5.10a)

NG/K _ VvpsinhTp/2x?

? I[l+ 3(m, + my, + 1)]
x T[i(im, +1+ip)} (5.106)

ClL+ S(3mg + mog +i0)]
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The energy spectrum (5.9) including the zero-point energy (5.6) F, is valid for all
hyperbolic spaces X = G/ of rank one. We now specialize to the four cases of
hyperbolic spaces of rank one.

(i) The space S,. In the case of S, we have m, = n ~1 and m,, = 0. We find
E, as in equation (3.21) (D = n - 1) and the radial wavefunctions are the radial
wavefunctions on the pseudosphere A(™) [41]

I'ip+14+(n-
I'(ip)

(i) The space S,. In the case of S, we have m_, = 2(n—1), m,, = 1, we find
for E, the value of equation (4.23) and the radial wavefunctions have the form

2
DI2) (Ginh rye=n 122 (cosh T). (5.11)

Yoy =

n -
2

\Ilﬁ"!('r) Ns’(tanh 7)*H=1/2(cosh )P, F| (! + 1p, P.n4ltanh?r )

(5-124)

S, _ 1 psinh 7wp n+ip n+ip )
N = T(n E)\" 573 T{!+ 2 r 7 . (5.12h)

(iif) The space S,. Having achiceved the result for the general case we can now
also address the case of the space S,, where m, = 4(n —1) and m,, = 3. Hence

Ejs = 2] (5.13)
with the zero-point energy given by
Ep = 2 (ang1y (5.14)
¢ Taoam nt ’ )

The radial wavefunctions have the form

‘I’fsa.al("') = Nf’(tanh )2 H=1/2(cash )P

F (l+n+1_2]p,n—ltIP;Qn-{—l;tanhzr) (5.15a)

NS = 1 Ipsmh?rprfi n¢1+ip\[‘{@v—
¥ F(2n+I)V 272 U o2

: (5.15b)
/

(iv) The exceptional case. We can cven manage the exceptional space S, =
Fy_20)/5pin(9) [21, 24]. Here m,, = 8 and m,, = 7. Conscquently we have
S = o 4 11) (5.16)
2m
with the zero-point energy

h‘2

&

(5.17)
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The radial wavefunctions are given by

‘I‘i‘;(‘r) = N;,g‘(tanh )81/ cosh )P, R, (t + l;i, 5 _le;l + 8_;tanh2 -r)

(5.184)

I\'qu...________l ‘jPSinhWPF{{+5+1+iP\F/2+1+ip\ /51&1;)
P T T+ )Y 2at \ 2 )\ 2 )

6. Summary

We have discussed path integration of the quantum motion on hyperbolic spaces of
rank one. For the space S, we have calculated the Green function explicitly -

G ({=",2'},y", v E)

(D-3)/2 ‘
== (=———1—\ g'P-3/2 {cosh d) ®.D)
wh \ 2w sinh d/ —1/2-i1/2m(E—Eu)/h\ ’
The energy spectrum was given by
- H2 {D—-2)2
EV = — |p* + = 6.2
P om P 4 6.2)
with the largest lower bound
EN = . 6.3
0 8m ©.3)
Only a continuous spectrum occurred. We have evaluated the wavefunctions and
the energy spectrum in rectangular and ( D — 2)-dimensional polar coordinates, re-
p

spectively. In the case of the incorporation of magnetic fields (3.34) we obtained
continuous states with spectrum

n ﬁz [ (D - _.: )2
H™ b 2 2
EP = —‘ m Lp + b + *’1 ] (6.4)

as well as bound states with energy levels

n h? K2 (D—~2)?
HY W = L (9al] — 2 — 102 (2 N T A
Ex "= Sm(-a kf—2n~1)"+ 2m [b + 4 ]
bk
a = n:O,...,NM<O(—%. (6.5)

|k

|2

In the space S, we determined the spectrum and the wavefunctions in rectangular
and SU(n — 1) polar coordinates, respectively, as well.
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In all spaces the spectrum and the wavefunctions were determined in an appro-
priate pseudopolar coordinate system according to the general theory of hyperbolic
spaces. All cases could therefore be trcated simultancously and we obtained

I(G/K(Q(a+)"’Q(O+)”Q(2°)”,ﬂ(2a)’,T”,T’; T)
o 1] . + i " N '
= Zsz(n( sy 5y 57 ()

/ dpe=iBF N Ing SIK (pryg B (1) (6.6)
with the energy spectrum
fi G h?

ES/K = Ryt L4 5 BN = pmy t2my,)? 6)
and the wavefunctions (5.10). Thus we have completed exact path integration in
further Riemannian spaces with constant negative curvature.,
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Appendix A: evaluation in SU(n — 1) polar coordinates

We want to evaluate the path integral (4.29) by separating the SU(n ~1) coordinates.
Let us look at the path integral

I»SU(n 1( u {9” 0.'} {d)” qb'} T)

n=1 T
= /}rz"_a'Dr(t)/ H cos @, (sin Ok)gk_aﬁﬂk(i)fHD¢j(t)
k=2 j=2
i " m . . .

X exp [E/tr (—2- {r2 +° [0;_1 + cos? On_lqbf, +

+ sin” 0, (63 + cos? 0,43 + sin® quf)g) .. ]}

+ iy 7 { b, cos” 0,y + 5120, [,y sin®0, o+

+ sin? 6, (453 cos® 6, + é’a sin? 0._,) . ]}

+ i 1+ ! + -
8mp? cos? 0, _,

1 1 ! 7
. L Nad . Al
+ sin? 0, (1+c05202 +sin'03) ]) ] oD
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Performing the Fourier expansions for the ¢; (j = 2,...,n) yields (compare the
similar procedure in [50])

K300, (07,0} (6", &) T)

1 i N 1. H L - _ ’
= T I 2 ORI (0, 06T (A
Jj=2lj=~

This gives for the kernel I(f?({’:}‘ DTy

K:H({?}_l)('f'n , T", {6”, 9/}; T)

n-1 -i/2
= ! cos 8 (sin 0, sin 07)
= [H cos 6; cos 8/(sin 0 sin 07) ]
i=2

n-—1 . "
; -1 ! M. ™M 2,5
X jj]_:[l(smﬁj)-’ @Gj(t)exp[ﬁl' (?r + =7 {6._,

+ sin? 6’“_1[9.31_2 4+ - 4+ sin? ﬂgﬂf]}

2

m

2m Fad 2mr? | cos?6,_, = sin?f,_,
ho1—3 1 -3, 8-1 1
=l 4 ., fae— = dt].
* [(:052 0, _, oot sin’ 0, (c052 a, + sin? 02) 4
(A.3)

The {#} path integrations are now interrelated Posch-Teller potential path integra-
tions. The path integral solution of the Poschl-Teller potential

9 W21 a1
V{A'”)(:c)=h—(h L+ 2“) 0<z<gm Ad)

2m \ cos? sin?x

was given by Bohm and Junker [57] and Duru [S6] and has the form

. 1 2 '_)_“ l Az_ l
(PT)yp 0 4. — l-/ m.e _ﬁ K 4 4) di
KWH(2", 2 T) wa(t)exP {h v [2 T T om \cosZe + sin’ g

2] .
= 3 exp [‘g(w A+ 2n+ 1)2] TR () UP (). (AS)
=0

The wavefunctions W%"*) are given by

nk+A+n+1) 1/2
FMe+n+ DT(A+n4+1)

x (sin 2)* 3 (cos z)"*+3 PN (cos 2x). (A.6)

wAm(z) = [2(& +A+2n+1)
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The P{**) denote Jacobi polynomials. Procecding now as in [S0] we introduce the
quantum numbers

Ly = 20y + [l + |15
Ly=2n3+ L, + |1y

(A7)
Ly=2n;+4 L, + |k; 11l i=2,...,mn—2
L=Ll,,=2n,,+ L, 3+l
Performing the successive Poschl-Teller separations we finally obtain
KO e (0,0}, {e", ¢} T)
= () EI S W0 )
{L)
x Wy T, @ KL (0 T) (A8)

where {L} denotes the summation over all quantum numbers, with the radial kernel
I(L(T'”, 'r'; T)

. R ! 21.2
= exp (lhtriT) /Dr(i)eXp {-:-;f [?fﬂ - ——Z:: 7
(T &

hﬂ(L+""°)2_l]d:} (A9)

2mr?

and the ¥ ?gg“ Y wavefunctions are given by

i=2

1
n—1 T2 n
L0}, (o)) = [H 0,-,-<sin0j)”-3] (2m)" D/ exp (ika)
j=2

x Wiknka)(g,) . GlLe-stn=3kig ). (A-10)

Mnp—-1

Hence the separation of the {0, ¢} angular SU(n — 1) variables is achieved.
Note that we also have [58]

-['D:vk(t)/l)yk exp{ / [ Z($k+yk

+ hik, Z(wkyk - yk‘i’k)] dt}

k=2

- (27risin(};;gl']‘/m))n lﬁexp{ m [ﬁk cot (ﬁk T)

(xkyk "l'kyk)]} (A.11)

x [(zf =) + (i - w1+ 2
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Appendix B: path integration on generalized hyperboloids

Let us briefly discuss some general feature of the quantum motion on hyperboloids

Y,
QU = AP+ 1P+ Al - P =1 B.1)

and the numbers f are f = 1,e'% g, corresponding to real numbers, com-
plex numbers and quaternions with unit absolute values (a suitable polar decom-
position of quaternions are, for example, ¢ = (cosy,i,sin ¥, cos 1y, jsin ¥,
sin 1, cos g, ksin ¥ sin , sin1py with (0 € ¢¥3 € 27, 0 € ¥, < m, with
2= =k= 1,4 = —Ji =k, ik = —ki = j and jk = —kj = i).
Now consider a pseudo-polar coordinate system

Sat1 = Qnyrcoshr
fo = q.sinhrcosf,_,

Joe1 = @,_ sinh rsin@,_; cos @, _,

(B.2)

fa=gqgsinhT...sin 0, cos 0,

fi = gysinh T...sin#,sin 0,

(0€6;, <gmj=1,...,n—1;7 > 0). We attach to this (n + 1)-dimensional
pseudo-polar coordinate system, the numbers q; = 1 (f = 1,...,n + 1), com-
plex coordinates ¢; = e~% (: = 1,...,n + 1), or quaternion coordinates q,
(I =1,...,n+ 1), respectively. That is we consider the free motion on the
unit spheres of the group manifolds SO(n,1), SU(n,1) and Sp(n,1), respectively.
Forg=1(=1,...,n4 1) we obtain the known result for the pseudosphere
AP-1= S with a pure continuous spectrum

B[, (n—1)°
Forqg=e ® ({=1,...,n+ 1) and the covering unit sphere of SU(n, 1) [50] we
get the result for the path integration for ‘pure SU(n,1)" with a continuous and a
discrete spectrum {50], the continuous spectrum having the form

fi2
E, = 5—(p" +n%) p>0. (B.4)

In the next step we take for the g; quaternions, which means that in a scparation
procedure for the path integral covering the unit sphere of Sp(n,1), for each set of
coordinates Y (I=1,...,n41, i=1,2,3) we scparate a Feynman kernel on the
5(3) sphere instead for the case of a circle. The general feature of the SU(u,v) path
integration therefore is not changed at all (in appendix A just replace ¢, _, — ir and
¢, by the set 1 ; (t=1,...,n+1,:=1,2,3), and we obtain essentially the same
result (including some slight modification of some quantum numbers, in particular the
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{; arising from the U(1) integration are now changed according to {; — L; + 2 with

the L the principal quantum numbers of the Laplacian on the S® sphere). This
procedure gives eventually a path integral for the modified Poschl-Teller potential

h2 -,12 _ l u2 — l.
VO = S i 3 ) .
(7) 2m (sinh2 r cosh’r (B.5)

The path integral solution which can be achieved by means of the SU(1,1) path
integral [57, 59] has the form

I\"(MPT)(T”, T’; T)

Nm

AT
= 3 o (e exp { T (a(k, - by~ m) =117}
n=0
* ()= ' ! inT 2

+/0 dp @1 (7)oM) exp (—z—mp ) . (B.6)
Here k), = 3(1xv), k, = 3(1+7), and Ny denotes the maximal number of bound
states with 0,1,..., Ny < k; — k, — 7. The bound state wavefunctions have the
form

V) = N{¥)(sinh 7)1~/ (cosh )~ 2r+3/2

X ,Fy(—ky + ky 4+ &, —k, + ky — 5 + 1; 2ky; —sinh® 7) (B.7a)

. . - , . 1/2
NOnY) — 1 2(2 = DDk + &y —n)l"(k1+k2+n—1):| (B.7b)

T T'(2k,) Pk —ky+0)(k, —ky -+ 1)
(k = ky, — ky, — n), and the scattering states are given by
Qg,""‘) = Ng,""’)(cosh 7)1 2(gin] 7)*Fa=1/2

X o F (k) + ky — k) + ky + & — 1;2k,; —sinh® 7) (B.8a)

(v} _ 1 [psinh 7p - _
N]r:1rJ —F(ng) 5P [C(ky + by = &)T(~k; + ky + &)

x Tk, + ko 4+ & — 1)T(—k; + ky — 6+ 1)]1/2

(B.8b)

where x = 1(1 4 ip). Therefore we obtain a discrete and a continuous spectrum
for the quantum motion on the covering unit sphere of Sp(n,1), the continuous
spectrum being

B, .
= — 2 “ . B.9
By= o+ (2n+ 1) p>0 ®9)

Hence, in all cases the continuous spectra of the quantum motion on the covering
unit spheres of SO(n,1), SU(n,1) and Sp(n, 1}, respectively, are identical to the
spectra on the hyperbolic spaces S, S, and Sj, respectively.
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Let us stress that, in fact, any coordinate system g, can be attached to the

pseudopolar coordinates f, for any hyperboloid oP9); one just has to work out the
details, However, the nice group structure leading to the consideration of hyperbolic
spaces of rank one is revealed only for the particular cases discussed here.
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