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Dynamical zeta functions, defined as Euler products over classical periodic orbits, have recently re-
ceived enhanced attention as an important tool for the quantization of chaos. Their representation as a
Dirichlet series over pseudo-orbits has proven to be particularly useful, since these series seem to possess
in the general case much better convergence properties than the original Euler product. The conver-
gence of the Dirichlet series depends crucially on the asymptotic distribution of the pseudo-orbits and
thus on the ergodicity of the underlying dynamical system. It is shown that the lengths /, (or rather
expl,) of the classical periodic orbits play mathematically the role of generalized prime numbers. Based
on the theory of Beurling’s generalized prime numbers, we derive an exact law for the proliferation of
psuedo-orbits for the Hadamard-Gutzwiller model, which is one of the main testing grounds of our ideas
about quantum chaos. The strength of growth of the pseudo-orbits is determined by the ratio
Z(2)/Z'(1), where Z(s) denotes the Selberg zeta function. Two explicit, complementary representations
are given that allow the computation of this ratio solely from the length spectrum {/,} of the classical
periodic orbits, or from the quantal energy spectrum {E, }. One of these relations depends exponentially
on the generalized Euler constant y 5, which is therefore also studied. The formulas are applied to two
strongly chaotic systems. It turns out that our asymptotic law describes the mean proliferation of
pseudo-orbits very well not only in the asymptotic region, but also surprisingly well down to the shortest
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pseudo-orbit.

PACS number(s): 05.45.+b, 03.65.—w

I. INTRODUCTION

In the past decades great efforts have been undertaken
to unravel the mystery of chaos in quantum mechanics.
One main goal has been to find a semiclassical quantiza-
tion rule for classically chaotic systems involving classical
quantities only. Based on Selberg’s trace formula [1] and,
in the general case, on Gutzwiller’s periodic-orbit theory
[2,3], recently several quantization rules have been pro-
posed that allow the determination of the quantal ener-
gies, at least in principle, from a knowledge of the lengths
of the periodic orbits of the underlying classical dynami-
cal system. One formulation starts with the dynamical
zeta function Z(s) defined by a Euler product over the
classical periodic orbits [4-9] whose zeros are tightly
connected with the quantal energies. This formulation
meets, however, a serious obstruction, since the zeros
occur in general in a region where the Euler product
diverges. The divergence, which at first sight seems to be
merely a mathematical subtlety, turns out to be deeply
connected with the ergodicity of the classical dynamical
system and is determined [10] by the famous topological
(Kolomogorov-Sinai) entropy and the metric entropy.
Recently, it has been noticed that the Euler product can
be rewritten as a Dirichlet series and that the latter may
possess a larger region of convergence than the original
Euler product [5-7,11]. Thus the formulation in terms
of a Dirichlet series seems to be able to quantize a much
larger class of chaotic systems. Furthermore, these Dir-
ichlet series are an important ingredient in the recently
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suggested so-called Riemann-Siegel lookalike formula [9]
(see also [7]). The role played by the periodic orbits as
the main input in the Euler product formulation is now
played by the so-called pseudo-orbits. The lengths of the
pseudo-orbits entering the Dirichlet series are given by a
certain linear combination of the lengths of the periodic
orbits. The connection between the physical periodic or-
bits and pseudo-orbits turns out to be analogous to the
well-known mathematical relation between primes and
integers in a sense to be explained below. For the appli-
cation of the quantization rules, it is important to know
the proliferation of the pseudo-orbits with increasing
length, which is unknown a priori in contrast to the pro-
liferation of the periodic orbits.

It is the purpose of this paper to derive the law describ-
ing the asymptotic proliferation of the pseudo-orbits for
the Hadamard-Gutzwiller model, which is one of the
main testing grounds of our ideas about quantum chaos.
Since it seems unlikely that one will be able to derive the
asymptotic distribution of the pseudo-orbits for a general
chaotic system in the near future, it is important to study
a dynamical system that allows a rigorous derivation, but
yet is general enough that one can abstract from it the ex-
pected behavior in the general case. The Hadamard-
Gutzwiller model consists of a particle sliding freely on a
compact Riemann surface of genus g =2 having constant
negative Gaussian curvature. An introduction to this
strongly chaotic system can be found in [3,12] and in our
earlier papers [13,4,14]. In all applications studied so far
[13,15,4,14,7,16], the simplest realization of such a com-
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pact Riemann surface having genus g =2 is considered,
i.e., a surface with the topology of a sphere with two han-
dles. According to Poincaré’s model for non-Euclidean
geometry, we can represent the compact Riemann sur-
faces as fundamental domains & in the Poincaré disk D,
which consists of the interior of the unit circle in the
complex z plane (z =x;+ix,) endowed with the hyper-
bolic metric

_ 4 C
8 g M2 .
corresponding to constant negative Gaussian curvature
K = —1. (Here the length scale R is put equal to 1.) On
the surfaces with genus g =2, the free motion of a point
particle with mass m is determined by the Hamiltonian

j
=—21;p,-g”p,», p,-=mg,-j% , @)
which defines a conservative Hamiltonian system with
two degrees of freedom whose classical motion is strongly
chaotic (K system). (The energy E =H is the only con-
stant of motion.) The motion takes place along geodesics
on a fundamental domain FC2, where F is a hyperbolic
polygon with 4g geodesic edges, where opposite sides
must be identified (“‘glued together”) in order to obtain a
closed Riemannian manifold. The area 4 of ¥ is given
by A (F)=4mw(g —1) due to the Gauss-Bonnet theorem.
The corresponding quantum-mechanical system is
governed by the Schrodinger equation

ﬁZ

AV, (z)=E, ¥, (z), zEF, (3)
2m

where A denotes the Laplace-Beltrami operator, which
reads on the Poincaré disk

9

A=11-x7—x3)
¢ b ox?  9x}

4)

The eigenfunctions ¥,(z) have to be orthonormal with
respect to the invariant measure determined by the
metric (1)

ffydxldxz—-_-‘llfn(z)\l’n(z)=8mn. (5)
1

The Schrodinger equation (3) has to be solved with
periodic boundary conditions

v, (b(z2)=V,(z) forall bET , (6)

where I is a discrete subgroup of G=SU(1,1)/{%1].
Here the action of a “boost” b €T,

a B

ﬂ* a*

is defined by the Mdbius transformation
az+p

B*z +a*

Under the periodic boundary conditions (6), the quantal

b= , lal*=1BI*=1, @)

b(z)= (8)

energy spectrum {E,} of (3) is discrete with
0=Ey<E,<E,=< ---. Asymptotically, the number
ME) of quantal energies E, less than or equal to E is
determined by Weyl’s famous law

A(F)

T

ME)~

E, E—> o . 9)

(Units #i=2m =R =1 are used from now on.)

For the Riemann surfaces under consideration the
asymptotic behavior of the number N(¢) of primitive
periodic orbits with length /, less than or equal to ¢ was
derived by Huber [17] (see also [18])

3 /4

27

, £—>oo

M
N(O=lile)+ 3 lite™)+0

n=1

(10)

where the logarithmic integral is defined by the Cauchy
principal value

xdi

o Int’ x>0.

lilx)=

In Eq. (10) the sum is over the M so-called “small” eigen-
values E, =s,(1—s,), defined as eigenvalues satisfying
0<E,<4,ie, +<s,<1. For a compact Riemann sur-
face of genus g >2 one has M <4g —3 [19,20], while for
g =2 there is at most one small eigenvalue [21]. Randol
has shown [22] that the remainder in Eq. (10) can be re-
placed by O (e*74/¢).

From Eq. (10) we obtain the exact leading asymptotic
behavior N(£)=e? /¢ + - -+, which has to be compared
with the expected behavior N(£)=e™ /7¢+ --- for
general chaotic systems, where 7> 0 denotes the topologi-
cal entropy. While the latter behavior, and in particular
the numerical value for 7, can in general not be derived
analytically, it is an exceptionally nice feature of the
Hadamard-Gutzwiller model that this behavior can be
rigorously derived including the subdominant terms
given in Eq. (10) and the exact value 7=1 for the topolog-
ical entropy. In the general case this behavior can only
be tested numerically by computing a large number of
periodic orbits, and in case the data turn out to be con-
sistent with the expected behavior, the topological entro-
py can be obtained numerically from a fit. For most
chaotic systems studied in the past, people have not suc-
ceeded in enumerating enough periodic orbits, which
would allow such a consistency check and thus the deter-
mination of 7. A rare exception is the hyperbola billiard,
for which a large number of periodic orbits could be
determined systematically [23] (see also [5]).

It is instructive to express Eq. (10) in the variable

x =e’ using the definition mp(x)=N (L),
M s X374

mp(x)=li(x)+ 3 li(x ")+0O , X— oo . (1n
n=1 Inx

Here Randol’s improved rest term has been used. Equa-
tion (11) reveals a striking similarity with the
Riemann—von Mangoldt formula for the prime numbers
discovered by Riemann [24] and proved by von Mangoldt



[25]. In analogy with the famous prime number theorem,
the first term in Egs. (10) and (11) can be called a “prime
geodesic theorem” [26] or a “prime orbit theorem” [27].
For an explicit expression of the remainder term in Egs.
(10) and (11), see [16].

As already mentioned, some of the new rules for quan-
tizing chaos are based on the so-called dynamical zeta
functions. These functions arise very naturally if one
starts from the generalized version [10] of Gutzwiller’s
trace formula [2] and considers the regularized trace of
the energy-dependent Green’s function following exactly
the derivation of the Selberg zeta function described in
[28]. As an illustrative example, let us consider the hy-
perbola billiard [23] for which the dynamical zeta func-
tion reads [5]

©

—sl—[k —i(a /2,

Z(s)=TI [T (1—o%b, e "7 VT2 mim2m,)
e 12)

Here s = —ip, and p denotes the (complex) momentum

E =p2=—s2. In Eq. (12) the “Euler product” over y

runs over all primitive periodic orbits of the hyperbola
billiard. To each orbit y there belongs a well-defined
length /,, an instability exponent u, >0, and a (scaled)
Lyapunov exponent A, =u,/l,. o, is the sign of the
monodromy matrix for the periodic orbit v, and v, is the
maximal number of conjugate points along the periodic
orbit plus twice the number of reflections on the bound-
ary, where Dirichlet boundary conditions are demanded.
For a generic orbit one has b, , =1.

The infinite product (12) converges absolutely for
Res >0, =7—(A/2) (“entropy barrier”), where the topo-
logical entropy 7>0 measures the exponential prolifera-
tion of the periodic orbits as a function of their length /,,
according to the asymptotic behavior
N(£)=e™ /r¢+ -+, £{— . The quantity A denotes
the average of the Lyapunov exponents A, and is also
called the metric entropy because it measures the ex-
ponential spreading of the trajectories, i.e., the rate at
which phase space is distorted in the neighborhood of a
periodic orbit [3].

The important properties of the dynamical zeta func-
tion (12) can be deduced from the following representa-
tion for the logarithmic derivative of Z(s):

1 Z'(s) 1 1

25 Z(s) E,+s? E,

—B+d(s)+ 3

n=1

, (13)

which can be derived [5] from the generalized version
[10] of Gutzwiller’s trace formula. Here the function
®(s) originates from the “zero-length” contribution to
the trace formula and is directly related to the mean level
density as determined by Weyl’s law (including higher
corrections). B is a constant that is the analog of the gen-
eralized Euler constant 7, to be discussed below in the
case of the Hadamard-Gutzwiller model. The energies
E, denote the semiclassical approximations to the true
quantal energies E, of the hyperbola billiard. [Relation
(13) is only valid semiclassically, since the Gutzwiller
trace formula has been derived under the assumption
#—0.] From Eq. (13) one deduces that the dynamical
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zeta function Z(s) has an analytic continuation to com-
plex s values and, in particular, that it has zeros on the
“critical line” Res=0 at points s,=+iV'E,,
n=1,2,.... (For a discussion of the subtleties, see Ref.
[5].) Thus the condition Z(s)=0 constitutes a semiclassi-
cal quantization rule. However, the zeros are located on
the line Res =0, where the Euler product (12) does not
converge absolutely, since the entropy barrier of the hy-
perbola billiard is at Res =0 ,=0.2415 [5]. In order to
obtain an analytic continuation of Z(s) beyond the entro-
py barrier, one transforms the Euler product (12) into a
Dirichlet series with the help of Euler’s identity [29]

) ) — 1)y, My (1/2)m(m —1)

I a-yh=1+ 3 EDP™ ,
k=0 m=1 H (1—x")

r=1

x| <1, yec. 14
One then obtains
Zs)=1+ 3 dye ", (15)
N=1
where the sum over N runs through all “pseudo-orbits”
with “pseudolength”

LNEZmilyi, m,-EN, LNSLN+I .
i

[For an explicit expression of the coefficients A4y, see Eq.
(11) in Ref. [5].] Obviously, the convergence of the Dir-
ichlet series (15) depends crucially on the proliferation of
the pseudo-orbits with increasing length, and one is thus
led to study the asymptotic behavior of the staircase
function

Np(L)=N{Ly|Ly<L}, (16)

which counts the number of pseudo-orbits with pseudo-
length Ly smaller than or equal to L. Making the sim-
plest assumptions, one expects the asymptotic behavior
No(L)=Ae™+ - -+, L — o, to hold. It is a challenge to
seek for a sound derivation of the asymptotic distribution
of the pseudo-orbits and to find an explicit expression for
the strength A4 of the growth of pseudo-orbits for general
chaotic systems like the hyperbola billiard. It is the pur-
pose of this paper to provide a rigorous derivation in the
case of the Hadamard-Gutzwiller model.

For the Hadamard-Gutzwiller model the Selberg zeta
function [1] plays the role of the dynamical zeta function.
It is defined as an Euler product over the length spectrum
{1,} of the primitive periodic orbits

Z(s)= 1 ﬁ (1—e

{1,} k=0

TEFRh)  Res>1. (17)

Here the variable s is defined as s E%—ip, where the rela-
tion between the momentum p and the energy E is slight-
ly different from the hyperbola billiard and is given by
E =p2+%=s (1—s). A comparison between the two zeta
functions (17) and (12) shows that the Selberg zeta func-
tion is especially simple. Indeed, for the Hadamard-
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Gutzwiller model all Lyapunov exponents are equal to 1,
and for all primitive periodic orbits 0, =b,, , =1, v, =0.

As a consequence of Huber’s law (10), the product (17)
converges absolutely only for Res > 1, corresponding to
the fact that the topological entropy 7 is equal to 1.
Starting from the Selberg trace formula [1], one can
derive [28] the following equation:

1 Z'(s) _ 4 1
-1 Zs) 2T 51
= 1 1
+ e
21 E,+s(s—1) E, |’

n= n

+2(g —1)¥(s)

(18)

which relates the logarithmic derivative of the Selberg
zeta function to the regularized trace of the resolvent of
the Schrodinger operator, i.e., to the quantal energy spec-
trum {E, }. Here W(s)=T"(s)/I'(s) is the digamma func-
tion, and ¥, denotes the “generalized Euler constant” of
the Laplacian on the considered Riemann surface defined
by [28]

1 Z2"(1)
=2g—y—1+=-=—.
va=2(g — Ly =1+ 57500 (19)
[y =—W(1) denotes Euler’s constant.] The exact relation

(18) for the Hadamard-Gutzwiller model should be com-
pared with the semiclassical relation (13) for the hyperbo-
la billiard. The similarity between the two relations is
striking. From Eq. (18) it is not difficult to derive that
Z(s) has an analytic continuation to all s €C (in fact, the
Selberg zeta function is an entire function of s), whose
“trivial” zeros are exactly known: s =1 is a simple zero,
s =0 is a zero of multiplicity 2g —1, and s = —k, k€N,
are zeros with multiplicity 2(g —1)(2k +1). Further-
more, the small eigenvalues with 0 < E, <1 lead to zeros
on the real line between O and 1, located at
s, =%i\/1/4—En, n=1,...,M. Most importantly,
Z(s) has an infinite number of “nontrivial”’ zeros located
at s, =%ii\/E,, —1/4 corresponding to the quantal en-
ergies E, > 1, i.e., the nontrivial zeros lie on the critical
line Res———%, and thus the analog of the Riemann hy-
pothesis holds for the Selberg zeta function if one dis-
cards a finite number of zeros on the real line with
0=<s,=1

The remarkable connection between the nontrivial
zeros {s,} of Z(s) and the quantal energies {E,} is the
basis of the following exact rule for quantizing chaos [4,7]
(see also [6]):

Z(s)=0. (20)
Unfortunately, as in the case of the hyperbola billiard,
the Euler product (17) cannot be directly used for a deter-
mination of the energy levels via (20), since it converges
absolutely only to the right of the line Res =1 (entropy
barrier [7]). In order to make use of the quantization rule
(20), we need an analytic continuation of Z(s) that is val-
id on the critical line Res=21. To this end we again
transform the Euler product (17) into a Dirichlet series
with the help of Euler’s identity (14). We then obtain

Z(s)=11

{0}

2n

with
—[(1/2)m(m — 1)1, ]
e

By =(—1)"E— —. (22)
I[I(1—e ™)

r=1

Expanding the product over the primitive periodic orbits
in (21), we again arrive [7] at the generalized Dirichlet
series (15)
Zs)=1+ 3 Aye ¥,
N=1
where the sum over N runs through the pseudo-orbits
with pseudolength

LNEEmilni, m;EN | (23)
m

Ly=<Ly,,, and ANEH,-ami,,i. In [7] we have shown
that for the Hadamard-Gutzwiller model the abscissa o,
of absolute convergence of the Dirichlet series (15) is
given by o, =1. In addition, we have numerically stud-
ied the abscissa o, of conditional convergence of two
compact Riemann surfaces with genus g =2. In the two
cases studied, there is strong evidence that o.<1 and
thus that the Dirichlet series (15) provides an analytic
continuation of Z(s) into the critical strip. As in the case
of the hyperbola billiard, it is clear from Eq. (15) that the
convergence of the Dirichlet series depends crucially on
the proliferation of the pseudo-orbits with increasing
length, and thus we have to study the asymptotic behav-
ior of the staircase function (16)

Np(L)=N{Ly|Ly <L},

which counts the number of pseudo-orbits with pseudo-
lengths Ly smaller than or equal to L. The main result of
our paper consists in a derivation of the leading asymp-
totic term of Np(L) for the Hadamard-Gutzwiller model
in the limit L — . To derive the asymptotic behavior of
the pseudolength spectrum {L,}, we shall make use of
the fact that the length spectrum {/,] of primitive
periodic orbits can be interpreted as generalized prime
numbers in the framework of Beurling’s theory [30],
while the pseudolength spectrum {Ly} can be identified
with generalized integers.

Our paper is organized as follows. In Sec. II we shall
summarize the necessary definitions and theorems of the
theory of Beurling’s generalized prime numbers. These
theorems will be applied in Sec. III to the length spectra
{1,} and {Ly}. As a result, we shall obtain an exact ex-
pression for the asymptotic behavior of the pseudolength
spectrum. The leading asymptotic term is completely
determined for any compact Riemann surface by the as-
sociated Selberg zeta function Z(s) evaluated as s =1 and
s =2, respectively. Explicitly, the relevant parameter is
given by the ratio Z(2)/Z'(1). To apply our formula to a
given Riemann surface, we therefore require a formula
for this ratio. In Sec. IV we shall derive two explicit
complementary representations for Z(2)/Z’'(1) involving
the length spectrum {/,} and the quantal energy spec-
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trum {E,}, respectively. The second relation involves
the generalized Euler constant y, defined in Eq. (19). We
therefore devote Sec. V to a study of this extremely in-
teresting number. Again we shall present two comple-
mentary formulas for y,, the first involving the energy
spectrum {E, } only, the second the length spectrum {/,}
only. In Sec. VI we shall apply our results to two com-
pact Riemann surfaces of genus g =2. We shall show
that our asymptotic law describes the proliferation of the
pseudolengths very well not only in the asymptotic re-
gime, but also in the mean surprisingly well down to the
first pseudolength. Finally, our results are summarized in
Sec. VII.

II. THEORY OF BEURLING’S GENERALIZED
PRIME NUMBERS

The concept of “‘generalized primes” was introduced
already by Landau [31], but a systematic study was car-
ried out only later by Beurling [30]. Let us start with a
definition of generalized primes and generalized integers.

Definition 1. A sequence P of positive real numbers
(p1,P2sP35- - ) With 1<p; <p, =< -+, p;— o0, is called a
generalized prime number system or, briefly, a system of
g primes.

Definition 2. Set ny=1, n;=p,, and let (ny,n,n,,...)
be the nondecreasing sequence of real numbers formed by

the values J] P jvf , where each v; is allowed to range over
all non-negative integers. The sequence (ny,n,,n,,...)is
called the generalized integers of the system 7 or, briefly,
the g integers associated with 7. For our later applica-
tion, it is important to notice that the real numbers p;
and n; need not be all distinct, because degeneracies
occur among the lengths of the periodic orbits as well as
among the pseudo-orbits.

Definition 3. The abscissa of convergence 7>0 of the
system ? is defined as the infimum of those real values o
for which 37 \p;"? converges. It is easy to see that one
can always redefine the system 7 in such a way that 7=1.
(One introduces p; =p/.) In the following we shall there-
fore assume that r=1.

Definition 4. The { function {z(s) associated with the
system 7 is defined by the Euler product

Ep(s)=T[ (1—p;)7!, Res>1. (24)
j=1

Definition 5. The counting functions of the system P
are defined by

Tp(x)=N{p; =x} , (25)

Ip(x)=N{n;<x} . (26)

They count the number of g primes and g integers, re-
spectively, which are smaller than or equal to x. With
these definitions at hand, we can now state the two
theorems that we shall need for the derivation of the
asymptotic behavior of Np(L).

Theorem A [32]. If

—czlan

To(x)=li(x)+O(xe ), X— o0, 27

holds for ¢, >0,0<B< 1, then

— a
¢;In%x

Ip(x)=Ax +0O(xe

for some 4 >0, c;>0and a=B/(2+p).
Theorem B [33]. If

), XxX— (28)

Ip(x)=Ax +O(xIn"°x), A4>0,86>1, x>,
(29)

then

é‘p(s)=ﬁ+yp+0(s—l) for Res>1, (30)
with

© I‘p(x)_Ax
= A _—
Ye +f1 dx x2

III. PROLIFERATION
OF THE PSEUDO-ORBITS

In this section we shall apply Beurling’s theory of the
generalized prime number to the length spectrum of the
primitive periodic orbits of the Hadamard-Gutzwiller
model. It is worthwhile to notice that our interpretation
of the lengths of periodic orbits as generalized primes is
not restricted to the Hadamard-Gutzwiller model, but is
always possible for general dynamical systems, if one con-
siders the periods of the periodic orbits instead of their
lengths, as long as all orbits are isolated and unstable and
the system has a nonvanishing topological entropy 7> 0.
(7 is then identical to the abscissa of convergence referred
to in Definition 3 of Sec. II.) However, in order to apply
Theorems A and B of Sec. II, the order of the remainder
terms to the counting functions has to be known, see Eq.
(27) and (29), which at present is completely unknown for
chaotic systems like the hyperbola billiard. This shows
again how important it is to study the Hadamard-
Gutzwiller model, since much more information is avail-
able for this dynamical system and thus the proliferation
of the pseudo-orbits can be derived for this model as will
be shown in this section.

We define the g prime system 7 associated with the
length spectrum {/,} of the primitive periodic orbits of
the Hadamard-Gutzwiller model by

1

pp=e’, 31
and the g integers associated with by (ny=1)
ny=I1p/"=¢"™, (32)
j

where m; ENj and Ly denote the pseudolength defined in
Eq. (23). With these identifications, it is obvious that the
counting function (25) is identical to the staircase func-
tion N(¢£) of the primitive periodic orbits, i.e.,
N(¢)=mpe?), whose asymptotic behavior was already
given in Eq. (11)

' M s x3/4
mp(x)=li(x)+ ¥ li(x™")+ (33)

el Inx
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Because of x — o,

X3/ —c,InPx
<x¥4=xe ~L1/8)nx] L 1, €2 ,
Inx
with0<fB<1,¢c,=4, and
s XS" —(1—s )lnx —c!nfx
lilx™)=0 — |, xe " xe ? ,
In(x ")

with ¢;=1~—s5,>0 and 0<B<1, all assumptions of
Theorem A of Sec. II are satisfied, and we obtain [see Eq.
(28)]

—_ a
¢ In%x

Ip(x)= Ax +O(xe ), X-—> 0, (34)

with 4 >0, ¢; >0, and 0<a <+. Clearly, the function
I»(x) can be identified via Np(L)=Ip(el) with the stair-
case function counting the number of pseudo-orbits, see
Eq. (16), and thus we obtain from Eq. (34) the asymptotic
behavior

a
¢ L

Np(L)=Ade [1+0(e 7)), L—>w . (35)

There remains the calculation of the coefficient 4, i.e., of
the strength of growth of the pseudo-orbits. To this end
we shall use Theorem B of Sec. II, which can be applied
because of the following inequality (¢;>0, O<a<4i,
8>1,and x —> ):
xe “MF & xombIninx— =8y

Then theorem B, Eq. (30), tells us that the coefficient A4 is
identical to the residue of the pole of the { function {z(s)
at s =1. The § function {z(s) of P associated with the
length spectrum {/, }, see Eq. (24), is given by (Res > 1)

(s)= 36

Epls) R (s) (36
with

R(s)=[ 1—p, )=T[(1—e "), (37)

n=1 ()

which is related to Selberg’s zeta function Z(s), see Eq.
(12), by

Z(s)=T[ R(s+k)=T] éals +K)7", (38)
k=0 k=0
and thus
_ Z(s)

R(s) Z(s+1) ° 39)
’ Z'(S) Z/(S +1)

R =t = -7
O=Zs+n R9%Z

As a consequence of the zero mode E,=0, Selberg’s zeta
function Z(s) has a simple zero at s =1 with Z’(1)>0.
Furthermore, it follows from the Euler product (17) that
Z(s)>0 for s >1, which leads with (39) to R (1)=0,
R'(1)=2Z'(1)/Z(2)> 0, and thus to the expansion

Z'(1)

=£1) 12
R (s) Z(2)(s D+0(s—1)7) . (40)

Combining (40) with (36), we see that {»(s) has a simple
pole at s =1, in agreement with Theorem B, whose resi-
due is given by 4 =Z(2)/Z’'(1). We thus obtain with Eq.
(35) our main result

Z(2)
Z'(1)

withc; >0,0<a <.

We would like to emphasize that the leading asymptot-
ic behavior of the length spectrum of the primitive
periodic orbits, described by the first term in Huber’s law
(10), is the same for every Riemann surface. However,
this does not imply, as Eq. (41) shows, that the pseudo-
length spectra also possess identical asymptotic behavior.
If one imagines a given length spectrum {/,} that obeys
{10), then one can alter the shortest length I, without
changing (10) being an asymptotical law. On the other
hand, the number of pseudo-orbits Np(L) up to a given L
is the larger the shorter the first periodic orbit. In the
limit /; —0, the number Np(L) would diverge, see Eq.
(63) below.

As already mentioned, at present we are unable to
analytically derive the analog of the asymptotic behavior
(41) for general chaotic systems, i.e., to show that
Np(L)= Ae™ 4+ - -+ holds in the general case. Numeri-
cal calculations show, however, that such a behavior
seems to hold [11] for the hyperbola billiard, and thus
one might speculate that this is the correct law for the
proliferation of pseudo-orbits for generic chaotic systems.

¢ L®

Nap(L)= elf[1+0(e

)], L—>w, (41)

IV. EXPLICIT REPRESENTATIONS
FOR Z(2)/Z'(1)

In this section we shall derive two explicit representa-
tions that allow us to compute the crucial parameter
Z(2)/Z'(1) either from the classical length spectrum {/, }
or from the quantal energy spectrum {E,, }.

We start with McKean’s integral representation [34]

$) (g — *® —s(s —ig(2)
Zi — 0 [ Tdre e1),

Re[s(s—1)]>0, (42)

where ©'2)(¢) denotes the periodic-orbit contribution to
the trace of the heat kernel ©(¢)=Tre?, t >0 (see, e.g.,
[34,28])

o= 3 ¢ "'=0"(n+6%()
n=0

_ A(Fe ' foodb be — (62740
(411 )32 0 sinh(b /2)
—(t/4) w Ie*[(kl,,)z/m

e
e 5,2} ,Zl sinh(kl, /2)

n

(43)

For an approximate numerical computation of ©'?(z)
from a length spectrum that is known only up to a given
cutoff length L, one should add to the truncated sum over
the periodic orbits the following remainder term (see [7]):
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L,

R (L,t)=Lerfc ;

(44)

Yt
2

Due to the nondegenerate ground-state energy E,=0,
lim, , ,©(¢)=1 holds. Furthermore, one derives from
Eq. (43) ©"(1)=0(e™"*/t*?) for t—w, and thus
lim,_, ,02(1)=1.

Integration of Eq. (42) yields with lim,_, ,Z(s)=1 the
explicit representation of the Selberg zeta function
(Re[s(s —1)]>0)

Z(s)=exp _fowiit_te—s(s—l)te(Z)(t) . (45)

In order to derive a representation that is valid also in a
neighborhood of s =1, we regularize the integral in (45)
as follows:

f°° dte—s(s—-l)te(l)(t)_fldte—s(s—l)te(Z)(t)
0 t ot
wdlt _(s—1rn2)
+ 0 () —1
fl ;e [6(t)—1]

odt _g(s—1)
e

With
f]w%e—s(s—l)t:El[S(S "'1)]

=—y—In[s(s —1)]

e (=Ds(s—D)]"
2 nn!

n=1

where y is Euler’s constant, we finally obtain the follow-
ing representation of the Selberg zeta function, which
now holds also near s =1:

Z(s)=s(s—llexp |y + 3 (=1) [:’is'——l)]

n=1

1dt _
— e s(
ot

s—l)te(Z)(t)

—_ flw%e—s(s—l)t[eﬂ)(t)_l]

(46)
After differentiation at s =1, we obtain
1dt
Z'(1)= — | =6
(D=exp |y— [ “-0%1)
—fl“’it’—[e(”(t)—u] . 47

Combining this with the expression obtained from (46) at
s =2, we end up with the explicit representation

Z2) _
Z'(1)

2ex fowit—(l—e_”)[e(z’(t)—l] , (48)

t

which allows the computation of Z(2)/Z'(1) solely from
the classical length spectrum {1, }.

An alternative representation of Z(2)/Z’'(1) can be de-
rived from the following representation for Z(s) [28]:
Z(s)=Z"()s(s — 1" 7"

X [(Zﬂ)lnses(s_l)G(S)G(S +1 )]Z(g—l)

s(s—1)
E

=]

xX1I

n=1

—s(s—1)/E,

1+ ) (49)

n

where G (s) is the Barnes G function [35] and y, denotes
the generalized Euler constant defined in Eq. (19). In the
next section it is shown that ¥, can be expressed either in
terms of the length spectrum {/,} or in terms of the
quantal energy spectrum {E,}. With G(2)=G(3)=1 we
arrive at our second explicit representation

—2/E,

n

Z(2) _ 2e"Te"¥EY 0
Zl(l) (277,)2(3—1) n=1

1+ =

E, ; (50)

which allows the computation of Z(2)/Z'(1) solely from
the quantal energy spectrum {E,}. Equation (50) shows
in combination with Eq. (41) that the strength of growth
of the pseudo-orbits depends exponentially on the gen-
eralized Euler constant y 4.

In summary, we have shown that the important param-
eter Z(2)/Z’'(1) determining the proliferation of the
pseudo-orbits is determined completely either by the clas-
sical length spectrum via Eq. (48) or by the quantal ener-
gy spectrum via Eq. (50).

V. GENERALIZED EULER CONSTANT 7,

In this section we shall derive two representations of
the generalized Euler constant y, in terms of the length
spectrum {/,} and in terms of the quantal energy spec-
trum {E, }, respectively. Furthermore, a lower bound for
Ya is given and the behavior of y, in the limit /, —0 is
discussed, where /; is the length of the shortest periodic
orbit. Our starting point is Eq. (18), which can be written
as

-~ |
"= 2 E T E, s | HETDYS
1 Z'(s) 1
2s—1 Z(s) s(s—1) 51

Since y, is a constant by definition, the right-hand side of
Eq. (51) must be independent of s and thus can be evalu-
ated at any s value that is convenient. The limit s —
reveals the dependence of y, on {E,}, whereas the limit
s — 1 shows the dependence on {/, }.

At first let us consider the limit s — o. From the rep-
resentation (15) of Z(s) as a Dirichlet series, one derives
the asymptotic behavior

—Is
e

Z(s)~1—=——p,
1

§— 0 ,
1—e

and hence
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1 Z'(s) _
2s —1 Z(s)

e Ils
" , §—> , (52)

where g, denotes the number of periodic orbits with

length /,. With (52) one arrives at
. < 1 1
=1 -_— -
Vo= Im ‘n§1 E, E,+s(s—1) ]
1
—2(g—=D¥(s)———— | . (53)
s(s—1)

To get a numerically useful formula, one must get rid of
the infinite summation over the energy spectrum (E,},
which is achieved in analogy with the derivation of the
formula for Euler’s original constant y. Splitting the
series at N =s (s —1), Eq. (53) is equivalent to

N N
vaTgm o2 B T 2N
z 1 1
+ 3 |-
n=N+1 E'l En+N
—2g — WL +VN +1/4)—— (54)

Now one observes that one can replace the quantal ener-
gies E, by their asymptotic mean E in the second and
third sum without altering the hmlt The asymptotic
mean is determined by Weyl’s law (9)

E=—"— now. (55)
g—1

|
1 Z'(s)
2s —1 Z

= [Tdre 02~ 1]+
0

Inserting this in Eq. (51), we arrive at our second formula
for the generalized Euler constant

yA=2(g—1)y+f0°°dz[e‘2’m—1]. (58)

To obtain a lower bound on y,, we rewrite the last in-
tegral with the help of Eq. (43)

va=2g —Dy+ fOTdt[em(:)—l]
*® _ _ bl (1)
+fT di[6(1)—1] fT dr o(z) . (59)

Since ©'2/(¢) >0 and ©(¢) > 1, one obtains the inequality

>2g — 1y + —T— [“dr0"t ] 60
va>2e—Dy+ sup [ J, ) (60)
which is sharpest for T, such that 8'1(T,,)=1. With the
definition #(1)=0""(r)/(g —1) we get a function that is
independent of the genus g and of the fundamental
domain F. In Table I we list the strongest lower bound

Inserting this into Eq. (54), the second and third summa-
tion can be carried out, leading to

Ya= lim

N-—

b EL+<g—1)[W(<g—1)N+1)

—W(N +1)]

—2g 1Y +VN+1/4)—— (56)

Using the asymptotic expansion of W(x), the last formula
takes a form that is very similar to the formula for
Euler’s constant y

E_._

n=1 n

Ya= lim —1)InN

+(g— —1).
Jlim (g —Din(g —1)

(57)

Indeed, for genus g =2 it is exactly Euler’s formula, if
one replaces {E,} by {n}. From Eq. (57) one expects
that y, increases in the mean with increasing genus g, be-
cause of the term (g —1)In(g — 1) and because of the fact
that the quantal energies behave in the mean as
E,=n/(g —1), which implies that the sum in Eq. (57) is
proportional to g —1 and thus that the limit of the ex-
pression in parentheses is also proportional to g —1 if one
assumes for all g the same statistical properties of {E, }.

Now let us study the other limit, s — 1, revealing the
dependence of y, solely on {/,}, because the series over
{E,} in (51) vanishes then. To apply Eq. (42) in the limit
s—1, we first have to regularize the integral because of
lim, ,,©(t)=1 as follows:

f dt e —s(s—1) te 2) t)._f dte™ s("l)t[e(2)(t)__1]+ foxdté’”“sil”

1
s(s—1) °

r
for y, in dependence of the genus g determined by

HTy)=1/(g—1) and (60). One observes the remarkable
fact that the generalized Euler constant is strictly positive
for genus g = 4.

Now we would like to discuss the behavior of y, and
Z(2)/Z'(1) in the limit /; —0. Consider the contribution
B, of the shortest length [, to Eq. (58) using (43)

TABLE 1. The lower bound for the generalized Euler con-
stant y, is presented together with the optimal parameter T.

Genus g Ty Ya>
2 0.776 365 54 —0.69272133
3 1.31104124 —0.389994 23
4 1.72751117 0.164 31350
5 2.07181826 0.848428 81
6 2.36685198 1.613493 24
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od g1l

B, = =
! ,E, 4V/msinh(kl, /2)

e~[u/4)+<k21§/4z>]
0
X fo at Vit

0 e-kll
=g, I ——u - (61)
k=11—e !
With the expansion

1 1 1 X 3
—=—+4—+-=+0
e T
one arrives, after performing the summation over k, at
B,=—g,Inl;+0(1) and hence at

Ya=—g;Inl;+0(1) for ;0. (62)
Similarly, one derives from Eq. (48)

Z(2) 1

———=0|—| f 0. 63

Zl(l) 0([?1 01‘11-—> ( )

VI. APPLICATION TO TWO DIFFERENT
HADAMARD-GUTZWILLER MODELS

For the application of our formulas, we choose two
different members of the family of Hadamard-Gutzwiller
models. As explained in Sec. I, these models provide sim-
ple examples of dynamical systems with two degrees of
freedom that are strongly chaotic. In these models one
considers a particle sliding freely on a compact Riemann
surface of genus g 22. Choosing two different compact
Riemann surfaces of genus g =2, we obtain two different
members out of the infinite family of Hadamard-
Gutzwiller models. (Different Riemann surfaces have
completely different length spectra {/,} and energy spec-
tra {E, }, respectively.) The first surface to be considered
is defined by the most symmetrical fundamental domain
¥, called regular octagon, which is invariant under opera-
tions of the Dieder Dy group. The regular octagon
possesses a highly degenerate length spectrum {/,} with
exponentially increasing multiplicities [13]. For this fun-
damental domain the length spectrum is completely
known up to L, =18.092 [36] and provides, therefore,
a unique test system. The second Riemann surface is
defined by an asymmetric octagon having a length spec-
trum with at most fourfold degeneracies. It obeys only
time-reversal and parity symmetry, which is the least pos-
sible symmetry for a fundamental domain of genus g =2.
Therefore, these two fundamental domains lie on oppo-
site ends with respect to symmetry properties. The
length spectrum of the asymmetric octagon has been
computed up to L, =15, but it is not complete since
only periodic orbits having a representation of at most 12
generators have been taken into account (see [13]). For
both fundamental domains the first 200 quantal energies
have been computed by the method of finite elements.

To compute the generalized Euler constant y, from
the first 200 quantal energies, it is more advantageous to
use Eq. (56) than its asymptotic form (57). For the regu-

lar octagon we obtain ¥, = —0.600 38 and for the asym-
metric one y,=—0.51207. These values are in good
agreement with the values computed from the length
spectrum using (58), Ya=—0.598 65 and
Ya= —0.52205, for the regular and the asymmetric octa-
gon, respectively. The agreement between the values for
7 a obtained from the two methods is better in the regular
case, which is due to the fact that in this case the length
spectrum is completely known up to L, =18.092.

For the parameter Z(2)/Z'(1) we obtain from Eq. (48)
the values 0.3930 and 0.4274 for the regular and the
asymmetric octagon, respectively. The first 200 quantal
energies are not sufficient to obtain Z(2)/Z'(1) directly
from Eq. (50), because the limit is not yet reached at
N =200. However, if a fit is made to the function

(N)

2y, 4 N
e 2 —2/E,
f(N)E-;z— I]l 1+En— e (64)
with
W= 3 L 2w+ VI FIA-L
YA _n=1 En 2 N

[imy_, f(N)=Z(2)/Z’(1)] using the parametrization
F(N)=a +(b/N°), the parameter a yields a good ap-
proximation to Z(2)/Z'(1). We get a=0.3922 and
a =0.4261 for the regular and the asymmetric case, re-
spectively, which is in accordance with the values com-
puted from {/,} using (48). Figure 1 shows f (N) in com-
parison with the fit F (N) for both octagons. This demon-
strates that Z(2)/Z’'(1) can be well determined from a
knowledge of the first 200 quantal energies only.

Using the values computed for Z(2)/Z'(1) from Eq.
(64), we present in Figs. 2 and 3 a comparison between
the staircase Np(L) and the theoretical prediction (41).
Recall that the proliferation of the periodic orbits de-
scribed by Huber’s law (10) is determined by the ground-
state energy E,=0 and by the M <4g —3 small eigenval-
ues, if they occur at all. (The two surfaces considered
here possess no small eigenvalues.) This is in contrast to
the proliferation of the pseudo-orbits, whose strength of

0.50

0.48 r

0.46 o

0.44 r

0.42 F

0.40 r

0.38 L L L
0 50 100 150 N 200

FIG. 1. Function f(N), Eq. (64), is shown in comparison
with the fit F(N) described in the text for the regular octagon
(lower curves) and for the asymmetric one (upper curves).
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FIG. 2. Staircase Np(L) is shown in comparison with the
asymptotic behavior (41) for the regular octagon.

growth is determined by Eq. (50) and thus requires
infinitely many quantal energies. The very good agree-
ment seen in Figs. 2 and 3 shows, however, that the pro-
liferation of the pseudo-orbits is already well determined
by the first 200 quantal energies. As can be seen by com-
paring Fig. 2 with Fig. 3, the staircase Np(L) shows
much larger steps in the regular case (Fig. 2), which are
due to the exponentially increasing multiplicities of the
length spectrum {/,} leading to exponentially growing
multiplicities in the pseudolength spectrum {L,}.
Surprisingly, in both cases the asymptotic law (41) de-
scribes well the proliferation in the mean down to the
shortest length. This is similar to Huber’s law (10),
which also yields a surprisingly good description of the
staircase N (¢) of primitive periodic orbits down to the
shortest length (see Fig. 2 in [36]).

VII. SUMMARY

The main purpose of this paper has been to derive the
asymptotic behavior of the pseudolength spectrum of a
strongly chaotic system, which is the necessary input in
the recently proposed quantization rules based on the
Dirichlet series representation of the relevant dynamical
zeta functions. Since the Dirichlet series converges in a
much larger region than the Euler product defining the
dynamical zeta function, the Dirichlet series is expected
to be applicable to a much wider class of chaotic systems.

The derivation of the asymptotic behavior of Np(L)
has been based on Beurling’s theory of generalized
primes. Equation (41) shows that Np(L) increases
universally in proportion to e’, independent of the genus
g and of the chosen fundamental domain F. Only the
proportionality factor, i.e., the strength of growth, is sys-

10 T T

it M

102

o | L N .

FIG. 3. Staircase Np(L) is shown in comparison with the
asymptotic behavior (41) for the asymmetric octagon.

tem dependent and has been shown to be given by
Z(2)/Z'(1), where Z(s) is the dynamical zeta function,
which in the case of the Hadamard-Gutzwiller model is
identical to the Selberg zeta function. This factor can be
computed from the length spectrum {/,} of the primitive
periodic orbits [Eq. (48)] as well as from the quantal ener-
gy spectrum {E,} [Eq. (50)]. In the latter case, the so-
called generalized Euler constant y, arises, which can
also be computed from {/,} [Eq. (58)] or from {E,} [Eq.
(57)]. A lower bound for y , has been given in (60), and it
has been shown that y, diverges as —g,In/, in the limit
1;,—0. Finally, we have applied our formulas to two
different members of the family of Hadamard-Gutzwiller
models, for which the length spectra and the quantal en-
ergy spectra are partly known. As can be seen from Figs.
2 and 3, the asymptotic law (41) gives an excellent
description of the average behavior of the two pseudo-
length spectra.

Since at present there seems to be no hope of giving an
analogous derivation for the asymptotic behavior of the
pseudo-orbits in the case of general systems, the
Hadamard-Gutzwiller model plays again the role of a
prototype example, as it has already played in the past,
where the Selberg zeta function has been the first example
of a dynamical zeta function.
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