Computer Physics Communications 71 (1992) 1-14
North-Holland

Computer Physics
Communications

The MC++ event generator toolkit — version 0

Leif Lonnblad !

Deutsches Elektronen Synchrotron - DESY, Notkestrafie 85, W-2000 Hamburg 52, Germany

and

Anders Nilsson 2

Department of Theoretical Physics, University of Lund, Solvegatan 144, S-22362 Lund, Sweden

Received 15 January 1992

We present a toolkit, written in the C++ programming language, for event generation in high energy physics. The
toolkit, called MC++, is an attempt to formulate the event generation chain in high energy particle collisions in a
transparent and generic way using object oriented programming techniques.

1. Introduction

Monte Carlo Event Generators (MCEGs)
have become invaluable tools in todays high
energy physics experiments. They are used to
“translate” theoretical predictions into experi-
mental observables and to make reasonable es-
timations of backgrounds and systematic errors
to these.

There are a number of these MCEGs “on the
market” today. Some of them are compilete in the
sense that they simulate the complete event gen-
erating chain (e.g. HERWIG [1], ISAJET [2]
and JETSET [3]) and some only simulate one
or two parts and have to be interfaced to other
programs to become complete (e.g. Ariadne [4]
and HERACLES [5}).

The programs have some things in common.
They all rely on the assumption that the event

Correspondence to: L. Lonnblad, Deutsches Elektronen
Synchrotron - DESY, NotkestraBe 85, W-2000 Hamburg
52, Germany.)
! E-mail: lonnblad@apollo3.desy.de (internet)

and lonnblad@desyvax (bitnet).
2 E-mail: anders@thep.lu.se (internet)

and thepan@seldc52 (bitnet).

generating process can be treated more or less
like a Markov chain, e.g. that the decay of a par-
ticle is independent of the way it is produced.
Hence the event generation is divided into steps
which are common for almost all programs.
In e.g. a pp collision the interacting partons
and the hard process are chosen from structure
function parametrizations and according to the
relevant matrix elements and a multi-partonic
state is developed typically by using initial- and
final-state parton showers. These partons are
then hadronized using some phenomenological
model and finally the produced hadrons are
allowed to decay into stable particles.

The actual models for these different steps dif-
fer, however, very much between different pro-
grams, and the results produced also differ when
extrapolating to future accelerators, even when
they are tuned to fit the same set of available
data [6].

The fact that today there exist e.g. several
models for the hadronization which all repro-
duce present data to a satisfactory level is fre-
quently used to estimate the fragmentation ef-
fects on theoretical predictions made on the par-
tonic level. Ideally one would like to be able to

0110-4655/92/$05.00 © 1992 - Elsevier Science Publishers B.V. All rights reserved

2 L. Lénnblad, A. Nilsson / The MC++ event generator toolkit

€.g. run a particular program which implements
some model for the partonic state using, say,
the Lund string fragmentation model [7] imple-
mented in JETSET [3] and then do the same
run only this time using the cluster fragmenta-
tion model [1] implemented in HERWIG. This
is, however, easier said than done. Although all
programs are written in FORTRAN, their in-
ternal interface between different modules are
very different.

There has been some attempts to standardize
the interface between different programs e.g. the
HEPEVT common block described in ref. [8],
but there is still a long way to go.

1.1. Object oriented programming

Recently a study was made [9] to see how
object oriented programming (OOP) [10] can
be used to facilitate both the interface between
different MCEG programs and the actual de-
velopment of new programs. As a consequence
a project was started for developing a general
toolkit for Monte Carlo event generating called
Mc++ written in C++ (see for example ref. [11]).
In this paper we will describe a “zeroth” version
of this toolkit.

Contrary to more conventional procedural
languages, where subroutines are called to op-
erate upon fundamental variables (which in
MCEGs are typically stored in large arrays in
common blocks), OOP is based on the con-
cept of objects. These are generalized variables
which communicate with each other by sending
and receiving messages. (For an introduction to
OOP we refer to reference [10].) This enables
you to define classes of objects in close corre-
spondence to the physical objects of interest.
You can e.g. define a “particle” object which
understands and can respond to messages like
“What is your charge?”, “Boost!” and “Decay!”.

In this way we have written a number of object
classes defining the event generating chain, thus
in a way creating a “dialect” of the C++ language,
or a toolkit, specially designed for MCEG.

The reason we chose C++ out of the handful
of OOP languages available today was mainly a

question of availability *!. Before settling for a
“standard” OOP language for MCEG or indeed
for HEP in general, a more thorough comparison
of existing languages should of course be made.
We, however, felt that it was important to first
have an example as a basis for discussion, so we
simply chose the most widely used language.

1.2. The goals for the MC++ project

The MC++ project was started with a number of
goals in mind. Some of them were:

e The code should in a transparent way mir-
ror the different parts of the event generating
chain.

e The code should be modular, so that a model
describing only a small part of the event gen-
erating chain is easily added.

o The code should provide utilities to facilitate
the development of new “modules”.

e The code should be easily interfaced to a
graphical user interface.

o The user should easily be able to add, remove,
and change decay channels, branching ration
and decay methods etc. of particles as well as
adjust their mass and lifetimes etc.

o The user should just as easily be able to change
between different models for e.g. partonic
showers and fragmentation.

The result was a structure where the whole
event generating chain is defined in terms of
(generalized) particles decaying into (general-
ized) particles. The particles are implemented
as a class of objects in C++. More complex ob-
jects, such as a “Lund QCD string”, are realized
through the concept of inheritance and are “sub-
classes” of the generic particle class.

As it stands MC++ is not complete in any
way. It can only handle, through the use of the
“old” MCEG programs JETSET and Ariadne,
ete~ collisions, but we still think it is advanced
enough to serve as an example of what may be
done with OOP for MCEG.

#¥1 For example the C++ compiler called g++ written by the
Free Software Foundation can be obtained free of charge
via anonymous ftp to prep.ai.mit.edu

L. Lonnblad, A. Nilsson / The MC++ event generator toolkit 3

Decayer

[TwoBody l ’ SageDecayer I I Herwiglnterface ‘ (JelsetDecayer I ‘LudecyDecayer

| Panon‘ I Co]lisionJ

Lepton Meson Baryon VectorBoson

‘ HerwigDecayer] I HerwigShower —|

| Beceyimry |

DecayList

Fig. 1. The class hierarchy of MC++. Here we only show the most important classes of MC++. The toolkit contains a number
of other classes not shown here.

The layout of the rest of this paper is as fol-
lows. In section 2 we first explain the class struc-
ture of MC++, describing the three fundamental
classes “generic particle”, “decayer” and “parti-
cle factory”. Then in section 3 we. explain how
MCc++ should be used, how to develop new “de-
cayers” and how it may communicate with de-
tector simulation and analysis programs. In the
last section we discuss the future of MC++ and fi-
nally in the appendix information can be found
on how to obtain and install MC++.

2. The structure of MC++

As mentioned in the introduction the event
generating chain in MC++ is defined in terms of
particles decaying into particles. This means that
the concept of particles is somewhat broader
than usual - also e.g. an ete™ collision is con-
sidered to be a particle, typically decaying into
a qq or a II pair. Most of this structure is em-
bedded in the GenericParticle class.

2.1. The GenericParticle class

As seen in fig. | the GenericParticle class is
a sub-class of FourMomentum, this means that a
particle can be treated as just that, which is use-
ful when developing decay models. The instance
variables of the GenericParticle class can be di-
vided into two groups, one which describes the
generic features of a particle type — name, charge,
mass, decay channels, etc. — and one describing a
particular instance of a particle — fractional life-
time, helicity, a list of its children, etc. The decay
channels are described as a pointer to a Decay-
List object, which is simply a list of objects of
the DecayEntry class. Each DecayEntry contains
a branching fraction, a pointer to a list of decay
products and a pointer to a Decayer object (see
below).

When a particle is told to decay, it will tell
the DecayList to randomly select a DecayEntry
according the branching fractions. Then it will
tell the Decayer object pointed to by that Decay-
Entry to perform the decay, giving it pointers
to itself and to the, possibly empty, list of decay

4 L. Lénnblad, A. Nilsson / The MC++ event generator toolkit

ParticleList &GenericParticle::Decay(){
ParticleList xdummy = new ParticleList;

if(IsStable() == false){
if(ThasDecayed){
DecayEntryx dec;
if(decayTable == 0){
FATAL("Has no decay table");
}

switch(decayTable—Length()){
case 0:
return *dummy;
break;
case 1:
dec = decayTable—First();
if(dec—Decay(this) == 0)
return *dummy;
break;
default:
float total = decayTable—GetTotal();
float left = total;
float tmp = (factory—rnd).Flat();
dec = decayTable—SelectChannel (tmp);
if(dec == 0)
return xdummy;
while (dec—Decay (this) == 0){
decayTable—Remove (dec);
left-=dec—Branch();
decayTable—Insert(dec);
dec = decayTable— SelectChannel(
(factory—rnd).Flat(left/total));
if(dec ==0)
return *dummy;
}
}

hasDecayed = YES;

return xchildList;
}

else
return *dummy;

Fig. 2. The Decay() method of the GenericParticle class,

the method selects a decay entry according to the relevant

branching ratio and then sends a message to the decay entry

to decay itself. If this fails, the selection is redone, choosing
one of the remaining channels.

products. Finally the particle will either tell its
children to decay or return a list of its children
to the caller which then explicitly can continue
the decay chain. In this way the whole event gen-
eration is defined. The Decay() method for a

GenericParticle is shown in fig. 2

The GenericParticle is a so-called abstract
base class and should never actually be instan-
tiated, instead all realizable particles belong to
subclasses of the GenericParticle class. E.g. a
70 is an object of the Meson class, which is a sub-
class of GenericParticle. In this way also very
complicated objects can be treated on the same
footing as particles, e.g. a Lund-type string con-
sisting of a qq pair connected through a number
of gluons can be treated in the same way as a n°.
As a matter of fact also the Decay () procedure is
identical although the actual decay method ap-
plied is of course very different.

There are only a few requirements on a par-
ticle class besides that it should be a sub-class
of GenericParticle. It must of course define
creation and destruction methods. It must also
implement a method for reproduction, which
should be declared virtual and be called Copy ().
This is because the ParticleFactory which will
handle the production of particles does not have
any a priori knowledge of exactly what the par-
ticles look like, but is only provided at run-time
with one template particle of each class. Hence
the Copy () method must be provided in order
that the ParticleFactory may handle the repro-
duction.

In fig. 3 we show the declaration of the
GenericParticle class. As seen the only actual
instance variables besides the inherited four-
momentum is the mass and helicity *2 all other
information is stored centrally by the Particle-
Factory but can be easily accessed by the point-
ers to the decayTable and genericData, etc.
The methods AddParameter, SetParameter,
AddSwitch, etc. are explained in section 2.4.

The simplest example of a particle class is
the Lepton class as shown in fig. 4. As no new
instance variables are introduced the creation
methods just passes its arguments along to
the GenericParticle together with the generic
name “lepton”. Also the Copy () method is quite

#2 Spin and helicity are actually not used in any way in
this version of MC++ but are included for future use.

L. Lénnblad, A. Nilsson / The MC++ event generator toolkit 5

class GenericParticle : public fourMom {
public:

GenericParticle();

GenericParticle (String &, GenericData x, DecayList *);

~GenericParticle();

String &GenericName();

String &Name();

int Type();

int ICharge();

float Charge();

int ISpin();

float Spin();

float Mass();

float MassWidth();

float MassCut();

virtual float ThisMass();

boolean HasDecayed();

ParticleFactory &Factory();

virtual TransMat &Boost(double, double, double);

virtual TransMat &RotatePhi(float);

virtual TransMat &RotateTheta(float);

virtual veid Transform(TransMat&);

void AddChild(GenericParticle *);

virtual void SetMass();

void AddDecayChannel(DecayEntry *);

void AddParameter(String &, String &, float *, float,
float =, float *);

void AddParameter(String &, String &, int *, int,
int *, int x);

void SetParameter(String &, float);

void SetParameter(String &, int);

void AddSwitch(String &, String &, int *);

void AddSwitchOption(String &, String &, int);

void SetSwitch(String &, int);

void PrintSwitch();

ParticleList &Select(Selector);

ParticleList &Decay();

virtual void Print();

virtual GenericParticle *Copy();

protected:

ParticleFactory *factory;

GenericParticle xparent;

ParticleList xchildList;

DecayList *decayTable;

GenericData *genericData;

String genericName;

boolean hasDecayed;

float mass;

int helicity;

IS

Fig. 3. The class declaration of GenericParticle. Its most
important member variables include a pointer to a Generic-
Data structure, which holds the information common to all
instances of a particular particle type, e.g. a pi0, a pointer
to a list of decay products and the mass and helicity.

class Lepton : public GenericParticle {
public:
Lepton (GenericData , DecayList *);
GenericParticle *Copy();
%

Lepton::Lepton(GenericData xgd, DecayList *tab)
: GenericParticle("Lepton”, gd, tab) {}

GenericParticle xLepton::Copy (){

Lepton xnewp = new Lepton (genericData,
decayTable);

newp—mass = mass;
newp—helicity = helicity;
newp—hasDecayed = hasDecayed;
newp—parent = parent,
newp—factory = factory;

return newp,

Fig. 4. The Lepton class, a simple example of how to derive

new particle types from the generic particle class. The figure

also shows the definition of the constructor and the Copy ()
function.

simple, just creating a new Lepton and copying
over the variables.

A more complicated particle class is the QCD-
String class shown in fig. 5. A QCDString is a
Lund-type string and may contain a number of
partons contained in the list p1. In MC++ partons
can in principle only exist within a QCDString.
That is only colour singlet objects are treated
as true particles. This may be inconvenient for
models where partons are e.g. allowed to frag-
ment independently, but having partons as inde-
pendent particles would make MC++ impossible
to use for e.g. string fragmentation models.

As QCDString is a rather complicated particle
it redefines the methods for printing. It also in-
troduces new methods for adding partons to the
parton list and to retrieve the parton list from
the QCDString object. The Copy () method is also
different from that of the Lepton in that it copies
also all the partons.

6 L. Lénnblad, A. Nilsson / The MC++ event generator toolkit

class QCDString : public GenericParticle {
public:
QCDString();
QCDString(GenericData *, DecayList *);
virtual GenericParticle *Copy();
PartonList *PList();
void AddParton(Parton *);
virtual void Print();
virtnal void PrintAll(String &prefix = "1");
virtual void SetMass();
virtual void SetMass (float);
private:
PartonList pl;
5

Fig. 5. The QCDString class, a more elaborate example of a

derived particle class. The QCDString defines, in addition

to the base class members, a list of partons and a method
to add new partons to the list.

class Decayer {
public:

Decayer (String &, int);

virtual int Decay (GenericParticle =, ParticleList *);

virtual boolean IsAllowed (GenericParticlex,

ParticleList+);

String &GenericName();

String &Name();

int &Id();

virtual Decayer *Copy();

void SetFactory (ParticleFactory *);

void AddParameter (String &, String &, float *,
float, float =, float *);

void AddParameter(String &, String &, int *,
int, int *, int x);

void SetParameter (String &, float);

void SetParameter(String &, int);

void AddSwitch(String &, String &, int x);

void AddSwitchOption (String &, String &, int);

void SetSwitch(String &, int);

void PrintOptions();

protected:

ParticleFactory *factory;

String genericName, name;

int id;

ParameterList parameters;

SwitchList switches;

b

Fig. 6. Class declaration of Decayer. This class defines

the interface to a decayer. It also defines a uniform way

to access parameters and switches through the functions

AddParameter, SetParameter, ¢tc.; these functions have the
same form as for the GenericParticle class.

2.2. The Decayer class

As noted above, the actual method or algo-
rithm to decay a generalized particle is not im-
plemented in the particle classes themselves, but
rather in the class Decayer. The definition of the
base class Decayer is shown in fig. 6. The pur-
pose of this base class is to define the interface to
a general decayer, and the derived decayers are
then in this context a specification of the generic
decayer, implementing a specific decay model
or method. The base class also declares and de-
fines methods to add and change parameters and
switches of the decayer.

In this way the Decayer base class defines a
simple and uniform way for the user to access
parameters and switches, the same for all decay-
ers, this should ease the construction of a inter-
active front end to the MC++ kernel.

As seen in fig. 6, the member variables of the
base class includes a pointer to the factory where
the decayer is stored, two strings for the name
and the generic name of the decayer, respec-
tively. The generic name denotes a specific class
of the decayer, whereas the name denotes a spe-
cific instance of a decayer.

The base class also has a list of parameters
and a list of switches. Among the member func-
tions there are three most important functions
IsAllowed(), Decay() and Copy(), these func-
tions are declared virtual and the base class
only defines them to return an error message as
these functions should be defined by the derived
classes. The IsAllowed() functions returns true
or false if the particle pointed to by the first ar-
gument is allowed to decay into the list of par-
ticles pointed to by the second argument. The
function Copy() is expected to return an explicit
copy of the decayer.

The other functions are both declared and de-
fined by the base class, they include methods to
add parameters and switches and to set these.
The parameters and switches are member vari-
ables of a decayer, and they are added to the pa-
rameter list and switch list in the constructor of
the decayer to make sure that they can be ac-
cessed through the member functions of the base
class.

L. Lonnblad, A. Nilsson / The MC++ event generator toolkit 7

class TwoBodyDecayer : public Decayer {
public:
TwoBodyDecayer(String &, int);
virtual boolean IsAllowed(GenericParticle *,
ParticleList *);
virtual Decayer *Copy ();
virtual int Decay (GenericParticle *, ParticleList *);

b

boolean TwoBodyDecayer::IsAllowed (GenericParticle
*parent,

ParticleList
«children) {

if (children—Length() == 2)
return true;

else
return false;

}

Decayer xTwoBodyDecayer::Copy (){

TwoBodyDecayer xdec = new TwoBodyDecayer("",

0);
dec—factory = factory;
dec—name = name;
dec—id = id;
return dec;

}

Fig. 7. The TwoBodyDecayer. The figure shows the decla-

ration of the class, in this case there are no additional

member variables, but rather it only defines the functions

IsAllowed (), Copy() and Decay(). The definitions of Is-
Allowed() and Copy() are shown.

2.2.1. A twobody decayer

As a first simple example of a decayer we
show how a twobody decayer is implemented.
The declaration of the class is shown in fig. 7.
This class does not declare any new member
variables, but instead only defines the three
mandatory functions Copy(), Decay() and Is-
Allowed(). The IsAllowed() function, is sim-
ply defined to return “true” if the number of
children are two, and “false” otherwise. The
Copy () function creates a new instance of the
class TwoBodyDecayer to ensure that the proper
definition of the member functions gets called
when the this copy is used to decay particles.

int TwoBodyDecayer::Decay (GenericParticle xparent,
ParticleList *children) {

GenericParticlex chl =
factory—GetA (children—First());

GenericParticlex ch2 =
factory—GetA (children—Second ());

if(chl—>Mass() + ch2—Mass() > parent—Mass()) {
delete chl;

delete ch2;
return 0;
}

Random &random = factory—rnd;

float m12 = chl—p2();
float m22 = ch2—p2();

float ¢ = parent—Mass();

float el
float pz

(exe - m22 + mli2)/(2xe);
sqrt(elxel - m12);

chl—SetFourMom (0.0, 0.0, pz, el);
ch2—SetFourMom (0.0, 0.0, -pz, e-el);

TransMat m;

m.rotateTheta (acos(random.Flat(-1.0, 1.0)));
m.rotatePhi (random.Flat(2+PI));
m.boostFromCMOf (parent);

chl—Transform(m);
ch2—Transform(m);

ch1—SetParent(parent);
ch2—SetParent(parent);

parent—AddChild(ch1);
parent—AddChild(ch2);

return |;

}

Fig. 8. Definition of the Decay() method of the TwoBody-
Decayer.

Finally, the method Decay () is shown in fig. 8.
This function performs the actual decay of the
particle. The code is hopefully simple enough so
that even someone with little knowledge about
C++ can understand it.

8 L. Lonnblad, A. Nilsson / The MC++ event generator toolkit

class AriadneDecayer : public Decayer {
public:
AriadneDecayer (String &, int);
virtual boolean IsAllowed (GenericParticle *
ParticleList *);
virtual Decayer xCopy ();
virtual int Decay (GenericParticle *, ParticleList);
private:
float lambda_QCD;
float alpha_s;
float pt._cutoff;
float pow_sup;
float soft.sup;
int maxEmissions;

3

int parmStrategy;

int fragment;

int phaseSpace;

int alphaStrong;

‘int recoils;

int extPartons;

int invPt;

int alphaStrongArg;

int dumIMin, dumIMax, dumlZero;
float dumFMin, dumFMax, dumFZero;

b

Fig. 9. Class definition of AriadneDecayer. This class de-
fines in addition to the functions IsAllowed (), Copy () and
Decay(), a set of member variables to be added to the de-

cayers parameter and switch lists by the constructor of the
class.

2.2.2. The Ariadne decayer

The next example shows how to encapsulate
an existing Fortran Monte Carlo into an MC++
decayer, in this example Ariadne 3.1 [4]. The
class declaration is shown in fig. 9. Apart from
the functions Copy (), IsAllowed () and Decay(),
it declares several variables that are added to the
parameter and switch lists.

In fig. 10 part of the constructor of Ariadne-
Decayer is shown. Here the member variables
are added to the list of parameters or the list
of switches; these variables can then be changed
through member functions, defined in the base
class Decayer, or by reading new data from a
file using the ReadFrom function of Particle-
Factory.

The implementation of the Decay() func-
tion is seen in fig. 11. It first adds the particle
data into the lujets common block, calls the
ariadne_() function to decay the particle, in

AriadneDecayer::AriadneDecayer (String & name, int _id)
: Decayer("Ariadne", id) {

name = _name;

AddParameter("lambda_QCD",
"The momentum scale in alpha strong",
&lambda.QCD, 0.25, &dumFZero,
&dumFMax);

AddSwitch ("recoils",
"Quark recoil strategy", &recoils);
AddSwitchOption ("recoils",
"All partons treated the same", 0);
AddSwitchOption("recoils",
"Quarks takes all the recoil if
they are not extended", 1);

SetSwitch("recoils", 1);

}

Fig. 10. Definition of constructor of AriadneDecayer. As

mentioned in the text this function adds to the list of pa-

rameters and switches, those member variables that should
be accessible to the user.

this case to perform the cascade of a qg-dipole
according to the dipole model. It then extract
the cascaded strings from the event record, cre-
ates the corresponding MC++ particles and adds
them to the particles child list.

2.3. The ParticleFactory class

In order to administrate the production of par-
ticles in a simple manner, we have designed the
class ParticleFactory, see fig. 12. This class
contains information about all particles and de-
cayers. It has, through its member functions, fa-
cilities to read data for parameters and switches
from files, and thus enable the user to change
the default behaviour of particles and decayers.
The ParticleFactory class also provides meth-
ods to add new particles and decayers to the fac-
tory, so that the model developer can easily ex-
tend the MC++ kernel with new models, without
being forced to make changes to the Particle-
Factory class itself.

L. Lénnblad, A. Nilsson / The MC++ event generator toolkit 9

int AriadneDecayer::Decay(GenericParticle xparent,
ParticleList *children){

QCDString *st = (QCDString *)parent;

VAR[0] = lambda_QCD;

KAR[2] = recoils;

Parton *p;

inti = 0;

while((p = (st—PList())—Nth(i+1)) # 0 }{
K[01[i] = 2;

K[1][i] = p—Type();

KI[2][i] = K[3][i] = K[4][i]

P[0][i] = P[1][i] = 0.0;

P[2][i] = p—pz();

P[3}[i] = p—e();

P[4][i] = p—Mass();

V[01{i] = V[I1][i] = V[2]Ii]
V[4][i] = 0.0;

i++;

0,

VI31{i] =

}
K[0][i-1] = I;
N = i;

ariadne_();

i= 0;
while (i < N){
QCDString *child =
factory—GetA ("cascaded_string");
do {
p = factory—GetA (K[1]1[i]);
p—SetFourMom(P[0]1i], P[1][i], P{2]li],
PE3][iD);
child—AddParton(p);
} while (K[O]{i++] == 2);

parent—AddChild(child);
}

return 1;

}

Fig. 11. Definition of the Decay() member function of

AriadneDecayer. This function adds the data of the par-

ent to the lujets event record, calls the Fortran function

ariadne. to perform the cascade, and then extract the re-

sulting strings from the event record and creates the neces-
sary MC++ particles.

class ParticleFactory {
public:
Random rnd;
ParticleFactory (String fileName = "pdg.ptab");
void *GetA (String &name);
void *GetA (int type);
void *GetDecayer (String &name);
void *CopyDecayer(String &name);
void *GetDecayer (int type);
void ReadFrom (String &);
void AddParticle (GenericParticle *p);
void AddParticleTemplate (GenericParticle *p);
void AddDecayer(Decayer xdec);
private:
ParticleList particle_templates;
ParticleHashTable pTable;
DecayerList decayers;
Fig. 12. Class declaration of ParticleFactory. This class is
used to maintain data on the articles and decayers, and to
provide the user with a simple way to access these particles
and decayers.

The constructor of the class takes as argument
the filename of a setup file containing data on
the particles and decayers; the format of the
setup files is described below. This file is in-
tended to contain default data on particles and
decayers independent of the particular physics
model the user wants to work with, so the user
should not make any changes to this file. In-
stead, to be able to change the default data, the
ParticleFactory class has a member function
ReadFrom(String &filename) that reads the file
with the name given as argument and makes the
necessary changes to the factory.

To get a generalized particle from the fac-
tory, the user simply calls the member func-
tion GetA(), where the argument can be either
a string with the name of the particle, or an in-
teger corresponding to the type of the particle.
There is a third version of the function GetA,
which takes a pointer to a GenericParticle as
argument, this version simply returns a copy
of its argument and is typically used within a
decayer object as seen in fig. 8.

Similarly, the user can retrieve a decayer
from the factory in order to change parameters
or switches of the decayer. This is done with
the functions GetDecayer () and CopyDecayer (),
where the argument obviously is the name of

10 L. Lénnblad, A. Nilsson / The MC++ event generator toolkit

the decayer.

Apart from extracting particles, the Particle-
Factory has member functions to allow the user
to easily add new particles and particle classes.
This is done with the functions AddParticle
and AddParticleTemplate, respectively. A par-
ticle template is just an instance of a particle
class. The ParticleFactory class maintains a
list of these templates, one for each particle
class, which are needed in order to make sure
that a particle is created with the correct con-
structor. For example, when the user wants to
add a particle of the Lepton class to the factory,
for instance with a command in a setup file,
see below, the factory first gets a pointer to the
lepton template to get an explicit copy of the
lepton particle, adds the data about the particle
to be added in the factory, and finally adds the
new particle to a hash list of particles. This is
to ensure that, e.g. a particle of the class Lepton
has been created with Lepton *p = new Lepton()
so that the functions defined in the Lepton class
are called when the particle is used.

The specific particles, e.g. pi+, K- etc., are, as
mentioned, stored in the factory in a hashed list
in order to make the retrieval of particles effi-
cient and fast. The hash table in the factory pro-
vides methods to lookup the particles either us-
ing the name of the particle or using the particle
id.

2.4. Utilities

In this section we describe briefly some of
the other classes used in the toolkit. These in-
clude a random number generator and classes
for parameters and switches. The toolkit uses
more classes than we describe in this paper, but
since the intent is to explain the idea behind
the project, we refer the interested reader to the
code, which is available as described below.

2.4.1. Random

The MC++ toolkit is by default supplied with a
random number generator, see fig. 13. The gen-
erator uses the algorithm described in ref. [12],

class Random {
float u[97];
float c,cd,cm;
long 197,397,
float ran;
int set;
int dump_state (FILE x*);

public:

Random(leng seced = 19780503);

int AppendState(char *name = "random.state");

int WriteState (char xname = "random.state");

int ReadState(int rec = 1, char *name =
"random.state");

inline float Flat();

inline float Flat(float);

inline float Flat(float, float),

inline float Exp();

inline float Exp(float);

inline float Gauss();

inline float Gauss(float, float);

inline float BreitWigner(float, float);
inline float BreitWigner(float, float, float);
inline float BreitWignerM2(float, float);
inline float BreitWignerM2(float, float, float);

Fig. 13. Class declaration of Random. This class provides the
user with a set of commonly used distributions of random
numbers.

and it is the same as the one supplied in JET-
SET 7.3. This generator has a very long period
©(10%%) an has the ability to generate ©(10%)
disjoint sequences of random numbers.

To provide the user with random numbers
with different distributions, the Random class has
a set of member functions to supply the user with
this functionality, as seen in fig. 13. The dis-
tributions provided are flat, exponential, Gaus-
sian and Breit-Wigner distributions. The differ-
ent calling sequences for the member functions
give the user distributions with different mean
and variance. The functions with no arguments
give distributions with unit mean and variance.

The Breit-Wigner distributions are given by
the following equations:

dx

Px)dx = oSy (1)

and

L. Lénnblad, A. Nilsson / The MC++ event generator toolkit 11

dx?
(x2 = x2)2 + xqIr'?’

P(x)dx? = (2)

respectively.

2.4.2. Parameters and switches

Most decayers and particles will have param-
eters and switches to describe or determine the
behaviour of the decayer or the particle. To
have an unified and consistent way of handling
this functionality, we have implemented the
classes Parameter and Switch. The Parameter
has member functions to allow for both integer
and floating-point values.

The class declares three pointers, one pointing
to a member variable in a decayer or particle that
should be accessible to the user, the other two
pointing to the minimum and maximum value
of the decayer. The reason to have pointers to
the minimum and maximum value is to allow
the system to check that a user does not assign a
value to a parameter outside the bounds of the
parameter in question, furthermore the bounds
of a parameter can depend on the values of other
parameters so that the min or max pointers can
be made to point to other parameters.

In addition the class declares a variable to
hold the default value of the parameter, and two
strings, one for the name of the parameter and
one for a short description.

The Switch class, similarly declares a pointer
to the switch, an integer member variable in a
decayer or a particle, to give the user the possi-
bility to change the value of a switch in a simple
and consistent manner. The class also declares
a list of options, where each option contains a
value and a string with a description of the cor-
responding option.

3. How to use MC++

In fig. 14 we show a simple main program
for generating ete~ events at LEP energies with
MC++. First of all the ParticleFactory is cre-
ated. At this point the factory creates template
objects for each particle and decayer class which

#include "pfactory.h”
#include “genparticle.h”
#include "ariadne.h”
#include "selectors.h”

main(int argc, charx argv{]){
ParticleFactory factory("pdg.ptab");
InitAriadne(factory,"ariadne.ptab");
GenericParticle *p;

if(p = factory.GetA("e +e-collision") }{
p—DecayAll();
p—PrintAll();

}

ParticleList &list = p—Select(IsStable);

list.Print();

}

Fig. 14. A simple example of a main program using the
Mc++ toolkit, showing how to generate a e*e~ event.

are a part of MC++, then it reads a default setup
file which describes all the actual particles that
should be created and how they decay, typically
using information available from the PDG table
of particle properties.

After the factory is created the models that
should be used are loaded. This is done with a
function that must be defined for each model,
which takes a ParticleFactory as an argument
(InitAriadne). In this function, template de-
cayer and particle objects of all classes that
are special for this model are loaded into the
ParticleFactory. Also the ParticleFactory is
told to read from a setup file to set up all decay
modes etc. that are particular to this model.

The ParticleFactory is now ready to produce
events according to the model chosen. It is of
course still possible to read more setup files con-
taining the users preferred changes to the model
chosen.

3.1. Setup files

The setup files are clearly important parts of
the MC++ structure. They are simple ASCII files

12 L. Lonnblad, A. Nilsson / The MC++ event generator toolkit

containing commands which can be understood

by the ParticleFactory. The command syntax

looks like this.

¢ add p gName pName pNr mass massWidth
massCut charge spin lifeTime
adds a particle of class gName to be called
pName and numbered pNr, giving it a mass and
a width cut off at massCut, a charge a spin and
a lifeTime.

¢ add ¢ pNr brat dName N pNr1 ... pNrN
adds a decay channel to particle pNr with a
branching ratio brat for decaying into N parti-
cles with numbers pNr1 to pNrN.

e sets [pld] [pName|dName] sName value
sets the switch called sName to value for a par-
ticle or a decayer called pName or dName.

e setf [pld] [pNameldName] fName value
sets the floating-point valued parameter called
fName to value for a particle or a decayer called
pName or dName.

e seti [pld] [pName|dName] iName value
sets the integer valued parameter called iName
to value for a particle or a decayer called
pName or dName.

e add d gName dName dNr
adds a new instance of a decayer of class gName
naming it dName and giving it a number dNr.

3.2. Communication with other programs

MC++ so far does not have any facilities for
event analysis, indeed all you can do at the mo-
ment is to perform the decay and, as is shown
in fig. 14, to print out the decay chain and do
things like extracting a list of stable particles and
print them. This is of course not very useful.

Ideally, the ParticleFactory of MC++ would
simply be incorporated into a detector simula-
tion program, preferably also written in C++. In
this way the particles produced by MC++ could
be propagated through the detector until they
decay, whereupon its children can continue to
propagate. In this way the detector simulation
program does not have to know anything about
how particles are produced and decayed as all
this information is contained in the particle ob-
jects, but you still get the very natural picture of
events that are actually produced “in the detec-

tor”. A project for developing a detector simula-
tion program, called Gismo [13] has started and
some work has been done to make MC++ compat-
ible with this program.

Work has also started to enable MC++ to out-
put so called Cheetah records [14]. Cheetahis a
platform-independent data management system
which would allow MC++ to communicate with
other programs by writing out the event infor-
mation to a file (or a pipe) which is read by e.g.
an analysis program.

3.3. Developing new particles and decayers

When developing new models with MC++ there
are a few restrictions which have already been
mentioned above.

All new decayer classes must be derived (di-
rectly or indirectly) from the generic decayer
class Decayer. The new class must overload the
member functions Decay(), IsAllowed() and
Copy (). All new instance variables that are to be
available for manipulation by the user should
be inserted in the Parameter or Switch lists.

In the same way all new particle classes must
be derived from the GenericParticle class and
the member function Copy() must be over-
loaded. Optionally, also the methods for print-
ing, boosting, rotating and setting of mass can
be overloaded. Again all new instance variables
that are to be available for manipulation by
the user should be inserted in the Parameter or
Switch lists.

It is important to note that the models do
not have to be completely written in C++, As
a matter of fact all the models that have been
adapted to MC++ so far are “old” FORTRAN pro-
grams, which have simply been “encapsulated”
into Decayer classes. So as far as MC++ is con-
cerned, FORTRAN is not “dead”, it has simply
been put somewhat in the background to do what
it is best at: to do the heavy numerical work.

4. The future of MC++

As mentioned in the introduction, this version
of MC++ is not complete in any way. Especially

L. Lénnblad, A. Nilsson / The MC++ event generator toolkit 13

unsatisfactory is the Collision class. The aim is
to set up a number of classes defining the “de-
cay chain” from a collision through the hard in-
teraction, initial- and final-state parton showers
and hadronization for all kinds of collisions in
such a way that all present models can use them.
Also classes for structure function parametriza-
tions should be constructed. This, of course, re-
quires a lot of work and it is important to have a
discussion with the different MCEG authors to
be able to agree on a common structure.

So far MC++ is not equipped with any user in-
terface. However, the whole structure is set up
to be easily accessed by a graphical user inter-
face and work has started to build an application
based on the NeXTStep window system. This
would enable the user to more easily manipulate
setup files which is clearly essential for the use-
fulness of MC++. Also an interface for X-Windows
is planned.

To summarize, we have found that it is, if not
simple so at least possible, to formulate the event
generating chain in high-energy collisions using
OQOP techniques. Although this version of MC++
is still at an experimental stage we have found
that the structure is general enough to make it
possible to use many different models within its
framework (besides the JETSET and Ariadne
programs mentioned in this paper, also parts of
the HERWIG program has been successfully in-
terfaced to MC++ [16]).

We will continue developing MC++ and we
would like to encourage anyone who is inter-
ested to contact us so that the base for this
project can be broadened.

Appendix. Technical Information

The zeroth version of the MC++ toolkit is avail-
able through anonymous ftp from thep.lu.se
(130.235.92.57) as the files
pub/MCPP/MC++0.0.tar, or
pub/MCPP/MC++0.0.tar.Z,
the former is a tar archive file and the latter is a
compressed version of the tar file. If you do not
have access to ftp or to a tar archive program,

please contact one of the authors to work out
alternative possibilities for distribution.

Required for compiling the toolkit is a C++
compiler implementing version 2.0 or later of the
C++ language. Except for a iostreams library it
does not require any additional libraries. A small
library of character string and list classes, kindly
provided by Dag Briick at the Department of Au-
tomatic Control, Lund Institute of Technology,
has, however, been included in the MC++ toolkit.

So far the toolkit has been compiled on the
following platforms:

e NeXTstation with the native C++ compiler

plus libg++ version 1.39.

e DECstation 3100 with g++ version 1.39 and

libg++ version 1.39.

e Apollo 425t workstation with Domain/C++

version 2.1.0.

e VAX/VMS with g++ version 1.39.

The platform dependencies of MC++ is handled
by the use of macros in the source files. The
macros are defined in the top level Makefile in
order to make the compilation simple, so the
user should only need to edit the top level Make-
file. This Makefile defines a macro called DEFS
which should be assigned the definitions needed
for the specific machine type and compiler. The
comments in the top level Makefile should give
the necessary informations. The distribution in-
cludes sample Makefiles for the different plat-
forms. For more detailed information on the in-
stallation procedure we refer to the README file
in the distribution.

We have tried to write the code in a consistent
and uniform way to be able to use a utility writ-
ten in AWK called classdoc [15], which trans-
lates C++ definition files into a more readable
form, using a UNIX manual page like format.

The distribution also contains a couple of
small test programs for generating events using
the Ariadne and JETSET models. To run these
you will need the FORTRAN source for these
programs, available from the CERN program
library.

14 L. Lonnblad, A. Nilsson / The MC++ event generator toolkit

References

[1] G. Marchesini and B.R. Webber, Nucl. Phys. B 310
(1988) 461.

I.G. Knowles, Nucl. Phys. B 310(1988) 571.

[2] F.E. Paige and B.S. Protopopescu, in: Proc. Snowmass
Summer Study 1986 (QCD184:57:1986) p. 320.

[3] B. Bambah et al., QCD Generators for LEP, CERN-
TH.5466/89.

T. Sjostrand, Comput. Phys. Commun.39 (1986) 347.
T. Sjostrand and M. Bengtsson, Comput. Phys.
Commun. 43 (1987) 367.

[4] L. Lonnblad, ARIADNE 3 - A Monte Carlo for
QCD cascades in the colour dipole formulation, Lund
Preprint LU TP 89-10 (1989).

[5] A. Kwiatkowski, H. Spiesberger and H.J. Mohring,
HERACLES: an event generator for ep physics at
HERA energies including radiative processes, version
1.0, DESY preprint DESY-90/041 (April 1990).

[6] N. Magnussen, Results from the working group for
event generators, in: Proc. Workshop Physics at
HERA, Hamburg, October 1991, to be published.

[7] B. Andersson and G. Gustafson,Phys. C 3 (1980) 223.
B. Andersson, G. Gustafson, G. Ingelman and T.
Sjostrand, Phys. Rep. 97 (1983) 31.

[8] B. Bambah et al., QCD generators for LEP, CERN-
TH.5466/89.

[9] R. Blankenbecler and L. Lonnblad, Particle production
and decays in an object oriented formulation, Lund
Preprint LU-TP 91-19 and SLAC preprint SLAC-PUB
5648; Particle World, to be published .

[10]P. Kunz, Object oriented programming, SLAC-PUB-
5629, (August 1991); in: Proc. 1991 CERN School
of Computing, Ystad, Sweden, September 1991, to be
published.

[11]B. Stroustrup, The C++ Programming Language, 2nd
ed. (Addison-Wesley, Reading, MA,1991).

S. Lippman, C++ Primer, 2nd ed. (Addison-Wesley,
Reading, MA, 1991).

[12]F. James, Comput. Phys. Commun. 60 (1990) 329.

[13]W.B. Atwood, T.H. Burnett, R. Cailliau, D.R. Meyers
and K.M. Storr, Gismo: application of OOP to
HEP detector design, simulation and reconstruction,
in: Proc. Computing in High Energy Physics 1991,
Tsukuba, March 1991.

[14]P. Kunz and G.B. Word, The Cheetah data
management system, SLAC-PUB-5450 (March 1991).

[15]D. Bruck, Classdoc utility, Department of Automatic
Control, Lund Institute of Technology, P.O. Box 118,
S-221 00 Lund, Sweden.

[16] M. Seymour, in preparation.

