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Recent developments in pure scalar qs and scalar-fermion models are reviewed .

1 . INTRODUCTION

The quartic self-i-iteraction of ta complex dou-
blet scalar field and its Yukawa-couplings to lep-
tons and quarks are basic ingredients in the
Higgs sector ofthe Standard Model . The nonper-
turbative investigations of pure scalar or scalar-
fermion Yukawa-models are motivated by the
possibility of strong quartic and/or Yukawa-
couplings, corresponding to heavy Higgs-bosons
and/or heavy fermions . At present only a lower
limit of about 50 GeV is known for the mass of
the Higgs-boson (see, for instance, ref. [1]) . Al-
though the unknown top quark mass is consis-
tently predicted by 1-loop perturbation theory in
the range of 150 GeV [2], which still corresponds
to a perturbative Yukawa-coupling, the existence
of heavy fermions with strong Yukawa-couplings
is not excluded by present phenomenology. In
fact, a few additional heavy fermion families with
heavy neutrinos and small mass splittings within
doublets are still consistent with overall fits of
the data by 1-logt~ perturbation theory [3,4] . Of
course, perturbation theory is not really appli-
cable to strongly interacting heavy bosons and
fermions, therefore the results of such fits have
to be taken with some caution .
Another source of motivation for a nonpertur-

bative lattice formulation of the Standard Model
is to provide a consistent mathematical frame-
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work, which is vallid beyond perturbation theory.
In fact, since the Standard Model is based on a
chiral gauge theory, its lattice formulation is a
highly nontrivial problem, due to the Nielsen-
Ninomiya theorem [5] .

In this review a summary of recent results, ob-
tained mainly during the last year, will be pre-
sented . In the next section pure scalar models
will be considered, whereas section 3 is devoted
to scalar-fermion models with Yukawa-couplings .
For previous work on this field see also the recent
reviews [6-8] .

2. SCALAR HIGGS MODELS

Neglecting all gauge interactions and Yukawa-
couplings in the Higgs sector of the Standard
Model one is left with a four real component
O(4)-symmetric 04 theory. 04 models on the lat-
tice are simple, nice quantum field theories . In
case of the simplest lattice actions their solutions
are essentially known, in the sense that one can
calculate in a good approximation all physical
quantities for arbitrary values of the bare pa-
rameters .
An important feature of the solution is that

the continuum limit is trivial: there is a lat-
tice spacing dependent upper limit on the renor-
malized quartic coupling, which goes to zero in
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the continuum limit a --' 0. Moreover, for small
enough lattice spacing, for instance, if the physi-
cal mass in lattice units satisfies amH < 0.5, the
renormalized coupling is always small enough for
the applicability of perturbation theory. In this
sense the 04 theory is always perturbative. The
only nonperturbative feature is the mapping be-
tween bare and renormalized parameters, which
can be called renormalization mapping.
Due to the equivalence of O(4) to SU(2)L

SU(2)R, there are different ways to represent
the Higgs scalar field. The four real components
in the O(4) basis OR.,

	

(R = 0, 1, 2, 3), which
are also often denoted by o,x = Oox and ir,,x =
-01,x, (r = 1, 2, 3), can be put in a 2®2 matrix cps
with the help of the isospin Pauli-matrices r,,

Gx + ilrgx
i1rix - 7r2x

The realness of Oft can be expressed in terms of
the matrix field SP® by the relation

~Qx = 0»x + îr,Ir,,

i7riz + 1r2x

To - iRSx

'po _

	

'P-T 6 = T2iPTT2 .

The relation of the matrix field to the complex
doublet ~Ax (A = 1, 2) is

'10Ax = WA2,x i

	

4~Ax =WAI,x i

where the doublet field with hypercharge Y =
-1 is

i-Ax = `AB41~Bx = iT2,AB~k

2

The global SU(2)L 0 SU(2)R transformation of
the matrix field is

ip. = UL lsp®UR ,

	

UL,R E SU(2)L.R .

	

(5)

Therefore, (3) implies that 4DAx is an SU(2)L
doublet, as required .
Thesimplest lattice action in terms ofthe ma-

trix field Spx can be defir_ed as

S[(p] =

	

2 rh (~z (p.) + A L iTt (SP~SPx )]
2

0
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-M

	

(~+A SPO)
p=i

	

}

	

.

Here the normalization of the scalar field is left
general. In lattice perturbation theory it is con-
venient to fix the normalization freedom by rc =

Z , and then the bare mass squared in lattice units
is lAo = 2tto-8. In numerical simulations the best
choice is

Namely, in this case the limit A -+ oo is smooth,
only the length of the field is frozen to unity:

1

	

( PxiP$) = ~AxlbAx = ORx ORx = 1 .

	

(

2.1 . Analytical results

A recent addition to the approximate analyt-
ical solution of lattice 04 models is the study
of the O(4) symmetric model in a variational
cumulant expansion [9]. The field expectation
value, renormalized mass, its critical behaviour
and the effective potential are calculated up to
the third order. The results agree well with pre-
vious numerical simulation results (see, for in-
stance, [10]), and with the Löscher-Weisz solu-
tion [11], based on high order hopping param-
eter expansion ("high temperature expansion")
in the symmetric phase and perturbative renor-
malization group equations.
Another contribution is in the 4 dimensional

Ising model (one component 04 model at infi-
nite bare quartic coupling A) the application of
high order "low temperature expansion" in the
broken phase [12] . In a range of renormalized
masses about amH ^_ 0.3 - 0.6, the results of
up to 34th orders give a good agreement both
with high precision numerical data [13] and with
the Liischer-Weisz solution [11] .



2.2. Improved upper bounds on the Iliggs-mass

The renormaliized quartic coupling in the bro-
ken phase of an O(4) symmetric 04 model can be
defined by the ratio ofthe Higgsboson mass mH
("c-mass") to the renormalized vacuum expec-
tation value vR . Possible definitions, in different
normalization conventions, are
m2

v
H = 8,\R - g3 - 2gren2
R

In lowest order in the SU(2)L gauge couling
gsu(2) the W-boson mass is

2 gsu(2)yR 4mw =

	

4

	

+ G(9sv(2)) 1

therefore the ratio of the Higgs-mass to W-mass
RgW is given by

2

	

mX - 32.%R

	

(11)RHW -2- 2
mw

	

gsrr(2)
This shows how the upper limit on the quartic
coupling in pure a.4 theory gives an upper limit
on RHW

	

Y
.

Previous numerical and analytical investiga-
tions gave for the lowest possible cut-off's upper
limits of the order

AR <0.9,

	

mH <2.7,

	

Rgw<8,

	

(12)-

	

VR -

	

-

quite independently of the form of lattice ac-
tion [6] . Compared to the tree unitarity limit

aR < 25 , 1.26,

	

(13)

this is not a very strong coupling, indeed. In
QCD with two light quarks, which is a reason-
ably good approximation both to the real world
and to an SU(2)L 0 SU(2)R symmetric ff-model
with higher dimensional couplings, the mass of
the o, "particle" is in the range mo ^-r (6 - 8)f,, .
Since in the present context mo - mH and
fr = VR, this would correspond to -a substan-
tially higher value of the quartic coupling than
the upper limit in (12) .
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(10)

The question is, can one choose a reasonably
simple lattice action, which would mimic low en-
ergy QCD, and give a higher upper limit on the
Higgs mass? In order to find the answer, Heller,
Neuberger and Vranas [14] investigated the up-
per limit for AR in the fixed length (1, = oo)
limit of alattice action, with at most four lattice
derivatives . The results of the N -+ oo calcula-
tion and preliminary numerical data suggest an
upper limit which is by about 30% higher than
(12), if the upper limits for different lattice ac-
tions are compared at roughly the same amount
of cut-off effects in physical amplitudes . This is
consistent with the general expectation that the
absolute upper limit on the Higgs-mass should be
higher, if a more general class of lattice actions
is considered. In physical units the new absolute
upper limit would roughly correspond to

59

mH < 800GeV .

	

(14)

This is close to the tree unitarity limit (13) .
The question is, can one still substantially in-

crease the upper limit by considering an even
broader class of relatively simple lattice actions?
Ofcourse, it is clear that the complexity oflattice
actions has to be somehow restricted, certainly
from practical, but also from general theoretical
point ofview . The dependence of the upper limit
at low cut-offs on the lattice action also under-
lines, that the truely interesting upper limits are
those belonging to high cut-off's .

2.3. Goldstone bosons in finite volumes

An important and interesting aspect of the
numerical simulations in the pure 04 scalar sec-
tor is the presence of massless Goldstone bosons
(7r,,, r = 1, 2, 3) in the physically relevant phase
with broken global symmetry. In finite volumes
the Goldstone bosons give rise to unite size ef-
fects, which do not become small even on very
large lattices. These effects have to be corrected
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for, in order to extract the relevant infinite vol-
ume physical information . Fortunately, on an L4
lattice, in the range of lattice volumes satisfying

L»m,-, ', L<m,-i

	

(15)

one can use chiral perturbation theory to calcu-
late the finite volume effects in terms of some
parameters on the L = oo lattice [15] (see also
the contribution of Peter Weisz to this proceed-
ings [16]) . Measuring these effects can, in fact, be
used to determine important quantities like, for
instance, the renormalized vacuum expectation
value vR.

Comparisons of chiral perturbation theory for
finite size effects due to Goldstone bosons were
performed in case of the constraint effective po-
tential [17] in refs . [18,19] . Lowest order chiral
perturbation theory turns out to describe the nu-
merical simulation data in four dimensions well .
The extracted values of vR and ofthe wave func-
tion renormalization factor Z, agree well with
the known values obtained previously by other
methods. The advantage of the method based
on the constraint effective potential is, that the
introduction or an external source term in the
action is not necessary.

Another important quantity, which is also de-
fined without external source fields, is the con-
straint correlation function, which is defined at
a fixed value of the averaged field . Such correla-
tion functions can be measured numerically by
determining the direction of the averaged field
-0 in O(4) space, and then separating parallel
("longitudinal") and perpendicular ("transver-
sal") components of tire spins . Chiral perturba-
tion theory gives information on the large volume
behaviour of the constraint correlations, too [20],
which can be exploited in numerical simulations
of pure Higgs and Yukawa-models.
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1.4 . Multivariable fl-functions

Pure .04 systems and Higgs systems with gauge
fields, obtained by switching on some gauge in-
teractions, are well known by now . Therefore,
they are ideally suited as theoretical laborato-
ries for testing and developping new analytical
and numerical methods . One important informa-
tion in lattice quantum field theories with several
bare parameters is contained in the lines of con-
stant physics (LCP's). These are curves in bare
parameter space, where dimensionless physical
quantities are kept fixed, only the lattice spac-
ing is changing . The LCP's and the correspond-
ing multivariable Q-functions are important, for
instance, if ore is trying to control scale breaking
lattice artifacts, or to calculate thermodynamic
quantities etc .
The numerical determination of LCP's by in-

terpolating the results obtained in several differ-
ent points, is usually rather cumbersome, espe-
cially if the number of bare parameters is large .
In order to illustrate a direct method based on
high statistics simulations in a few points, let
us consider the fundamental ("standard") Higgs-
model, which is obtained by gauging the SU(2)L
symmetry in the above SU(2)L ® SU(2)R = O(4)
symmetric .04 model action (6) . The lattice ac-
tion is

S[U, 0] = sg[U] + so[U,'p] :
where the pure gauge part Sg is a sum over pla-
quettes

+A [ liTr (sp+ ~z) - il'

(16)

Sg [U] = PE

	

1- 1Tr Upi

	

,

	

(17)
Pt (

	

)

with P = 4/gsU(2) . The gauged scalar part is, in
the normalization corresponding to (7),
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-KETr (sa ,.ßU®,~~O )

	

.

	

(18)
rsci

This model has 3 independent bare parameters
(0, re, a) . On anisotropic lattices occuring in ther-
modynamic applications the number is already
increased to 5 : (fo, PT , re, , nT, J1) .

Let us now first consider in general n rel-
evant bare parameters 91, 92, . . . , gn [21] . In
order to specify the LCP's one has to keep
(n - 1) independent dimensionless physi
cal

	

quantities

	

F2, F3, . . ., F,,

	

constant .

	

The
points of a specific LCP can be parametrized,
for instance, by the first bare coupling gi :
9; = 9j(91 ; F2, F3, . . . , Fn) (j = 2,3,...,n).
In this case we have

dgj(91) _ detii_'1(8F/8g)
dg1 deéi_i1(SF/8g)

L Montvay/Hi,

(19)

Here detn''ki (OF/8g) denotes the (n-1)®(n-1)
subdeterminant of the n ® n derivative matrix
8F/0g, which belongs to the matrix element
(aF/8g)ik = 8Fi/agh .
Another possibility is to parametrize the

points of an LCP by the value of some refer-
ence physical quantity Fi . For instance, it is
reasonable to take Fi as some physical mass in
lattice units . This can be defined, for instance,
by an "effective mass" obtained from the ratio
of some connected correlation function :

Fi = am = am(t,t+i)

log (sort) -
(so)2

(sort+l)
- (so)a .

In this case the differential equations for gi(Fi)
(i = 1, 2, . . . . n) are

dgi(F1 )

	

det [1_' ] (8F/8g)
dFi

-
det�(8F/8g)

(20)

(21)-Bgi/F3 (F1,92,93, . . .,9n) .

On the right hand side Ngi/F, is a generalized
Callan-Symanzik IQ-function, which is considered

andMcava theories

here as a function of the reference quantity Fi
and the bare parameters g2 , g3, . . ., g,, . The di-
rection of the LCP flow is determined by (19),
whereas the generalized #-functions give the rate
of scale change along the LCP's.

As an example of the partial derivatives ap-
pearing in (19) and (21) one can consider

OF, =
f(sost+i)

-
(8o)21

_1

f
(SO8t+1

as )
89k

	

89i,

-(sogt+l)( 8
S

) - 2(so)(so
as

)
9k

	

9k

+2(so)2(8
s

)

	

- ( st+1 -+ st ) .
9h

amH amH(2,3)
F2 = RHw --° = aamw amw(2,3)

F3
= Cm =a(,T)

--_

	

4R(R - 1)eamwR

	

log (WR-l'T) .
3T(1 + Rea,w - R)

	

(WR,T)

iJrI performed a test run or. a 124 ' _`í ;�°bíriLi.

(22)

That is, the partial derivatives are expressed by
some connected 3-point correlations containing
parts of the lattice action, which multiply the
corresponding bare parameters.
The question is, how difficult is to measure

numerically these correlations? Returning now to
the fundamental Higgs-model, let us identify the
reference quantity Fi by the W-mass in lattice
units :

Pi = amw =amw(2,3) .

	

(23)

The second form indicates that on a 124 lattice
one can take, for instance, the effective mass ob-
tained from distances 2 and 3. For the dimen-
sionless quantities F2,3 one can take the Higgs-W
mass ratio

(24)

respectively, the renormalized gauge coupling
defined by the Wilson-loop expectation values
(WR,T) (R = 2,T = 6) as

(25)

the bare parameter values gi = rc = 0.30?,



62

gz = J1 = 1.0, g3 = P = 2.3 with 105 Metropo-
lis sweeps . The required triple correlations could
be determined with errors ofabout 10-20% . This
means that a reasonably good determination of
the LCP flows requires of the order of 108 sweeps
at this point .

3 . SCALAR-FERMION YUKAWA-MODELS

The Yukawa interaction of pions and nucleons
was originally introduced to explain the low en-
ergy nuclear force [221 . In the Standard Model
the Yukawa-couplings of quarks and leptons to
the Higgs scalar field provide the masses of the
elementary fermions. Strong Yukawa-couplings
correspond to heavy fermions on the scale of the
electroweak symmetry breaking, therefore the
primary concern ofnonperturbative studies is to
investigate the influence ofheavy fermions on the
Higgs sector of the Standard Model.

3.1 . Lattice actions

There is a great deal ofarbitrariness in putting
the Yukawa interactions on the lattice. One can
use Wilson- or staggered fermions, the Yukawa-
couplings can be defined locally on a single lat-
tice point, or on extended regions as hyper-
cubes, the global symmetry can be, for instance,
SUM C9 SU(2) or U(1) ® U(1) etc. This implies
that in recent studies many different lattice ac-
tions were considered . From the physical point
of view the most interesting models are those
with "chiral" global symmetries, which can be
gauged in order to describe a chiral gauge the-
ory similar to the electroweak sector of the Stan-
dard Model . Most of the recent studiesof lattice
Yukawa-models with explicit chiral symmetry
were concentrated either on the formulation with
a Wilson-Yukawa coupling [23], or with mirror

LMontvay /Hias- and Nakawa theories

pairs of fermion fields in the action [24] . These
will be separately considered in subsequent sub-
sections . (For recent reviews see also refs . [6-8] .)
Due to the large variety of different possi-

ble lattice formulations it is not easy to find a
representative prototype of the lattice Yukawa-
model actions . For definiteness let us start here
by defining a U(1) ® U(1) symmetric model with
two Wilson-fermions (OA. and OBs) in the limit
of A = oo, when the complex scalar field 0. has
a fixed unit length : 1 . We shall see later,
that this model is related in one way or another
to many of the models studied up to now. Its
action is :

S=
+4

El

	

oo,,o. +
x

	

»=±l

	

F=A,B

f4
E KF E (VF.+ß[1 + 7�]ikp.)

F=A,B p=f1

+G L`Na( T B~ 1f~Ax ) -i- 0.(T., Y'BQS )]

	

26

KA,.B denote the two hopping parameters, and
G is the bare Yukawa-coupling . If KA and KB
are equal, then S is a sum of two adjoint pieces,
therefore the popular Hybrid Monte Carlo algo-
rithm is applicable . The U(1)A ® U(1)B global
symmetry expresses the conservation of the two
types of fermion numbers. The symmetry trans-
formations of the fields are (;y1 = A, .B) :

-top

	

ia
zPFO = e

	

OF. ,

	

w Fa~ = OFae

	

-"

01

	

(27)a =e

	

~ .

Since 0. transforms as a (BA) bound state, it
has a nonzero "A-B" fermion number, but a zero
total "A+B" fermion number.
A similar SU(2)A0SU(2)B 0U(1)F symmetric

model can be constructed with the 2 ® 2 matrix
scalar field SP® satisfying the reality condition (2),
if the fermions i6Aar and 0B. have an extra dou-
blet index . The Yukawa-coupling is then



G

[( B~SPé~Ax) + (TA

.W.OB.)]

-	

(28)

Due

to its reality, the scalar field jpx does not

have

fermion number here

.

There is only a to-

tal

fermion number conservation expressed by

U(1)F.
The

above form ofthe lattice action (26) is well

suited

for the description of the light states in

the

model for weak and medium strong Yukawa-

couplings.

For very strong couplings IGI » 1

another

"neutral fermion formulation" is bet-

ter

[25]

.

In the present case one can define ei-

ther

"B-neutra ' or "A-neutral" fermion fields

.
For

definiteness, let us take the "B-neutral" (and

"A-charged")

ones

:

0Am

- ~OAm s	

OBx)

_ 'V G0xOBx

These

transform according to

OM'

= e-iaA0M~	

1pa

	

pa

	

F

)' _ ~F~esaa	

(30)

therefore

the symmetry can be considered as

U(1)F=A

® U(1)0_--(A-B)-

In

terms of these fields the fermionic part of

the

action (26) is

Sf

=	

G-1

	

(OF.

F

.))
x

1 F=A,B

+(~B)~A.))

+ (A

.)'PB.))
f4

	

ÎKA

~-(u)	

i-

	

"~~(r-
G

	

Ax

+ß [1 + ~p ] Y'Am

)

(29)

+

GB ['0x-~ß~x]-i('kBo+ft[1 +70] B

.))

	

(31)

1} -

The

peculiarity of this form is that the previous

mass

terms and Yukawa-coupling terms now all

look

like mass terms

.

The scalar field appears

only

in the hopping term of 0Bn), in a form rem-

inescent

of a gauge interaction on links

.

The de-

terminant

of the mass term is G-2 - 1, there-

fore

one fermion combination becomes massless

at

G2 =1

.
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G=0
Fig.

1

.

The generic phase structure of Vul awa-models

on

the lattice

:

PM = paramagnetic (or symmetric), FM

=

ferromagnetic, AFM = antiferromagnetic, FI = ferri-

magnetic

and PMS = strong paramagnetic phase

.

This

suggests that at strong bare Yukawa-

couplings

G2 has to be tuned in the continuum

limit

as a fermion mass term

.

For tuning the

scalar

mass to zero one can use the scalar hop-

ping

parameter re

.

3.2.

Phase structure

Already

the two forms (26) and (31) of the

lattice

action make plausible, that the lattice

Yukawa-models .ave

a rich phase structure with

a

certain kind ofreplication ofthe weak coupling

behaviour

at very strong bare Yukawa-couplings

.

The

general picture can be represented in the

plane

of bare Yukawa-coupling (G) and scalar

hopping

parameter (k) by fig

.

1, and was already

discussed

at Lattice '90 [6,?]

.
Besides

the expectation value of the scalar



field q5, another important order parameter is
the expectation value ofthe staggered scalar field

defined by

In the PM and PMS phases we have (~a) = 0,
(~®) = 0, in the FM phase (íß.) $ 0, (~.) = 0, in
the AFM phase (0.) = 0, (~.) i4 0, and in the
FI phase (0x) :A 0, (~.) 96 0. Particularly inter-
esting points of the phase space are points "A"
and "B", where four phases can meet. The right
hand side of the diagram in fig . 1, beyond the FI
Phase, can be understood in terms of the "neu-
tral" fermion fields (for a recent contribution
concerning this see ref. [26]) . This part is actually
absent in some staggered fermion models with
overlapping hypercubic Yukawa-couplings [27] .

In most numerical studies up to nowthe fermi-
on bare mass was put equal to zero (either for
simplicity or as a consequence of the chiral sym-
metry) . In a recent study in the mirror fermion
model [23] also the dependence on the fermion
mass was investigated, actually as a function of
the fermion mirror fermion mixing mass Ei~Gx,
or the corresponding hopping parameter K. In
the (K, ,c)-plane, for fixed quartic and Yukawa-
couplings, the phase structure can be schemati-
cally represented by fig . 2. In the subspace with
zero fermion mirror fermion mixing mass a pic-
ture similar to fig . 3 emerges.

Since the mass of the scalar field in lattice
units becomes zero on the boundary separating
the FM phase from P or PMS, and similarly
the mass belonging to the staggered scalar field
(32) is zero on the boundary between AMF and
PM or PMS, in the points "A" and "B" in fig. 1
there are two light scalar states . This means that,
remarkably enough, the Higgs scalar field is dou-
bled in continuum limits taken near these points!
Although reflection positivity (and hence unitar-
ity) usually cannot be proven near these points,
because G is large and ic is negative [29], such

I. Montvay /Highs- and Yukawa theories

Z

B

Z

Fig . Z . The schematic phase structure of the U(1)L

U(1)g, symmetric Yukawa-model with mirror pairs of
fermion fields in the plane of the two hopping parame-
ters . The phase boundaries are shown at small (dotted
lines with label B) and large (dashed lines with label B')
bare Yukawa-couplings . The lines Z, Z', which are not
phase boundaries, represent the curves of zero fermion
mixing mass for small and large Yukawa couplings, re-
spectively.

continuum limits may have a relevance for a de-
scription of models with two Higgs doublets .
The doubling of the scalar field can be nicely

seen in the momentum dependence of the scalar
propagator . The Jülich group [30] investigated
this with naive fermions . Near the point "B" in
fig . 1, where the fermions become massive due
to the strong Yukawa-coupling y, a typical re-
sult is shown in fig. 3. The light scalar states in
the scalar inverse propagator can be seen at the
two opposite corners ofthe Brillouin zone . In the
vicinity of point «A" the momentum space prop-
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Fig. 3. The behaviour of the inverse scalar propagator
near point "B" in the phase diagram, which shows two
light states at the opposite corners of the Brillouin zone,
where the inverse propagator is small.

agator also shows two light states but, in addi-
tion, there is a complicated structure at interme-
diate momenta (see fig. 4) . This can be explained
as due to the effect oflight fermion doubler states
in the fermionic self energy insertions .
The dependence of the phase structure on the

bare quartic coupling A was up to now not inves-
tigated in detail . Fig. 1 is based mainly on sim-
ulations and analytic approximations at A = oo .
In a recent nonperturbative study, based on large
N and numerical methods [31,32], at small A an
alternative phase structure emerged. As shown
by fig. 5, point "A" is replaced by a first order
phase transition line, before the FM and AFM
phases come close to each other. The FI phase
is not observed, at least not as a stable phase
(metastability could be due to the fermion sim-
ulation algorithm). It is not excluded that the
two pictures fig . 1 and fig . 5 will be unified as
a function of a, suggesting a possible nontrivial
tricritical point at intermediate A.

Unfortunately, many of the phase structure
studies, in particular also fig. 5, was obtained by

4

0
G;'(P)

	

6

4

2

8

. .- . I .

f# jf x X

	

6324
x x

eerx

	

=-0.65
x

	

xx

	

x x

	

x i % ,

	

y -'- n.x x 6-x
- cv,

x =8
f?r(ol+Qf9+ÉD3+04)ea .

x : MC data

. fit

o.î.e. = 0xex4x i

65

Fig. 4. The same as figure 3, near point "A". The upper
part shows the Monte Carlo data, the lower one a fit by
the contribution of fermion loop insertions.

naive fermions, which offer some peculiar mech-
anisms for producing phase transitions . An ex-
ample of such mechanisms, specific for naive
fermions, is due to simple identities like

(33)

This means that ordinary Yukawa-couplings also
produce interactions among the staggered scalar
field and fermions at the opposite corners of the
Brillouin zone . For instance, if (&) $ 0 then
the second form in (33) produces an offdiagonal
fermion mirror fermion mixing mass term (re-
member that doublers at the opposite corners of
the Brillouin zone have opposite chiralities) . If
the doublers are heavy, such mixing mass terms
are not important . In case of naive fermions,



3.3 . Smit-Swift model

YN

L Montvay /Hi,

Fig. S. The alternative phase structure, instead of fig. 1,
at small gnartic scalar coupling. The dashed line shows
the position of a first order phase transition. The details
in the middle of the diagram are not known at present.

however, when the doublers are light, they can
qualitatively change the light fermion content .
The statement that the naive fermion action de-
scribes 16 identical fermion flavours is in general
not true in an interacting Yukawa-theory. In case
of staggered fermion actions, depending e.g . on
the lattice form of the Yukawa-coupling, similar
mechanisms as the one discussed here may also
be present .

A possibility to reconcile the Wilson fermion
formulation with chiral symmetry is to intruduce
scalar fields at appropriate places in the Wilson-
term . The obtained Wilson- Yukawa coupling has
the r6le of removing the unwanted opposite chi-
rality fermion doublers from the physical spec-

aruf Yukawa theories

trum. This leads to the Smit-Swift approach for
chiral lattice gauge theories [23], which has been
the object of intensive scrutiny in recent years
(see also the contributions to this Proceedings
[33-36]) .
The fermion part of the SU(2)L®SU(2)R sym-

metric Smit-Swift action is
14

Sf = E

	

-K
x { A-±1

+y f( ORzSPá»La) + (ÎLz SPa 9'Rx)]

f4
+W E ((iRa lPIGLz) - (iRw+jl fPo?kLa )

P-f1

+(iLz IPxlkRx) - (iLx+ßWz+AORae)] } -

	

(34)

The fermion hopping parameter K can be chosen
by the fermion field normalization, for instance,
to K = 2. y is the bare Yukawa-coupling and w
is the Wilson-Yukawa coupling parameter.

In the vicinity of the Gaussian fixed point at
y = w = 0, up to the point "A" in the phase dia-
gram (fig . 1), it is not expected that the fermion
doublers are removed from the spectrum . In fact,
as the detailed investigations of the Nilich group
showed [36], the ratio of the doubler masses to
the renormalized vacuum expectation value re-
mains always well below 1 (see fig. 6) . Therefore
in the weak w region the continuum limit is not
appropriate for describing the electroweak Stan-
dard Model.
At larger w, of the order of w = 0.5 -1 .0, pre-

vious numerical and analytical results strongly
suggest that the doubler masses can be kept
at the cut-off scale, therefore they are removed
from the physical spectrum in the continuum
limit (for a recent addition in chiral U(1) and
SU(2)L ® U(1)Y symmetric models see [37]) . In
this region the neutral fermion field

n
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Fig. 6. The ratio of the doubler masses MD to the renor-
malized vacuum expectation value vg, as a function
of (aMD)'1 in the Smit-Swift model at small W'ilson-
Yukawa coupling w.

is the relevant fermionic degree of freedom [25] .
ON is the combination of the right-handed com-
ponent of the original fermion field 'OR plus the
left-handed component of a composite mirror
fermion field XL. Both of them are singlets under
SU(2)L, and doublets under SU(2)R.

In a recent paper [38] different analytical ar-
guments based on the 'Golterman-Petcher shift
symmetry [39], Schwinger-Dyson equations and
1 /d-expansion were collected, in order to con-
struct a coherent picture of the continuum limit
at w = O(1) . This continuum limit has to be
taken at the intersection of the y = 0 line with
the FM-PMS phase transition line . As already
argued in section 3.1, two relevant mass param-
eters have to be tuned there. This is different
from the situation in the Standard Model, where
the scales for all masses are set by the vacuum
expectation value of the scalar field. In addi-
tion, the renormalized 3-point Yukawa-coupling
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of the light neutral fermion is argued to vanish
in the continuum limit as yp.,a = O(a2 ) (not as
yren = O(log-'(am)) expected in a theory with
trivial continuum limit) .

In the symmetric (PMS) phase one can also
construct a charged fermion field

which is a doublet under SU(2)L and singlet
under SU(2)R. Besides the left-handed compo-
nent of the original field OL, this contains the
right-handed component of a composite mirror
fermion field XRx . A light bound state in the
0(c) channel would be interesting from the point
ofof of constructing a continuum limit for a
chiral SU(2)L gauge theory. Nevertheless numer-
ical simulations show [40,33] that the rest en-
ergy in the 0(c) channel is, to a good approxi-
mation, equal to the sum of rest energies in the
0(n) and scalar Sp channels . This suggests that
no 00 bound state occurs.

In addition to the vanishing of the renormal-
ized 3-point Yukawa-coupling in the continuum
limit, Golterman, Petcher and Smit [38] argue,
that in the SU(2)L-gauged model also the renor-
malized gauge coupling of the light 0(n) fermion
state vanishes . (In the hopping parameter expan-
sion Aoki has a contradicting result [41], but the
hopping parameter expansion is not convergent
in the FM broken phase, therefore the relevance
of his argument can be question-ned .)
The final conclusion of these detailed investi-

gations is, that in the large w continuum limit
of the Smit-Swift model the renormalized 3-
point Yukawa-coupling and the gauge coupling
of the fermion most probably vanish, therefore
the Smit-Swift model is not suitable for a lattice
formulation of the Standard Model.

o:K = -0.72

6312,84 a:K =-0.65

W>0 o: K=- 0.5 0
tt :K=-0.20
x :K= 0
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3.4 . Models with mirror pairs offermion fields

Another approach to chiral symmetric lat-
tice gauge theories is be_sed on the introduc-
tion of mirror pairs of fermion fields in the ac-
tion [24] . Mirror fermion states not only appear
in the fermion propagator as aconsequence ofthe
Nielsen-Ninomiya theorem [5], but also emerge in
the strong bare Yukawa-coupling limit of lattice
scalar-fermion models due to dynamical fermion
doubling [42] . For instance, as discussed in sec-
tion 3.3, in the PMS phase of the Smit-Swift
model the light fermi.~,n dynamics is bebt de-
scribed by the "neutral" and "charged" flAds,
which contain chiral components of a composite
mirror fermion.

If mirror fermions with opposite chiral trans-
formation properties are there anyway, it is bet-
ter to introduce them . explicitly as "elementary"
fields in the action. Each fermion mirror fermion
pair ipx - Xx describes 32 fermions on the lattice.
But it is possible to write down a generalized
Wilson term r~R,x+AXLa + - . ., which mixes 1,
and X and is chirally invariant . This term re-
mores 310 doublers by giving them masses of the
order of the cut-off, and we are left with a single
mirror pair .
The mirror fermion method has the following

advantages : i) the remaining mirror pair consti-
tutes the minimal possible doubling, ii) the mir-
ror field X is easier to control than the usual dou-
blers since it is explicitly contained in the action
and has its own couplings, iii) we have perturba-
tion theory at our disposal to study the vicinity
of the Gaussian fixed point, iv) reflection posi-
tivity can be proven iii large parts of the bare
parameter space [29] .
The fermion part of a generic lattice action

with a fermion mirror fermion pair is, in case of

L Montvay /Nigu- and Yukawa theories

chiral SU(2)L ® SU(2)R symmetry,

S1 =E {»1ßx [(X.».) + (T.X..)]

-

	

[K ( r ;,Trti~~-E

	

) -I- KX(X.+p7pxx)

-K,, «V.O.) -

+(i.Xx) - (ix+jaxx»]

+G 1ß [(iRo SPz IkLx) + (9'L= SPxORo )]

+Gx [(XRxVxXLx) + (XLmWxXRx)]

A suitable fermion field normalization for numer-
ical simulations can be defined by

K1p = Kx = K;

	

KT - rK;

(37)

T - pox +8rK = 1 .

	

(38)

K is the common hopping parameter of fermion
and mirror fermion, jt px is the corresponding
fermion mirror fermion mixing mass. r is a
Wilson-fermion parameter, which is usually cho-
sen to be 1. The Yukawa-coupling ofthe fermion,
respectively, mirror fermion is Go and Gx .

First numerical studies were performed with
the mirror fermion action in the U(1)L & U(1)R
model [43,29], and recently also in the SU(2)L
SU(2)R model [44] . (For a review see also
ref. [45] .) It turned out that the doublers can be
made heavy, indeed . In the symmetric phase the
renormalized Yukawa-couplings could be driven
to surprisingly large values, well beyond the tree
unitarity bound (although, due to limitations
in computer time, up to now only on small lat-
tices) . In the broken phase the mirror fermion
masses were pushed up to (3-4)-times the renor-
malized vacuum expectation value, that is, in
physical units into the TeV mass range. Mir-
ror fermions with such high masses and small
enough mixings to the three light fermion fam-
ilies are not excluded by present phenomenol-
ogy [46,47]. Therefore the Standard Model can



be formulated on the lattice to a sufficiently
good approximation by the action with mirror
pairs of fermion fields . Of course, the question
remains, whether the mirro fermions have to
be physical, or whether perhaps it is possible
to decouple them completely in the continuum
limit, leaving us with a purely chiral minimal
Standard Model on the lattice.

Before discussing this question in section 3.6,
let us remark that some simple limits of the
electroweak Standard Model can be numerically
simulated with present technique, using the mir-
ror fermion action, without solving the difficult
problem of exact chirality. The point is that the
Yukawa-coupling of a degenerate fermion dou-
blet is equivalent to the Yukawa-couling ofa mir-
ror doublet. This can be seen by applying charge
conjugation to the mirror fermion field :

XcL(R) = CXR(L)

	

XeL(R) = XR(L)C '

	

(39)

Therefore we have from (2)

(XRwih%Lx) + (XLwWo XRx)

_ (XcRwE-1WoEXcLx) + (XeL.E-1WeEXeRm) .(40)

If the new fields
-r -1

~Xex 9

	

Xx = XexE

	

a

are introduced, one obtains the Yukawa-coupling
of a fermion doublet.
The equivalence of the Yukawa-coupling of

a degenerate mirror doublet to the Yukawa-
coupling ofa doublet is very important from the
point of view o~ the Hybrid Monte Carlo algo-
rithm, where a flavour doubling has to be in- tro-
duced. If the fermion matrix for the first flavour
is Q, then the second flavour has Q+, in order
to have e, positive matrix Q+Q in the Gaus-
sian action of pseudofermions . In the adjoint Q+
the r61es of the fermion and mirror fermion are
interchanged : if for the first flavour 01 is the
ferm on and X1 the mirror fermion, then for the
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second flavour 02 is the mirror fermion and X2
the fermion. Introducing the new basis p2, XZ for
the second flavour according to (41), the fermion
fields will be 01, ,0Z and the mirror fermion fields
X1, X2' In this form one has, obviously, a global
SU(2) flavour symmetry interchanging the two
pairs: 01 with 9'2 and X1 with X2.

Using the four fields 01, X'1 0Z1 X2 one can de-
scribe four degenerate fermion doublets, which
is equal to the fermion content of a degen-
erate standard fermion family. However, due
to the O-X mixing in the action with mirror
pairs of fermion fields, there is no SU(4) Pati-
Salamsymmetry [48] acting on the four doublets.
Even if the renormalized O-X mixing angle, usu-
ally denoted by QtR [29], is tuned to zero, the
SU(4)p8t;_s.1am symmetry is only approximately
valid at small momenta.

In order to exactly describe a degenerate
fermion family, without gauge couplings, one
has to introduce a further doubling, and con-
sider the fermion matrix

~Q 0 0 0
0 Q+ 0 0
0 0 Q 0
0 0 0 Q+

(42)

This can be simulated by the Hybrid Monte Car-
lo algorithm, and one has an exact SU(4) flav-
our symmetry acting simultaneously on the basis
('Y1,& 4) and (X1, X2, X3, X4) . Moreover at
the special point

Gx = 1zpx = 0

	

(43)

there is an exact Golterman-Petcher ferinïon
shift symmetry [39] in terms ofthe X-fields [7,44] .
This implies that in the continuum limit the X-
fields are completely decoupled and have no in-
teractions at all . As a consequence, there is an
SU(4)p .t;_sa1sm symmetry acting on the o-fields
alone. This is, therefore, an exact description of
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a degenerate fermion family by the action with
mirror pairs of fermion fields.

This way of decoupling the X-fields was pro-
posed by the Italian group [49] . Unfortunately,
in case of nonzero gauge couplings it does not
work, because the gauge couplings cannot van-
ish . The equivalence of the mirror doublet to
an ordinary doublet does not work either, ex-
cept for the SU(2) gauge coupling . The physical
fermions are in complex representations of the
SU(3)colour ® U(1). symmetry group, which are
not equivalent to their charge conjugates .

Neglecting the gauge couplings and the mass
splittings within a fermion family can still be
a reasonable approximation for some questions
of nonperturbative nature . Such a question is
the determination of the cut-off dependent al-
lowed region in the space ofrenormalized quartic
and Yukawa-couplings . If the continuum limit of
Yukawa-models is trivial, then there are cut-off
dependent upper bounds on both the renormal-
ized quartic and Yukawa-couplings, which tend
to zero in the continuum limit . In pure 04 mod-
els the upper bound is qualitativelywell de-
scribed by the 1-loop perturbative fl-function,
if the handan-pole in the renormalization group
equations is assumed to occur at the scale of
the cut-off. The same might be true for scalar-
fermion models with Yukawa-couplings . For in-
stance, in the model with SU(2)L ® SU(2)R sym-
metry and Nf degenerate fermion doublets the
fl-functions for the quartic (gxt) and Yukawa-
(GR.0) couplings are :
jogR

_ .

	

1
z (4gR + 16Nƒ9RG~

	

-96Nf GR+G~16-ii
1

QGR# =
167r2

.4NjGRO

	

(44)

Since in the region where GR,O > gR the 1-
loop ,t3-function of the quartic coupling 0,R is
negative, besides the upper bounds there is also a
lower bound on get for fixed GRO, which is called
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Fig . 7 . The cut-off dependent allowed region in the

(GRO , !R) plane for cut-offvalues equal to some multiples
of the Higgs-boson mass m#. In the Yukawa-model de-
scribing a degenerate fermion family without gauge cou-
plings the perturhative 1-loop j9-functions are assumed.

iii the literatuie vacuum stability bound [50] . On
the lattice, if one assumes the qualitative be-
haviour of the 1-loop fl-function to be valid also
nonperturbatively, the vacuum stability lower
bound occurs at zero bare quartic coupling A =
0, whereas the upper bound occurs at A =
oo [29,51,52] . Negative A-values are excluded, be-
cause there the path integral is divergent . For
the 1-loop fl-functions in (44) the bounds in the
plane of (GR,o , gR) are shown in fig, 7 .

It has to be empha.Gized that the existence
and shape of the allowed region for renormal-
ized quartic and Yukawa-couplings in Yukawa-
models is merely based on the assumption that
the 1-loop,6-function is correct also in the region
where the higher loop contributions are large . At
present there is no real support for this assump-
tion . For instance, it is not at all. true, that tak-



ing the 2-loop ß-functions instead of the 1-loop
ones, the allowed region is corrected only a little
bit. In fact, according to the 2-loop IQ-functions
there exists a nontrivial ultraviolet stable fixed
point, which means that the continuum limit
is nontrivial and every point in the (gR, GRO)
plane is allowed [29] . Moreover, in the symmet-
rim phase of Yukawa-models with mirror pairs of
fermion fields there is some evidence that, un-
lik,. the renormalized qua-tic coupling in pure 04

models, the renormalized Yukawa-coupling may
reach large values [43,44] . It is clear that under
these circumstances numerical checks of the cut-
off. dependent allowed region, like in fig. 7, would
be highly desirable.
The model with four degenerate fermion dou-

blets still contains a relatively large number of
fermions. This may have an important quali-
tative influence from the quantum field theory
point of view . For instance, the tree unitar-
ity upper bound on the renormalized Yukavira-
couplings with N1 mirror pairs of fermions is,
both in the SU(2)L ®SU(2)R and U(1)L ® U(1)R
case,

G2 /-V2 GReG
41r

This means that "strong" coupling occurs at a
value proportional to 1/ N1 . (The same con-
clusion can also be drawn from the 1-loop #-
functions, as in (44) .) Numerical simulations by
the Hybrid Monte Carlo algorithm can be per-
formed for N1 = 2, but in general not for Np = 1 .
The case Gyp = GX is an exception, because then
the action with mirror pairs of fermion fields is
equivalent to some simple action similar to the
one discussed in section 3.1 (see section 3.6).
A possibility to simulate the N1 = 1 case

in general has been recently pointed out by
Munster and Plagge [53,45] . They numerically
determined the phase Oq of the fermion deter-
minant det 0 in the TJ( l)L
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model, on a number of configurations generated
by the Hybrid Monte Carlo algorithm with Q+Q,
in many different points of the bare parameter
space. It turned out that on the 43 - 8 lattice
the phase was always very small: jq5q! < 10'3.
This meansthat one can use the hybrid Langevin
classical dynamics algorithm to generate config-
urations with the weight I detQ1, and then either
neglect the phase factor exp(ioq) completely, or
take it into account as a small correction in the
measurable quantities .

3.5 . Staggered mirror fermions

Th;re are several different possibilities to for-
mulate Yukawa-models with staggered lattice
fermions . (A quite recent one by Smit [54], which
uses the staggered flavours to represent the chiral
SU(2)L ® U(1)Y symmetry, will not be discussed
here .) In most cases the internal symmetry, say,
SU(2)LOSU(2)R is introduced by extra indices at
a lattice site . Such actions were studied recently
in refs . [27,55].

In the case of a "' I' chiral symmetry [27] the
action is a staggered fermion transcription ofthe
continuum action, which corresponds to the ac-
tion considered in section 3.1 . An important in-
gredient is the choice of the Yukawa-coupling
on overlapping 24 hypereubes, which is moti-
vated by previous studies of staggered Yukawa-
irnodels with different coupling definitions (for a
review see [6]) . In this case the fermionic part
of the lattice action, with two species of stag-
gerad fermions and a complex scalar field 0.
c® -i- i1r® , is :

2 4

2 E1
{
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+
i1
rx l(X(1)Xí~))=+ga - (x,a)X(1))a+ f) ~ .(46)

aa,, is the usual staggered fermion sign factor,
and y the bare Yukawa--:oupling . The summation
F` goes over the points of the 24 hypercubes,
which are labelled by the shift vectors ~1 .

Decomposing the action into a sum of two
adjoint pieces one can see that this model can
be simulated by Hybrid Monte Carlo, and that
the exact symmetry on the lattice is U(1)®s . In
the continuum limit, due to &he fact that the
staggered fermion fields represent four fermion
species, the expected global symmetry is
U(1)chira1 ® U(4)fermion 0 U(4)mirror, where the
last two factors are vectorlike symmetries act-
ing on the four fermions, respectively, four mir-
äo: ernlions . The áerinions and mirror fermions
are defined on the usual "flavour basis" of stag-
gered fermions, where the Yukawa-coupling has
the form

s
(jgxOgx) + Zirx E(Tq, ^Y6Tqq 7P,,)

	

`v

	

(47go

with the diagonal matrix
Tgg = {1,1, -1, -1, -1, -1,1,1} . The fermions
are the components belonging to the eigenvalues
+1, the mirror fermions to the eigenvalues -1 .

Introducing an extra SU(2) index on the fermi-
on field, and using the equivalence of degenerate
fermion doublets with mirror fermion doublets
(see section 3.4), one can describe two degener-
ate fermion families by a staggered fermion ac-
tion analogous to (46) . The Pati-Salam symme-
try interchanging different doublets [48] is not
exact on the lattice. Its restoration in the con-
tinuum limit is a nontrivial question which can,
however, be investigated by numerical methods.
The model with U(1) chiral symmetry and lat-

tice action (46) was investigated by numerical
simulation in ref. [27] . In particular, the impor-
tant question was asked, what happens with the
Goldstone boson ('r) in the finite volume simula-
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tions . (For the same question in pure 04 models
see section 2.3 .) Two methods were

`
compared :

either a symmetry breaking mass term was in-
troduced, in order to make the Goldstone boson
massive, or the "constraint correlations" were
considered without symmetry breaking term at a
given value ofthe average scalar field . The results
obtained by the two methods are reasonably
compatible . The exact Ward-Takahashi identi-
ties following from the global symmetry were nu-
merically checked, in order to judge the quality of
the numerical simulations in the chosen points of
the bare parameter space . As a result of calculat-
ing the 7r-boson correlation functions by fermion-
antifermion --)urces, it turned out that the anni-
hiiation diagrams dominate . These could be ef-
fectively calculated by using "noisy estimators"
in terms of the pseudofermion field .

3.6 . The question of chirality

As discussed in section 3.3, the Smit-Swift
model probably does not have an appropriate
continuum limit, which would correspond to an
acceptable regularization of the chiral gauge the-
ory in the electroweak Standard Model. The ac-
tion of the model with mirror pairs of fermion
fields, considered in section 3.4, does not look
"chiral" in the sense that the representation of
the electroweak symmetry group on the fields
present in the action is real ("vectorlike" ) . In-
deed, for instance, if one goes to the symmetric
phase of the SU(2)L ® SU(2)R symmetric model
and introduces, instead of the fermioa doublet
(lbx) and mirror fermion doublet (Xx) fields, the
flew combinations

1i'Ax = 1PLa + XRa v

	

OBa = XLx + Ike 1

	

(48)
then the fermion part of the action in (37) be-
comes

S1 = E i (iAa Y'Aa) +(iBeZkBO )
0



f4

-K E L(iA,O+p[T + 1~/a]~GAa)
»-ti

+(iB,z+ß [r + 7p]IkBs)J

+(jA.[G« - Gp-y6]SP® ?kBo)

The new Yukawa-couplings are related to the old
ones by

G« = z(G0 + GX) ,

	

Gp = 1(G,0 - GX) .

	

(50)

In case of Gp = 0, G« = G, r = 1 and
K = KA = KB this is the SU(2)A ® SU(2)B
SU(2)LOSU(2)R symmetric variant of the action
(26) considered in section 3 .1 . Gauging the global
symmetry in the symmetric phase gives a vec-
torlike gauge theory with a pair of SU(2)A- and
SU(2)B-doublet fermions, whith the same mass.

In the broken phase with nonzero expectation
value of the scalar field W. the fermion spdc-
trum is better described in the original form of
the action (37) . The fermion and mirror fermion
are mixed with each other and have different
messes. Tuning to small mixing (IaRI « 1) is
possible by the hopping parameter K, and if
IGX I » IG,p l is chosen, then a large mass split-
ting (m, » mp) can be achieved . First nu-
merical simulations showed [29], that the mass
of the mirror fermions can also be substantially
larger than the renormalized vacuum expecta-
tion value: mX = (3 - 4)vR. This means that
the mirror fermions can be sufficiently decou-
pled from the light fermions . Mirror fermions in
the few hundred GeV range with mixings sat-
isfying IaRI < 0 .1 are allowed by present ex-
perimental data [46,47]. Nevertheless, the mirror
fermions are still there in the continuum limit as
physical particles. Since for small mixing their
masses are essentially given by spontaneous sym-
metry breaking, if the continuum limit is triv-
ial, then the upper bounds on the renormalized
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Yukawa-couplings imply that there is a cut-off
dependent upper bound on the mirror fermion
masses, too. The only possibility to give the mir-
ror femions a mass much higher than the elec-
troweak scale would be if, perhaps, there was a
nontrivial fixed point in the Yukawa-coupling, al-
lowing foranontrivial continuum limit. Once the
mirror fermions are there, it seems very difficult
to get rid of them!
To avoid mirror fermions in a lattice formula-

tion with explicit gauge invariance is not possible
if certain conditions, like perturbative renormal-
izability and absence of negative metric states,
are fulfilled [56] . The Nielsen-Ninomiya theo-
rem [5], implying the presence of mirror fermions
in the lattice fermion propagator, can also be ex-
tended to nonhermitian actions, if chiral invari-
ance is assumed [57] .
A potential problem with lattice formulations

of the electroweak Standard Model is the ab-
sence of baryon number violation by the SU(2)L
anomaly [58] . A solution to this problem in the
Smit-Swift model has been proposed in ref. [59]
by defining an appropriate baryon number cur-
rent (see also ref. [41]) . However, since the Smit-
Swifi model does not have the assumed contin-
uum limit, this solution is only formal.

In a model with mirror pairs of fermions the
baryon number is obviously conserved: the vio-
lation in the baryon current of fermions is ex-
actly compensated by an opposite violation in
the baryon current ofmirror fermions . It is, how-
ever, intuitively plausible that at temperatures
much below the mass of the mirror fermions the
asymmetry in the sphaleron dominated baryon
number violating processes [60] has to be ef-
fectively reproduced . The lattice formulation of
the Standard Model by mirror pairs of fermion
fields is "vectorlike" only at high energies . In the
"low" energy region near the electroweak sym-
metry breaking scale the "chirality" of the min-
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imal Standard Model is reproduced .
The only lattice forxnldetion of çhiral gauge

theories without mirror fermions is based on
gauge fixing [61] . In a recent paper [62] it has
been shown, that : :: lattice formulations of chi-
ral gauge theories, in which the non-invariant
terms in the action are made gauge invariant by
the coupling to a scalar field, like in the Smit-
Swift model, the scalar field can be decoupled
only if the parameters are tuned so as to satisfy
a set of BRST identities . This leads to a neces-
sary gauge fixing and, therefore, to the approach
of ref. [61] . This conclusion does not immedi-
ately apply to the formulation with mirror pairs
of fermion fields, because if the mirror fermions
are integrated out, the action becomes nonlocal
as a consequence of the presence of the mirror
fermions in the physical spectrum .

Unfortunately, the consistency of the gauge
fixing approach of Borrelli et al . [61] is up to
now only shown in 1-loop perturbation theory.
This may not reveal all problems because, for in-
stance, there are also pourer diVe-óences in some
mass counterterms . It is questionable whether in
the space of these bare parameters the appropri-
ate (GausLlan) fixed point can be found in the de-
sired phase, which allows for the definition ofthe
continuum limit of the target chiral gauge the-
ory. The nonperturbative study of this question
is difficult, due to the large number of bare pa-
rameters, and possibly also because of the prob-
lem of Gribov copies at nonperturbative gauge
fixing .

In conclusion, the nonperturbative formula-
tion of the Standard Model would be much
simpler if in nature there were mirror pairs
of fermions . The only way to give the mirror
fermions a mass well above the TeV range is (per-
haps) the existence of a nontrivial fixed point in
the Yukawa-coupling . The obvious question is,
where are the mirror fermions experimentally?
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It is rather strange that the minimal Standard
Model, wich is so succesful in reproducing all
known experimental data, up to aow does not
have a consistent and simple lattice formulation .

3.7. Composite models

A possible way out of the difficulties to for-
mulate the electroweak Standard Model by ele-
mentary scalar and fermion fields corresponding
to the observed light particles is, that there is a
further layer of compositness . A popular set of
models are based on preons bound together in
the "conventional" way by QCD-like asymptot-
ically free nonabelian gauge forces . For a recent
work along these lines see ref. [63] .
There is also another possibility to produce

bound states, which goes back to the classical
paper of Nambu and Jona-Lasinio [64], and was
revived recently in the context of a heavy top
quark (see ref. [65] and references therein) . The
strong force producing the bound states is in
these models a short range four-fermion interac-
tion . In fact, from the point of view of quantum
field theory this way of strong binding is quite
different from the one acting in QCD, because it
is based not on asymptotically free, but on in-
frared free field theories . The couplings become
stronger and stronger at short distances, and ac-
cording to the wisdom of triviality, the scale of
the strong interaction is roughly equal to the cut-
off scale, which can never be infinite .
Examples of such behaviour producing bound

states are well known in scalar-fermion mod-
els with very strong bare Yukawa-couplings . For
instance, in the o"-model with Wilson lattice
fermions at strong bare Yukawa-coupling com-
posite mirror fermions occur [42] . In a stag-
gered fermion model with U(1) global symme-
try bosonic bound states with fermion number 0
and ±2 are present in the strong coupling PMS



phase [66] . The important feature of these sys-
tems is that the one-to-one correspondence be-
tween light states and fields in the action is lost.
Since the continuum limit can be taken only at
strong bare couplings, bare perturbation theory
as a tool is lost . As a consequence of all these,
renormalization group scaling in the continuum
limit generally requires the extension of bare pa-
rameter space, similarly to strong coupling lat-
tice QED [67], which is another case of an in-
frared free quantum field theory.

This new kind of bound state problem can be
called short range compositness, which is based
on asymptotic slavery, in contrast to asymptotic
freedom in QCD-like theories .
The best studied examples of "short range

compositness" are Nambu-Jona-Lasinio-type
four-fermion models. As nonperturbative tech-
nical tool, N -+ oo methods are usually applied .
The four-fermion interaction is equivalent to tak-
ing re = a = 0 in scalar-fermion models, when
the scalar field has no bare kinetic term and can,
therefore, be trivially integrated out . Of course,
the kinetic term of the "auxiliary" scalar field is
generated by the strong Yukawa interaction . Due
to the phase structure of lattice Yukawa-models
there are, in principle, two distinct possibilities .
Since in fig . 1 the critical line at the boundary of
the FM phase has two intersections with n = 0,
one can take the continuum limit either near
point "A" or near point "B" . The correspond-
ing, physically different, theories can be called
"A-type" and, respectively, "B-type" . The two
types of continuum limits can be observed, for
instance, in the hopping parameter expansion
at rc = 0 [68] . Note that at small bare quartic
coupling A and large N there seems to by only a
single intersection of the critical line with rc = 0
(see fig . 5), therefore there is only an A-type
short range compositness .

Since the rc = 0 subspace in scalar-fermion
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models has one parameter less, there is Argil-a-

tion between the renormalized naramPters, for
instance, between the fermion mass and boson
mass [65] . If, however, higher dimensional four-
fermion couplings are allowed, this constraint is
released and the number of lnderendent renor-
malized parameters is restored [31,69] .
An exciting possibility would be to use short

range compositness to formulate chiral gauge
theories on the lattice ("chiral short range com-
positness" ) . In fact, one of the earliest proposals
for a chiral invariant version of Wilson lat-
tice fermions by Eichten and Preskill [70] is
based or, four-fermion interactions, and hence
on "short range compositness" . However, as
shown recently by Golterman [34], if one rein-
troduces the scalar field as an auxiliary field, the
Eichten-Preskill model becomes very similar to
a particular Smit-Swift-type model. Therefore it
has a similar phvs? strurture, which contradicts
the phase structure anticipated by Eichten and
I3'ieskill . In other words, the Eichten-Presl:iil
model presumably does not have an appropri-
ate continuum limit, similarly to the Smit-Swift
model.

Since the Tallahassee Lattice '90 Conference
our understanding of nonperturbative Yukawa-
models progressed substantially; even ifrlaeie age
still very important and tantalizing open ques-
tions . In a short summary:
- Pure ¢4 Higgs models are well understood .
They areserving nowadays mainly as simple the-
oretical laboratories for trying out i.ew analytical
and numerical methods .
- In spite of the progress, important features of
the scalar-fermion models are still to be discov-
ered.
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-, An important prerequisite for future numer-
ical studies is that there are simple reasonable
i,ûáty vá the e!Pdro.®ealt Standwiû iIodel (witn
degenerate fermion families and without gauge
couplings), which can be numerically studied by
present fermion techniques, without solving the
difficult chirality problem. An obvious question
for numerical simulations is to investigate the in-
fluence ofheavyfermions, for instance ofa fourth
heavy family, on the bounds of the Higgs boson
mass.
- The list of open theoretical questions is long .
Just to mention a few most important ones :
Are there nontrivial fixed points in the Yukawa-
coupling? How heavy can the mirror fermions be
made? Is there a problem with baryon number
nonconservation? Does gauge fixing work for chi-
ral gauge theories on the lattice?
- In the composite model approach, is "short
range compositness" a viable alternative dynam-
ical scheme for the Higgs-Yukawa sector of the
Standard Model?

Since the Higgs-Yukawa sector is a central and
the least known piece of the Standard Model,
one laces that many of these questions will be
understood in the future with the help of lattice
quantum field theory techniques .
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