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A systematic study of constraints in SU(2) and SU(3) Yang-Mills classical mechanics
is performed. Except for the SU(2) case with vanishing spatial angular momenta they
turn out to be non-holonomic. Using Dirac’s constraint formalism we achieve a complete
elimination of the unphysical gauge and rotational degrees of freedom. This leads to an
effective unconstrained formulation both for the full SU(2) Yang~Mills classical mechanics
and for the SU(3) case in the subspace of vanishing spatial angular momenta. We believe
that our results are well suited for further explicit dynamical investigations.

1. Introduction

During the last decade there has been considerable interest in classical pure
SU(N) Yang-Mills theory with spatially constant fields A4,, = A4,,(¢) . In the
temporal “gauge” (A, = 0) field theory then reduces to a nonlinear mechan-
ical system, sometimes called Yang-Mills classical mechanics (YMCM).

Its investigations were initiated by Matinyan et al. [1] who studied YMCM
for the gauge group SU(2). Making a special ansatz for the fields they obtained
a two-dimensional system

L =4 (5 + 53 - xpx3) (1.1)

for which they found stochastic oscillations thereby disappointing earlier hopes
that the non-abelian gauge theories might be integrable as the non-linear
o-models. Motivated by this unexpected result the dynamics of (1.1) was
analysed by many other authors [2] using different methods of modern non-
linear mechanics. Apart from being a rather simplified version of QCD, the
system (1.1) has also served as a toy model for attempts to understand the
semiclassical limit of quantum mechanical systems whose classical counterpart
is completely chaotic [3]. That in this model islands of stability exist in some
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tiny fraction of phase space was only recently demonstrated by Dahlqvist and
Russberg [4].

Due to Gauss’ law YMCM is a constrained dynamical system. For the case of
the gauge group SU(2), Villarroel [5] addressed the question of the holonomy
of this constraint and proved that it is not integrable. This means that the
physically accessible configuration space is not reduced by the constraint,
analogous to the well-known motion of a wheel without slipping (see e.g.
ref. [6]). In apparent contradiction to this result Asatryan and Savvidy [7]
explicitly carried out such a reduction by means of the customary singular
value decomposition.

To clarify this paradoxical situation and remove the apparent contradiction
is the first aim of our paper. This is achieved by extending Villarroel’s point
of view and regarding all constants of motion as constraints on the dynamics.

Starting our investigations with the study of the SU(2) case, we show that
for vanishing spatial angular momenta the combined constraints arising from
gauge and rotational symmetry are holonomic and lead to a reduction of the
initially nine-dimensional configuration space to a three-dimensional submani-
fold. This allows an immediate identification of the physically relevant degrees
of freedom and their dynamics which for two components is determined by
the lagrangian (1.1). In the general case, however, where arbitrary non-zero
spatial angular momenta are admitted, the constraints are non-holonomic and
the configuration space stays nine-dimensional.

Thereafter we treat the case of SU(3) YMCM most relevant in the descrip-
tion of hadronic phenomena. We find that for this model even in the case
of vanishing spatial angular momenta no reduction takes place. Consequently,
there is also no distinguished unconstrained system contrary to the case of
SU(2) YMCM.

To nevertheless eliminate the non-dynamical gauge and rotational degrees of
freedom we have to broaden the scope of our analysis and pass to a description
in phase space. The constraint formalism for hamiltonian systems invented by
Dirac [8] allows us to isolate canonical pairs of variables which are no longer
subject to constraints therefore representing the truly physical coordinates and
momenta of the theory. By constructing the reduced hamiltonian in these
variables, we obtain effective formulations for the general SU(2) YMCM and
for the SU(3) case in the subspace of vanishing spatial angular momenta that
contain all dynamical properties of the corresponding system. Hence those are
no longer obscured by the presence of constraints but can be studied directly.

Our paper is organized as follows: In sect. 2 we investigate the holonomy
properties of the constraints for the SU(2) as well as the SU(3) model and
discuss the consequences of our results. After a brief review of the most relevant
ideas and concepts to treat hamiitonian systems with constraints in sect. 3, we
construct the completely reduced hamiltonian of full SU(2) YMCM in sect. 4.
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In the case of SU(3) YMCM a direct reduction unfortunately could not be
carried out. Nevertheless, after a consistent gauge fixing of the constraints we
obtain a parametrization of the reduced phase space in sect. 5. Though the
resulting effective hamiltonian is rather complicated we are able to classify the
low-dimensional invariant subsystems. The simplest case of genuine SU(3)
dynamics is represented by a four-dimensional system which therefore should
be the starting point for further explicit dynamical investigations of the Yang-
Mills theory for this gauge group.

2. Constraint analysis in configuration space

The lagrangian for SU(N) YMCM reads
L= %A‘aiA'ai - %ngabefechaiAbjAciAdj ’ (2.1)

where i,j = 1,2,3 and a,b,c,d,e = 1,2,...,dim (SU(N)) = N%2 — 1. Here
the f,;, are the structure constants of the gauge group and g is the coupling
constant, which will be set equal to 1 in the following. The vector potentials
A,; parametrize the configuration space manifold M = R3™*-D

The invariance of (2.1) under both SU(N) gauge transformations and
O(3) rotations in ordinary space leads to (N? — 1) conserved colour angular
momenta

Na = fapcApiAci (2.2)
and three conserved spatial angular momenta
mi = eijk AajAak » (2.3)

respectively. As only gauge invariant quantities are of physical interest the
fields have to obey Gauss’ law, i.e. the dynamics of the system is restricted to
a subspace of the tangent bundle TM defined by the (N? — 1) functions

ng, = 0. (2.4)

Consequently, only those solutions of the equations of motion derived from
the lagrangian (2.1) are of physical interest which also fulfill these constraints.

Now the question is whether they lead to a reduction of the configuration
space M. To answer it, it proves advantageous to rephrase the Gauss’ law
constraints (2.4) in the language of differential forms which emphasizes their
geometrical nature: As any system of first-order ordinary differential equations,
n, = 0 can be represented by a system of vanishing one-forms (a Pfaff system),
namely

®a = fopeApidAei = 0.

This formulation allows to use methods from differential geometry, in partic-
ular



B. Dahmen, B. Raabe / SU(2) and SU(3) Yang-Mills 355

Frobenius’ theorem [6]: Let {w,} be a set of p independent one-forms on
a manifold M. Then the system

w; =0 for all a (2.5)
is completely integrable iff
O AN Awp Adw, =0 for all a. (2.6)

Complete integrability of such a Pfaff system is equivalent to the existence
of p independent functions F, on M, which define an (n — p)-dimensional
maximal integral manifold X C M of the system (2.5) through the conditions

F,(xy,...,Xn) = const., xeM.

In this case the constraints are called holonomic and X represents the physically
accessible configuration space. (It goes without saying that the notion of
“integrability of constraints” must be carefully distinguished from that of the
“integrability of the equations of motion™.)

In this section we will use Frobenius’ theorem to analyse the holonomy
properties of the constraints in SU(2) and SU(3) YMCM.

Villarroel {5] studied Gauss’ law in isolation for the case of SU(2) YMCM.
He found that these constraints are completely non-holonomic such that the
physically accessible configuration space keeps on being nine-dimensional.
However, though the possible values of the spatial angular momenta (2.3) are
not fixed, they are nevertheless conserved,

m; = k; = const. with k e R3. (2.7)

Hence, in addition to Gauss’ law (2.4) there are in fact three more constraints
on the dynamics and so it seems natural to treat gauge and rotation symmetries
on equal footing.

In a first step we therefore investigate the question of holonomy for the
particularly interesting case of vanishing spatial angular momenta k; = 0.
Thus we consider the dynamical system (2.1) for the gauge group SU(2)
(fabe = €apc) Subject to the six constraints

Ng = EgpeApiAci = 0, (2.8)
m; = gxAgjdAa = 0, (2.9)
which correspond to the Pfaff system
Wy = EgpcApiddci =0, (2.10)
ni = &ijkAajdAg = 0. (2.11)

To check whether they fulfill Frobenius’ condition (2.6) is facilitated by
expressing them in coordinates (¢, Xx,,8,) resulting from a singular-value
decomposition for the real matrices 4 = (A4,;) (cf. e.g. Atkinson [9], §7.9),

A=0AR", (2.12)
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A X1 00
A= (Ja,,x[,,]) = 0 X2 0

OO)C3

and O(¢,, 93, 93), R(61,0,,03) € SO(3). The matrix O € SO(3) can be viewed
as the adjoint representation of a gauge transformation U € SU(2) leading
to the interpretation of the Euler angles ¢, as gauge degrees of freedom
analogous to the interpretation of the 6, as ordinary rotational degrees of
freedom. Consequently, eq. (2.12) effects a decomposition of the configuration
manifold of SU(2) YMCM reflecting the symmetries of the system.

We expand the constraint one-forms (2.10) in the new basis {d¢,,dx,,d0,}:

30, do, + B, dx, + 50, de, ).
Making use of the orthogonality of the matrices O and the complete antisym-
metry of the e-tensor one shows that the coefficient in front of dx, vanishes,

O0A:;
abcAbim— = EabeRou0ujX(j10i Rk Ok 1n Oik
OXxn

where*

Wq = aabcAbi (

= €abeRppX1j104j0ik Otk 1n Rex

€abe Rok X 11101k jn Rek

= 0.
Hence
aAci aAci
W, = 8abcAb, (a—%d¢n + 5—0;(10"> B (213)
and similarly for the one-forms (2.11)
A4 04
ni = €ijkAaj (Wf'kdm + 60“"d0n> . (2.14)
n n

Thus, neither the w, nor the #; have components proportional to dx, and
consequently the wedge product of all the constraints w Aws AwWsAN ANIARS
is proportional to the six-form built from the basis forms dg, and dé, only,
viz. dp AdpsAdesAd8; AdB,AdE5, which is unique up to ordering. Calculating
the differentials we find furthermore that dw, as well as dn; are proportional
to dym A dy, where dy,, is arbitrary but dy, € {d¢,,df,}. As a consequence,
one basis form out of {d¢,,df,} shows up twice in each summand of the
eight-forms w; Aw; AwsAn AR AnsAdw g and w (AW A AR AR ARAdR,
respectively. Hence Frobenius’ conditions (2.6) are fulfilled and the constraints
(2.8), (2.9) are holonomic. As a result we find that the non-holonomic Gauss’

* We do not sum over indices in square brackets.
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law constraints n, = 0 are rendered holonomic by imposing the additional
constraints m; = 0*.

Furthermore, the only non-trivial solution of the transformed constraint
equations are given by constant angles ¢, and 8,. Thus, in the special case of
vanishing colour and spatial angular momenta the gauge and rotational degrees
of freedom ¢, and 6, freeze out. The coordinates {x,, x2, x3} parametrize the
three-dimensional maximal integral manifold £ of the constraints (2.8) and
(2.9) and we get as the reduced lagrangian

Lr = $(x% + x2 + x2) - Y (xixd + xix3 + x3x3), (2.15)

which completely determines the dynamics on X. Note that for x3 = x3 = 0
the model (1.1) of Matinyan et al. [1] is reproduced.

In the next step we investigate the general case of arbitrary spatial angular
momenta m; = k; € R\{0} leading to the slightly modified constraints

ng =0, (2.16)
rh,'Em,-—k,- = 0. (2.17)

Hence the three one-forms corresponding to the constraints (2.17) acquire
additional terms proportional to k;dt

ni=n—kdt =0.

Unfortunately, a direct check of Frobenius’ condition (2.6) using the calculus
of forms is impractical. Instead, we evaluate the resulting eight-forms (2.6) on
all possible distinct ordered sets of eight vectors {e;} taken from the canonical
basis {8/0A,,8/0t} dual to {dA,;,dt}. Expanding the differentials of the
constraints in terms of the basic one-forms &; € {dA4,;,dt},

dw, = Qaijdfi A déj with [ < j

(which is unique once an ordering of basis elements has been chosen) and
similarly for d7;, these eight-forms are given as sums of wedge products of one-
forms. Because for arbitrary one-forms {;} and vectors {e;} (not necessarily
basis elements) one has the formula (cf. ref. [11], §7.E)

Ei(er) &aley) -+ Enley)

G A A& (ey,... eq) = det él(.eZ)

Ei(en) o - Enlen)

* See ref. [10] as quoted in ref. (6], pp.624-627, for another example, in which for the motion
of a car subjected to the constraints of “steer” and “drive” the configuration space is not reduced,
but the constraints “steer”, “drive” and “wriggle” are completely integrable.
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the calculation is thus reduced* to the computation of sums of determinants
which we found to be non-zero in most cases. This implies the non-holonomy
of the constraints (2.16) and (2.17).

One might hope that they at least partially reduce the configuration space,
but we could show that this is also ruled out. As explained by Villarroel [5]
one can use Frobenius® theorem in dual language to find the dimensionality
of the physically accessible space: It is given by the number of dimensions
of the algebra generated by the vector fields which are annihilated by all
the constraints (with the commutator as the algebra product). The integral
manifold tangent to the vector fields in this algebra is the reduced configuration
space.

In our case, the initial configuration space is {44,?} = R!9, so we first
have to find 10 — 6 = 4 independent vector fields which are annihilated
by the 6 constraints (2.16) and (2.17). Expressed in the coordinates of the
singular value decomposition, three such vector fields are the 9/dx; dual to
the one-forms dx;. Introducing the basis {e.,,e;,} in the space of vector fields
orthogonal to J/0x; as well as /0t and dual to the constraint one-forms
{wq,n;}, a fourth vector field is given by

u=kiey, +0/0t.

The coefficients of this last vector field with respect to the basis dual to the one-
forms {d¢;,dx;,d#;,d¢} are rather complicated and could only be evaluated
with the help of the computer. Due to the simplicity of the first three vector
fields it was nevertheless possible to calculate the twelve commutators

v; = [0/0x;,u], Wi—n+j = [0/0xi,v5].

We determined the dimensionality of the subspace of vector fields orthogonal

to 9/80x; spanned by u and the commutators v; and ws3(;—1y4+; by a numerical
singular value decomposition** and invariably found the rank to be maximal
(10 — 3 = 7) thereby proving that the constraints (2.16) and (2.17) are
completely non-holonomic***.

In summary, we reached the following conclusions for the gauge group
SU(2): In the general case, where the system is subjected to the Gauss’ law
constraints #, = 0 and any values of the spatial angular momenta m; = k; # 0
are admitted, the configuration space keeps on being nine-dimensional. Never-
theless, in the especially interesting case of vanishing spatial angular momenta
k; = 0, the constraints are holonomic. The singular value decomposition is
the appropriate transformation for the fields A4,; (¢) leading to constant Euler

* Qur analysis was performed with the help of the algebra program REDUCE [12].

** We used the FO2WEF-routine out of the NAG Fortran Library [13].

*** This especially implies the complete non-holonomy of the Gauss’ law constraints in isolation
and therefore corroborates Villarroel’s result.
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angles ¢, and #,. Consequently, the dynamics is completely determined by
the effective lagrangian (2.15) which has been studied rather extensively in
the literature [1-3].

We will now extend our investigations to the gauge group SU(3) relevant
for the description of hadronic physics. The configuration space has 24 di-
mensions, Gauss’ law leads to eight constraint equations (2.4) and in addition
there are again three conserved spatial angular momenta (2.3). The singular
value decomposition (2.12) of the 8 x 3 matrix 4 = (A,;) consists of two
orthogonal matrices O € SO(8) and R € SO(3) as well as an 8 x 3 matrix
A= (danx[n)). However, because in general it is not possible to interpret an
arbitrary element O € SO(8) as the representation of a gauge transformation
U € SU(3) (cf. ref. [14]) this decomposition does not allow a direct iden-
tification of gauge and rotational degrees of freedom as in the SU(2) case.
Obviously, a straightforward generalization of the previous results to SU(3)
YMCM is not possible.

To analyse the holonomy properties of the constraints we checked Frobenius’
condition (2.6) for the Gauss’ law n, = 0 in isolation as well as in combination
with the special angular momentum constraints m; = 0 by evaluating the
corresponding 10- and 13-forms, respectively. Employing the computer as
described above we found non-vanishing determinants in both cases thereby
proving that analogous to the case of SU(2) YMCM Gauss’ law represents
non-holonomic constraints. But in contrast to the SU(2) case even in the
subspace of vanishing spatial angular momenta no degrees of freedom freeze
out because the constraints stay non-holonomic.

As a direct consequence of this last result, the configuration space of SU(3)
YMCM cannot be reduced to a 13-dimensional submanifold and a distin-
guished unconstrained subsystem similar to (2.15) does not exist. Furthermore,
for arbitrary gauge groups there is no decomposition of the configuration man-
ifold of YMCM as claimed by Asatryan and Savvidy [7]. On the contrary, the
obvious lack of such a decomposition gives rise to a much more complicated
dynamical structure of SU(3) YMCM as compared to the SU(2) case, where
an appropriate coordinate transformation is available via the singular value
decomposition.

Hence, we found that for SU(2) YMCM with non-vanishing spatial angular
momenta m; = k; # 0 as well as for SU(3) YMCM the constraints are
non-holonomic. Even though the motion is restricted to some subspace of the
tangent bundle TM a reduction of the configuration space M does not take
place.

To nevertheless eliminate the unphysical degrees of freedom and obtain a
description without constraints for these cases, we have to widen the scope of
our analysis. Passing to a description in phase space I", which is the cotangent
bundle T*M of the configuration space M, the formalism for constrained
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hamiltonian systems invented by Dirac [8] (and elaborated by many others;
see the monographs [15-17] and references cited therein) allows to isolate
canonical pairs of variables which are no longer subject to constraints. They
span the reduced phase space Ir and represent the truly dynamical degrees of
freedom. Before carrying out such a reduction we will briefly review Dirac’s
constraint formalism in sect. 3.

3. Constraint formalism in phase space

In this section we briefly collect the necessary prerequisites for the derivation
of an unconstrained description of SU(2) and SU(3) YMCM. In subsection
3.1 we review the vocabulary of primary and secondary, first and second-class
constraints introduced by Dirac [8]. In subsection 3.2 we state and explain a
couple of theorems taken from the book of Gitman and Tyutin [17], Ch. |
and 2, which we will apply in the later sections.

The reader familiar with the subject may wish to skip this section and use
it only for reference in the later parts of this work.

3.1. HAMILTONIAN SYSTEMS WITH CONSTRAINTS

We consider classical dynamical systems whose configurations are charac-
terized by a set of generalized coordinates {g;,a = 1,...,n}. The lagrangian
L(q,q) determines the dynamics through the equations of motion. Defining
canonical momenta p, = L/8¢, as usual, one may pass to the hamiltonian
description via the Legendre transformation

H(q,p) = Ppada(q,p) — L(q,9(q,p)), (3.1)

unless p = 8L /0q cannot be solved with respect to g.

This is only a special case of the general phenomenon that some coordinates
and momenta may not be independent. The motion in phase space I" spanned
by n = (g, p) is then restricted by constraints

v..I"M=I - R, a=1,...,r<2n
to the (2n — r)-dimensional constraint hypersurface Ic C I" defined through
the conditions
Y.(.p)=0 for all «. (3.2)

Within the framework of variational calculus one then proves the existence of
r so-called lagrangian multipliers A, (¢) such that the equations of motion are
obtained by varying the extended action

Se(q, 3 4) = / (Patia — H(2,D) — 2% (q,p)) dt, (3.3)
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independently with respect to g, p, and A,. Defining the extended hamiltonian

He(q,p;A) = H(q,p) + A¥(q,p), (3.4)
they take on the canonical form
fla = {Na He(1;4)} (3.5)
supplemented by the constraint equations
¥.(n) =0. (3.6)

So in the presence of the constraints (3.2) it is still possible to use the
canonical formalism if one passes from the initial hamiltonian (3.1) to the
extended hamiltonian (3.4) which explicitly depends on these constraints.

For sake of consistency one must also require that the time development on
I¢ respects the constraints, i.e.

{¥.(q,p),He(q,p)}, =0  foralla.

These relations may lead to a certain number of independent new constraints
called secondary in contrast to the primary constraints (3.2). Also the sec-
ondary constraints must be preserved in time and may eventually imply further
restrictions on the dynamics. One has to proceed in this fashion until all con-
straints are generated. As we will see below, however, in the cases considered
by us no secondary constraints arise. We will therefore henceforth assume that
the r functions ¥, comprise all constraints present in the theory.

We now give some useful definitions:

(1) Two sets of constraints ¥ and @ are called equivalent if there is a
matrix 4(n) such that

Yo = Aap () Pg, det A(n)|p_o# 0.
Equivalent constraints restrict the motion to the same hypersurface It and
thereby have the same implications on the dynamics. Furthermore, the equa-
tions of motion (3.5) and (3.6) are invariant under a transformation to
equivalent constraints (cf. ref. [17]).

(2) For two quantities A(n) and B(n) coinciding on the hypersurface /¢
one often writes

A(n) =~ B(n).
The symbol ~ therefore means equality up to terms which vanish when ¥ = 0.
(3) A quantity A(q,p) is called first class if
{4,%}~0 forala =1,...,r
and second-class otherwise.

This distinction in particular applies to the constraints themselves. Thus a
set of constraints {¥,,a = 1,...,r} is second class iff the matrix

My (n) = {¥(n), ¥p(n)} (3.7)
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built from the Poisson brackets of these constraints is non-singular on the
hypersurface I¢:

det (M (7)) £0.

Because a non-singular anti-symmetric matrix always has even rank the number
of constraints in a set of second-class constraints is necessarily even.
On the contrary, if the matrix (3.7) is singular on It with defect

t=r—rank(M)|g_o=7r-s5,

then the theory contains ¢ independent linear combinations of the initial
constraints which are first class. One can show constructively [17] that for
any set of constraints ¥ there is an equivalent set consisting of ¢ first-class
constraints ¥ (1 and s second-class constraints ¥ (2,

Now let us come back to the extended hamiltonian system (3.4). Of course
it would be desirable to eliminate the lagrangian multipliers {14, = 1,...,r}
from the equations of motion (3.5). To this end we consider the conditions
resulting from the requirement that the constraints be conserved in time,

r
¥ = (¥ H} + > {¥¥lip~0, a=1,..,r. (3.8)
B=1
Out of the r A,’s, there are s corresponding to the second-class constraints
{9’0(2),0 = 1,...,s5}. These can be determined as functions of 7,

§

-1
Jao(m) = =3 ((FPm. #@m)}) (ZP)H®MY,  o=1...s,

g

and may be substituted directly into Hg.

The remaining functions {4,,7 = 1,...,¢}, however, which correspond to
the ¢ first-class constraints %!’ where {1 w1 ~ 0, enter the equations
of motion as arbitrary parameters:

’7.a = {77a, HéZ)(rl;it)} s

Y1) =0, a=12..,r, (3.9)
where
t s 1
H? (1:4) = H(p) + Y20~ 30 (92,92} (92, Hn)e.
=1 ou=1

3.2. THE REDUCED PHASE SPACE

In this subsection we present two theorems and lemmas which clarify the
dynamical situation in hamiltonian systems with constraints and allow the
identification of the truly physical degrees of freedom.
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Theorem 3.1. Let {¥,a = 1,...,r} be a set of independent second-class
constraints,

det || (%, %5} lly—o# 0.

Then canonical variables (w, 2) consisting of two separate sets of pairs of
canonically conjugate coordinates and momenta exist such that the variables
Q are equivalent to the constraints ¥.

For a detailed proof see ref. [17]. In general, theorem 3.1 only holds locally,
in the vicinity of a generic point g € I't. Of course, this does not rule out the
existence of an extension to the whole phase space in special cases.

In the new variables the constraint hypersurface I¢ is determined by the
equations 2 = 0 and the pairs w can be viewed as canonical coordinates and
momenta on I¢. Making use of the invariance of the equations of motion
(3.5) and (3.6) under the replacement of the constraints ¥ by equivalent
ones, they read after the canonical transformation 7 — (w, Q)

o = {w, Hy}, (3.10)
Q =0, (3.11)

where Hr (w) = H(w,Q)|g-0 and H(w,2)=H(y) .

As the time derivative of the constraints (3.11) also vanishes on I, it
follows that only the variables w are dynamical. Consequently, those represent
the truly physical coordinates and momenta and parametrize the reduced phase
space Ix = Itc. Their dynamics is described by ordinary hamiltonian equations
of motion (3.10) with the reduced hamiltonian Hr(w).

In general, the problem of actually finding a canonical transformation to the
distinguished variables (w, 2) described in theorem 3.1 is highly non-trivial.
Fortunately, there is a

Lemma 3.1. Consider a classical hamiltonian system subject to a set of
r second-class constraints. If one can carry out a canonical transformation
nw— (n*,n.) = (q*p* g P,) such that the initial constraint equations ¥ = 0
assume the form

g = O,P* = f(ﬂ*) (312)

with a corresponding function f, then the dynamics of the variables n* is
determined by the ordinary hamiltonian equations of motion

n* = {n*, Hr(n*)}  where Hr(n*) = HM* 1) 40 p=rom -

Therefore on the constraint hypersurface the variables n* coincide with
some variables w from theorem 3.1, i.e. on Jgx = I¢ there exists a canonical
transformation from n* to w, and the reduced hamiltonian can be constructed
by simply eliminating the unphysical degrees of freedom 7, from H using the
constraints in the special form (3.12).
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Generalizing theorem 3.1 one can also prove the (local) existence of distin-
guished variables for theories with first-class constraints.

Theorem 3.2. Let {¥,,a = 1,...,r} be a set of independent constraints
where

rank || {¥,, ¥} lg=o=s<T.

Then there are canonical variables (w, (@, P), ¢) such that

(1) w is a set of pairs of canonically conjugate coordinates and momenta;

(2) P are momenta canonically conjugate to the coordinates Q and ¢ is a
set of pairs of canonically conjugate variables;

(3) 2 = (P,¢) is equivalent to the constraints ¥, the number of momenta
in P equals ¢ = r — s and the pairs ¢ constitute s coordinates and momenta.

Obviously, the momenta {P;,7 = 1,...,t} represent the ¢ first-class con-
straints of the theory and the s second-class constraints are transformed to
canonical pairs {¢;+,,0 = 1,...,5/2} as in theorem 3.1 (recall that s is

always even as was explained just after eq. (3.7)).
One finds that the equations of motion (3.5) and (3.6) read in the new
variables

o = {w, He}, (3.13)
0 = {Q, He}, (3.14)
Q =0,
where
N ! s
Ae = HR+ ) 2P+ ) AsoPo, (3.15)
=1 a=1

HR(O)9Q) = Fl(w’QaQ)lQ=0> ﬁ(w,QaQ)EH(”)-

By construction Hr depends on @ and Q, but the conservation of the con-
straints P in time implies

. -~ O Hy
P = {P Hg} = 30 ~0
and thus
Hr = Hr(w). (3.16)

Hence, the dynamical equations (3.13) for the variables w are canonical with
the hamiltonian Hg and independent of the other coordinates and momenta:

w = {w,Hr(w)}. (3.17)
Furthermore, recalling (3.15) as well as (3.16), it follows from eq. (3.14) that
0.(1) = OHe = A:(¢) forallt=1,2,...,t. (3.18)

oF;
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As a consequence, the equations for the variables Q; have solutions for any
functions 4., i.e. the lagrangian multipliers {4;,7 = 1,...,¢} corresponding to
the ¢ first-class constraints of the theory are not determined by the complete
set of equations of motion either (cf. the discussion following eq. (3.8)).

Due to this arbitrariness, the motion on the constraint hypersurface I¢ is
not completely determined in theories with first class constraints. Depending
on the choice of the ¢ arbitrary functions 1., equal initial conditions #° lead
to different trajectories in [¢.

Such a degeneracy, whose extent is given by the number of the first class
constraints Y’T(”, is unphysical. One therefore identifies these trajectories,
which in turn leads to a division of I¢ into equivalence classes . By choosing
exactly one representative out of each equivalence class the (2n — 2t — s)-
dimensional reduced phase space IR is obtained.

After having achieved a formulation of the theory in terms of the distin-
guished variables (w, Q, Q), equivalent points on the constraint hypersurface
It due to (3.18) only differ in the coordinates Q conjugate to the first-
class constraints P. A choice of representatives is achieved by ¢ independent
conditions

0O = Y1 (w), T=1,...,t. (3.19)

One usually demands continuity for the functions Y, (w) which are arbitrary
otherwise.

Since the dynamical equations for the variables @ (3.17) as well as the
constraint equations 2 = 0 remain unaffected by the above choice (3.19), all
physical information is contained in the canonical equations (3.17). Therefore
the reduced phase space Iy is parametrized by the canonical pairs «w and we
identify Hg () as the reduced hamiltonian.

On the other hand, if a transformation to the preferred set of variables
described in theorem 3.2 cannot be achieved, the reduced phase space cannot
be isolated. To formulate the theory consistently it is nevertheless necessary to
lift its unphysical degeneracy. This may be achieved by choosing an element
from each gauge class implicitly introducing additional constraints on the
phase space variables, a procedure called gauge fixing.

Lemma 3.2. A classical hamiltonian system subject to a set of ¢ first-class
and s second-class constraints ¥ = (¥, ¥?)) s consistently gauge fixed by
¢t supplementary conditions on the phase space variables y () = 0 with the
property that for @ = (¥, x)

(1) rank (0D /0N p_o = 1>

(2) det || {®a, Pp} || 0=0# O or equivalently det || {¥ ", x:} || o=o0# 0.

So the gauge-fixing constraints y have to be chosen in such a way that the
whole set of constraints @ is second class. Then the undetermined parameters
still inherent in the equations of motion (3.9) are fixed through the consis-
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tency requirements for the supplementary conditions and the degeneracy of
the theory is lifted. Because all the constraints are second class no further
restrictions on the phase space variables are generated.

A consistent gauge fixing means to pass from the description of a physi-
cal system in terms of a 7-fold degenerate theory to a description in terms
of a physically equivalent non-degenerate theory with (27 + s) second-class
constraints. In general, such a formulation does not provide a representation
for the reduced phase space either. However, making use of theorem 3.1 or
lemma 3.1, respectively, one can again try to isolate the unphysical variables
and construct the reduced hamiltonian Hg.

4. The reduced hamiltonian of SU(2) YMCM

The phase space variables of SU(2) YMCM are the canonical pairs 4,; and
E,; = A;; which will be regarded as components of 3 x 3 matrices 4 = (Ag;)
and E = (E,;), respectively. The hamiltonian reads

H = %EaiEai + %sabegecd AaiAbjAciAdj
2
= 4Tr (EET) + L {[Tr(44D)]’ - Tr [(44")?]} , (4.1)

and as phase space analogs of the completely non-holonomic constraints (2.16)
and (2.17) for arbitrary spatial angular momenta we get
ng = egpcApiEci = 0, (4.2)
m;=m;— ki = &ijkAajEak ~ki = 0. (4.3)
Without loss of generality we choose & to point into the x; direction, i.e.
k = (k,0,0), which simplifies the further calculations considerably.

Because the constraints arise from constants of motion, they are invariant
under the time evolution. Therefore no secondary constraints emerge and the
hypersurface It ¢ I' is completely determined by (4.2) and (4.3). As

{na,np} = egpene =0,
{nm r;ll} = Oa
{m,my} = —m3~0,
{m;,m3} = my~0,
{ﬁlz,ﬁ’l3} = —-m = ﬁ’ll —k ~ —k,
there are four first-class constraints (n,, #1;) and two second-class constraints
(my, m3).
QOur aim in the following will be to replace (4.1) by a reduced hamiltonian

(eq. (4.24) below) in the truly dynamical degrees of freedom through a
transformation to a preferred set of canonical variables as described in theorem
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3.2 of sect. 3. Such a description of SU(2) YMCM without any constraints is
attained in two steps.

First of all we eliminate the gauge degrees of freedom using once more the
point transformation (2.12):

A0 ,x,07) = 0(0")A(x)RT(9’). (4.4)

The canonical momenta v = (lI , p,l’) conjugate to the coordinates y =
(8',x,0”7) can be constructed using the generating function

Fs(E)= =Y Aai(p)Eai = =Y 04y (8")Ap; (x) Rij (87 Ey .

a,i a,i

After some algebra we find the expression for the old momenta E as functions
of y and v,

E(y,v) = 0(6")E(y,v)R"(67), (4.5)
where E is given by
Eai = Saippny + Xy (M)l + Yo (M7 )00 (4.6)
and the remaining quantities are defined as in ref. [18]:
Xoi(x) = Sgixpy,  Yg(x) =855X(a,
S5 (x) = e (—xly +x3)) 7
i.€. the only non-vanishing components of .S are

1

S213 = SZ'}Z = jm’

S%s = S32;1 = Tfl-l-_xlz’

Sh=Sh=
Min(8') = SencaOL 2L
M/ (07) = %emk,R{S%l.

Inserting (4.4) as well as (4.5) into (4.1) and using the orthogonality of the
matrices O and R, respectively, we get the hamiltonian in the new variables,

H(y,v) =T+ } (xlzxz2 + xix3 + x22x32) , (4.7)
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where the kinetic term T explicitly reads
T = %Eai E,
= 30f + 93 +3) + FXGXG (MT) o (M) L
+2X0, Y (M) (M) ML
+ XY (M) (M) ).

Furthermore, making use of ;5,00 O30y = 44, for O € O(3) and
a”aﬁSgpx[za] = d,n , the conserved angular momenta n, and m; can now
be written as

n.(6°,1")
m;(67,1")

Oun (M’ ;,l,l,’,, , (4.8)
Rin (M) 110, (4.9)

The identity (4.8) shows that the Gauss’ law constraints #, = 0 are equivalent
to I/ = 0. According to theorem 3.2 the canonical variables 8 and I’ are
therefore unphysical and gauge-invariant quantities are independent of them.
After the identification of these non-dynamical degrees of freedom, the
partially reduced phase space is parametrized by the canonical pairs (x,p; 0’ =
6,1’ =1). The dynamics is determined by the partially reduced hamiltonian

1 . _
Hg(x,p;6,1) = H|py_,

$ (02 + P} + P} + YOYGMh M )

+3 (5123 + xixd + x33) (4.10)
and still restricted by the three remaining constraints
m;(0,1) = RinMy ln —kdyy =0. (4.11)

Having eliminated the gauge degrees of freedom one would now like to carry
out a canonical transformation such that the two second-class spatial angular
momentum constraints 7, and 3 are simply related to a canonical coordi-
nate and momentum pair, whereas the first-class spatial angular momentum
constraint /1, is equivalent to another canonical momentum. This task also
has to be split in several parts.

First we map two of the constraints onto canonical momenta. Even this
is not immediately possible because the m; do not have vanishing Poisson
brackets with each other. It is therefore necessary to replace them by equivalent
quantities

ﬁ’l,‘ = A,-;(O,l)rhj N
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where

rhl + 2k r;lz }’713
A=

0 ksin’6, 0 ) ,  det (4)|5,_o = 2k?sin? 6, # 0.
0 0 1

The factor k sin® 8, has been inserted for later convenience. Parametrizing the
elements R € SO(3) by three Euler angles 0 < 6,,0; < 2mrand 0< 6, < 7 as
usual, the new constraints read explicitly

my = m} 4+ md 4+ mi-k?

= = 1 (l% - 211[3 cos 8, + 122 sin2 0, + 112) - k2, (4.12)

sin” 6,
my = ksin8, (l3cos6; — l,sin @y sinh, — l;cos By cosB,) ,  (4.13)
my =1, (4.14)

leading to {m,,m,} = {m;,m3} = 0 . Now, performing the canonical trans-
formation (6,!) — (¢,n) generated by

F,(0,n) = m 0, + m30;
62 1 1/2
2ein kg2 2
+ /”/2 sné (n2 sin“{ — m3 + 2mym3cosé nl) dé,

the momenta n; and 7, in fact correspond to the constraints m3; and i,
respectively (for more explicit formulae see ref. [19]).

To complete our reduction program we will still have to find the canonical
coordinate equivalent to m,. Instead of computing the ¢; = 0F,/0n; we
immediately proceed with a second transformation defined by

. n
@, = ¢, — arcsin —3 ,
7 - nf

@, = ¢, + arcsin =3 ,
(a2 - 73) (- 73

. T
D3 = g3 — arcsin (—1——) ,
2_ 2
-7

H,’ T fori = 1,2,3.

Obviously
{1,171} = 0, {P;,11;} = 6;; foralli,j
and it can also be verified that (cf. ref. [19])
{®:,9;} =0 for all /,j.
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Hence (¢,n) — (@, IT) is indeed canonical and the constraints (4.12)-(4.14)
lead to the equations

my =} -k2=0,

iy = — (1732 sin? @, + k2 cos? <1>2) sin®, =0,

my = II, =0.

As a result we have shown that the initial constraints (4.11) after the
canonical transformations from (8,!) to (@, Il') can be cast into the form

I =0, (4.15)
P =0, (4.16)
m = k. (4.17)

As we pointed out already above, the first two of them, (4.15) and (4.16),
which are equivalent to m3 and m;,, are second class and the last constraint
(4.17), equivalent to 71, is first class. We have thereby explicitly completed
the transformation of variables known to exist (locally) according to theorem
3.2

The residual unphysical degrees of freedom in the only partially reduced
hamiltonian Hy (4.10) could thus also be isolated and the completely reduced
phase space Iy of SU(2) YMCM is parametrized by the canonical pairs
(x,p; D3, 113).

To construct the completely reduced hamiltonian Hg in these variables we
collect the preceding results as follows:

. I
sinf; = Tsing,’ (4.18)
cosf, = —Tsmtbz, (4.19)
11,

60; = @3 + arctan ?tan D, (4.20)

L =0, (4.21)
oo m 4.22

12 = THZ—COSQD?" ( . )

Iy = IT;. (4.23)

Making use of well-known identities for the trigonometric functions we get the
necessary expressions to insert into Hy (4.10). Using REDUCE [12] for the
algebraic manipulations and after a change of notation (®; = ¢,II3 = p,) we
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finally end up with the completely reduced hamiltonian of SU(2)-YMCM

1,2 2 2 X+ 2
Hr(x,p;0,pp) = 5 \PT+DP3+DP5+ ) —h(x1,X2,X3,0) | Py
1 2

+1 (xfx% + x2x3 + x2x] + h(xl,xz,x3,¢)k2) , (4.24)

where
2 2 2 2
X{+Xx . X5+ X
- % 3 2 2 3 2
h(X1,X2,%3,9) = ————5 sin” ¢ + ——F——F=cos’¢.
(xf —x3) (x5 — x3)

The singular points in Hg correspond to the singularities of the transforma-
tion (4.4) at

Xp = +Xm forn,m=1,2,3. (4.25)

This is due to the fact that the singular value decomposition (2.12) is one
to one only if we restrict the values of the variables x, to a fundamental
domain {x; > x > x3 > 0} C R>. After such a restriction all the singular
points lie on the boundary of this domain. Presumably they are of no direct
dynamical significance and the corresponding terms in Hr represent a kind
of centrifugal barrier preventing the dynamical system to reach the degenerate
configurations (4.25) except for special values of ¢ and p,. The analogy to the
three-dimensional potential problem in spherical coordinates is conspicuous
where the origin constitutes a kinematical singularity (cf. ref. [18]).

In summary, we have achieved the reduction of the nine-dimensional system
(4.1) restricted by six constraints (4.2) and (4.3) to an effective unconstrained
four-dimensional system. Hence we present a formulation of the full SU(2)
YMCM in the truly physical degrees of freedom.

The additional terms in (4.24) compared to the lagrangian (2.15) describing
the subspace of vanishing spatial angular momenta (k = 0 = ¢ = p, = 0)
contain the dynamics in the remaining rotational degree of freedom and
its influence on the variables x,. For an investigation of these effects it is
natural to start with an analysis of dynamically invariant subsystems. Since all
coordinates and momenta enter the hamiltonian (4.24) at least quadratically
it follows that

9 =p,=0 or xi=p; =0 fori =1,20r3
constitute such invariant subsystems.

In the first case the lagrangian reads

102, 22, 22 1 2,2 2.2 2.2 X34+ %
L = 3 x1+x2 +X3)—7 x1x2 +x1.X3+xZX3+ k .

(x} — x3)2



372 B. Dahmen, B. Raabe / 5U(2) and SU(3) Yang-Mills

Additionally demanding x; = x; = 0 and performing the coordinate transfor-
mation

xHL(r + 1)
2 \/51 27>

1
X3 g _(rl_r2)9

V2

we obtain the system

L=3(R+r)~ (iz + é) k? =3 (r} =),
noon

already investigated by Freyland [20] for vanishing colour momenta L, =
L, = V2k (in his terminology). His results — he finds dynamically stable as
well as unstable orbits and a system of multifurcations — therefore fit in the
context described by eq. (4.24) and hence are of general validity.

For an investigation of the role of the nontrivial part of the metric in the
kinetic term one might study the subsystem x3 = x3 = O:

1f 2, 22 )‘12"§()612_)sz)2 )
L=s|xX+X -5 (342 _ 12 14
x3(3x} — x3)sin“ ¢ + x{(3x3 — x}) cos? ¢

sin cos
-4 xix2 + 2¢+ 2¢ k? .
x3 x3

All this makes clear that we are still far from understanding SU(2) YMCM
outside the subspace of vanishing spatial angular momenta. Having identified
the dynamical degrees of freedom and constructed the reduced hamiltonian
(4.24) we nevertheless present the necessary prerequisites for a systematic
study of this mechanical model of the simplest non-abelian gauge theory.

5. The reduced phase space of SU(3) YMCM

In this section we will try to find a formulation of SU(3) YMCM in the
truly dynamical variables. Remembering the results of the constraint analysis
in configuration space carried out in sect. 2 and taking into account the
enormous complexity of the system, it seems reasonable to concentrate in a
first step on the subspace of vanishing spatial angular momenta. The dynamics
in the 48-dimensional phase space therefore is restricted by 11 non-holonomic
constraints

na = fapeApiEei = 0, (5.1)
m; = eijkAaank = 0, (5-2)
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which are exclusively first-class:

{na, np} = Jabehe = 0,

{na,m;} =0,

{m,-,mj} = sijkmk ~0.
As they all represent constants of motion there are again no secondary con-
straints.

In contrast to the SU(2) case where the singular value decomposition effects
a decomposition of the configuration space in gauge, rotational and physical
degrees of freedom, here a comparable transformation to special coordinates
reflecting the symmetries of the system could not be found. So there is only
little hope to obtain a canonical transformation to distinguished variables
described in theorem 3.2, which allow an immediate identification of the
reduced phase space.

Therefore we have to lift the degeneracy of the theory by a consistent gauge
fixing. In addition to the 11 initial first-class constraints (5.1) and (5.2)
we have to find 11 independent supplementary conditions on the phase space
variables in such a way that we end up with a set of 22 second-class constraints
(cf. lemma 3.2).

Following an idea of Marnelius and Kihlberg {21] we define generators
{T,} of the Lie algebra su(3) such that the first three basis elements represent
the so-called minimal embedding of the subalgebra su(2) in su(3) (cf. refs.
[22,23])

T\=1,, Th=r1s,
I3=1, Ti=14,
Ts=1, T¢=r1e,
T;=13, Tg=r1g,
where 7, = id4/2 and A, are the well-known Gell-Mann matrices. The non-

trivial non-vanishing structure constants c,;. are listed in table 1. The canonical
hamiltonian then reads

H= %EﬂfEﬂi + %cabecechaiAbjAciAdj (5.3)
and Gauss’ law (5.1) takes the form
Ng = CapcApiEei = 0. (5.4)

Because no (non-vanishing) element out of the algebra su(3) commutes with
all three generators {77, T», T3}, the 8 x (8 x 3) matrix c,;; has maximum rank
(8) and the eight conditions

Wa = Z Cabidpi = 0 (5.5)

b=1i=1
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TABLE |
Non-vanishing structure constants w.r.t. the basis {7,}

a b ¢ Cabe
1 2 3 .
L : i
1 5 7 -1
2 4 7 _1
2 4 8 -4v3
2 5 6 %
3 4 5 -3
3 6 7

3 6 8 —{,x/%

are linearly independent. As further supplementary conditions we choose

¢1 = $(Axs + 4A3) =0, (5.6)
¢ = (A3 + 43) =0, (5.7)
¢3 = 1 (412 + 431) = 0. (5.8)

The Poisson brackets between the gauge-fixing conditions (5.5)—-(5.8) and the
constraints (5.2) as well as (5.4) form the 11 x 11 block matrix

= {mi’(b‘} {miyvla}
M= ({na,¢f} {na,y/b})' (5.9)

Just as {ng, Wp} = Cauv Chyi Ayi the other entries are linear in the coordinates
Ay, too, and we find

det(M)],_y o megoo # O

for infinitely many open sets of field configurations. Because the singular
surfaces determined by det(M)|,_, _,-4_0 = O are at most 10-dimensional
hypersurfaces of the 24-dimensional configuration space {4,;}, the matrix
(5.9) is therefore invertible except for sets of measure zero.

Away from these singular surfaces — we will comment on them later — the
11 supplementary conditions ¥ = (¢, &) = O consistently fix the 11 first-class
constraints G = (m,n) = 0. So we managed to pass from the description of
SU(3) YMCM in the subspace of vanishing spatial angular momenta by a
degenerate theory to a description by a physically equivalent non-degenerate
theory with 22 second-class constraints (y,G) = 0.

The next step towards the elimination of the non-dynamical degrees of
freedom is to find a parametrization of the reduced phase space Ir and
to construct the effective hamiltonian on Ik. To this end we regard the
independent quantities ¥ as new coordinates and extend them to a complete
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coordinate set {¢g;,a = 1,...,24} in the following manner:

q = Ay, dqia = ¢ = S (43 + A432),

g2 = A, qis = ¢y = 3(A13 + A31),

g3 = As3, dis=¢3 = 3 (A1 + A1),

4s = Asy s qi7 =y = (A — A3),

qs = Agz, dis = ¥y = $(—A13 + A3),

de = Aa3, qio = Y3 = 3 (A1 — A1),

g7 = Asz, G20 = Wa = (=As3 + dg1 — A7n — V34g),
gg = As3, @1 = Ws = $(A43 + Ae2 — 2471),

do = Asy G0 = W = 3(—Aq — Asy + Az3 — V34g3),
qQi0 = g2, G =7 = 3 (A + 245, — Ag3),

qu = An, Ga = Vs = 1V3 (4 + 4g3),

di2 = An,

q13 = Ag; . (5.10)

The canonically conjugate momenta {p;,a = 1,...,24} are

p = Ey, Dia = Ey3 + E3,

Py = Ey, Dis = Ei3 + Ej3

D3 = Ea3, Pis = Ein + Eny,
1

D4 = E4y — _\/_§E83’ P17 = Ey3 — Es3,

Ds = E4 — Es| — Eg3, Pis = —E;3 + Ej,

ps = Es3 + 3E7y, P9 = Epp - Eyy,
1 2

p1 = Esy — ﬁEss, Do = —ﬁEsz,
1

Dg = Es; — —FE s =-F 5

8 53 /3 82 D21 71

1 2

Py = Eg + ﬁEsz, P = —ﬁEm,

pio = Eqz 4+ 1Eq, D2 = Esp,
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1 2

= E; — —=Ejg,, = Es, + 2Eg,),
2% n= kw D24 ‘/3( 51 63)

1
= E;3 + —=Ejs;3,
D2 73 /3 83
P13 = Egy.

Inserting the inverse relations A,;(g) and E,;(p) into (5.2) and (5.4) we get
the constraint equations G,(gq,p) = 0 in these new variables. They are linear

in p and thus may be written as (¢ = 1,...,11)
11 13
Ga(q,0) = Nav(@)Pss13+ ) Rap(9)Pp = 0, (5.11)
b=1 b=1

with a corresponding 11 x 11 matrix N and an 11 x 13 matrix R, respectively.
Furthermore, due to the invariance of the Poisson brackets under canonical
transformations we get for the block matrix (5.9)

Mab(q,p) = {Ga(q,p),)(b} = {Ga(q,p),4b+l3} = __aa?;_%lf)a (5'12)
+

hence

My (q) = =Ny (q).

Therefore the 22 second-class constraints (¥,G) = 0 can be solved for the
variables (a = 1,...,11)

Qa+l3 = 05

13

Pas13 = ) (M_IR)abe = fa(qy,... Q133015 ,013) . (5.13)
b=l

Following lemma 3.1 we can now identify and isolate { (g4, ps),a = 14,...,24}
as the unphysical coordinates and momenta of the theory. On the other hand,
the remaining canonical pairs {(qgs,ps),a = 1,...,13} represent the truly
dynamical degrees of freedom and parametrize the 26-dimensional reduced
phase space I'z. By simply inserting the constraints (5.13) into the canonical
hamiltonian (5.3) we finally get the reduced hamiltonian on Iy

Hr(qy,....q13:01,...,013) = H(Aai(q), Eai (D)), 1 =0 pasis=to

1 13 13
= E (Zpg-i_ Z Uab(‘]la-H,QI}) DaDp
a=1

a,b=1
+Viq,...,q13), (5.14)



B. Dahmen, B. Raabe / SU(2) and SU(3) Yang-Mills m

where the non-trivial part of the kinetic term is given by

13 1S 3 U
Z OabPaPp = EZJ‘ZZ + §Zfaz
ab=1 a=1 a=1
—(ps —po + P11 f1 + (D6 + P10) f
—(Ps + 71— P12) S5 + Psfio + V3psfir,

and where the potential V' is a fourth-order polynomial in the coordinates
{q1,-.. ,q13}.

In summary, after a simple coordinate transformation (5.10) we managed
to eliminate the unphysical degrees of freedom corresponding to the con-
straints (5.2) and (5.4) as well as (5.5) and (5.6)-(5.8) thereby reducing
SU(3) YMCM in the subspace of vanishing spatial angular momenta to an
effective unconstrained dynamical system. All physical information is con-
tained in the reduced hamiltonian (5.14) and the dynamics is completely
described by ordinary hamiltonian equations of motion in the canonical vari-
ables {(gq,pq),a = 1,...,13}.

For a discussion of the role of the singular points inherent in the reduced
hamiltonian (5.14) which coincide with the singularities of the 11 x 11 matrix
M(q)|qm]=0 (5.12), it may be helpful to go back for a moment to the
case of SU(2). Let us assume we would fix Gauss’ law (4.2) implicitly
using as supplementary conditions the SU(2) analogon of (5.5) (the minimal
embedding is then trivial)

Wa=zz gabiAbi:O’ a=123,

thus demanding the antisymmetric part of the 3 x 3 matrix (A4y;) to vanish.

Employing the reduction procedure described above for this system we
finally get a parametrization of the 12-dimensional reduced phase space Ir by
similarly defined coordinates and momenta {(qp, pp), b = 1,...,6} as well as
a reduced hamiltonian Hg (g, pp). Diagonalizing the symmetric matrix

a1 96 45 x1 00
(Al = | g6 @294 | =0B)| 0 x, 0 | OT(8) (5.15)
4s 44 43 0 0 x3

then defines a canonical transformation (qi,...,qs,P1,...,06) — (x,p;0,1)
on Iy and one easily checks that in the new variables Hy is equal to the expres-
sion (4.10) directly deduced in sect. 4. The analogy can be completed when
in the special case k; = 0 the constraints (4.3) are fixed by the supplementary
conditions (5.6)-(5.8).

So the gauge-fixing conditions (5.5) and (5.6)-(5.8) employed for SU(3)
YMCM are natural extensions of supplementary conditions which have been
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successfully tried and tested in the simpler SU(2) case. We have therefore
good reason to assume that the singularities of the reduced SU (3) hamiltonian
(5.14) as the singular points of the reduced SU(2) hamiltonian (4.24) do not
have any direct dynamical significance, but rather arise from the fact that the
coordinates and momenta resulting from our reduction procedure cannot be
defined on the entire phase space without singularities (cf. ref. [24]). In Yang—
Mills field theories such singularities are related to the problem discovered by
Gribov [25] that a unique representative in each gauge class may not be fixed
globally due to the non-trivial topology carried by the potentials.

After having succeeded in presenting a formulation of SU(3) YMCM for
vanishing spatial angular momenta in the physically relevant variables, one
might start the analysis of (5.14) by looking at dynamically invariant subsys-
tems. This, first of all, requires a systematic identification of such systems.
For a given number of degrees of freedom we checked for each possible com-
bination of pairs of canonical variables if the thereby defined subspace of
Iz dynamically decouples, i.e. whether also the time derivatives of the other
coordinates and momenta vanish when restricted to this subspace. Because we
confined ourselves to low-dimensional cases (up to five degrees of freedom
only) we did not have to invert the whole matrix (5.12) explicitly.

We end up with the following classification: In two and three dimen-
sions the dynamics remains restricted to the SU(2) system parametrized

by (q1,42,43;P1,D02,P3),
H'® = 4 (ot + 03 +03) + 4 (614 + 163 + @3a3) . (5.16)

where the deviation from (2.15) by a factor 1/4 in the potential is due to the
modified structure constants (cjp; = 1/2).

Genuine SU(3) dynamics sets in only when leaving this subspace and
exciting (¢s,ps) as the next degree of freedom. The corresponding reduced
hamiltonian reads

. + ! '
Hinv _ L (p2 + 2 p2 b p2 § : ginvp Dp
R = 3{P1+DpP;+D3 5) (qlqz+t1143+(12q3)2ab=1235 .

+4 (420} + atd} + 4303) + 443 (24F + 24} + 24} + 343) , (5.17)
and the non-trivial part of the metric is given by
ol = a2 [a} + @05 + af]
ol = g} [a1(a: — 43) — B3(@2 + 243)1,
oy = ¢ [q1(q3 — 2) — 92(q3 + 242) ] ,
o = gs [—611(422 +93) + 0a3(q2 + 613)] ,
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Uzi%v = (152 [lhz + 91935 + q%] )

inv 2

0y =q5 (@ —q1) —ai (g + 2q1) ],

inv

035 = (g5 [—42 (@ + a3 + aia3 (a1 + (13)] ,

inv

Gy3 = 452 [(112 + 092 + 422] ,

ol = a5 [~as(af + @) + wa (@ + @)
0N = -q142q3 (41 + @2 + 43) .

There are no other dynamically invariant subsystems neither in four nor in
five dimensions within the chosen parametrization of the reduced phase space.
As a result, (5.17) represents the simplest case of genuine SU(3) dynamics and
allows to study realistic dynamical effects of SU(3) YMCM beyond the well-
known SU(2) case (5.16). Such an analysis may lead to interesting new
phenomena and should be the starting point to a better understanding of the
Yang-Mills theory of spatially constant fields for the gauge group SU(3).

6. Summary

The aim of this paper was to gain a deeper insight into the dynamical struc-
ture of classical SU(2) and SU(3) Yang-Mills theory for spatially constant
fields. The systematic study of the constraints led to a complete elimination
of the unphysical gauge and rotational degrees of freedom. By isolating the
truly dynamical variables we obtained an effective unconstrained formulation
as a necessary prerequisite for further, more explicit investigations.

We showed that the three-dimensional system (2.15) represents the subspace
of vanishing spatial angular momenta of SU(2) YMCM. For the general case
we also managed to identify the four physically relevant degrees of freedom
whose dynamics is determined by the reduced hamiltonian (4.24) and can
now be analysed directly.

The holonomy properties of the constraints already pointed to a more com-
plicated structure of SU(3) YMCM. Actually we did not find a transformation
to preferred canonical variables which perfectly suit the symmetries of the sys-
tem. The 11-fold degeneracy of the theory in the subspace of vanishing spatial
angular momenta could nevertheless be lifted by a consistent gauge fixing
and we subsequently found a coordinate transformation providing us with a
convenient parametrization of the reduced phase space.

In spite of the rather complex effective hamiltonian (5.14), the low-di-
mensional invariant subsystems could be classified and the four-dimensional
system (5.17) allows a first study of genuine SU(3) dynamics.
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