
NUCLEARNuclearPhysicsB 384 (1992)352—380 P HY S I CS BNorth-Holland

UnconstrainedSU(2) and SU(3) Yang—Mills
classicalmechanics

BerndDahmen andBerndRaabe

II. Institut für TheoretischePhysikder UniversitätHamburg,LuruperChaussee149, 2000
Hamburg50, Germany

Received27 January1992
Acceptedfor publication8 July 1992

A systematicstudy of constraintsin SU (2) andSU(3) Yang—Mills classical mechanics
is performed.Except for the SU (2) case with vanishingspatial angularmomentathey
turn out to be non-holonomic.Using Dirac’s constraint formalismwe achievea complete
elimination of the unphysicalgaugeand rotationaldegreesof freedom.This leadsto an
effectiveunconstrainedformulationboth for thefull SU(2) Yang—Mills classicalmechanics
andfor the SU(3) casein the subspaceof vanishingspatialangularmomenta.We believe
that ourresultsarewell suitedfor further explicit dynamicalinvestigations.

1. Introduction

During the last decadetherehasbeenconsiderableinterestin classicalpure
SU(N) Yang—Mills theorywith spatiallyconstantfields Aa4 Aa4(t). In the
temporal “gauge” (Aa~ 0) field theory thenreducesto a nonlinearmechan-
ical system,sometimescalled Yang—Mills classicalmechanics(YMCM).

Its investigationswere initiated by Matinyanet al. [1] who studiedYMCM
for the gaugegroupSU(2). Making a specialansatzfor thefields theyobtained
a two-dimensionalsystem

L = ~(~+ — (1.1)

for which theyfoundstochasticoscillationstherebydisappointingearlierhopes
that the non-abeliangauge theoriesmight be integrable as the non-linear
a-models. Motivated by this unexpectedresult the dynamicsof (1.1) was
analysedby many other authors[21 using different methodsof modernnon-
linear mechanics.Apart from being a rather simplified version of QCD, the
system(1.1) hasalso servedas a toy model for attemptsto understandthe
semiclassicallimit of quantummechanicalsystemswhoseclassicalcounterpart
is completelychaotic[3]. Thatin thismodel islandsof stability exist in some

Presentaddress:DeutschesElektronen-SynchrotronDESY,Notkestrasse85, 2000 Hamburg52,

Germany.Supportedby StudienstiftungdesdeutschenVolkes.

0550-3213/92/s05.00© 1992—ElsevierSciencePublishersB.V. All rights reserved



B. Dahmen,B. Raabe/ SU(2)andSU(3) Yang—Mills 353

tiny fraction of phasespacewas only recentlydemonstratedby Dahlqvist and
Russberg[41.

Due to Gauss’lawYMCM is aconstraineddynamicalsystem.For thecaseof
the gaugegroupSU(2), Villarroel [5] addressedthe questionof theholonomy
of this constraintandprovedthat it is not integrable.This meansthat the
physically accessibleconfiguration space is not reducedby the constraint,
analogousto the well-known motion of a wheel without slipping (see e.g.
ref. [6]). In apparentcontradictionto this result Asatryanand Savvidy [7]
explicitly carriedout such a reduction by meansof the customarysingular
valuedecomposition.

To clarify thisparadoxicalsituationand removetheapparentcontradiction
is the first aim of our paper. This is achievedby extendingVillarroel’s point
of view andregardingall constantsof motion as constraintson the dynamics.

Startingour investigationswith the studyof the SU (2) case,we show that
for vanishingspatialangularmomentathe combinedconstraintsarisingfrom
gaugeand rotationalsymmetryareholonomic andlead to a reductionof the
initially nine-dimensionalconfigurationspaceto a three-dimensionalsubmani-
fold. This allows an immediateidentificationof thephysically relevantdegrees
of freedomand their dynamicswhich for two componentsis determinedby
the lagrangian (1.1). In the general case,however,where arbitrarynon-zero
spatialangularmomentaareadmitted,the constraintsare non-holonomicand
the configurationspacestays nine-dimensional.

Thereafterwe treatthe caseof SU(3) YMCM most relevantin thedescrip-
tion of hadronicphenomena.We find that for this model even in the case
of vanishingspatialangularmomentano reductiontakesplace.Consequently,
thereis also no distinguishedunconstrainedsystemcontrary to the caseof
SU(2) YMCM.

To neverthelesseliminatethe non-dynamicalgaugeandrotationaldegreesof
freedomwe haveto broadenthe scopeof ouranalysisandpassto a description
in phasespace.The constraintformalismfor hamiltoniansystemsinventedby
Dirac [81 allows us to isolatecanonicalpairsof variableswhich areno longer
subjectto constraintsthereforerepresentingthe truly physicalcoordinatesand
momentaof the theory. By constructingthe reducedhamiltonian in these
variables,we obtaineffectiveformulationsfor the generalSU(2) YMCM and
for the SU (3) casein the subspaceof vanishingspatialangularmomentathat
containall dynamicalpropertiesof the correspondingsystem.Hencethoseare
no longer obscuredby the presenceof constraintsbut canbe studieddirectly.

Our paperis organizedas follows: In sect. 2 we investigatethe holonomy
propertiesof the constraintsfor the SU (2) as well as the SU (3) model and
discusstheconsequencesof ourresults.After abriefreviewof themostrelevant
ideasandconceptsto treathamiltoniansystemswith constraintsin sect. 3, we
constructthe completelyreducedhamiltonianof full SU(2) YMCM in sect.4.
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In the caseof SU(3) YMCM a direct reductionunfortunatelycould not be
carriedout. Nevertheless,after a consistentgaugefixing of the constraintswe
obtain a parametrizationof the reducedphasespacein sect. 5. Though the
resultingeffectivehamiltonianis rathercomplicatedwe areableto classifythe
low-dimensionalinvariant subsystems.The simplest caseof genuineSU(3)
dynamicsis representedby a four-dimensionalsystemwhich thereforeshould
be the startingpoint for furtherexplicit dynamicalinvestigationsof the Yang—
Mills theory for this gaugegroup.

2. Constraintanalysisin configurationspace

The lagrangianfor SU(N) YMCM reads

L lA A 1 2i- i~ A 4 A 4= ~?~ai~ai — ~g ~

where i, j = 1, 2, 3 and a, b,c,d, e = 1, 2,... ,dim (SU(N)) = N
2 — 1. Here

the fabc are the structureconstantsof the gaugegroup andg is the coupling
constant,which will be set equalto 1 in the following. The,vectorpotentials
Aai parametrizethe configurationspacemanifold M = ~3(N~1)

The invariance of (2.1) under both SU(N) gauge transformationsand
0(3) rotationsin ordinaryspaceleadsto (N2 — 1) conservedcolour angular
momenta

faic11i,i11ci (2.2)

andthreeconservedspatialangularmomenta

eijkAajAak, (2.3)

respectively.As only gauge invariant quantitiesare of physical interestthe
fieldshaveto obeyGauss’law, i.e. the dynamicsof the systemis restrictedto
a subspaceof the tangentbundleTM definedby the (N2 — 1) functions

flaO. (2.4)
Consequently,only those solutionsof the equationsof motion derivedfrom
the lagrangian(2.1) areof physicalinterestwhich alsofulfill theseconstraints.

Now the question is whetherthey lead to a reductionof the configuration
spaceM. To answerit, it provesadvantageousto rephrasethe Gauss’ law
constraints(2.4) in the languageof differential forms which emphasizestheir
geometricalnature:As anysystemof first-orderordinarydifferentialequations,

= 0 canberepresentedby asystemof vanishingone-forms(aPfaffsystem),
namely

Wa fabcAbidAci = 0.

This formulationallows to usemethodsfrom differentialgeometry,in partic-
ular
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Frobenius’theorem[6]: Let {w0} be a setof p independentone-formson
a manifold M. Thenthe system

Wa = 0 for all a (2.5)

is completelyintegrableiff

W1 A W2A... A Wp A dWa = 0 for all a. (2.6)

Completeintegrabilityof such aPfaff systemis equivalentto the existence
of p independentfunctions Fa on M, which define an (n — p)-dimensional
maximalintegral manifold I c M of the system(2.5) through theconditions

Fa(Xi,... ,x~)= const., X EM.

In thiscasethe constraintsarecalledholonomicandI representsthe physically
accessibleconfiguration space. (It goes without saying that the notion of
“integrability of constraints”mustbe carefully distinguishedfrom that of the
“integrability of the equationsof motion”.)

In this section we will use Frobenius’ theorem to analysethe holonomy
propertiesof the constraintsin SU(2) andSU(3) YMCM.

Villarroel [5] studiedGauss’law in isolation for the caseof SU(2) YMCM.
He found that theseconstraintsare completelynon-holonomicsuch that the
physically accessibleconfiguration space keeps on being nine-dimensional.
However,thoughthepossiblevaluesof the spatialangularmomenta(2.3) are
not fixed, theyare neverthelessconserved,

= k1 = const. with k E i~. (2.7)

Hence,in addition to Gauss’law (2.4) thereare in fact threemore constraints
on the dynamicsandso it seemsnaturalto treatgaugeandrotationsymmetries
on equalfooting.

In a first stepwe thereforeinvestigatethe questionof holonomy for the
particularly interestingcaseof vanishing spatial angularmomentak = 0.
Thus we considerthe dynamical system (2.1) for the gauge group SU(2)
(fabc = ‘~abc)subjectto the six constraints

= ~‘abcAbjAci = 0, (2.8)
rn = 6ijkAajAak = 0, (2.9)

which correspondto the Pfaff system

Wa = eabcAbidAci = 0, (2.10)
1i = eijkAajdAak = 0. (2.11)

To check whether they fulfill Frobenius’ condition (2.6) is facilitated by
expressingthem in coordinates(con,x,~,0,,) resulting from a singular-value
decompositionfor the real matricesA (Aai) (cf. e.g. Atkinson [9], ~7.9),

A=OART, (2.12)
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where*

(x1 0 0
AE (c5anX1ni) = ( 0 X2 0

\ 0 0 X3

andO(col,co2,co3),R(Ol,02,03)ESO(3).ThematrixOESO(3)canbeviewed
as the adjoint representationof a gauge transformationU E SU(2) leading
to the interpretation of the Euler angles con as gauge degreesof freedom
analogousto the interpretationof the 0,, as ordinary rotational degreesof
freedom.Consequently,eq. (2.12) effectsa decompositionof the configuration
manifoldof SU(2) YMCM reflectingthe symmetriesof the system.

We expandthe constraintone-forms (2.10) in the newbasis{dco~,dx,,,dO~}:

I0A~ aA~1 OA~1
= CabcAbi ~—dco~ + _ä~~~dxn+

Making useof the orthogonalityof the matrices0 and thecompleteantisym-
metryof the e-tensorone showsthat the coefficient in front of dx,, vanishes,

CabeAbi = 6abcRbiiö~tjXFjjOiJRckô1km °ik

= eabcRboxljIô,~jójk~
5[k]nRck

= eabcRbkx[klö[k]nRck

= 0.

Hence
ôA~~ ‘\

Wa = eabcAbi ~dco,, + -~—d0,, , (2.13)
\v(On (JL/~ /

andsimilarly for the one-forms(2.11)

(OAak aAak \
lii = ~ (-~———dco~+ -~-—den;. (2.14)

‘Jn /

Thus, neither the Wa nor the j, havecomponentsproportionalto dx,, and
consequentlythe wedgeproductof all the constraintsw

1 A (02A w3A ij 1A ~~A,~
is proportionalto the six-form built from the basisforms dco~and do,, only,
viz. dcoiAdco2Adco3AdOiAdO2AdO3,which isuniqueup to ordering.Calculating
the differentials we find furthermorethatdW~as well asdi~~areproportional
to dYmA dy~wheredym is arbitrarybut dy~E {dco,,,dO~}.As a consequence,
one basis form out of {dco,,,dO~}showsup twice in each summandof the
eight-formsW1 AW2AW3AJIAJ2A13AdW,, andW1Aw2Aw3A?7iAfl2A?73Ad?7~,
respectively.HenceFrobenius’conditions(2.6) arefulfilled andthe constraints
(2.8), (2.9) areholonomic.As aresultwe find that the non-holonomicGauss’

* We do not sum overindices in squarebrackets.
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law constraintsna = 0 are renderedholonomicby imposingthe additional
constraintsm, = 0*.

Furthermore,the only non-trivial solution of the transformedconstraint
equationsaregiven by constantanglescon andO~.Thus,in the specialcaseof
vanishingcolourandspatialangularmomentathegaugeandrotationaldegrees
of freedomcon and0,, freezeout.The coordinates{xi,x2,x3} parametrizethe
three-dimensionalmaximal integral manifoldI of the constraints(2.8) and
(2.9) andwe get as the reducedlagrangian

LR= ~ (2.15)

which completelydeterminesthe dynamicson I. Note that for x3 = = 0
the model (1.1) of Matinyanet al. [1] is reproduced.

In the next stepwe investigatethe generalcaseof arbitrary spatialangular
momentam1 = k, E R\{0} leadingto the slightly modified constraints

= 0, (2.16)
= 0. (2.17)

Hence the three one-formscorrespondingto the constraints(2.17) acquire
additionaltermsproportionalto k,dt

= 0.

Unfortunately,adirect checkof Frobenius’condition (2.6) usingthe calculus
of forms is impractical. Instead,we evaluatethe resultingeight-forms(2.6) on
all possibledistinct orderedsetsof eight vectors{e~}takenfrom the canonical
basis {a/.9Aaj, 8/Dt} dual to {dAai, dt}. Expandingthe differentials of the
constraintsin termsof the basicone-forms~ E {dAaj, dt},

dWa = Qaijd~iA d~1 with i <f

(which is uniqueonce an orderingof basiselementshasbeenchosen) and
similarly for dfl1, theseeight-formsaregiven as sumsof wedgeproductsof one-
forms. Becausefor arbitrary one-forms{~}andvectors{e3} (not necessarily
basiselements)onehasthe formula (cf. ref. [11], §7.E)

~1(e1)~~2(el) ... ~~(e1)
(~~ ,e,,) = det ~i(e2)

* Seeref. [10] asquotedin ref. [6], pp.6
24—627,for anotherexample,in whichfor the motion

of acarsubjectedto the constraintsof “steer” and“drive” theconfigurationspaceis not reduced,
but the constraints“steer”, “drive” and“wriggle” arecompletelyintegrable.
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the calculationis thus reduced*to the computationof sumsof determinants
which wefoundto be non-zeroin most cases.This implies the non-holonomy
of the constraints(2.16) and (2.17).

One might hope that they at leastpartially reducethe configurationspace,
but we could show that this is also ruled out. As explainedby Villarroel [5]
onecanuseFrobenius’ theoremin dual languageto find the dimensionality
of the physically accessiblespace:It is given by the numberof dimensionsr
of the algebra generatedby the vector fields which are annihilatedby all
the constraints(with the commutatoras the algebraproduct).The integral
manifoldtangentto thevectorfields in thisalgebrais thereducedconfiguration
space.

In our case, the initial configuration spaceis {Aai, t} = R’°,so we first
have to find 10 — 6 = 4 independentvector fields which are annihilated
by the 6 constraints (2.16) and (2.17). Expressedin the coordinatesof the
singularvalue decomposition,three such vector fields arethe 5/9x1 dual to
the one-formsdx. Introducingthe basis {e~,e~,}in the spaceof vectorfields
orthogonalto 8/ax1 as well as 8/Ot and dual to the constraintone-forms
{Wa, ,~j}, a fourth vectorfield is given by

uEk1e9+8/Ot.

The coefficientsof thislastvectorfield with respectto the basisdualto the one-
forms {dco~,dx,dO1,dt} are rathercomplicatedand could only be evaluated
with the help of the computer.Due to the simplicity of the first threevector
fields it was neverthelesspossibleto calculatethe twelve commutators

[LI/Ox,,u] , W3(1_i)~J [LI/8x1,v1]

We determinedthe dimensionalityof the subspaceof vectorfields orthogonal
to 0/Ox1 spannedby u andthe commutatorsv andW3(,_l)+j by anumerical
singularvaluedecomposition**andinvariably foundthe rank to be maximal
(10 — 3 = 7) therebyproving that the constraints (2.16) and (2.17) are
completelynon~holonomic***.

In summary, we reachedthe following conclusionsfor the gauge group
SU(2): In the generalcase,wherethe systemis subjectedto the Gauss’law
constraintsfla = 0 andanyvaluesof the spatialangularmomentarn = k � 0
areadmitted,the configurationspacekeepson beingnine-dimensional.Never-
theless,in the especiallyinterestingcaseof vanishingspatialangularmomenta
k = 0, the constraintsare holonomic.The singularvalue decompositionis
the appropriatetransformationfor the fields Aaj (t) leadingto constantEuler

* Ouranalysiswas performedwith the help of the algebraprogram REDUCE [12].

** We usedthe FO2WEF-routineout of the NAG FortranLibrary [13].
~ This especiallyimplies thecompletenon-holonomyof the Gauss’law constraintsin isolation
andthereforecorroboratesVillarroel’s result.
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anglescon and 0n~Consequently,the dynamicsis completelydeterminedby
the effective lagrangian (2.15) which hasbeenstudied ratherextensivelyin
the literature [1—3].

We will now extendour investigationsto the gaugegroup SU(3) relevant
for the descriptionof hadronicphysics.The configurationspacehas 24 di-
mensions,Gauss’law leadsto eightconstraintequations(2.4) andin addition
thereare againthreeconservedspatialangularmomenta(2.3). The singular
value decomposition(2.12) of the 8 x 3 matrix A = (Aa,) consistsof two
orthogonalmatrices0 E SO(8) andR E S0(3) as well as an 8 x 3 matrix
A = (öanxEn

1). However,becausein generalit is not possibleto interpretan
arbitrary element0 E SO(8) as the representationof a gaugetransformation
U E SU(3) (cf. ref. [14]) this decompositiondoesnot allow a direct iden-
tification of gaugeand rotationaldegreesof freedomas in the SU(2) case.
Obviously,a straightforwardgeneralizationof the previousresultsto SU(3)
YMCM is not possible.

To analysetheholonomypropertiesof theconstraintswecheckedFrobenius’
condition (2.6) for theGauss’law fla = 0 in isolationas well asin combination
with the special angularmomentumconstraintsrn = 0 by evaluatingthe
corresponding10- and 13-forms, respectively.Employing the computer as
describedabovewe found non-vanishingdeterminantsin bothcasesthereby
proving that analogousto the caseof SU (2) YMCM Gauss’law represents
non-holonomic constraints.But in contrastto the SU(2) caseeven in the
subspaceof vanishingspatialangularmomentano degreesof freedomfreeze
out becausethe constraintsstaynon-holonomic.

As adirect consequenceof this last result, theconfigurationspaceof SU (3)
YMCM cannot be reducedto a 13-dimensionalsubmanifoldand a distin-
guishedunconstrainedsubsystemsimilar to (2.15)doesnot exist.Furthermore,
for arbitrarygaugegroupsthereis no decompositionof the configurationman-
ifold of YMCM as claimedby AsatryanandSavvidy [7]. On the contrary, the
obviouslack of suchadecompositiongives rise to a muchmore complicated
dynamicalstructureof SU(3) YMCM as comparedto the SU(2) case,where
an appropriatecoordinatetransformationis available via the singularvalue
decomposition.

Hence,we foundthat for SU(2) YMCM with non-vanishingspatialangular
momentam, = k ~ 0 as well as for SU(3) YMCM the constraintsare
non-holonomic.Eventhoughthe motion is restrictedto somesubspaceof the
tangentbundleTM a reductionof the configuration spaceM doesnot take
place.

To neverthelesseliminate the unphysicaldegreesof freedomandobtain a
descriptionwithout constraintsfor thesecases,we haveto widenthe scopeof
ouranalysis.Passingto adescriptionin phasespaceF, which is the cotangent
bundle T* M of the configuration spaceM, the formalism for constrained
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hamiltoniansystemsinventedby Dirac [8] (andelaboratedby manyothers;
see the monographs[15—17]and referencescited therein) allows to isolate
canonicalpairsof variableswhich are no longer subject to constraints.They
spanthe reducedphasespace1k andrepresentthetruly dynamicaldegreesof
freedom. Before carrying out such a reduction we will briefly review Dirac’s
constraintformalism in sect.3.

3. Constraintformalismin phasespace

In thissectionwe briefly collect the necessaryprerequisitesfor the derivation
of an unconstraineddescriptionof SU(2) and SU (3) YMCM. In subsection
3.1 we reviewthe vocabularyof primaryandsecondary,first andsecond-class
constraintsintroducedby Dirac [8]. In subsection3.2 we stateandexplaina
coupleof theoremstakenfrom the book of Gitman andTyutin [17], Ch. 1
and 2, which wewill apply in the later sections.

The readerfamiliar with the subjectmay wish to skip this sectionanduse
it only for referencein the laterpartsof this work.

3.1. HAMILTONLAN SYSTEMSWITH CONSTRAINTS

We considerclassicaldynamical systemswhose configurationsare charac-
terizedby a set of generalizedcoordinates{q~,a = 1,... , n}. The lagrangian
L(q,c~)determinesthe dynamicsthrough the equationsof motion. Defining
canonicalmomentaPa OL/LIéJa as usual,one may passto the hamiltonian
descriptionvia the Legendretransformation

H(q,p) ~p~q~,(q,p)—L(q,~(q,p)), (3.1)

unlessp = 8L/0~jcannotbe solvedwith respectto q.
This is only a specialcaseof the generalphenomenonthat somecoordinates

andmomentamaynot be independent.The motion in phasespaceF spanned
by i~ (q,p) is then restrictedby constraints

~~:T*M~F_~R, a=l,...,r<2n

to the (2n — r)-dimensionalconstrainthypersurfacePc c P definedthrough
the conditions

~(q,p) = 0 for all a. (3.2)

Within the frameworkof variational calculusonethenprovesthe existenceof
r so-calledlagrangianmultipliers ..%~(t) such that the equationsof motion are
obtainedby varying the extendedaction

SE(q,p;2) ~ (3.3)
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independentlywith respectto qa, Pa and,~.Defining the extendedhamiltonian

HE(q,p).) H(q,p) + ~ (3.4)

theytake on the canonicalform

?ja = {‘1a,11E(’1;’~.)} (3.5)

supplementedby the constraintequations

= 0. (3.6)

So in the presenceof the constraints (3.2) it is still possible to use the
canonicalformalism if one passesfrom the initial hamiltonian (3.1) to the
extendedhamiltonian (3.4) which explicitly dependson theseconstraints.

Forsakeof consistencyonemustalsorequire that the time developmenton
Tc respectsthe constraints,i.e.

{Wa(q,p),HE(q,p)}I~= 0 for all a.

Theserelationsmayleadto acertainnumberof independentnew constraints
called secondaryin contrastto the primary constraints (3.2). Also the sec-
ondaryconstraintsmustbepreservedin timeandmayeventuallyimply further
restrictionson thedynamics.Onehasto proceedin this fashionuntil all con-
straintsaregenerated.As we will seebelow, however,in the casesconsidered
by usno secondaryconstraintsarise.We will thereforehenceforthassumethat
the r functionsY~compriseall constraintspresentin the theory.

We now give someusefuldefinitions:
(1) Two sets of constraints9’ and 1 are called equivalentif there is a

matrix A(~)suchthat

~Aap(71)(Pp, detA(~)Ic,~..o�0.

Equivalent constraintsrestrict the motion to the samehypersurfaceTc and
therebyhavethe sameimplicationson the dynamics.Furthermore,the equa-
tions of motion (3.5) and (3.6) are invariant under a transformationto
equivalentconstraints(cf. ref. [17]).

(2) For two quantitiesA(‘i) andB (ti) coinciding on the hypersurfaceTc
oneoftenwrites

A(ii) ~B(,
7).

The symbol thereforemeansequalityup to termswhichvanishwhen 9’ = 0.
(3) A quantityA (q,p) is calledfirst class if

{A,!1~}~0 foralla=l,...,r

andsecond-classotherwise.
This distinction in particularappliesto the constraintsthemselves.Thus a

set of constraints{9’~,a = 1,... ,r} is secondclass iff the matrix

M,,p(i7)~{
9’~(1),Wp(’1)} (3.7)
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built from the Poissonbracketsof theseconstraintsis non-singularon the
hypersurfacePc:

det(M(ij)) �0.

Becausea non-singularanti-symmetricmatrix alwayshasevenrankthe number
of constraintsin a setof second-classconstraintsis necessarilyeven.

On the contrary, if the matrix (3.7) is singularon P~with defect

t r — rank(M)Iq, 0 r —5,

then the theory contains t independentlinear combinationsof the initial
constraintswhich are first class. One can show constructively [17] that for
any set of constraints9’ thereis an equivalentset consistingof t first-class
constraints~(1) ands second-classconstraints!P(2).

Now let us comebackto the extendedhamiltoniansystem(3.4). Of course
it would be desirableto eliminatethe lagrangianmultipliers {)~a,a = 1,... , r}
from the equationsof motion (3.5). To this end we considerthe conditions
resultingfrom therequirementthat theconstraintsbe conservedin time,

= ~ ~0, a = 1,... ,r. (3.8)

Out of the r
2a’s, there are s correspondingto the second-classconstraints

{~1~2~,a= 1,... ,s}. Thesecanbe determinedas functionsof ~,

— ~ ~ 9’(2)(~)}) {9’~2~),H(~)}, a = 1,... ,s,

andmay be substituteddirectly into HE.
The remainingfunctions{2~,r = 1,... , t}, however,which correspondto

the t first-classconstraints~iç~1) where { ~ ~), ~~ } 0, enterthe equations
of motion as arbitraryparameters:

~ia =

= 0, a = 1,2,... ,r, (3.9)

where

H~2~(;i;2~) H(j) + — ~ (9’~ 9’(2)}) ~

3.2. THE REDUCEDPHASE SPACE

In this subsectionwe presenttwo theoremsand lemmaswhich clarify the
dynamicalsituation in hamiltoniansystemswith constraintsandallow the
identification of the truly physicaldegreesof freedom.
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Theorem3.1. Let { ~, a = 1,... , r} be a set of independentsecond-class
constraints,

det II {~~,Wp}Iw=o�0.

Then canonicalvariables (W, Q) consistingof two separatesetsof pairs of
canonicallyconjugatecoordinatesandmomentaexist such that the variables
Q are equivalentto the constraints9’.

For adetailedproofseeref. [17]. In general,theorem3.1 only holdslocally,
in thevicinity of agenericpoint flo E

Tc• Of course,this doesnot rule out the
existenceof an extensionto the wholephasespacein specialcases.

In the new variablesthe constrainthypersurfacePc is determinedby the
equationsQ = 0 andthe pairsa) canbe viewed as canonicalcoordinatesand
momentaon Tc~Making use of the invariance of the equationsof motion
(3.5) and (3.6) under the replacementof the constraints9’ by equivalent
ones,theyreadafter the canonicaltransformation‘i ‘—p (a),Q)

= {W,HR}, (3.10)

Q = 0, (3.11)

whereHR(W) R(w,Q)IQ,,,,oandF1(a),Q)
As the time derivative of the constraints (3.11) also vanisheson F~,it

follows thatonly the variablesw aredynamical.Consequently,thoserepresent
thetruly physicalcoordinatesandmomentaandparametrizethe reducedphase
spacePR = Pc.Their dynamicsis describedby ordinaryhamiltonianequations
of motion (3.10) with the reducedharniltonian HR(W).

In general,the problemof actually finding a canonicaltransformationto the
distinguishedvariables(w,Q) describedin theorem3.1 is highly non-trivial.
Fortunately,thereis a

Lemma3.1. Considera classicalhamiltoniansystemsubject to a set of
r second-classconstraints.If one can carry out a canonical transformation

~ (it, 1~)= (q*,p*; q~,p~)suchthat the initial constraintequations9’ = 0
assumethe form

= 0,p~= f(~*) (3.12)

with a correspondingfunction f, then the dynamics of the variables ij~is
determinedby the ordinaryhamiltonianequationsof motion

{~*HR(~*)} where HR(~*) H(17*,fl*)Iq,op..f(~*).

Therefore on the constrainthypersurfacethe variables ~ coincide with
somevariablesw from theorem3.1, i.e. on TR = Pc thereexists a canonical
transformationfrom ~ to w, andthe reducedhamiltoniancanbe constructed
by simply eliminating the unphysicaldegreesof freedom~. from H usingthe
constraintsin the specialform (3.12).
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Generalizingtheorem3.1 onecanalsoprovethe (local) existenceof distin-
guishedvariablesfor theorieswith first-classconstraints.

Theorem3.2. Let {!I~,a = 1,... ,r} be a set of independentconstraints
where

rank II ~ !1~} ~ s< r.

Thentherearecanonicalvariables (w, (Q,P), co) suchthat
(1) w is a set of pairsof canonicallyconjugatecoordinatesandmomenta;
(2) P are momentacanonicallyconjugateto the coordinatesQ and~ is a

set of pairsof canonicallyconjugatevariables;

(3) Q (P, co) is equivalentto the constraints9’, the numberof momenta
in P equalst = r — s andthe pairs co constitutes coordinatesandmomenta.

Obviously, the momenta{P~,t = 1,... , t} representthe t first-classcon-
straintsof the theory and the s second-classconstraintsare transformedto
canonical pairs {coz+a,a = 1,... , s/2} as in theorem 3.1 (recall that s is
alwaysevenas was explainedjust after eq. (3.7)).

One finds that the equationsof motion (3.5) and (3.6) read in the new
variables

= {w,R~}, (3.13)

Q = {Q,R~}, (3.14)

Q = 0,

where

HE HR + ~ + ~2,÷ecoa, (3.15)

HR(W,Q) R(w,Q,Q)IQo, R(W,Q,Q)EH(71).

By constructionHR dependson a) and Q, but the conservationof the con-
straintsP in timeimplies

P = {P,fl~} = 0

andthus

HR=HR(W). (3.16)

Hence,the dynamicalequations(3.13) for the variables0) arecanonicalwith
the hamiltonianHR and independentof the othercoordinatesandmomenta:

th = {a),HR(a))}. (3.17)

Furthermore,recalling (3.15) as well as (3.16), it follows from eq. (3.14)that

= = ,~(t) for all r = 1,2,... ,t. (3.18)
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As aconsequence,the equationsfor the variablesQT havesolutionsfor any
functions~, i.e. the lagrangianmultipliers {)~,r = 1,... , t} correspondingto
the t first-classconstraintsof the theory arenot determinedby the complete
setof equationsof motion either (cf. the discussionfollowing eq. (3.8)).

Due to this arbitrariness,the motion on the constrainthypersurfacePc is
not completelydeterminedin theorieswith first classconstraints.Depending
on the choiceof the t arbitrary functionsItr, equalinitial conditions~0 lead
to different trajectoriesin

Tc•
Such a degeneracy,whose extentis given by the numberof the first class

constraints9’r~1) is unphysical. One therefore identifies these trajectories,
which in turn leadsto adivisionof Pc into equivalenceclasses. By choosing
exactly one representativeout of eachequivalenceclass the (2n — 2t — s )-

dimensionalreducedphasespacePR is obtained.
After having achieveda formulationof the theory in terms of the distin-

guishedvariables(w,Q, Q), equivalentpointson the constrainthypersurface
Tc due to (3.18) only differ in the coordinatesQ conjugate to the first-
classconstraintsP. A choiceof representativesis achievedby t independent
conditions

= Yr(W), r = 1,... ,t. (3.19)

Oneusually demandscontinuity for the functions Y~(w) which arearbitrary
otherwise.

Since the dynamicalequationsfor the variablesw (3.17) as well as the
constraintequationsQ = 0 remainunaffectedby the abovechoice(3.19), all
physicalinformationis containedin the canonicalequations(3.17).Therefore
the reducedphasespaceTR is parametrizedby the canonicalpairsa~andwe
identify HR(w) as the reducedhamiltonian.

On the other hand, if a transformationto the preferredset of variables
describedin theorem3.2 cannotbe achieved,the reducedphasespacecannot
be isolated.To formulatethe theoryconsistentlyit is neverthelessnecessaryto
lift its unphysicaldegeneracy.This maybe achievedby choosingan element
from each gauge class implicitly introducing additional constraintson the
phasespacevariables,a procedurecalledgaugefixing.

Lemma3.2. A classicalhamiltoniansystemsubjectto asetof t first-class
ands second-classconstraints9’ = (97(1), 97(2)) is consistentlygaugefixed by
t supplementaryconditions on the phasespacevariablesx(~)= 0 with the
propertythat for ~ (9’, x)

(1) rank (O~/8~j)~...
0=

(2) det {~,~p}I~=o�0 or equivalentlydet {~t~jl),~~} II~=o�0.
So the gauge-fixingconstraintsx haveto be chosenin sucha way that the

wholesetof constraintsc1 is secondclass.Thenthe undeterminedparameters
still inherent in the equationsof motion (3.9) are fixed through the consis-
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tency requirementsfor the supplementaryconditionsand the degeneracyof
the theory is lifted. Becauseall the constraintsare secondclass no further
restrictionson the phasespacevariablesaregenerated.

A consistentgaugefixing meansto passfrom the descriptionof a physi-
cal systemin terms of a t-fold degeneratetheory to a descriptionin terms
of a physically equivalentnon-degeneratetheory with (2t + s) second-class
constraints.In general, such a formulationdoesnot provide a representation
for the reducedphasespaceeither. However, making useof theorem3.1 or
lemma3.1, respectively,one canagaintry to isolatethe unphysicalvariables
andconstructthe reducedhamiltonianHR.

4. The reduced hamiltonian of SU(2)YMCM

Thephasespacevariablesof SU (2) YMCM arethe canonicalpairsAaj and
Eai Aai which will be regardedas componentsof 3 x 3 matricesA = (Aa,)

andB = (Eaj), respectively.The hamiltonianreads

H = ~EaiEai + ~eabeeecdAaiAbjAciAdj

= ~Tr (BET) + ~ { [Tr(AAT)]2 — Tr {(AAT)2] }, (4.1)

andas phasespaceanalogsofthe completelynon-holonomicconstraints(2.16)
and (2.17) for arbitraryspatialangularmomentawe get

= ~abcAbiEci = 0, (4.2)
= m, —k, = eijkAajEak k

1 = 0. (4.3)

Without loss of generalitywe choosek to point into the x1 direction, i.e.
k = (k, 0, 0), which simplifies the furthercalculationsconsiderably.

Becausethe constraintsarisefrom constantsof motion, they areinvariant
underthe time evolution. Thereforeno secondaryconstraintsemergeand the
hypersurfacePc C P is completelydeterminedby (4.2) and (4.3). As

{fla,flb} = ~abc~c~ 0,

{fla,11i} = 0,
{th1,th2} = —rn3~0,

{ñii,ñi3} =

{ñi2,ñz3} = -m1 =ñi1-k~-k,

therearefour first-classconstraints(fla, ñii) andtwo second-classconstraints
(th2, tfl3).

Our aim in the following will be to replace(4.1) by a reducedhamiltonian
(eq. (4.24) below) in the truly dynamical degreesof freedom through a
transformationto apreferredset of canonicalvariablesasdescribedin theorem
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3.2 of sect.3. Such adescriptionof SU (2) YMCM without any constraintsis
attainedin two steps.

First of all we eliminatethe gaugedegreesof freedomusingoncemorethe
point transformation(2.12):

A(O’,x,O~)= O(OJ)A(x)RT(O~’). (4.4)

The canonical momentav (l’,p, 1J) conjugate to the coordinatesy
(0”, x, 0’) canbe constructedusingthe generatingfunction

F3(y;E) ~Aaj(y)Eaj = ~0ab(0A~)Abj(X)Rij(0J)Eai.

After somealgebrawe find the expressionfor the old momentaB as functions
of y andv,

E(y,v) = 0(0I)E(y,v)RT(OJ), (4.5)

whereE is given by

Eai = öajP[j] + X1(M’)~l[,, + ~ (4.6)

andthe remainingquantitiesaredefinedas in ref. [18]:

X,~~(x)S~’~x111, Y~(x)mS~jx[a],

S~1(x) ~nai(_x~1+

i.e. the only non-vanishingcomponentsof S are

s’ s
1

23 = 32

1

13— 31—

1
12— 21—

M’ ‘s” — 1
0T

00ad
nm~ ) = ~emcd ca~T’

J J _1 TOR
51

nm = ~mkl ks~~T

Inserting (4.4) aswell as (4.5) into (4.1) andusingtheorthogonalityof the
matrices0 andR, respectively,we get the hamiltonianin the new variables,

H(y,v) = T + ~ (x~x~+ x?x~+ x~x~), (4.7)
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wherethe kinetic term T explicitly reads

T ~Eai Eaj

= ~(p~+p~ +p~)+

-‘-2X” yr. (~4fI~—l (J~fJ\l II iJ
‘ ai a~~ ‘nm~

1rs m S

~ynvr (A~J\1 (p~,(J\—1JJJJ
‘ ai ai’ inm~ 1rs m s

Furthermore,making use of 8abcOaoObflOcy = eafly for 0 E 0(3) and
= ô/1n , the conservedangularmomentafla and m, can now

be written as

(~~I 1’\ — ,1 (A4~I\l II
,‘ ,‘ — ~ 1nm’m

~ l~’\ — D. (AKJ\—1JJrn, I~J , ) — ltjfl ~Y.L ‘nm’m

The identity (4.8) showsthat the Gauss’lawconstraintsna = 0 areequivalent
to l~= 0. According to theorem3.2 the canonicalvariables0’ and I’ are
thereforeunphysicalandgauge-invariantquantitiesare independentof them.

After the identification of these non-dynamicaldegreesof freedom, the
partially reducedphasespaceis parametrizedby thecanonicalpairs (x,p; OS”
0,t’ 1). The dynamicsis determinedby the partially reducedhamiltonian

H~(x,p;0,I) = H1
110

= ~ (~?+ p~+ p~+ iM~n~M~lmls)

~ , (4.10)

andstill restrictedby the threeremainingconstraints

ñi1(0,l) = RinMnn~Im k~11= 0. (4.11)

Having eliminatedthe gaugedegreesof freedomonewould nowlike to carry
out acanonicaltransformationsuchthat the two second-classspatialangular
momentumconstraintsth2 and rn3 are simply relatedto acanonicalcoordi-
nate andmomentumpair, whereasthe first-classspatial angularmomentum
constraint th1 is equivalentto anothercanonicalmomentum.This task also
hasto be split in severalparts.

First we map two of the constraintsonto canonical momenta.Even this
is not immediatelypossiblebecausethe th, do not havevanishingPoisson
bracketswith eachother.It is thereforenecessaryto replacethemby equivalent
quantities

ñ, mA,~(0,I)Fn~,
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where

fth
1+2k m2 m3\

A ( 0 k sin
2 02 0 , det (A)Ith...

0 = 2k
2sin2 02 � 0.

\ 0 0 1)

The factork sin2 02 hasbeeninsertedfor laterconvenience.Parametrizingthe
elementsR E SO(3) by threeEulerangles0 ~ 01,03 ~ 2ir and0 < 02 < ir as

usual,the new constraintsreadexplicitly

= m~+m~-~-m~-k2

= . ~ (l~ — 21
113cos02+ /~sin

202 + 1?) — k2, (4.12)
sin 02

rn
2 = ksinO2 (l3cosOi —l2sinO1sinO2—l1cosO1cosO2), (4.13)

in3 = l~, (4.14)

leadingto {th1,ñi2} = {ñii,ñi3} = 0 . Now, performingthe canonicaltrans-

formation (0,!) ‘—p (q,,,r) generatedby
F2(0,rc) ~t101+ ~303

+ 1 (~r~sin2~— + 2ir1ir3cos~—

the momentair1 and n2 in fact correspondto the constraintsrn3 and ñi1,
respectively(for more explicit formulaesee ref. [19]).

To completeour reductionprogramwe will still haveto find the canonical
coordinate equivalent to th~.Instead of computing the coi = 0F2/Oir, we
immediatelyproceedwith asecondtransformationdefinedby

1i coi — arcsin

( ~)1~3
~

2co2+arcs1nI I,

(1~3 co3 — arcsin

1J,=jvj fori=l,2,3.

Obviously

{H,,17~}= 0, ~ = t5,~ for all i,f

and it can alsobe verified that (cf. ref. [19])

{1,,~} = 0 for all i,f.
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Hence(ç,ir) ‘—* (0,11) is indeedcanonicalandthe constraints(4.12)—(4.14)

leadto the equations
= JJ~ — k2 = 0,

= — (n~sin2~
2 + k2cos212)sin~1= 0,

= H1 = 0.

As a result we have shown that the initial constraints(4.11) after the
canonicaltransformationsfrom (0,!) to (0,H) canbe cast into the form

J1~= 0, (4.15)

= 0, (4.16)

H2 = k. (4.17)

As we pointed out alreadyabove, the first two of them, (4.15) and (4.16),
which are equivalentto rn3 and th2, are secondclassand the last constraint
(4.17), equivalentto ñz1, is first class.We havetherebyexplicitly completed
the transformationof variablesknown to exist (locally) accordingto theorem
3.2.

The residualunphysicaldegreesof freedomin the only partially reduced
hamiltonianH~(4.10) could thus alsobe isolatedandthe completelyreduced
phasespace PR of SU(2) YMCM is parametrizedby the canonical pairs
(x,p;~,H3).

To constructthe completelyreducedhamiltonianHR in thesevariableswe
collect the precedingresultsas follows:

sinO1 = , (4.18)ksin02

~/k2~H~
cosO2 = — k sin~2, (4.19)

(H303 = ~3 + arctan(~-rtan~2) (4.20)

= 0, (4.21)

~/k2~H~
‘2 = sin02 cos~ (4.22)

13 = H3. (4.23)

Making useof well-known identitiesfor the trigonometricfunctionswe get the
necessaryexpressionsto insert into H~(4.10). Using REDUCE [12] for the
algebraicmanipulationsandafter a changeof notation (~ co~H3 pg,) we
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finally endup with the completelyreducedhamiltonianof SU(2 )—YMCM

I / x2+x~ 2

HR(x,p;co,p.l,) = ~ ~p?+p~+p~+ ~(x2_~x2)2 —h(xi~x2~x3~co))P1~
+~(x~x~+ x~x~+ x~x~+ h(xi,x2,x3,co)k2), (4.24)

where

— x~+x~ ~2 x~+x~ 2h(x1,x2,x3,co)= 2 2 2 sin co + 2 2 2 cos co.
(x1 —x3) (x2 —x3)

The singularpointsin HR correspondto the singularitiesof the transforma-
tion (4.4) at

x,, = ±xm for n,m = 1,2,3. (4.25)

This is due to the fact that the singularvalue decomposition(2.12) is one
to one only if we restrict the values of the variablesx~to a fundamental
domain {x1 ~ x2 ~a x3 ~ 0} c i~.After sucha restriction all the singular
points lie on the boundaryof this domain. Presumablythey are of no direct
dynamical significanceand the correspondingterms in HR representa kind
of centrifugalbarrierpreventingthe dynamicalsystemto reachthedegenerate
configurations(4.25) exceptfor specialvaluesof co andp~,,.The analogyto the
three-dimensionalpotentialproblem in sphericalcoordinatesis conspicuous
wherethe origin constitutesakinematicalsingularity (cf. ref. [18]).

In summary,wehaveachievedthe reductionof thenine-dimensionalsystem
(4.1) restrictedby sixconstraints(4.2) and (4.3) to an effectiveunconstrained
four-dimensionalsystem.Hence we presenta formulation of thefull SU(2)
YMCM in thetruly physicaldegreesof freedom.

The additionaltermsin (4.24) comparedto the lagrangian(2.15) describing
the subspaceof vanishing spatialangularmomenta(k = 0 =~co = p~= 0)
contain the dynamics in the remaining rotational degree of freedom and
its influenceon the variablesx,,. For an investigationof theseeffects it is
naturalto startwith an analysisof dynamicallyinvariant subsystems.Sinceall
coordinatesandmomentaenterthe hamiltonian (4.24) at least quadratically
it follows that

co=p~=O or x~=p~=0 fori=l,2or3

constitutesuchinvariantsubsystems.

In the first casethe lagrangianreads

1 ~ ~2 ~ 1 / 2 2 2 2 2 2 x2 +x3 2L = ~ ~x1+ x2 + x3) — (x1x2 + x1x3 + x2x3 + 2 — 2~2k
~x2 x3,
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Additionally demandingx1 = = 0 andperformingthe coordinatetransfor-
mation

X2 I.’ ~(r1 +r2),

X3 ~ ~~(r1 —r2),

we obtainthe system

— I , ~2 ~ ( 1 1 i 2 Ii 2 2~2
1~~ — ~ +r21—1 ~ —g~r1—r2i

\r1 r21

alreadyinvestigatedby Frøyland [20] for vanishingcolour momentaL1 =

L2 = s./~k (in his terminology).His results— he finds dynamically stableas
well as unstableorbits anda systemof multifurcations— thereforefit in the
context describedby eq. (4.24) andhenceareof generalvalidity.

For an investigationof the role of the nontrivial part of the metric in the
kinetic term one might studythe subsystemx3 = = 0:

/ 2 2~ 2 2~2
— 1 1 ~2 ~2 x1x2~x1—x2,4 2 2 ~2 4 2 2 cox2 (3x1 — x2 ) sin co + x1 (3x2 — x1 ) cos

2 co

1 / 2 2 / sin2 co cos2co 22 + 2 jk
\ X

1 X2 j

All this makes clearthat we are still far from understandingSU(2) YMCM
outsidethe subspaceof vanishingspatialangularmomenta.Having identified
the dynamicaldegreesof freedomandconstructedthe reducedhamiltonian
(4.24) we neverthelesspresentthe necessaryprerequisitesfor a systematic
studyof this mechanicalmodel of the simplestnon-abeliangaugetheory.

5. The reducedphasespaceof SU(3)YMCM

In this sectionwe will try to find a formulation of SU(3) YMCM in the
truly dynamicalvariables.Rememberingthe resultsof the constraintanalysis
in configuration spacecarried out in sect. 2 and taking into account the
enormouscomplexity of the system,it seemsreasonableto concentratein a
first stepon the subspaceof vanishingspatialangularmomenta.The dynamics
in the 48-dimensionalphasespacethereforeis restrictedby 11 non-holonomic
constraints

= fabcAbiEci = 0, (5.1)
= eijkAajEak = 0, (5.2)
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which areexclusively first-class:

{fla,flb} = fabcflc—~O,

{na,m,} = 0,
{m,,m~}= e1Jkmk_~O.

As they all representconstantsof motion thereare againno secondarycon-
straints.

In contrastto theSU (2) casewherethe singularvaluedecompositioneffects
adecompositionof the configurationspacein gauge,rotational andphysical
degreesof freedom,herea comparabletransformationto special coordinates
reflectingthe symmetriesof the systemcould not be found. So thereis only
little hopeto obtain a canonical transformationto distinguishedvariables
describedin theorem 3.2, which allow an immediate identification of the
reducedphasespace.

Thereforewe haveto lift the degeneracyof the theoryby aconsistentgauge
fixing. In addition to the 11 initial first-classconstraints (5.1) and (5.2)
we haveto find 11 independentsupplementaryconditionson the phasespace
variablesin sucha way thatweendup with a setof 22 second-classconstraints
(cf. lemma3.2).

Following an idea of Marnelius and Kihlberg [21] we define generators
{ Ta} of the Lie algebrasu(3) suchthat the first threebasiselementsrepresent
the so-calledminimal embeddingof the subalgebrasu(2) in su(3) (cf. refs.
[22,23])

T1ET2, T2E15,

T3~r7, T4~x4,

T5~r1, T6mr6,

T7~t3, T8ET8,

where Ta l)La/
2 and )~aare the well-known Gell-Mann matrices.The non-

trivial non-vanishingstructureconstantscabc arelistedin table1. Thecanonical
hamiltonianthen reads

H = ~EaiEai + ~cabececdAaiAbjAciAdj (53)
andGauss’law (5.1) takesthe form

na = cabcAbiEci= 0. (5.4)

Becauseno (non-vanishing)elementout of the algebrasu(3) commuteswith
all threegenerators{T

1, T2,T3}, the 8 x (8 x 3) matrix cabi hasmaximumrank
(8) and the eight conditions

Wa ~~cabiAbi = 0 (5.5)
b=1 1=1
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TABLE 1
Non-vanishingstructureconstantsw.r.t. the basis {Ta}

a b C Cabc

1 2 3
1 4 6
1 5 7 —1
2 4 7
2 4 8
2 5 6
3 4 5 _1

3 6 8

are linearly independent.As further supplementaryconditionswe choose

J~.(A2~+ A32) = 0, (5.6)

~(A13 + A31) = 0, (5.7)
+ A21) = 0. (5.8)

The Poissonbracketsbetweenthe gauge-fixingconditions (5.5)—(5.8)andthe
constraints(5.2) as well as (5.4) form the 11 x 11 block matrix

M = ({m1, q
5j} {rn

1, Wa} ~ (5 9)
- ~{fla,~i} {fla,Wb}i

Just as {fla, V/u) = cap,i cu~,A~1the other entriesare linear in the coordinates
Aai, too, and we find

~ 0

for infinitely many open sets of field configurations. Becausethe singular
surfacesdeterminedby det(M) ,, = = m =~ = 0 = 0 areat most 10-dimensional
hypersurfacesof the 24-dimensionalconfiguration space {Aaj }, the matrix
(5.9) is thereforeinvertible exceptfor setsof measurezero.

Away from thesesingularsurfaces— we will commenton them later— the
11 supplementaryconditionsx (~,~) = 0 consistentlyfix the 11 first-class
constraintsG (m,n) = 0. So we managedto passfrom the descriptionof
SU(3) YMCM in the subspaceof vanishing spatialangularmomentaby a
degeneratetheory to a descriptionby aphysically equivalentnon-degenerate
theorywith 22 second-classconstraints(x~G) = 0.

The next step towards the elimination of the non-dynamicaldegreesof
freedom is to find a parametrizationof the reducedphase space PR and
to construct the effective hamiltonian on

TR. To this end we regard the
independentquantitiesx as new coordinatesandextendthem to a complete
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coordinateset {qa,a = 1,... ,24} in the following manner:

q1 mA11, q14~q51= ~(A23 +A32),

q2 A22, q15 ‘~2= ~ (A13 + A31),

q3 A33, q16 = ~(A12 + A21),

q4 mA41, q17 mV/i =

A42, q18 = ~(—A13 + A31),

q6 A43, q19 = .~(A12 — A21)

q7mA52, q2omV/4=~(—A53+A61—A72—v’~A82),

q8 mA53, q21 ~ti~ = ~(A43 + A62—2A71),

q9mA61,

q10 A62, q23 = ~ (A~2 + 2A51 — A63)

q11 mA72, q24 = ~/~(A42 + A63),

q12 = A73,

q13mA81. (5.10)

The canonicallyconjugatemomenta{Pa, a = 1,... , 24} are

P1 = B11, P14 = B23 + E32

P2 = E22, P15 = B13 + B31
= B33 , P16 = B12 + E21

= E~1— _)=E83~ P17 = E23 — B32,

= E42 — E51 — B63, P18 —E13 + E31

p6=E43+~E71, p19=E12—E21,

1 2
= E52 — .~E83, P20 =

P8 = B53 — —~E82, P21 = —B71,

~D9= E61 + _J~E82~ P22 =

Pio = B62 + ~E71, P23 = E51,
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1 2
Pu = E72 — —~E82, P24 = —~~(E51+ 2E63)

P12 = B73 + —E83,

P13 = E81

Insertingthe inverserelationsAaj(q) andEai(p) into (5.2) and (5.4) we get
the constraintequationsGa(q,p) = 0 in thesenew variables.They arelinear
inp andthusmaybewrittenas(a = 1,... ,11)

Ga(q,p) = ~Na~(q)p6÷13 + = 0, (5.11)

with acorresponding11 x 11 matrix N andan 11 x 13 matrix R, respectively.
Furthermore,due to the invarianceof the Poissonbracketsunder canonical
transformationswe get for the block matrix (5.9)

Ma~(q,p)= {Ga(q,p),x6} = {Ga(q,p),q~~i3}= _0Ga~,~ ,(5.12)
OPb+13

hence

Ma6(q) = Na6(q).

Therefore the 22 second-classconstraints(x~G) = 0 can be solvedfor the
variables(a = 1,... , 11)

~a+13 = 0,

Pa+13 = ~ abPb ~ ,q13p1,... ,P13). (5.13)

Following lemma3.1 wecannowidentify andisolate{ (q~,Pa),a = 14,... , 24}

as the unphysicalcoordinatesandmomentaof the theory.On the otherhand,
the remaining canonical pairs { (qa,Pa),a = 1,... , 1 3} representthe truly
dynamicaldegreesof freedomand parametrizethe 26-dimensionalreduced
phasespacePR. By simply insertingthe constraints(5.13) into the canonical
hamiltonian (5.3) we finally get the reducedhamiltonianon PR

HR(ql,. . . , q13p1,. .. ,P13) = H(Aaj(q),Eaj(p) ~

= ~ ~ + aab(ql,... ,q13) PaPb)
a=1 a,b=1

+V(qi,... ,q13), (5.14)
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wherethe non-trivial part of the kineticterm is given by

~ fa2 + ~ fa2
a,b=1 a=1 a=7

—(ps—h+pii)fi + (P6 +p1o)f8

—(pa + P7 P12)f9 + Psfio + V~p
5f11,

andwhere the potential V is a fourth-orderpolynomial in the coordinates
{q1,... ,q13}.

In summary,after a simple coordinatetransformation(5.10) we managed
to eliminate the unphysicaldegreesof freedomcorrespondingto the con-
straints (5.2) and (5.4) as well as (5.5) and (5.6)— (5.8) therebyreducing
SU(3) YMCM in the subspaceof vanishing spatialangularmomentato an
effectiveunconstraineddynamical system. All physical information is con-
tained in the reducedhamiltonian (5.14) and the dynamics is completely
describedby ordinaryhamiltonianequationsof motion in the canonicalvari-
ables{(qa,pa),a = 1,...,13}.

For adiscussionof the role of the singularpoints inherent in the reduced
hamiltonian (5.14) which coincide with the singularitiesof the 11 x 11 matrix
M(q)Iq,3....0 (5.12), it may be helpful to go back for a moment to the
case of SU(2). Let us assumewe would fix Gauss’ law (4.2) implicitly
usingas supplementaryconditionsthe SU (2) analogonof (5.5) (the minimal
embeddingis then trivial)

V/a = :~:i:~abiAbi = 0, a = 1, 2, 3,
b=1 1=1

thusdemandingthe antisymmetricpart of the 3 x 3 matrix (Aai) to vanish.
Employing the reductionproceduredescribedabove for this system we

finally get aparametrizationof the 12-dimensionalreducedphasespacePR by
similarly definedcoordinatesandmomenta{(qb,pb),b = 1,... ,6} as well as
a reducedhamiltonianHR(qb,Pb). Diagonalizingthe symmetricmatrix

fqiq6qs\ fxi 0 0\
(Aai)IFR = ( q~q2 q4 ) =0(0)( Ox2 0 j QT(Ø) (5.15)

\q5q4q3J \0 Ox3)

thendefines a canonical transformation(q1,... ,q6p1,...,P6) ‘—~ (x,p;0,1)
on PR andoneeasilychecksthat in the newvariablesHR is equalto the expres-
sion (4.10) directly deducedin sect.4. The analogycan be completedwhen
in the specialcasek~= 0 the constraints(4.3) arefixed by the supplementary
conditions (5.6)—(5.8).

So the gauge-fixingconditions (5.5) and (5.6)—(5.8) employedfor SU(3)
YMCM are naturalextensionsof supplementaryconditionswhich havebeen
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successfullytried and testedin the simpler SU(2) case.We have therefore
good reasonto assumethat the singularitiesof the reducedSU(3) hamiltonian
(5.14)as the singularpointsof thereducedSU(2) hamiltonian(4.24) do not
haveanydirect dynamicalsignificance,but ratherarisefrom the fact that the
coordinatesandmomentaresultingfrom our reductionprocedurecannotbe
definedon theentirephasespacewithoutsingularities(cf. ref. [24]). In Yang—
Mills field theoriessuch singularitiesarerelatedto the problemdiscoveredby
Gribov [25] thatauniquerepresentativein eachgaugeclassmaynot be fixed
globally dueto the non-trivial topology carriedby the potentials.

After having succeeded in presenting a formulation of SU(3) YMCMfor
vanishingspatialangularmomentain the physically relevantvariables,one
might startthe analysisof (5.14) by looking at dynamically invariant subsys-
tems. This, first of all, requiresa systematicidentification of such systems.
For a given numberof degreesof freedomwecheckedfor eachpossiblecom-
bination of pairs of canonicalvariablesif the therebydefined subspaceof
PR dynamically decouples,i.e. whetheralso the time derivativesof the other
coordinatesandmomentavanishwhenrestrictedto this subspace.Becausewe
confined ourselvesto low-dimensionalcases (up to five degreesof freedom
only) we did not haveto invert the wholematrix (5.12) explicitly.

We end up with the following classification: In two and three dimen-
sions the dynamics remains restricted to the SU(2) system parametrized
by (q1,q2,q3p1,p2,p3),

H’~
2~= ~ (ii? + p~+ p~)+ .~ (q?~~+ q?q~+ q~q~), (5.16)

wherethe deviationfrom (2.15) by a factor 1/4 in the potentialis dueto the
modified structureconstants(c

123 = 1/2).
Genuine SU (3) dynamics sets in only when leaving this subspaceand

exciting (q5, p5) as the next degreeof freedom. The correspondingreduced
hamiltonianreads

~ = ~ (~+ + + + (quq2 + q1q3 + q2q3)
2a,b=1,2,3,5

+~ (q?q~+ q?q~+ q~q~)+ ~ (2qi~+ 2q~+ 2q~+ 3q~), (5.17)

and the non-trivial part of the metric is given by

= q~[q
22+ q2q3 + q~]

= q~[q1(q2—q3)—q3(q2+ 2q3)]

= q~[q1(q3—q2)—q2(q3+ 2q2)]
mv I i 2 2~a15 = q5 1—qi~q2+ q3, + q2q3~q2+ q3Jj



B. Dahmen,B. Raabe/ SU(2) andSU(3) Yang—Mills 379

= q~[q
12 + q1q3 + q~]

= q~[q2(q3— qi) — qi(q3 + 2q1)]
mv 1 i 2 2~ ia25 = q5 [—q2~ql+ q3 , + q1q3~q1+ q3Jj

= q~[q~+ ~J1~J2+q22]

= q5 {—q3(q1 + q2) + q1q2(q1 + q2)]

a55 = —q1q2q3 (q1 + q2 + q3)

Thereare no otherdynamicallyinvariantsubsystemsneitherin four nor in
five dimensionswithin the chosenparametrizationof the reducedphasespace.
As a result, (5.17) representsthe simplestcaseofgenuineSU(3)dynamicsand
allows to studyrealisticdynamicaleffectsof SU(3) YMCM beyondthe well-
known SU(2) case (5.16). Such an analysis may lead to interestingnew
phenomenaandshould be the startingpoint to abetterunderstandingof the
Yang—Mills theory of spatiallyconstantfields for the gaugegroup SU(3).

6. Summary

The aim of this paperwas to gain adeeperinsight into the dynamicalstruc-
ture of classicalSU (2) and SU (3) Yang—Mills theory for spatially constant
fields. The systematicstudy of the constraintsled to a completeelimination
of the unphysicalgauge and rotationaldegreesof freedom. By isolating the
truly dynamicalvariableswe obtainedan effectiveunconstrainedformulation
as anecessaryprerequisitefor further, moreexplicit investigations.

We showedthatthethree-dimensionalsystem(2.15)representsthe subspace
of vanishingspatialangularmomentaof SU (2) YMCM. For the generalcase
we also managedto identify the four physically relevant degreesof freedom
whose dynamics is determinedby the reducedhamiltonian (4.24) andcan
now be analyseddirectly.

The holonomypropertiesof the constraintsalreadypointedto a morecom-
plicatedstructureof SU (3) YMCM. Actually we did not find a transformation
to preferredcanonicalvariableswhich perfectly suitthe symmetriesof the sys-
tem. The 11-fold degeneracyof thetheory in the subspaceof vanishingspatial
angularmomentacould neverthelessbe lifted by a consistentgauge fixing
andwe subsequentlyfound acoordinatetransformationprovidingus with a
convenientparametrizationof the reducedphasespace.

In spite of the rather complex effective hamiltonian (5.14), the low-di-
mensionalinvariant subsystemscould be classifiedandthe four-dimensional
system(5.17) allows a first studyof genuineSU (3) dynamics.
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