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We calculate QCD coefficients for the effective operators for B decays at the m, and m, scale and use
them to calculate branching ratios, polarization and CP asymmetries in the decay of B mesons to two
vector mesons. The numerical results are compared to experimental data.
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1. INTRODUCTION

In previous work [1,2], we made a systematic study of
the exclusive decay of B mesons to two vector mesons
[3-5] with partlcular attention to polarization and CP
asymmetries in the decays B—K*¥, K*w, and K*p
[6,2]. The renormalization-group-improved effective
Hamiltonian [7,8] was evaluated in the vacuum inser-
tion approximation [9]. Okubo-Zweig-lizuka-(OZI)
suppressed and annihilation terms were neglected.
Current matrix elements were evaluated using the wave
functions of Bauer, Stech, and Wirbel [4] (BSW).
Branching ratios and angular correlations among subse-
quent decays of the vector mesons were calculated for 36
channels. As a first approximation, the calculational
scheme provided a useful framework with which to or-
ganize the data. We are currently improving the form
factors by using heavy quark symmetries where they are
applicable [10]. In this work we will improve the
effective Hamiltonian by running the QCD evolution
equations for current values of the top-quark mass and
correcting a numerical error in the work of Ponce [8].
We then apply this effective Hamiltonian to 34 exclusive
B —VV channels, calculating branching ratios, decay
rate differences caused by B°B° mixing, and polarization
and direct CP asymmetry parameters.

In the remainder of this introduction we briefly review
the calculational scheme of Refs. [1,2]. In Sec. II, we de-
scribe our method for calculating the QCD coefficients
and present out results for the renormalization. In Sec.
II1, we apply this Hamiltonian to the decays of B into
two vector mesons.

After renormalization, the effective Hamlltoman for
the Ac=0, Ab=As=1 processes is, following the nota-

tion of [1],
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The coefficients ¢, ¢, ¢;, ¢3, ¢4, and linear combina-
tions of c¢s and ¢4 were calculated by Ponce [8] some
years ago for values of the top-quark mass and the W-
boson mass that are quite different from current data, al-
though the coefficients do not depend sensitively on these
inputs. More significantly, Ponce’s calculation has a nu-
merical error which overestimates the effects of QCD
corrections in ¢, and ¢,. We will repeat his calculation in
Sec. II1.

We use the notation H, ={V,(A)V,(A)|H|B®) for
the helicity matrix element, A=0,1+1. These can be ex-
pressed by three invariant amplitudes a,b,c, defined by
the decomposition

Hy=€,,(A)*€;,(A)* ag“"-l—m 40 ¢
1m;

ic
+ €"mﬁplapg , (3)
2

where p=p,+p, is the B ° four-momentum. Thus,
Hy =atV'x?—1c and Hy=—ax—b(x?>—1), where

=(mim}/m?)(x*—1). The helicity amplitudes H;
for the decay of B°— ¥, ¥,, where ¥, and ¥, are the an-
tiparticles of ¥, and V,, respectively, have the same
decomposition as (3) with a —a, b—b, and ¢ — —¢. The
coefficients a, b, and c describe the s-, d-, and p-wave con-
tribution of the two final vector particles. They have
phases 8 from strong interactions and weak phases ¢
originating from the CP-violating phase in the Cabibbo-
Kobayashi-Maskawa (CKM) matrix. When there are no
strong interaction phases, 2=a*, b=b*, and t=c*.
Since there is a sign change in front of € in H A» We have,
for the case of vanishing strong phases §>"2, H,,=H%,,
H,=H}.

2969 ©1992 The American Physical Society



2970 G. KRAMER AND W. F. PALMER 46

The angular distributions depend on the spins of the decay products of the decaying vector mesons ¥, and V,. For

B —>K*—(Km)e e ), the differential decay distribution is

da’r __p
d cosb,d cosb,dd  16m°m? 8

9 .
= X {Lsin®0,(1+cos?0,)(|H , |*+ |H _|*)+cos?6,sin%6,| H, |?

—1sin’0,sin’6,[cos2¢ Re(H | H* | )—sin2¢ Im(H , | H* |)]

_%Sinzalsinzez[COS(b Re(H+1H8 +H_1H3 )_Sin2¢ Im(H+]Hg —H_IHS )]} .

In Eq. (4), 6, is the polar angle of the K momentum in
the rest system of the K* meson with respect to the heli-
city axis, i.e., the momentum p,. Similarly 6, and ¢ are
the polar and azimuthal angle of the positron e * in the ¥
rest system with respect to the helicity axis of the ; i.e.,
¢ is the angle between the planes of the two decays
K* >Km and y—e*e” (or utu™). The ratios r;/r
and I'; /T" measure the amount of transversely (longitudi-
nally) polarized K* (or ¢). The decay distribution is
parametrized by the coefficients

rr |H P+ |H_,|?

' |HJ+|H P+|H_ | ]*

r, |H,|?

T [H*+[H P+ [H_|*’

Re(H,  H*+H_,H})

(4)

_ RelH,,H*))
a H|*+|H, >+ |H_,|*’°
_ Im(H, H*))

O Ho P+ H L PHE_ P

For a description of the applicability of this distribution
to a variety of processes, and another distribution that
applies to the case B—K *p— (K 7)(m), see Ref. [1].

In general, the dominant terms in the angular correla-
tions are I'- /T, T'; /T, a,, and a,. The terms B, and f3,
are small since they are nonvanishing only if the helicity
amplitudes H ., H_,, and H, or the invariant ampli-
tudes a, b, and c, respectively, have different phases.
When there are no strong interaction phases, the
coefficients B, and 3, are nonvanishing only through the
CP-violating phase of the CKM matrix under the condi-
tion that they contribute differently to a, b, and cor H , |,
H _,, and H, respectively.

Let the conjugate process amplitudes be denoted H .,

a

2

a = 2 2 2 (5) etc., and the invariant amplitudes @;, etc., where i denotes

|Hol*+|H >+ |H _,| i
the independent channel or process with the final-state
. . interaction phase 8§, and weak phase ¢;. Then the in-
B,= Im(H Hy —H_\Hf) teresting CP differences which do not require strong
|Hol*+|H P+ |H_|*’ phases and are proportional to weak phase differences are

J
Im(H H* ,—H_ H*)=—4Vx?—1 3 cos(8,, =5, )sin(¢,; —d,,)la;c;| (6)
ij
and

Im(H, H* ,—H_H{ —H H{+H_H})=—4x>—1"2 3 cos(8,—8y )sin(,—dg4;)le;b;l

ij

—4xV'x?—1 3 cos(8,,—8,;)sin(¢,—dy;)lca;] - (N

Terms of the first type, which are numerically small in
our model, can be isolated by averaging over the polar
angles and looking at the ¢ dependence of the difference
distribution:

—(a,—a,)cos2¢

—(B,—B,)sin2¢ . (8)

Terms of the second type can be isolated by examining
the ¢ dependence of the difference distribution separated
according to same-hemisphere (SH) events (e.g., 0<6,,

ij

r

0,<m/2) or opposite-hemisphere (OH) events (e.g.,
0<0,<7/2, w/2<0,<m):

drOH B drSH _‘2—77_ dI—“OH _ dFSH
dé dé r | d¢ d¢

=—1{(a,~&)cos¢—(B,—B,)sing} . (9

2m
r

A different signature for CP violation is obtained when
one considers neutral B mesons only. Then it is possible
to generate interference via mixing by looking at final
states that can occur from B and B? decays. In the case
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of common final states for 1__9_0 and B° decays, AT, the
difference T'(B%(t)— f)—T(B%t)— f) can be written in
term of the factor [11]

AP _ Im{(g/p)[H§+2H  \H_, ]}
r |Ho|>+|H |2+ |H_, |2

) (10)

where AT =ATsin(Am¢). This factor depends on the
mixing phase g¢/p and the weak phase of
H§+2H+1H_,. The difference between Im(q/p) and
AT /T represents the influence of spin effects in the final
state on the mixing factor. In some of the considered de-
cays, Hy, H |, and H_, have equal weak phases. Then
AT /T is maximal if H ., =H _, [12,13].

Amplitudes for 34 B— VV decays are written down in
Ref. [1] in the vacuum saturation approximation. They
depend on the hadron matrix elements of quark bilinears
and the coefficients of the operator product expansion
which define the effective Hamiltonian, discussed in the
next section.

II. EFFECTIVE HAMILTONIAN

Ponce [8] has calculated the QCD coefficients at the
my, m., and my=1-GeV scales and we follow his method
closely with slightly altered notation. However, he made
a numerical error when evaluating the parameter &, in-
troduced below. The error is evident because his results
do not preserve the constraints ¢, =(c;%c,)/2. We can
reproduce his results by changing the sign of &,, as shown
below.

At the weak scale, the Ab=As=1, Ac =0 weak Ham-
iltonian can be written

G = =
H2=—‘/—§{V;Vcb[(su)(ub)—(sc)(cb)]
+ VeV, [(5u)@b)—(5t)(#b)])
=a,(05, +05_)+ay(05, +0%_), (11)
where
G . . G
azz—ﬁ CSVCb ’ azz_“/_in:th .

The notation (su)=(5u), =5y,(1—ys)u denotes a
left-handed current. After renormalization, additional
operators O; are induced and the coefficients of the old
operators are changed. These changes can be expressed
in terms of the factors

Blas m, BZas my
K=1- In , Kp=1l————In— |
27 Ko 2Tk, m,
(12)
B;a m; B,a; my
K3=1— n , Kg=l—————In— |
27K Ky My 2TK KKy my,
which arise from running the couplings from

my,—m,—my,—m_ —u, The factors B, are
B,=2in,—11, n;=3, n,=4, ny=5, n,=6.

We shall take my,=m, in all cases except when we
make contact with Ponce’s work [8]. Thus, for the scale

m,, we will use kK, =k,=«,=1 and

B3as(mb) my,
K3=1— In

2 m,

and for the scale m, we use k;=k,=1 and

y K3=—

Bzas(mc) my
Ky=— ————In

Bia,(m.) my
- In .
27

¢ 27K, m,

When there are five active flavors, the anomalous di-
mensions of the operators are

Cias
47
C_=-8.

Y+—
C,=4,

We drop the (5b )(7¢) terms because they are unimportant
for B decays. Then the renormalized Hamiltonian at the
m,, scale is

C,/2B, C, /2B
H (my)=a,{i, t " ks * 30§,+Kf_/23“x§:*/2330°_}
2 6
ta; 3 3 §1R1i_1KiRij0j (13)

I=1ij=1
where the operators O; are defined by

01 =(5b )L(ﬂu )L , 04=(§lbj )L 2 (ﬁjq,)L ’
q
0,=(5b;) (@;u;), , Os=(3b). 3 (gq)g » (14)
q
03=(§b )L 2 (c7q )L s 06=(‘s_ibj)L 2 (ﬁjq,- )R ’
q q

and g =u,d,s,c,b. Note the definition of O5 and Oy is
different from that used in Eq. (2) and Refs. [1,2,6]. The
coefficients ¢5 and c4 in Eq. (2) are related to Ponce’s
definition ¢{P and P by cs=cP/2 and
cﬁ=c‘5P)+c(6P)/6.

The anomalous dimension matrix M and the matrix R
that diagonalizes it are given in [8]. The factors &; and
K; are

C. /2B C_/2B
i + 4 - 4
§1=K, T Ky ’
C, /2B C_/2B
— 4+ 4 - 4
§,=K, + Ky s (15)
V./B
—_ i 3
K;=x; ’

where V; are the eigenvalues of M, given in [8].

In proceeding to the scale m,, these operators are
again renormalized and a new Hamiltonian can be writ-
ten down involving the five active flavor factors written
above as well as the corresponding factors when there are
only four active flavors. These are the anomalous dimen-
sions of the operators O, as well as the anomalous di-
mension M’ in the basis of a new set of operators O}, its
eigenvalues, and the matrix R’ that diagonalizes M’. The
anomalous dimensions of O, are now given by

C,=2, C_=—4.

The new operators are given by
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TABLE I. QCD coefficients for Ab=1at u=m, =5.0 GeV.

As cy c_ ¢ c, c3 Cy Cs Ce
0.10 0.8862 1.2732 —0.3870 2.1595 0.0167 —0.0404 0.0122 —0.0474
0.15 0.8777 1.2982 —0.4206 2.1759 0.0183 —0.0437 0.0131 —0.0520
0.20 0.8707 1.3192 —0.4485 2.1899 0.0197 —0.0464 0.0138 —0.0559
0.25 0.8646 1.3378 —0.4733 2.2024 0.0210 —0.0488 0.0144 —0.0594
0.30 0.8591 1.3549 —0.4958 2.2140 0.0221 —0.0509 0.0150 —0.0626
0.35 0.8541 1.3710 —0.5169 2.2250 0.0232 —0.0529 0.0155 —0.0656
0.40 0.8493 1.3862 —0.5369 2.2356 0.0242 —0.0548 0.0160 —0.0685

I&

0'1=(§b)L(17u )L ) O.’;=(:Y-,bj)L E(Q'jq;)L »
q9

05 =(5;b;)(Fu;)y , O5=(3b), 3 (q)x
q

03=(30). 3(3q). , O¢=(5b;)L 3 (g;q;)r ,
q q

(16)

07 ="1(FA%), (A% ), +H(5A%), (BA%)g ,

where g =u,d,s,c.
In terms of these operators, the renormalized Hamil-
tonian at the m, scale is

HS(m,)=a,{e0% +e /20 }

2 6 7
+a; Y 3 I &R;'KR;RLKRO/,
I=lij=1st=1

(17

where
v./B
K]=x,"""?
and
C_/2B, C_/2By C'_/2B,
€E=K, K Ky .

The renormalization procedure preserves the constraint
¢ =(c;%c,)/2. In Ref. [8], the equations are correct as
written but a sign error was made in evaluating them
which violates this constraint. We have solved the equa-
tions using Ponce’s inputs: my =100 GeV, m, =30 GeV,
m, =5 GeV, m,=2 GeV, and A;=500 MeV, using the
lowest-order formula for a; with three flavors. When the
factor &, is reversed in sign, the results of [8] at the scale
m, are retrieved: ¢, =0.7737, c_=1.6707,
¢,=-—0.4447, ¢,=2.3169, ¢3;=0.0373, c,=—0.0842,

¢5=0.0244, c,= —0.1061, and c,= —0.0332. When the
sign error is corrected, the new results for Ponce’s inputs
are ¢, =0.7737, c_=1.6707, ¢; = —0.8970, ¢, =2.4444,
¢3=0.0384, c,=—0.0870, c5=0.0253, c,= —0.1094,
and c;= —0.0350. As one can see, the new evaluation
obeys the constraints ¢, =(c,;*c,)/2. The small
coefficients c;-c, are only slightly affected by the error.
Thus, Ponce’s error overestimates only the QCD correc-
tions in ¢, and ¢,. When quoting results for coefficients
of the operators O we omit O involving hbb quarks not
relevant to this work. The coefficients, when suitably in-
terpreted, are valid for all Ab =1 processes, as discussed
by Ponce [8].

In addition to the error in Ponce’s calculation, the
QCD coefficient used in [1] should be modified since
m,>my, and also the QCD A value has changed. The
more modern values of A come from recent data [14]
from the CERN e "e ™ collider LEP. They are obtained
by fitting experimental data with higher-order QCD per-
turbation theory [up to O(a?)]. It is clear that, to be
strictly consistent, we should also evaluate the QCD
coefficients c.,c,c,,. .. ,c¢ in second-order QCD. Ac-
tually, these coefficients were quite recently calculated by
Buras et al. [15]. However, at this point we do not need
to use this much more complicated formalism since Ayg
is not as yet sufficiently well known, where MS denotes
the modified minimal subtraction scheme; Hebekker [14]
quotes Ayz=(250%4") MeV. As one can see from the
results in [15], the differences in the coefficients due to
higher-order terms are comparable to the differences due
to the uncertainty on Ayg.

To be specific, we evaluated new QCD coefficients with
the leading-order formalism of Ponce with m, =m, =81
GeV, m,=5 GeV, m,=1.7 GeV, and as a function of
A% when we used m, as the renormalization scale, and

TABLE II. QCD coefficients for Ab=1atu=m_ =1.7 GeV.

A, cy c_ c c, c3 Cq Cs Ce
0.10 0.8890 1.2654 —0.3764 2.1544 0.0189 —0.0470 0.0144 —0.0539
0.15 0.8815 1.2870 —0.4055 2.1685 0.0205 —0.0505 0.0154 —0.0585
0.20 0.8754 1.3048 —0.4293 2.1802 0.0219 —0.0534 0.0162 —0.0624
0.25 0.8703 1.3204 —0.4501 2.1907 0.0231 —0.0559 0.0169 —0.0658
0.30 0.8656 1.3346 —0.4690 2.2002 0.0242 —0.0581 0.0175 —0.0689
0.35 0.8614 1.3477 —0.4864 2.2091 0.0253 —0.0602 0.0181 —0.0718
0.40 0.8574 1.3602 —0.5027 2.2176 0.0262 —0.0622 0.0186 —0.0746
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as a function of A;:)S for the m_ scale where a; was al-
ways calculated with the higher-order formula of [16].
The results for the m, scale for various values of
A(ysl)s—AS are in Table I and for the m_ scale for various
values of Aﬂ=A4 are in Table II. One can check that
ci—(clztcz)/Z is always satisfied; we list ¢, only as a
convenience. As one can see, even going to the smaller
scale at u=m_ does not change the coefficients drastical-
ly, taking into account that A;=0.25 GeV corresponds
to A;=0.35 GeV. c, are unaffected while the mixing
coefficients c;~cq are increased at the lower scale by
about 20%. Our results in Table I may also be compared
with those in Ref. [15], taking into account dlﬂ'erences in
operator definition and the difference between ALTS and
A(5 ). The results of Buras et al. [15] at Am=0 20 close-
ly match ours at A<5)—0 35. This dlfference is well

within the error of current determinations of A

III. RESULTS FOR B —VV

At this point we must specify our model by choosing
the CKM matrix elements and the current form factors.
For the CKM matrix we choose the “low” and “high” fp
solutions of Schmidtler and Schubert [17]): (i) fp=125
MeV, p=-0.41, n=0.18, and (i) fz=250 MeV,
p=0.32, »=0.31. For the current form factors we use

TABLE III. As=
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those of BSW. Concerning the QCD coefficients and how
Fierz terms are treated, it is well known that this model
has problems accounting for the decays with branching
ratios which are proportional to a2 [18,19] because a _
has a rather small value |a_ | =0.13 for the QCD correct-
ed short-distance coefficients. Here we use the notation

‘(c++c_)+ (c+ Fe_),

C

(18)

where N, is the number of colors. There is a well-known
analogous effect in nonleptonic D decays [4]. Therefore,
several authors advocated the following modification of
the short-distance QCD coefficients [4,20,21]: only terms
which are dominant in the 1/N, expansion are taken into
account. We use this leading 1/N, approximation as our
model for evaluating the weak Hamiltonian. The results
of this model are presented in Tables III and IV.

Much of the data for these rates has been discussed in
Ref. [1]. Since then we have improved the effective Ham-
iltonian, corrected for the error in Ponce’s calculation,
and used the m,, scale with A;=0.25 [14]. These changes
have resulted generally in somewhat smaller branching
ratios and somewhat higher CP asymmetries. Six of the
channels have measured branching ratios which are com-
pared to our calculation in Table V. All calculated rates
are within the experimental errors, except the YK * chan-
nels which are a bit high. In calculating these branching

0.25 QCD coefficients without Fierz terms.

p positive CKM matrix

AT Ty
Channel B(%) T T a, a,
( cos¢g) (cos2¢)
Channels without penguin diagrams: As=0, Ab=—Ac=1 (H,)
B'—w+D* 0.0184 —0.586 0.284 —0.511 0.040
E0—>p°+D *0 0.0188 —0.588 0.280 —0.509 0.039
B —»p +D** 1.26 —0.702 0.126 —0.425 0.040
B~ —p+D*° 0.875 0.102 —0.399 0.038
Channels without penguin diagrams: Ab=As=—Ac=1 (H,)
B —K*~+D** 0.0679 —0.694 0.161 —0.471 0.052
B K "+D*° 0.002 30 —0.593 0.304 —0.537 0.055
B~ —SK* +D*° 0.0456 0.135 —0.449 0.049
Channels without penguin diagrams: Ab=Ac=As=1 (H;)
B’ —K"+D" 0.000 434 0.526 0.304 —0.537 0.055
Eo —»K*—+D 0.000 443 0.304 —0.537 0.055
B —pt+DF~ 0.008 36 0.519 0.292 —0.518 0.043
B~ —p’+DX" 0.004 8 0.292 —0.518 0.043
Channels without penguin diagrams: As=0, Ab=Ac=1 (Hy)

B —>p+ +£)*0 0.000407 —0.558 0.281 —0.509 0.040
B —>p°+D 0.000 009 38 —0.558 0.280 —0.509 0.039
B —-»(o+D__*0 0.000009 16 —0.557 0.284 —0.511 0.040
B —p +D 0.000018 7 0.280 —0.509 0.040
B~ —p°+D*" 0.0000169 0.281 —0.509 0.040
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TABLE IV. A;=0.25 QCD coefficients without Fierz terms.

p positive CKM matrix

ar

Iy

Channel B (%) - r a, a, By (1074 B, (107%)
(cosd) (cos2¢) (sing) (sin2¢)
Channels with penguin diagrams: Ac=0, Ab=As=1 (H,)
B—K '+o 0.000 883 —0.760 0.099 —0.327  0.010 10.5 —0.997
1_3.0~+K +p0 0.000078 3 —0.417 0.110 —0.337 0.009 —90.7 7.91
IEOAIS:O' +p™ 0.000118 —0.910 0.106 —0.333 0.009
EO->K +¢ 0.241 —0.603 0429 —0.621 0.123
B -»D**+DX*" 201 —0.655 0477 —0.665 0.184
B SK* +ow 0.000 348 0.094 —0.323 0.010 117 —11.2
B7—>K*'+p° 0.0000779 0.103 —0.330 0.009 —894 7.86
B —SK* +9¢ 0.242 0.428 —0.621 0.123
B~ —D*+D* 201 0.477 —0.664 0.183
Channels with penguin diagrams: As=Ac=0, Ab=1 (H;)
132_>w+p° 0.00000668 0051 0084 —0.300  0.007 77.5 —0.574
1_30->w+1j; 0.004 71 —0.592 0.394 —0.599 0.099
BO—>p°—+—p0 0.000091 3 —0.650 0.084 —0.298 0.007
B —>p0+d/ 0.005 25 —0.574 0.388 —0.597 0.097
lzo—m)+w 0.000 0802 0.360 0.087 —0.303 0.007
anp* +p~ 0.004 07 —0.696 0.084 —0.298 0.007
B —»D*"+D*" 0.105 —0.655 0.456 —0.660 0.172
B —owtp 0.001 36 0.084 —0.299 0.007 3.90 —0.0290
B~ —p’+p~ 0.00127 0.084 —0.299 0.007 0.015 —0.000 675
B —p +v¢ 0.0105 0.389 —0.597 0.097
B~ —>D*+D*" 0.102 0.456  —0.660 0.172

fractions we have used the LEP average for the B life-
time, 1.3 ps [22]. Unfortunately, the accuracy of the data
is not good enough to get information about the QCD
coefficients and/or current matrix elements. We point
out, though, that the theoretical branching ratio of
B~ —p~D*%is 30% smaller than the branching ratio for
B°—p~D**. This is the effect of the destructive in-
terference of a, and a_ in the B~ decay [4]. The
branching ratios of the K * final states are almost con-
sistent with the data. Compared to our earlier work
[1,2], this comes from the smaller value of a _ which re-
sults from the new QCD coefficients in Table I.

As remarked in Refs. [1,2], this model cannot fit the
data on B —K *i polarization. In the BSW form factor
model, the K *3 transverse polarization is relatively high
because, while the positive helicity amplitude is small, the
negative helicity amplitude is comparable in size to the
longitudinal amplitude. These results test the form-
factor assumptions. Data from ARGUS [23] on the ex-

clusive decay B — K * +1 indicate that the best fit to an-
gular distributions is I' /' =0 with a confidence level of
95% that this ratio is less than 0.22, whereas the BSW
models predict a ratio of 0.43. This prediction depends
heavily on the current matrix elements and the factoriza-
tion assumption but not on the QCD coefficients. The
only way to accommodate this result within the factoriza-
tion approximation is for the second (d-wave) axial-
vector-current form factor to dominate over the first
axial-vector form factor (s wave) and the vector form fac-
tor. This is in conflict with all quark models including
those based on heavy quark symmetries as well as with
experiments on corresponding form factors in semilep-
tonic D decays and would indicate failure of the vacuum
saturation assumptions or very significant additional con-
tributions from annihilation terms.

Finally, let us turn to the decays B—K*w and
B —K*p which are most interesting from the point of
view of detecting direct CP violation through azimuthal

TABLE V. Comparison of calculated branching fractions (%) with data.

A=0.25, p positive CKM matrix

Channel This work ARGUS CLEO Average
B—p +D** 1.26 0.7+0.4 1.9+1.6 0.8+0.4
B _>£;O+D*° 0.875 1.0+0.7 1.0+0.7
B K +v¢ 0.241 0.11+0.05 0.14+0.06 0.12+0.04
B —K* +y 0.242 0.16+0.11 0.13+0.09 0.14+0.07
B >D*"+DX 2.01 2.6+1.4+0.6 2.6+1.4+0.6
B~ —D*'+DX" 2.01 3.1+1.6+0.5 3.1+1.6+0.5
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asymmetries. Such direct (Ab=1) CP asymmetries are
present in charged as well as neutral B decays and could
clearly distinguish between a standard model and a su-
perweak model CP violation. As emphasized by Winstein
[24], it is very difficult to distinguish experimentally be-
tween these two models from B°B° mixing asymmetries.
Detection of direct CP violation in charged B decays may
well be the best way of ruling out a superweak model.
We see from Table IV that the CP-odd sin¢ term may be
as large as 1072 for B°>K*%°, B~ —>K* o, and
B~ —K *_po. The branching ratios, however, are rather
small, at best of the order of 107>, but the next genera-
tion of high statistics experiments may well start testing
the models. Currently the following experimental limits
for branching ratios have been reported:

2975

B(B°—>K*%%) <4.6X107* [25], 6.7X 107 * [26]. There
is also an upper limit for B(BT ->K**w)<1.3Xx10™*
[25]. Clearly much better statistics will be needed to ex-
tract an angular asymmetry of 10”2 from the data.
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