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Dynamical zeta functions are an important tool to quantize chaotic dynamical systems. The basic quantization 
rules require the computation of the zeta functions on the real energy axis, where their Euler product representations 
running over the classical periodic orbits usually do not converge due to the existence of the so-called entropy barrier 
determined by the topological entropy of the classical system. We show that the convergence properties of the dynamical 
zeta functions rewritten as Dirichlet series are governed not only by the well-known topological and metric entropy, 
but depend crucially on subtle statistical properties of the Maslov indices and of the multiplicities of the periodic orbits 
that are measured by a new parameter for which we introduce the notion of a third entropy. If and only if the third 
entropy is nonvanishing, one can cross the entropy barrier; if it exceeds a certain value, one can even compute the 
zeta function in the physical region by means of a convergent Dirichlet series. A simple statistical model is presented 
which allows to compute the third entropy. Four examples of chaotic systems are studied in detail to test the model 
numerically. 

1. Introduction 

During the last years much effort has been un- 
dertaken to find semiclassical quantization rules 
for classically chaotic Hamiltonian systems as a 
counterpart to the WKB- and EBK-quantization 
for classically integrable systems. 

A major breakthrough has been achieved by 
Gutzwiller [ 1,2], when he derived his periudic- 
orbit formula, which expresses the trace of the 
Green’s function in a semiclassical approxima- 
tion as a sum over all classical periodic orbits. 
One problem that goes with this trace formula 
is that the periodic-orbit sum considered as a 
function on the complex energy plane does in 
general not converge on the real axis, i.e. in the 
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physical region. Gutzwiller himself [3] discov- 
ered that his trace formula is a special version 
of an exact mathematical identity, known as Sel- 
berg’s trace formula [ 431, for a specific dynam- 
ical system-the free motion of a particle on 
a surface with constant negative Gaussian cur- 
vature, i.e. the motion on a surface endowed 
with a hyperbolic metric. The Selberg trace for- 
mula provides a continuous variety of conver- 
gent periodic-orbit sum rules [ 51, as it is an 
identity for the traces of certain functions of the 
Hamiltonian, which is, in suitable units, the neg- 
ative of the hyperbolic Laplacian in this case. 
The idea of “smearing” the Hamiltonian with 
an appropriate test function can be carried over 
to the general case of Gutzwiller’s trace formula 
to yield also then a variety of absolutely con- 
vergent periodic-orbit sum rules [6]. The price 
to pay for the convergence of these sums is that 
the smeared Green’s functions do not exhibit 
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poles at the (semiclassical) quantum energies, 
but only show peaks of finite widths. One such 
possible regularization is the Gaussian smearing 
that has proven useful for several systems [ 7 1. 

But knowing only a finite part of the length spec- 
trum of primitive periodic orbits permits only to 
resolve a finite part-the lower end-of the en- 
ergy spectrum with finite accuracy. 

The case of the free motion on hyperbolic 
surfaces shows that there exists an alternative 
to using the (Selberg) trace formula directly, 
since the regularized trace of the resolvent of the 
Hamiltonian can be expressed by the logarith- 
mic derivative of a meromorphic function of a 
complex variable directly related to the complex 
momentum. It turns out that the quantum ener- 
gies are exactly given by the non-trivial zeroes of 
this Selberg zeta function [ 41 on the critical line. 
The task of quantizing this system is therefore 
reduced to the computation of these non-trivial 
zeroes. It would appear that the identification 
of the quantum energies as zeroes of an oscil- 
lating function can be done with much higher 
precision than that of identifying them from 
peaks of some smeared Green’s function. How- 
ever, the representation of the zeta function as 
an Euler product, as derived from the trace for- 
mula, does in general not converge on the criti- 
cal line and therefore cannot be used directly to 
calculate the zeta function in the region of inter- 
est. Within the semiclassical approximation, all 
this holds also for general dynamical systems to 
which Gutzwiller’s trace formula applies. The 
role played by Selberg’s zeta function is now 
played by so-called dynamical zeta functions. 

The fact that the Euler product representing a 
given dynamical zeta function does not converge 
on the critical line, but rather on a half-plane not 
containing the physical region, is known as the 
problem of the entropy barrier, since the abscissa 
of absolute convergence of the Euler product is 
given by the topological entropy of the classical 
system. These considerations have led to the be- 
lief that it is impossible to find a quantization 
rule for chaotic systems using dynamical zeta 

functions [ 8 1. 

To some extent one can view the Riemann 
zeta function as a model for a dynamical zeta 
function of an unknown dynamical system. 
Again there is an entropy barrier, since both the 
Dirichlet series and the Euler product represent- 
ing the Riemann zeta function do not converge 
in the critical strip, where the famous Riemann- 
zeroes are located. But in this case it is known 
how to compute these non-trivial zeroes using 
the Riemann-Siegel formula [ 91. This formula 
allows a controlled numerical computation on 
the critical line. It would therefore be highly de- 
sirable to derive an analogue of the Riemann- 
Siegel formula for general dynamical zeta func- 
tions. A Riemann-Siegel lookalike formula for 
general chaotic systems has been proposed, but 
attempts to prove this formula have to cope 
with serious convergence problems [ lo]. (See, 
however, the smoothed Riemann-Siegel looka- 
like formulae in the last papers cited in refs. [ 71 
and [ lo], respectively. ) 

In this article we investigate the convergence 
properties of certain representations of dynam- 
ical zeta functions as Dirichlet series and show 
that the convergence is determined by a new 
(classical) parameter called third entropy. A 
model is presented that allows to compute the 
third entropy and thus the region of convergence 
for these Dirichlet series using a simple random 
walk model for the coefficients of the series. 

Our paper is organized as follows. In section 
2 we review the theory of dynamical zeta func- 
tions relevant to the semiclassical quantization 
of chaotic systems and describe how the zeta 
functions may be represented as Dirichlet series. 
We also introduce the notion of a third entropy. 
A statistical model for the third entropy is de- 
veloped in section 3. Numerical checks of our 
model are presented in section 4 for four chaotic 
systems: the hyperbola billiard, the geodesic 
flows on two hyperbolic octagons and Artin’s 
billiard. Finally, our results are summarized in 
section 5. 
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2. Dynamical zeta functions and the third 
entropy 

To be definite, we concentrate in this article 
on some simple dynamical systems, which nev- 
ertheless show the typical behaviour of classi- 
cally chaotic Hamiltonian systems. The systems 
under consideration will be either plane billiards 
or geodesic flows (free motion) on hyperbolic 
surfaces. 

Chaotic plane billiards consist of domains 
D c R* with piecewise smooth boundaries dD, 
such that the motion of a particle sliding freely 
on D and being elastically reflected on dD is 
chaotic. The quantum Hamiltonian is H = -A 
(we always choose units in which h = 1 = 2m) 
and the wave functions are required to vanish 
on ao (Dirichlet boundary-value problem). 
We also require H to have a purely discrete 
spectrum, 0 < El 5 E2 < . . ., E,, = pi. 

A hyperbolic surface may be represented as a 
fundamental domain of some discrete subgroup 
r (a Fuchsian group) of PSL( 2, R) in the com- 
plex upper half-plane 7f = {z = x + iy 1 y > 0) 
with Poincare metric ds* = y-* (dx* + dy*). 
PSL(2, R) operates on 7-f via fractional lin- 
ear transformations. The wave functions are 
required to be periodic with respect to I’- 
transformations (r-automorphic functions) 
and again the spectrum should be discrete, 0 = 
E0<ElIE2<...,E,, =p,Z+f. 

The smeared, absolutely convergent version 
[ 6 ] of Gutzwiller’s semiclassical trace formula 
reads 

&(pn) -2 7 dpph(p) (d(p)) 
n=O 

Here h(p) is an even function, holomorphic in 
the strip 1 Imp1 5 r - i;i + a, E > 0, that de- 
creases faster than IpI-* for IpI -, 00; g(x) = 

J_+,“W-+) e iPx h (p ) is its Fourier-transform. 
(d (p)) is the mean energy density, expressed as a 
function of momentum p. The sum on the r.h.s. 
of ( 1) runs over all primitive periodic orbits y 
with lengths I,. x7 E {f 1) is a character attached 
to y, where it is assumed that the Maslov index 
of y is even, and a, is the sign of the trace of the 
monodromy matrix. 1, is the (scaled) Lyapunov 
exponent of y and 1 is the asymptotic average of 
all these exponents, which is also called the met- 
ric entropy, because it measures the mean rate 
at which phase space gets distorted in the neigh- 
bourhood of a periodic orbit [2]. The topologi- 
cal entropy z > 0 measures the exponential pro- 
liferation of periodic orbits, 

To treat the systems considered here on the same 
footing, we introduce the complex variable s : = 
I-1 - ip For the motion on hyperbolic surfaces 2 . 

one knows that both the metric and the topolog- 
ical entropy have the value one, since all Lya- 
punov exponents are equal to one. In the case 
of plane billiards the two entropies have to be 
calculated numerically. Notice that for billiards 
with area(D) < 00 one expects under rather gen- 
eral assumptions Pesin’s theorem [ 111 ‘s = 1 to 
hold, whereas for non-compact systems like the 
hyperbola billiard and some scattering systems 
one finds1 > 7 [2]. 

From the trace formula ( 1) one can derive 
[ 121 the trace of the regularized resolvent in the 
following form: 

1 -- 
En 

(3) 

(B is a constant, which is irrelevant for our dis- 
cussion in this paper. ) Notice that ( 1) and (3) 
become exact relations in the case of the free mo- 
tion on a hyperbolic surface. 4 (s ) is a function 
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with known analytic properties, Im 4 ( @ip ) = 
*~(d(p)),p E [w. In (3) thedynamicafzetafunc- 
tion Z (s ) appears, which is defined by the Euler 
product 

Z(s):=~~(l-xvoy’e-(s+m”~+:l”l*“‘.), 
Y m=O 

Res > T. (4) 

The critical line, on which in the semiclassical 
limit the non-trivial zeroes of Z (s ) are located, 
is the line s = iI- ip, p E [w, i.e. Res = ix. 

For the following discussion it is convenient 
to deal with a simpler function by considering 
only the first (i.e. leading) factor of the product 
over m in (4), 

Z(s) = R(s). n fi (1 - 

(5) 

R (s ) denotes the Ruelle-type zeta function 

R(S) := n (1 -x^, eC”‘y), Res > r, (6) 
Y 

_ 
whereX^, := xY e -t(~y-~)ly. The Euler product in 
(4) converges for Re s > r, therefore the Euler 
product in (5), where the (m = 0)-contribution 
has been omitted, converges for Re s > r - 1. No 
matter whether Pesin’s theorem r = 1 or the in- 
equality 3 > r is fulfilled, the Euler product in 
(5 ) converges on the critical line Re s = $2, and 
since it has no zeroes on this line all non-trivial 
zeroes of Z (s ) must come from the factor R (s ). 
Therefore the Ruelle-type zeta function contains 
the same information relevant for the quantiza- 
tion of chaotic systems as the full dynamical zeta 
function. As functions considered on the whole 
complex s-plane, however, Z (s ) and R (s ) differ 
in their analytic properties. 

Expanding the product over the primitive pe- 
riodic orbits in (6) transforms the Euler product 
into a generalized Dirichlet series 

R(s) = CAP eCsLp, Res > r. (7) 
P 

Here the sum runs over all Dirichlet-orbits, or 
briefly D-orbits, defined by p = y1 $ . . . CB yn, i.e. 
over all formal combinations of primitive peri- 
odic orbits with Dirichlet-lengths, or briefly D- 
lengths, L, : = I,, + . . . + I,, . The coefficients in 
the series are determined by the quantities zY at- 
tached to the primitive orbits that constitute a D- 
orbit, A p : = fly= 1 ( -zy, ). Since the Euler prod- 
uct (6) converges absolutely for Re s > r, this 
also holds for the Dirichlet series (7 ) . Dirichlet 
series such as (7) converge in right half-planes 
Res > a, and converge absolutely in right half- 
planes Res > a,, a, 2 rsC. Therefore, the series 
(7) converges in the strip a, < Res 5 a, only 
conditionally. The abscissae of convergence can 
be computed from the formulae 

a, = liFs:p -& log 5 IAl, 
n=l 

(8) 

once the D-orbits have been ordered according 
to their lengths, Li < Lz 5 LJ 5 . . . . 

Going from the Euler product (6) to the Diri- 
chlet series (7) did not change the absolute con- 
vergence, therefore one concludes that a, = r. 
If one forms the so-called pseudo-orbits [ lo] ac- 
cording to 5 : = ml y1 @ . . . CEI m, yn with pseudo- 
lengths z, : = ml/,, + . . . + m,&,,, mk E N, then 
it can be rigorously shown [ 131 for compact hy- 
perbolic surfaces that these proliferate according 
to 

L + GO, (9) 

with a = 2(2)/Z’(l) and T = 1. The same 
conclusion can be drawn from (2), however not 
rigorously, for all the systems under considera- 
tion, with a being an unknown parameter then. 
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Since N(L) 5 ND(L) 5 K(L) for all L, where 
No(L):={pILP<L}countsthenumberof 
D-orbits with D-lengths smaller than or equal to 
L, one concludes that LN - logN/r, N -+ CCL 

As long as it is excluded that all characters xr 
are negative, the coefficients A, have different 
signs. Inspecting (8) then shows that there is a 
possibility for o, to become smaller than a,. We 
thus conclude that an important and novel pa- 
rameter is provided by the difference o, - a,, 
which we call the third entropy 6: 

6:= a,--a,. (10) 

6 satisfies the general bounds 0 5 6 5 t, where 
the upper bound follows from 

log N 
JIlimsup- = T 

N+cxr LN ’ 

a, = r thus yields the lower bound o, 2 0. 
From eqs. ( 10) and (8) and the definition 

of the coefficients A, one sees that the param- 
eter 6 is a measure of the statistical properties 
of the Maslov indices and of the multiplicities 
of the periodic orbits, as will be discussed in 
more detail below. 6 contains information be- 
yond the topological and metric entropy, and 
thus the name “third entropy” seems to be appro- 
priate. The need for a third entropy has clearly 
been foreseen by Gutzwiller [ 21, but nothing has 
been done as yet to develop this idea and to give 
a precise definition of it. 

Obviously, the third entropy determines 
whether the entropy barrier at Res = a, = r 
can be crossed using the Dirichlet series repre- 
sentation. Four different cases for the value of 
the third entropy have to be distinguished: 
(i) 6 = 0: the entropy barrier is impenetrable; 
(ii) 0 < 6 < 7 - 41: the entropy barrier is trans- 
parent, but the critical line cannot be reached, 
(iii) 6 = 7 - @: the entropy barrier is transpar- 
ent, but it is not known in general whether (7) 
converges on the critical line; 

(iv) r 2 6 > T - iI: the entropy barrier is trans- 
parent and the Dirichlet series (7) converges 
conditionally on the critical line. 
The fourth case is the most desirable one, but a 
priori either case can occur. The first case is real- 
ized for the Riemann zeta function, which there- 
fore cannot be viewed as generic in this respect. 

The same discussion as above could have been 
carried out also for the complete dynamical zeta 
function 2 (s). The Dirichlet series equivalent 
to (7) would then be a sum running over all 
pseudo-orbits instead of D-orbits and the coef- 
ficients replacing A, would look more cumber- 
some, compare e.g. [ 10,141. All considerations 
that appear in the following sections could be re- 
peated in an analogous manner, since the leading 
contributions to the quantities referring to 2 (s) 
come from the corresponding quantities of R (s). 
The latter ones are, however, simpler in general. 
This does not only simplify the notation but also 
makes arguments more transparent. In addition, 
it requires less numerical work to compute the 
spectrum of D-lengths instead of pseudo-lengths. 
Since either zeta function may be taken to quan- 
tize chaotic systems, we therefore decided to use 
R(s) for the rest of our considerations. 

We want to present in the following a rather 
simple random walk model for the coefftcients 
of the Dirichlet series, that allows to predict the 
third entropy from a few input parameters. For 
a given chaotic dynamical system it should then 
be possible to decide from the input parameters, 
whether and how far the entropy barrier can be 
crossed. For some systems oC has been previ- 
ously calculated directly from (8)) and the Di- 
richlet series has been evaluated numerically on 
the critical line [ 141 rather successfully. As al- 
ready mentioned, the advantage of this method 
is that the quantum energies can be read of as ze- 
roes of an oscillating function, which is a much 
more accurate method than identifying them as 
peaks of finite widths of some smearing function. 
Using the same input, i.e. the same set of prim- 
itive lengths, therefore allows to resolve consid- 
erably more quantum energies, when one calcu- 
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Iates the zeta function on the critical line. A dif- This simple statistical model thus provides us 
ferent ordering of terms in the zeta function has with a prediction for the location of the abscissa 
been employed in [ 15 ] to calculate its zeroes on of conditional convergence of the zeta function 
the critical line. as well as for the third entropy, i.e. 6 21 $7~. 

3. A statistical model for the third entropy 

Let us first consider an idealized situation 
where the Ruelle-type zeta function is given by 
the generalized Dirichlet series (& = 1) 

RM(S) := FB” eeSLn,Res > rM, 
?I=0 

(111 

and where the D-lengths 0 = LO < Li < L2 < 
. . . are supposed to be non-degenerate and to 
grow asymptotically like LN - & log N, N -+ 
00. Furthermore we assume that the coefficients 
B, (n > 0) are randomly distributed such that 
the value of Bk is independent of the value of B, 
for k # n. The coefficients B, should all be dis- 
tributed according to the same probability den- 
sity p(B) with mean (B) = 0 and variance c$. 
Then, according to the central limit theorem for 
the distribution of sums of independent random 
variables, the (partial) sums 

SN := $B. (12) 
n=l 

obey, in the limit N + co, a normal distribution 
with mean (SN) = N(B) = 0 andvariance 0: = 
No;. 

Under these assumptions we can evaluate ap- 
proximately formula (8) for the abscissa a, of 
conditional convergence for RM (s ) by replacing 

\sNl by (s$)“* = 

0c = limsup y 
N-C% 

ErM lim 
log 4N~i 

N-cc 1ogN 

‘7 =‘j M. (13) 

In the following we want to argue in favour of 
a slight variation of this model applicable to real 
dynamical systems. 

We will call a chaotic dynamical system of the 
type introduced in the preceding section ideal, if 
the length spectrum of primitive periodic orbits 
is not degenerate. Assuming, furthermore, an 
irregular distribution of primitive lengths then 
guarantees that the length spectrum of D-orbits 
is not degenerate either. 

The signs of the coefficients A, in (7) crucially 
depend on whether the number of primitive or- 
bits y constituting the D-orbit p with xr = + 1 
is even or odd. Arranging the D-lengths in as- 
cending order, as in (1 1 ), means that a change 
in sign, when going from A, to A,+,, depends 
on whether the numbers of primitive orbits with 
positive characters in L, and L,, 1 differ in par- 
ity. The absence of multiplicities and the irreg- 
ularity of the primitive length spectrum makes 
this change, at least in the limit of long D-orbits 
we are interested in, random. Therefore the signs 
of the coefficients A, can be considered as a ran- 
dom walk process. The probabilities for A, to be 
positive or negative are the same, since there is 
an equal number of D-orbits with an even num- 
ber of primitive orbits with positive character, as 
there are D-orbits with an odd number of such 
primitive orbits. For the hyperbolic surfaces we 
have x^y = xr E {fl} and hence A, E {fl}. 
In the case of a plane billiard, however, x^y = 
C,xy, where the C,‘s are distributed around one. 
Therefore the A,% are distributed around f 1 

with zero mean. In both cases one has a distribu- 
tion of the coefficients with mean (A) = 0 and 
variance aA. This is exactly a distribution of the 
type discussed above. 

For an ideal chaotic system with topological 
entropy r > 0 we therefore predict for the ab- 
scissa of conditional convergence a, = i7 and 
for the third entropy 6 = ir. Notice that in this 
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case the third entropy is determined solely by the 
topological entropy and therefore is not an inde- 
pendent quantity. This fact, however, is due to 
the “idealness” of the system and is not typical 
for generic systems. Whether the metric entropy 
;i is smaller, equal, or larger than the topolog- 
ical entropy determines in this ideal situation, 
whether case 2, 3, or 4 in the classification of 6 
in the preceding section is realized. Thus the Di- 
richlet series is conditionally convergent on the 
critical line if I> 7. In the case 1 = 7 [ 111 one 
may have conditional convergence or not. 

In reality most systems will not be of the ideal 
type and there will indeed occur multiplicities 
of primitive lengths and therefore of D-lengths, 
too. But knowing the asymptotic behaviour of 
the multiplicities of D-lengths allows to modify 
the statistical model so as to be applicable to 
realistic systems. In this process a new parameter 
is introduced that makes the third entropy an 
independent quantity, which is determined by 
the topological entropy and this new parameter. 

In most cases as illustrated by the models that 
will be discussed in the next section, the mean 
multiplicities (g(l)) of primitive lengths either 
asymptotically approach a constant g for I+ 0~) 
or proliferate exponentially, (g (1)) N (r/l) e1j2, 

r = COI'M, 1 + co. The multiplicity go(L) of a 
D-length L = l1 + . . . + 1, then reads gD(L) = 
nb 1 g (li ) for the vast majority of D-orbits com- 
posed of primitive periodic orbits of different 
lengths. One can now argue, under a few rea- 
sonable assumptions, that the mean multiplicity 

/Ed) ofa D - 1 ength L behaves asymptotically 

(gD(L))-deaL, L-00, (14) 

for some positive constants cr and d. In the ex- 
amples, for which we shall test our model, we 
have checked ( 14) numerically and found good 
agreement, see fig. 1. 

In the systems under consideration, primitive 
orbits y can only be degenerate with respect to 
their lengths, if they share the same character x,, 

and Lyapunov exponent 1,. Therefore the coef- 
ficients A, of D-orbits p with the same D-length 
L are all equal. In the Dirichlet series (7) the 
sum over all D-orbits p can thus be replaced by 
a sum over distinct D-lengths L,. We denote the 
common coefftcient of these degenerate D-orbits 

by A,, (A0 = 1 = go(O)). Thus 

R(S) = 5 A,&D(L,,) e+’ 
n=O 

00 

= c 
n=O 

Res>r. (15) 

The location of the abscissa of convergence is 
determined by the coefficients of the Dirichlet 
series for large L,. In this regime we can omit 
the factor in the bracket, as it approaches one in 
the mean due to ( 14). Let us introduce 

g(t) := 2 And e-lLn, Ret >7-a, (16) 

n=O 

which is of the same type as RM (s) in eq. ( 11) 
with B, := A,d, (B) = 0,~; = d2aj, 7~ = 7- 
a. The abscissa of conditional convergence & of 
R^(t ) thus is according to eq. ( 13) & = i7~ = 

{ (7 - a). R^(t) differs from R(s) by a constant 
shift in the argument, s = t + a, and by the omis- 
sion of the factor (l/d) emaLa gD (LA) in each 
term, which is always positive and bounded as 
L, + 00. Furthermore, this factor approaches 
one in the mean. One therefore expects that its 
omission does not influence the value of ~7~. We 
thus conclude a, = ZC + CX, i.e. 

a, = $(7+ a). (17) 

Our model then yields for the third entropy the 
value 

6 = 4(7-a). (18) 



Fig. 1. The mean mulitiplicity &D(L)) is shown together with the fit curve d e 
regular octagon, (c) the asymmetric octagon and (d) Artin’s billiard. 

aL for (a) the hyperbola billiard, (b) the 
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Since 0 < (Y < T, the third entropy is bounded by 
0 < 6 < $5. The question whether the Dirichlet 
series representing R (s ) can be evaluated on the 
critical line can now be answered once one knows 
the three entropies of the system, i.e. the values 
of the three quantities z, 1 and a. The condition 
to be fulfilled is 6 > T - iI, i.e. 

0 < ;1- ‘5. 

This condition means in particular that 1 > T 

has to be realized for the system. If cy < 2 - T 

holds, the Dirichlet series (7) will converge on 
the critical line s = 3% - ip, p E [w, and it can 
be calculated numerically with the available part 
of the length spectrum as an input. Such a com- 

putation has been carried out rather successfully 
for some systems in [ 141. 

Finally, we want to remark on the condition- 
ality of the convergence for a, < Res 2 a,. For 
Res > a, the Dirichlet series may be summed 
in any order of its terms; the value of the sum 
does not depend on this order. But for a, < 
Res 5 a, this is no longer the case. For any s 
there is an ordering of the terms, such that the 
conditionally convergent sum may take any de- 
sired value. Our point, however, is the following: 
Define R(s) for Res > a, (by the Euler prod- 
uct for instance). Then form the Dirichlet se- 
ries (7) and arrange the terms in ascending or- 
der of the D-lengths. For this ordering we con- 
cluded that a, = i (T + a). Keeping the order- 
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ing fixed one can continue the Dirichlet series 
beyond the entropy barrier up to Res > 0,. The 
ordering played an essential role in our statis- 
tical model for the coefficients. We argued that 
the choice of the signs going from A,, to A,, + 1 

would be random, since the parities of the num- 
bers of primitive orbits with positive characters 
in L, and Ln+l are random. If one introduced 
any regularity in the ordering of terms, such as 
e.g. first summing all the terms with positive An’s 
and then the negative ones, the random walk hy- 
pothesis would break down. Therefore, the value 
of a,, and thus also the validity of our model, 
strongly depends on the chosen order of terms 
in the Dirichlet series. The conditionality of the 
convergence does not, however, touch the ana- 
lytic properties of this representation of the zeta 
function, as the Dirichlet series still converges 
uniformly. Hence the holomorphy of the zeta 
function is not destroyed for Res > a,, when it 
is being represented by an “only” conditionally 
convergent series. 

4. Application to four chaotic systems 

In this section we shall present a test of our 
statistical model for the third entropy, i.e. for 
the location of the abscissa of convergence, by 
investigating four specific chaotic dynamical 
systems that have already previously been stud- 
ied in quite some detail: the hyperbola billiard, 
two different hyperbolic octagons (Hadamard- 
Gutzwiller model), and Artin’s billiard. All 
these systems are of the type described in sec- 
tion 2 and will be explained in more detail be- 
low. For each system we shall plot the sequence 

LNi log I cf= 1 A, 1 obtained from the numerical 
data against LN, the lim sup of which yields 
a,. We then compare these sequences with our 
theoretical value i (r + cu). 

4.1. The hyperbola billiard 

Our first example will be a plane billiard whose 
domain DO c W* is given by DO = { (x, y ) E 

R* 1 x 2 0, y 2 0, xy 5 1). Although the area 
of DO, measured with the usual Euclidean met- 
ric on IX*, is infinite, the spectrum of the Lapla- 
cian A = a, + 8; is discrete. This billiard has 
been previously studied in [ 16,171. The primi- 
tive length spectrum has been completely deter- 
mined up to 1 = 25 and the quantum energies 
have been computed up to E = 1500. From 
the calculated length spectrum the metric and 
topological entropies have been determined to 
be 1 = 0.705... and 7 = 0.592.. . . This sys- 
tem possesses a reflection symmetry across the 
(x = y)-axis in DO. Dividing out this symme- 
try and thus considering only a desymmetrized 
system results in studying a billiard on the do- 
main D = { (x, y) E DO ] x 2 y }. The station- 
ary Schrodinger equation then is the eigenvalue 
equation for -A with Dirichlet boundary condi- 
tions on d D. In the following we will always deal 
with this desymmetrized hyperbola billiard. It 
is found that the metric and the topological en- 
tropies remain unchanged after desymmetriza- 
tion. Notice that I> 7. 

From Gutzwiller’s trace formula ( 1) applied 
to the full billiard domain DO one can derive the 
trace formula for the desymmetrized system, for 
which ( 1) does not apply directly, since on D 
there exists the primitive periodic orbit ~0 run- 
ning along the (x = y )-axis, which has to be 
treated separately. One then finds [ 171 that the 
Euler product for the dynamical zeta function 
reads for Res > 7 

00 

Z(s) = I-U 1 -Xvoa$+’ 
n=O 

x e-Is+(2n+1)“rO+f(~YO-;i)lf~~ 
) 

(lYo = 2fi, a,, = xyo = -1,1, = (l/2& X 
log (3 + 2fi) ). The character for a primitive or- 
bitrisa, =xy= (-1) “7, where nY denotes the 
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number of reflections from dD when traversing 
the orbit once. The Ruelle-type zeta function has 
the Euler product representation 

R(s) = n (1 - x^y e-“‘7)) Res > r, (20) 
Y 

where x^y = xy e - f (l~-;i)l~ for y # y0 and x^y, = 

0. This function has the Dirichlet series repre- 
sentation 

R(s) = c A, ePsLp, 
P 

(21) 

which converges absolutely for Re s > r. Here 
the coefficients read A, = nuEp (-2,). 

Since the system possesses a time reversal 
invariance, most primitive lengths are twofold 
degenerate. The only exceptions are those or- 
bits that are reflected into themselves from the 
boundary d D. Their lengths occur without mul- 
tiplicities. But as their number becomes negligi- 
ble when going to higher and higher lengths, the 
mean multiplicity (g (I)) of primitive lengths 
approaches two for 1 --+ 03. This leads to an 
exponential growth of the mean multiplicity 
(go (15)) of D-lengths. In fig. 1 a we show a plot 
of (gD (L)) as calculated from the known length 
spectrum. We use all 195 113 primitive orbits 
up to 1 = 25, among which we find 101265 dif- 
ferent lengths. Out of these 806 028 D-orbits of 
459 204 different D-lengths with L 5 25 can be 
formed. A fit with the exponential expression 
(14) yields d = 0.958... and a = 0.026 . . . . 
From these parameters we predict according to 
our model for the abscissa of conditional con- 
vergence a, = t (T + a) = 0.309.. . . In fig. 2a 
this prediction is shown as the dotted line and is 
compared with the numerical approximation to 
the exact definition of a, according to eq. (8). 
It is seen that our model is completely consis- 
tent with the true values, at least in the limited 
L-range available to us. 

From our model we can also derive the third 
entropy for the hyperbola billiard. Its value is 

6 = a, - a, = :(T - a) = 0.283.. . . Since 
r - ix = 0.239.. ., one sees that 6 > T - Lx 2' 

which implies according to the classification of 
section 2 that the Dirichlet series converges con- 
ditionally on the critical line. Thus (2 1) may be 
used to compute the zeta function on Res = ix 
and to find thereby its non-trivial zeroes there, 
which determine the quantum mechanical ener- 
gies. In the first reference of [ 141 such a calcu- 
lation has been carried out for the hyperbola bil- 
liard. 

4.2. Two hyperbolic octagons 

The two dynamical systems to be discussed 
next will be provided by two different hyper- 
bolic octagons. These correspond to compact 
Riemann surfaces M of genus g = 2, realized 
as fundamental domains of Fuchsian groups r 
on the Poincare upper half-plane 3-1 = { z = 
x + iy 1 y > 0 } with hyperbolic metric d.s2 = 
y-2(dx2 + dy2). Th e surfaces M are repre- 
sented as M = T\?t, where r is a discrete, 
torsion-free subgroup of PSL( 2, R) isomorphic 
to the fundamental group nl (M). r operates 
on X via fractional linear transformations, 

az + b 
: yz=- 

cz+d. 
(22) 

The fundamental domain F of r may be real- 
ized as a domain in R bounded by a 4g-gon (i.e. 
an octagon for g = 2 ) . The first of the octagons 
considered in this section is the so-called regu- 
lar octagon [ 18,191, which represents the most 
symmetric Riemann surface of genus two. The 
second one is some arbitrarily chosen asymmet- 
ric octagon. 

The Hamiltonian for the free motion of a par- 
ticle on M is H = -A, where A = y2 (@ + ay”> 
is the hyperbolic Laplacian on X. The eigenfunc- 
tions of H are realized as functions on ‘H which 
are invariant under the operation of r, so-called 
r-automorphic functions: w (y z ) = I,U (z ), for 
all y E r. Then H has a discrete spectrum 0 = 
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Fig. 2. A numerical calculation of the sequences occurring in eq. (8) is shown as a function of the D-length LN for (a) the 
hyperbola billiard, (b) the regular octagon, (c) the asymmetric octagon and (d) Artin’s billiard. The upper curves correspond 
to a,, the lower ones to uC. The full horizontal lines indicate the critical lines, whereas the dotted lines show aC as derived 
from our model for the third entropy. The dashed line in a) corresponds to a, = r; a0 = r = 1 in (b)-(d). 

E. <E, 5 E2 I . . . . E,, = pi + a. Gutzwiller’s 
(smeared) trace formula is exact for this system, 
since it is identical to Selberg’s trace formula [ 41 

(g L 21, 

cc 

c h(pn) 
n=O 

co 

=2(g - 1) J dpph(p) tanhbw) 
0 

+ c 2 f,g(kl,) 
y k=l 2slnhW,/2) (23) 

The smearing function h (p) has to fulfill the re- 

quirements stated in section 1. Comparing the 
Selberg trace formula with ( 1) shows that all the 
primitive periodic orbits in this system have pos- 
itive characters xY = + 1. The topological and 
metric entropies are z = 1 and 1 = 1, respec- 
tively. The dynamical zeta function (Selberg’s 
zeta function) is [4] 

Z(S) = n n (1 - e-(s+n)‘y) , 

Y n=O 

Res > 1. (24) 

From this one infers that the Dirichlet series for 
the corresponding Ruelle-type zeta function is 
given by (compare ( 7) ) 
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R(s) = C(-l)lLpl e-sLo, 
P 

Res > 1, (25) 

where IL,] denotes the number of primitive pe- 
riodic orbits constituting the D-orbit p. 

The two octagons we are looking at in this sec- 
tion differ in one point: the regular octagon has 
a huge symmetry group (of order 96), whereas 
the asymmetric octagon possesses only one sym- 
metry operation. The latter symmetry is always 
present for Riemann surfaces of genus two, 
since these are all hyperelliptic and thus have 
the hyperelliptic involution as a symmetry. The 
classical dynamics on the regular octagon excels 
by a large degeneracy of the length spectrum of 
primitive periodic orbits; the mean multiplic- 
ity grows exponentially, (g (I )) - (8Jz/I ) e/i*, 
I --t oc), see [ 18,191. On the other hand, in the 
case of the asymmetric octagon the mean mul- 
tiplicity approaches the constant value of four. 
This is due to the time reversal invariance and 
to the hyperelliptic symmetry. In any case the 
mean multiplicity of D-lengths grows exponen- 
tially, (go(L)) - d eoL, L + 00. One sees that a 
higher symmetry of the system leads to a faster 
growth of the degeneracy in the length spectrum, 
i.e. to a larger value of a. This in turn results 
in a higher value for the abscissa of conditional 
convergence as can be seen from our formula 
0, = i(r + n). 

For the regular octagon the complete primi- 
tive length spectrum up to lmax = 18.092025 . . . 

has been determined in [ 191. It consists of 
4232092 orbits of 1 500 different lengths. The 
D-length spectrum up to L = f,,,,, then con- 
sists of 26 469 856 D-orbits with 2 336 different 
D-lengths. In fig. lb we show a fit of d eaL to 
(go(L)). The tit parameters are d = 4.5631 . . . 

and (Y = 0.4658.. . . Thus our prediction is 
a, = $ (1 + U) = 0.7329.. . . We compare this 
value in fig. 2b with a numerical evaluation of 
(8). Reasonably good agreement is found. 

In the case of the asymmetric octagon we used 
the generator method described in [ 18 ] to deter- 

mine the primitive length spectrum. We formed 
words in the group generators of lengths up to 
12 and truncated the length spectrum at 1 = 13. 
Due to this method the spectrum is, however, not 
complete, but there are some orbits missing of 
lengths larger than about 1 = 12. We got 36 336 
primitive orbits with 9 758 different lengths and 
generated 173 775 D-orbits with 29 062 different 
D-lengths up to L = 13. In fig. lc we show a fit 
to (go (L)), from which we obtain the parame- 
ters d = 1.5311 . . . and IL: = 0.1148 . . . . Hence 
we predict a, = k (1 + cy) = 0.5574.. . which 
is compared in fig. 2c with the numerical eval- 
uation of (8). Again we find reasonably good 
agreement. 

4.3. Artin’s Billiard 

Our final example of a chaotic dynamical sys- 
tem will be a billiard system on the Poincare up- 
per half-plane 3-1 constructed as follows. Let & 
be a fundamental domain on 3-1 for the mod- 
ular group r = PSL(2, Z). It may be chosen 
as & = (2 E E ) IzI > 1 for-i < x < 
0 and ]z] 2 1 for 0 < x < i }. & E r\‘FI is 
a Riemann surface of genus zero with one cusp, 
at which &, extends to infinity. The hyperbolic 
area of 30 is finite, area(& ) = in. The Hamil- 
tonian for the free motion on F. is again minus 
the hyperbolic Laplacian and the eigenfunctions 
are required to be r-automorphic. The spectrum 
of this Hamiltonian is both continuous and dis- 
crete, where the non-zero eigenvalues are em- 
bedded in the continuous spectrum [ i, 00 ). One 
finds that the scattering waves, corresponding 
to the continuous spectrum, are even under the 
symmetry operation z H -7. Desymmetrizing 
the system with respect to this symmetry by con- 
sidering only the odd wavefunctions leads to a 
system defined on the half-domain F = { z E 
Fe ] x > 0 }. The eigenfunctions of the Lapla- 
cian then have to obey Dirichlet boundary con- 
ditions on i)F. One therefore obtains a billiard 
system in a non-compact hyperbolic triangle ex- 
tending to infinity. The desymmetrization pro- 



R. Aurich et al. / Crossing the entropy barrier of dynamical zeta functions 83 

cedure has projected out the continuous spec- 
trum completely due to the even symmetry of the 
scattering waves under the reflection z H -3. 
The remaining, discrete spectrum is known to 
satisfy $ < El 5 Ez 5 . . . . Numerically the low- 
eststatehasenergyEi = 91.14134...,see [20]. 

The resulting system has been called [2 1 ] 

Artin’s billiard, since it was first considered by 
Artin in 1924 [22]. It was the first dynamical 
system that could be proven to be ergodic by 
Artin [22]. 

Venkov [23] refined Selberg’s trace formula 
for the modular group to the case under consider- 
ation. In the notation introduced above it reads 

00 

c h(p,) 
n=l 

+CO 
1 =- 

24 J dpph(p) tanh(np) -CO 
+oO 

+; 

J ( dp ‘+ 2 ‘Osh ($rp) 
4 3J?; > 

h(p) 
cosh(lrp) 

-co 

+lE x;WkM 
y k=, &I2 -x,k e-4/2 

- ig(O) log2 

+CO 

1 -- 
4 J dph(P)v(~ +ip). -CO (26) 

Here v(z) denotes v(z) = (d/dz)logr(z). 
The sum over primitive periodic orbits runs over 
two distinct classes of orbits. These either come 
from orbits ys on & that are symmetric under 
z H -7 or from ones without symmetry, de- 
noted by yu. The latter orbits have characters 

xr. = + 1, whereas the former ones have char- 
actersx, = -1 [21]. 

The Selberg zeta function for Artin’s billiard 
has the Euler product representation [ 2 1 ] 

Y n=O 

Res > 1. (27) 

As in the previous examples, the Ruelle-type zeta 
function can be derived from Z(s) and a Diri- 
chlet series can be found for it, 

R(s) = CAP eesLp, Res > 1. (28) 
P 

A D-orbit p now consists of n, primitive peri- 
odic orbits of the symmetric type with negative 
characters and of q, orbits of the other type with 
positive characters. Therefore the coefficients 
of the Dirichlet series are A, = &,ep(-xv) = 

(- 1 Y”. Thus A, only depends on the parity 
of it”. From the length spectrum of primitive 
periodic orbits, which has been calculated in 
[24,21], one knows that (g(1)) N (l/1) e1i2, 
1 + 00. Again the mean multiplicity of the D- 
lengths grows like (go (L )) N d eaL, L ---) 00. For 
our numerical computations we take 166 319 
primitive orbits with 3 000 different lengths into 
account. These make up the full length spec- 
trum up to I = 14.6. To determine the spec- 
trum of D-orbits up to L = 14.6 completely, 
we have to form 722226 D-orbits with 50587 
different D-lengths. In fig. Id we show a numer- 
ical fit of the exponential law to (gn (L)) with 
parameters d = 0.336.. . and CY = 0.279.. . . 

This leads to the prediction o, = i (1 + a) = 
0.639.. . for the abscissa of conditional con- 
vergence of the Dirichlet series (28). How- 
ever, a comparison with the numerical value for 
0, = limsup,,,(l/L~)log]~~~‘=, A,1 in fig. 
2d shows a mismatch between the predicted and 
the actual value. Therefore our statistical model 
presented in section 3 appears not to be appli- 
cable to Artin’s billiard. This specific system 
is known, however, to be an exception among 
chaotic dynamical systems in another respect as 
well. It is a general belief that the energy-level 
spacings of classically integrable systems obey 
Poisson statistics, whereas those of classically 
chaotic systems are distributed like the eigen- 
values of hermitian matrices in a Gaussian or- 
thogonal or unitary ensemble (GOE or GUE 
statistics). For Artin’s billiard a numerical com- 
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putation of the quantum energies shows [25] 
that the level spacing distribution is Poissonian, 
in contrast to what is expected. This fact hints 
towards unexpected statistical properties of the 
energy spectrum. Since by the trace formula 
(26) the energy and length spectra are closely 
related, one would therefore expect possible 
correlations in the length spectrum. 

To check this hypothesis we have investi- 
gated numerically the random walk hypothesis 
on which our statistical model is built upon. In 
fig. 3 we plot the probability for the coefficient 
AN+ I in the Dirichlet series ( 15) for (a) the 
asymmetric octagon and (b) Artin’s billiard to 
have the same sign as the preceding coefficient 
AN. According to our statistical hypothesis this 
probability is expected to be one half. This in- 
deed seems to be fulfilled for the asymmetric 
octagon, that we have chosen as an example 
to illustrate what happens in the three cases 
where our model works, see fig. 3a. The other 
two examples are similar to the asymmetric oc- 
tagon. For Artin’s billiard (see fig. 3b) we find, 
however, a numerical value of about 0.41. This 
shows that there are correlations present in the 
length spectrum which lead to the fact that the 
signs of the coefficients in the Dirichlet series 
are not randomly distributed, in contrast to what 
is expected for a generic chaotic system. We 
have thus found another indication that Artin’s 
billiard is exceptional among chaotic systems. 

Notice that from fig. 2d one reads off a value 
offs, M 0.45, and thus the Dirichlet series (28) 
for Artin’s billiard converges on the critical line. 
In ref. [ 2 1 ] this result has been used to compute 
the quanta1 energies in the low energy region. 

5. Summary 

In this article we studied the convergence 
properties of dynamical zeta functions for a class 
of classically chaotic dynamical systems. In or- 
der to use the zeta function for the quantization 
of a chaotic dynamical system, it is mandatory 
to know in which part of the complex energy 

plane a given representation of the zeta function 
converges. If it happens that a representation is 
available that converges on the real energy axis 
(the critical line), then one can use it to find 
the zeroes of the zeta function on this critical 
line. These zeroes in turn give the semiclassical 
energies of the system. 

The derivation of the zeta function from 
Gutzwiller’s trace formula yields the zeta func- 
tion as an Euler product. Rewriting this Euler 
product as a Dirichlet series does not alter the 
regions of absolute convergence. But in contrast 
to the case of Euler products there do exist def- 
inite statements on the regions of conditional 
convergence of Dirichlet series. These may be - 
and in all the examples considered by us they are 
- larger than the region of absolute convergence. 

Our aim was to present a model that describes 
to what extent the conditional convergence of the 
Dirichlet series is better than the absolute con- 
vergence. Knowing the abscissa of conditional 
convergence one also knows whether the Diri- 
chlet series converges on the critical line and thus 
whether it can be used to compute the zeta func- 
tion there. It turned out that a central role is 
played by a new parameter called the third en- 
tropy, which measures statistical properties of a 
given dynamical system beyond its topological 
and metric entropy. Making an assumption on 
the randomness of the length spectrum of prim- 
itive periodic orbits of a dynamical system al- 
lowed us to set up a statistical model for the third 
entropy and thus for the location of the abscissa 
of conditional convergence. We found that the 
shift of this abscissa away from the abscissa of 
absolute convergence is given by the topologi- 
cal entropy that describes the strength of the ex- 
ponential proliferation of primitive periodic or- 
bits, and by the exponent Q of the exponential 
increase of the multiplicity of D-lengths: the less 
these multiplicities grow the larger is the third 
entropy and the more the conditional conver- 
gence gets improved. We hence conclude that 
this single new parameter a or, equivalently the 
third entropy 6, has to be calculated from the 
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Fig. 3. The probability for the coefficient AN+ 1 to have the same sign as AN in the Dirichlet series (15) is shown for (a) 
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the asymmetric octagon and (b) Artin’s billiard. 

length spectrum in addition to the topological 
and metric entropy in order to get full informa- 
tion about the convergence properties of the dy- 
namical zeta function. 

In section 4 we have tested our model in four 
specific chaotic systems: the hyperbola billiard, 
the geodesic flows on two different hyperbolic 
octagons, and Artin’s billiard. In the first three 
examples we found good agreement between the 
prediction obtained from our model and the di- 
rectly calculated value for the abscissa of condi- 
tional convergence. The model, however, fails to 
explain the situation in Artin’s billiard. We ar- 
gued that this failure is due to correlations in the 
length spectrum that violate the randomness hy- 
pothesis of our model. We claim that these cor- 
relations are related to the observed unexpected 
statistical properties of the energy spectrum of 
this system [ 25 1. In this respect we view Artin’s 
billiard as an exceptional case and do not con- 
sider it as generic. 

Acknowledgements 

MS. would like to thank Jon Keating for dis- 
cussions. F.S. wants to thank Martin Gutzwiller 
for a discussion on the third entropy. We would 
like to thank the Deutsche Forschungsgemein- 
schaft for financial support and the HLRZ at 

Jiilich for the access to the CRAY Y-MP 832 
computer. 

References 

111 

121 

131 

[41 

151 
[61 
[71 

PI 
191 

M.C. Gutzwiller, J. Math. Phys. 8 (1967) 1979; 10 
(1969) 1004; 11 (1970) 1791; 12 (1971) 343. 
M.C. Gutzwiller, Chaos in Classical and Quantum 
Mechanics (Springer, New York, 1990 ). 
M.C. Gutzwiller, Phys. Rev. Lett. 45 (1980) 150; 
Physica Scripta T9 (1985) 184; Contemp. Math. 53 
(1986) 215. 
A. Selberg, J. Indian Math. Sot. 20 ( 1956) 47; 
D.A. Hejhal, The Selberg Trace Formula for PSL(2, R), 
~01s. I and II, Springer Lecture Notes in Mathematics 
548 (1976) and 1001 (1983). 
R. Aurich and F. Steiner, Physica D 39 (1989) 169 
M. Sieber and F. Steiner, Phys. Lett. A 144 ( 1990) 159. 
R. Aurich, M. Sieber and F. Steiner, Phys. Rev. Lett. 
61 (1988) 483; 
R. Aurich and F. Steiner, Physica D 39 ( 1989) 169; 
M. Sieber and F. Steiner, Physica D 44 ( 1990) 248; 
R. Aurich and F. Steiner, Proc. R. Sot. London A 437 
(1992) 693. 
A. Voros, J. Phys. A 2 1 (1988) 685. 
C.L. Siegel, Gesammelte Abhandlungen, vol. I, 
Springer 1966, p. 275-3 10, reprinted in: B. Riemann, 
Gesammelte Mathematische Werke (Springer, 1990), 
p. 770-805. 

[ lo] M.V. Berry and J.P. Keating, J. Phys. A 23 ( 1990) 4839; 
J.P. Keating, Proc. R. Sot. London A 436 (1992) 99; 
M.V. Berry and J.P. Keating, Proc. R. Sot. London A 
437 (1992) 151. 

ill ] Ya.B. Pesin, Sov. Math. Dokl. 17 (1976) 196. 

112 ] F. Steiner, Phys. L&t. B 188 (1987) 447; 
R. Aurich and F. Steiner, Physica D 39 ( 1989) 169. M. 
Sieber and F. Steiner, Phys. Rev. Lett. 67 ( 199 1) 1941; 



86 R. Aurich et al. / Crossing the entropy barrier of dynamical zeta functions 

i14] M. Sieber and F. Steiner, Whys. Rev. Lett.67 (i991) 
1941; 

C. Matthies and F. Steiner, Phys. Rev. A 44 ( 1991) 
R7877. 

I131 R. Aurich and F. Steiner.Phvs. Rev. A 46 (1992) 771. 

C. Matthies and F. Steiner, Phys. Rev. A 44 (1991) 
R7877; 
R. Aurich and F. Steiner, Proc. R. Sot. London A437 
( 1992) 693. 

[ 191 R. Aurich, E.B. Bogomolny and F. Steiner, Physica D 
48 (1991) 91. 

[20] D.A. Hejhal, in: International Symposium in Memory 
of Hua Loo-Keng, vol. 1, eds., S. Gong, Q. Lu and L. 
Yang (Science Press/Springer, 199 1) p. 59. 

] C. Matthies and F. Steiner, Phys. Rev. A 44 ( 1991) 
R7877. 

(21 

]22 ,] E. Artin, Abh. Math. Sem. Univ. Hamburg 3 ( 1924) 
170. 

[ 151 G. Tanner et al., Phys. Rev. Lett. 67 ( 199 1) 24 10. 
[ 161 M. Sieber and F. Steiner, Physica D 44 ( 1990) 248; 

Phys. Lett. A 148 (1990) 415; Phys. Rev. Lett. 67 
(1991) 1941; 
M. Sieber, Chaos 2 (1992) 35. 
M. Sieber, The Hyperbola Billiard: A Model for the 
Semiclassical Quantization of Chaotic Systems, PhD- 
thesis. Univ. Hambura I99 1. DESY 9 l-030. 
R. Aurich and F. Steiner, Physica D 32 (1988) 451. 

(23 
]24 

‘1 A.B. Venkov, Math. USSR Izv. 12 (1978) 448. 
,] D. Schleicher, Bestimmung des L;ingenspektrums in 

einem chaotischen Svstem. Diuloma thesis, Univ. 
Hamburg, 1991. _ 

[25] J. Bolte, G. Steil and F. Steiner, Phys. Rev. Lett 69 
( 1992) 2 188; DESY-preprint DESY 92-06 1; 
G. Steil, Uber das diskrete Energiespektrum des 
Artinschen Billards, Diploma thesis, Univ. Hamburg 

118 1992. 


