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Fermions and scalars contribute with opposite sign to the dependence of the scalar mass term m 2 on the length scale k-l. We 
discuss the possibility that a "balance effect" between these contributions leads to an infrared stable fixed point in the evolution 
of the ratio m 2(k)/k 2. Such a behavior would result in self-organizing criticality and could naturally explain a small gauge hier- 
archy. It is closely related to a large anomalous mass dimension. 

The masses of all e lementary particles in the stan- 
dard model are proport ional  to the vacuum expecta- 
t ion value (VEV) of the scalar doublet  field 
( ~ )  = 174 GeV. Why is this mass scale (the Fermi 
scale) much smaller than the other fundamenta l  mass 
scale in our world, namely the Planck scale Mp~ ~ 1019 
GeV? If  we believe that field theory should remain 
valid at length scales much shorter than the inverse 
of (~0), perhaps even up the the Planck length Mp~ ~ , 
we have to explain the appearance of a t iny dimen- 
sionless parameter  given by the ratio of mass scales, 
e.g. (~o)/Mp~. This is the gauge hierarchy problem. 
In the standard model (~0) measures the deviat ion 
from a second order phase transi t ion between the 
symmetric and the spontaneously broken phase #t. We 
may reformulate the question about the small mass 
ratio: Why is the standard model near the phase tran- 
sition? or: Why is the system near criticality? A nat- 
ural explanation of a small mass ratio would arise in 
a si tuation of "self-organizing criticality", i.e. if the 
system is near criticality not only for a very particular 
tuning of the properties of the short-distance physics. 
A small value of (~0) should result for a large range 
of the value of the scalar mass term at short distances. 

~ The phase transition occurs as a function of the scalar mass 
term at short distances. Due to the electroweak gauge inter- 
actions it is presumably very weakly first order, but this is of 
no importance here. 

The perturbative calculation of (~0) as a function 
of the "bare mass term" #2/t2 (A) typically results in 
a very badly converging series for any situation near 
the phase transi t ion - there is in general a fine tuning 
problem order by order in perturbat ion theory. An 
appropriate renormalizat ion group improved treat- 
ment  is necessary. A convenient  tool is the average 
action Fk [ 1 ], i.e. the effective action for averages of 
fields over a volume of size k-a .  It is closely related 
to the block spin action in lattice theories and is ob- 
tained by integrating out the modes with m o m e n t u m  
squared larger than k 2 [ 2 ]. In particular, the average 
potential Uk allows to interpolate continuously from 
the bare parameters which determine the shape of the 
potential at k = A  to the usual effective potential which 
results in the limit k ~ 0  and determines the VEV (~0). 
The change of the shape of the average potential as a 
function of the length scale k -  ~ can be described by 
appropriate evolution equations. Apparently, the loop 
expansion for these evolution equations converges for 
small enough couplings. 

At the phase transi t ion the curvature of Uk around 
its m i n i m u m  is ~ k 2 at every scale k. If  the m i n i m u m  

#2 Here A stands for the short-distance scale where the theory is 
defined, for example the inverse of the lattice size or some 
other momentum cutoff. The critical bare mass/~2(A ) corre- 
sponding to the phase transition ((¢p)=0) is not universal 
whereas the range of/xZ(A) around /t2(A) leading to small 
((p) is universal up to a proportionality constant of order one. 
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occurs at some nonzero field value q~o(k) this value 
scales as ~po(k) ~ k  (for d = 4 ) .  Near  the phase tran- 
sition this behavior  applies for all k 2 >> (tp) 2. Self- 
organizing criticality should explain the scaling 
~oo(k) ~ k over  a large range in k without a particular 
tuning of/t  2 (A). Finally, the deviation from the phase 
transition in the spontaneously broken phase results 
in a nonzero VEV (q~) = limk~ o~o (k) .  

A natural scaling ~ o ~ k  would occur for an (ap- 
proximate)  infrared stable fixed point for the ratio 
~2/k2. We investigate in this letter the possibility of  
such a fixed point for a scalar theory coupled to fer- 
mions. In such systems there exists a balance mech- 
anism which could, in principle, lead to an infrared 
stable fixed point behavior:  The contributions f rom 
scalar fluctuations tend to lower qJ 02 (k)  for decreasing 
k, whereas the fermion fluctuations have the oppo- 
site effect and push q~02(k) to larger values. On the 
other hand, for hZ~o2 >>k 2 (h is the Yukawa cou- 
pling) the fermions decouple effectively. Then only 
scalar loops are effective which drive q~02 (k)  to smaller 
values. For large enough Yukawa couplings ~02 (k)  in- 
creases for q~02/k2<h -2 and decreases for q~02/k2> 
h -2. I f  this effect is strong enough it can lead to a 
stable behavior  q02 ~ h-Zk2 over  a large range in k. 
We study this "balance effect" more quantitat ively in 
the following. 

In analogy to the standard model in the limit of  
vanishing gauge couplings and vanishing Yukawa 
couplings except for the top quark we start with the 
SU (M)  symmetr ic  action 

S[Z, q] = f dax[ - a2Z*X+ 1~()~*~)2 n!- Z0/zX * 0'uX 

+ ZF(t~LiDqL + tTRiI~r/R ) + (/biLZt/R + h.c. ) ] .  ( 1 ) 

Here Z is an M-component  complex scalar field, 
r/L= (t, b, b ' ,  "")L an M component  left-handed fer- 
mion field with Nc colors and qR = tR a right-handed 
fermion singlet (again with Nc colors). The other light 
fermions are omit ted here. The average action Fk is a 
functional of  the average fields q~, 

exp( --Vk[tp, ~] ) = f ~Z ~'q Pk[~0,Z] Pk[~, ~/] 

X e x p ( - S [ z ,  q ] ) ,  (2)  

where the constraints Pk [ 3 ] are defined in momen-  
tum space (£2= fddx) 

Zq 2 
Pk[~o,Z] = e x p  - .Q  ~q 

1 - f ~ ( q )  

X [q~*(q) --fk(q)z*(q) ] [~O(q) --fk(q)z(q) ] ) ,  

Pk[~, r/] = exp(- - .O 
z~ 

\ q 1 --~k2 (q) 

X [ ~9(q) --fk(q)fl(q) ]T~[ ~ (q )  _fk(q)tl(q ) ] ) ,  

(3) 

and the fermionic constraint is understood as a prod- 
uct over  all fermion species. The function 

fk(q)  = e x p [  -a(q2/k2) p] (4) 

defines the details of  the averaging scheme. The av- 
erage action has the same symmetries  as S and can be 
expanded in the number  of  derivatives 

rk[tp, 0] = f ddx[ Uk(p) + Zk(p)Ouq~tOuq ~ 

+ 1 Yk(P)OuPO"P+... l (5) 

with p = ~0*~0. We are interested in the average poten- 
tial Uk around its minimum. In the one-loop approx- 
imation it is obtained [ 1,3] with N =  2M as 

Uk(~p) = --fi2p+½kp2 

+½(2n)-d f ddq(ln P( q) - f i i  + 

+ (N--  1 ) In P(q) _fi2+~.p 
m 2 

--2d/2Nc In Pc(q) + h2P'~ 
m°  2 ] ,  (6)  

where the inverse propagators P and Pv exhibit an in- 
frared cutoff  due to the constraints (3)  

Zq 2 2~q  2 
P ( q ) -  l _ f Z ( q ) ,  PF(q)-- [ l _ f Z ( q ) ] 2 "  (7)  

We concentrate on the spontaneously broken re- 
gime where the min imum of  Uk occurs for nonzero 
po(k). Its evolution is obtained from differentiation 
of  U' (po(k))=0 with respect to k (pr imes denote 
derivatives with respect to p and t=ln(k/mo) ) 
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~tPo  = - U ~ ( p o ) - '  u ' , , (po)  . (8) 

It is convenient to use renormalized dimensionless 
parameters 

K(k) =k2-dZpo, (9) 

2(k)  = k d - 4 Z - 2 U ' ~ ! ( p o )  , (10) 

where Z =  Zk(Po). The mass term for the radial scalar 
mode (the curvature of  Uk aroundpo)  reads in terms 
of  2 and K 

m2(k)  =2k22(k)K(k) . ( 11 ) 

S~(y) 

I j 

0.8 

o~ 

o,z. 

0.2 

Fig. 1. Threshold function s4(y ) ,  

A situation of  self-organizing criticality arises if the 
evolution of  K exhibits an infrared stable fixed point 
(at least approximately) 

0 0p~ 
fl~(X, 2 ) = ~ X ,  f l~(K.)=0,  --~-X ( K . ) > 0 .  (12) 

The fl-functions for x and 2 can be inferred from 
(6) using renormalization group improvement  [ 4] 

OK 
fl~ = ~-t = ( 2 - d - r / ) K  

+ 2Va[31dSd(22X) + (N-- 1 )l d 

- U/2Nc(h2/)Oldl s~, (hZK) ],  (13) 

O2 
fla= ~ = ( d - 4 + Z q ) 2  

+2Va[9221dsd(22X) + (N--  1 )22/d 

d/2 4 d d 2 - 2  Arch lv2sv2(h K ) ] .  (14) 

Here vy ~ = 2 d+ ~ 7t d/2 F(d/2  ) and the constants l { can 
be found in ref. [4].  They depend in general on the 
averaging scheme (i.e., on the value offl  in (4 ) )  ex- 
cept for l 2~ = 1. The "threshold functions" s { [ 4 ] de- 
pend on the ratio m2/k 2 and similarly for the fer- 
mionic functions. We have depicted s 4 in fig. 1. (In 
(4) we choose the parameters f l=3  and fl= 
[exp(2a)  - 1 ]/2a for all numerical purposes in this 
letter. ) The anomalous dimension q = - 0 In Z/Ot of  
the scalar field is computed for the average action in 
ref. [5] 

r l=  4 V d N ~ j a r d v ( h 2 K ) h  2 . ( 1 5 ) 

The constantsj  d depend on the averaging scheme ex- 
cept for j~ = 1 and ray are "threshold functions" 
(ray(0) = 1 ) accounting for the vanishing of  the fer- 
mionic contribution to t /as  h2x--*~. The "balance 
effect" discussed above is apparent in the second term 
of  eq. (13):  For large h2/2 this term is negative for 
small h2x whereas it becomes positive for large h :x  
(where the term ~ h2/2 drops out).  Self-organizing 
criticality becomes possible, however, only if  this 
balance effect is strong enough compared to the con- 
tribution from the first term in ( 13 ). This is difficult 
for d >  2. 

For a slowly running 2 it is convenient to discuss 
instead of  • the evolution of  the quantity 2~¢=m2/ 
2k 2. An infrared stable fixed point in 2K requires a 
positive derivative o f f l ~ =  0 (2x)/Ot 

0 
0(2K) fl~K= - - 2 + 0 9 > 0 .  (16) 

Comparison with ( 1 1 ) establishes to as the anoma- 
lous mass dimension defined by 

0tim2 
09=  

0 m  2 , 

f l ' ~ =  0t = ~ + -  m2 ,  

to=q+2vd[ (N--  1 )2/d 

+ 32/zasza(2;tx) -- 3622~:/3~S3a(22K) 

+ 2 a/2+ JNc(h6/2)Kld3sd3(h2x ) ] . (17) 
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Of course, co has to be evaluated at the critical value 
m2(k) .  The anomalous mass dimension co has a sim- 
ple physical interpretation [ 4 ]: It governs the scale 
dependence of the deviation of the scalar mass term 
from the critical mass term m2(k)  which is defined 
by mZ.(k~O) =0  

m 2 ( k ) = m 2 ( k ) + ~ m 2 ( k ) ,  0 6m2=o96m2. (18) 

Self-organizing criticality requires o) > 2. A sufficient 
condition for a natural gauge hierarchy was already 
discussed earlier in a somewhat different perspective 
[ 6 ]: A naturally small ratio (~0)/M arises if the av- 
erage of o9 between the scales M and (~0) equals 2: 

to 

( o g ) = t f f ' "  J d tog( t )=2,  to=ln (~o___)) (19) 
M " 

o 

The anomalous dimension may exceed 2 for k near 
M and be substantially smaller than 2 for k near (~0). 
A natural explanation of the gauge hierarchy could 
therefore arise from new physics at a high mass scale 

In the remainder of this letter we concentrate on 
the question whether o9 >t 2 is realistic in four-dimen- 
sional models. For h2x<< 1, 22x<< 1 we can expand 

s#~.(y) 
d . l ( v ) . + l  n ( n + l )  d . 2 l (F)n+2 q_ 

= l _ n y T . - - - -  + _ _  _ _  ..., "(F), 2 Y l~v), 
(20) 

and q=Nch2/8n 2. In lowest order we obtain the stan- 
dard perturbative results 

1 
o9= ~ [ (N+ Z)2+ ZN~h 2] , (21) 

02 1 
i lk-  0 t -  16n 2 [(N+8)22-4N~h4+4N~h22]" 

(22) 

In the standard model (N=4,  N~=3) a value o9>2 
then requires large values of the Yukawa coupling h 
outside the perturbative regime. In turn, h can re- 
main large over a large range in mass scales only if its 
r-function has an (approximate) fixed point for non- 
perturbative values of h. In view of the upper bounds 
on rnt derived from the analysis of radiative correc- 

tions for the LEP data this could only be relevant for 
a fourth generation [6] (which should not contain 
high neutrinos). 

On the other hand, the standard model may be 
embedded at some mass scale Mx into a unified model 
with a substantially larger number of degrees of free- 
dom, e.g. grand unified models or string theories. It 
is conceivable that o9 is considerably larger than two 
for mass scales above Mx and drops to a rather small 
value for the standard model below Mx, but never- 
theless obeys ( 19 ) with M> Mx. As a first check if a 
large anomalous mass dimension becomes possible 
for a large number of degrees of freedom we consider 
the above scalar-fermion model for arbitrary (large) 
N and Nc. Even though in realistic grand unified 
models the large number of scalar and fermion de- 
grees of freedom arises from large representations 
rather than from a large flavor group SU (N/2) ,  our 
toy model may reflect some general features of sys- 
tems with many particles. Here we consider a fixed 
value of the Yukawa coupling h = 4 (h2/16n2~ 0.1 ) 
and we will argue later that this is not unrealistic for 
suitable models. For definiteness we choose Nc = 5, 
N=60.  

We have to investigate the solutions of the coupled 
system of evolution equations ( 13 ), (14) for x and 2 
(inserting ( 15 ) ). For fixed x and h 2 the evolution of 
2 is always determined by an infrared fixed point since 
fla (2=0)  is negative and fl~ (2~o9) is positive. In 
our case we also find an infrared fixed point for x. 
Numerically the simultaneous fixed point is given by 
x.=0.011, 2.=5.911. In fig. 2 we have depicted fl~ 
for 2=2 . .  We observe a considerable range of attrac- 
tion in x. (This range actually continues in the sym- 
metric regime where the minimum of the short-dis- 
tance potential occurs at the origin p=0 . )  The 
anomalous dimension at the fixed point can be read 
off from the derivative offl~ (16) at the fixed point. 
One finds o9 = 3.28, a value slightly smaller than the 
approximation (21) for 2--2,.  (Note that hZK.= 
0.18.) Our toy model implements self-organizing 
criticality provided the one-loop evolution equations 
are reliable and a value h = 4 can be sustained over a 
sufficient range in scales. 

In order to demonstrate that fairly large Yukawa 
couplings can be stable in suitable models we enlarge 
our toy model. We also include QCD like gauge inter- 
actions with fermions in Ng generations of the fun- 
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Fig. 2. The function fl~(x) for N~= 5, N=60, h=4, 2=5.911. 

damental  representation of  the gauge group SU (Arc) 
and simultaneously in the N/2 component  and 
singlet representations of  the global symmetry  
S U ( N / 2 ) .  (As in the standard model  we assume 
SU(Nc)  to be vectorlike with N/2 singlets in each 
generation. The Yukawa couplings of  all singlets ex- 
cept for one are set to zero. The generalization of  the 
leptons plays no role here. ) For h 2x<< 1, 22~<< 1 we 
can employ the s tandard one-loop//-functions for h 
and the gauge coupling g [ 7 ] 

Nc 2 -  1 2"~ h2 
fib2= ( 3 + N ~ ) h = - 3 - - ~ g  )87~2, (23)  

g4 
fig2 = -- ( ~ N~ + ]NNg) 8:t2. (24)  

The evolution equations for the ratios h2/g 2 [8,6 ] 
and 2/h 2 [6,9] exhibit infrared stable fixed points 
(for large enough N) 

(h 2) NNgN~-2N 2 -9  
~5 • = 3N¢(Nc+{)  , (25)  

1 N2-1(g2~ 
(- '2n~).-2(N+8)[-2Nc+3-6 Nc \h2}. 

N~- I  (g2~ ]2 

In the following we will consider situations where g2 

runs very slowly, in particular for g2 near an infrared 
stable fixed point g2. In this case the fixed point  for 
h 2 is given by the vanishing of fib2 (23)  

( h2 ) 3 ( N 2 - -  1) (27)  

Inserting (25) or (27) and (26)  into (21)  we obtain 
o9. as a function of  g2. The value of  ct=gZ/4rt for 
which o9. reaches 2 is depicted as 6 in fig. 3 for Nc = 5, 
Ng= 1 and using (27) ( c o . ( & ) = 2 ) .  For large N t h i s  
value is considerably smaller than one. 

The question if a can remain larger than 6t over  a 
substantial range of  scales depends on fl~,=Oot/Ot. 
Since the one loop contribution t o / / .  vanishes for a 
critical ratio N/Nc we display here the two-loop re- 
sult [ 10 ] 

0~i 

0.8, 

0.6 

OL ^ '~": '%: 

0.2 O . . ~  

40 45 50 55 N 

Fig. 3. Infrared fixed point a ,  and critical value 6 (see text) as a 
function of N, for Arc = 5. 
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__ _ __ O~2 t~h 2 _ 
flu a B +  C~ + (28) a - 2~ ~ 3275~ 3c '2 '  

B = - ~ N ~ + ~ N N g ,  

2 
C1 34 2 5 N ~ - I N N  = -TN~ + -~N~NNg + 2N¢ g '  

C 2 = - ~ N .  (29) 

Inserting the fixed point (27) we can combine the 
two loop terms in (28) 

(h~2) 34~2 "ji- 5NcSNg C = G  +C2 = - - r ~ ,  c 

1 N 2 -  1 N 3 ( N ~ -  1) (30) 
+ "~ ~ - ~ - -  NNg - "~ Nc ( Nc + 3 ) " 

AS is well known [ 11 ] the evolution equation (28) 
is characterized by an infrared stable fixed point a .  
if B < 0  and C > 0  

47tB (31) 
o~ . -  C 

We have plotted a ,  as a function of  N in fig. 3 and 
observe o l .>& for a range in N f o r  which a > 0 . 4 .  I f  
the perturbative fl-functions (23),  (24) ,  (28) can be 
trusted in this range our toy model has a large anom- 
alous mass dimension a~> 2! (This would hold for all 
scales between M and Mx in the scenario described 
above.) We note that a fixed-point value h . >  4 oc- 
curs in this model for No= 5, N~< 48, thereby qualita- 
tively justifying our assumption above with constant 
h . = 4 .  

An estimate of  the validity of  the perturbative fl- 
functions requires, in principle, knowledge of  the 
higher order terms in the loop expansion. From an 
inspection of  the structure of  the terms in (28) we 
make a rough estimate that perturbation theory seems 
to be valid for 

val" [ 9 ] for M/Mx = 104 (also shown in fig. 3 ). (Here 
aB is defined as the maximum value of  a (Mx)  if the 
gauge coupling runs between M and Mx according to 
(28).  ) We also note that we have done the quantita- 
tive analysis o f  infrared stable fixed points with Yu- 
kawa couplings and gauge couplings only for h2x<< 1. 
This is not a good approximation for N¢ = 5, N <  45 
as may be seen by using the linear approximation for 
fl~ in order to compute the fixed point K.. One typi- 
cally obtains h2x. of  order one half. For h2x near one 
all fl-functions are modified and the corresponding 
fixed points are shifted. A new possibility to obtain 
large values of  ~o may open up for small values of  2. 
The last term in eq. ( 1 7 ) ~ 2 - ~  becomes dominant  
for sufficiently small values o f 2 / h  4 and similarly in 
eq. (13).  On the other hand the growth of  2 due to 
the negative term ~ h 4 in (14) is slowed down by the 
function s42(h2x). It remains to be investigated if an 
infrared fixed point behavior for 2x can be induced 
by 2 remaining very small over a sufficient range in t. 

In conclusion, it does not seem unreasonable that 
suitable models with a high number  o f  degrees of  
freedom lead to an anomalous mass dimension o9 ex- 
ceeding 2, thereby providing a possible mechanism 
for a natural gauge hierarchy. In our example a value 
~o > 2 could not be firmly established within the limit 
of  validity of  perturbation theory. No  good reason is 
known to us, however, why w >  2 should not be real- 
ized for slowly running couplings either at the bound- 
ary of  validity of  perturbation theory or even within 
perturbation theory in other, appropriately chosen 
models. We also emphasize that our mechanism may 
lead to the phenomenon of  self-organizing criticality 
in two- and three-dimensional models where large 
values o f  the couplings 2 and hE occur rather natu- 
rally as a result of  the infrared fixed-point behavior. 

6n (32) 
a < a p =  l lNc"  

A comparison with fig. 3 shows a .  > & for a in the 
vicinity of  or somewhat larger than ap. We conclude 
that o~> 2 may occur at the boundary of  validity of  
perturbation theory in this model. This picture does 
not change qualitatively if we use instead of  the fixed 
point a .  the upper bound aa  of  the "infrared inter- 
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