Nuclear Physics B392 (1993) 428-460
North-Holland

Lagrangians and anomaly candidatesof D=4, N=1
rigid supersymmetry

Friedemann Brandt !
Institut fiir Theoretische Physik. Universitit Hannover, Appelstrafie 2, W-3000 Hanover I, Germany

Received 2 June 1992
Accepted for publication 28 September 1992

We investigate how to construct the most general invariant action and whether there are
anomaly candidates in D=4, N =1 globally supersymmetric theories. The importance of the
representation theory of the supersymmetry algebra for these questions is discussed. For a class
of theories with special supersymmetric multiplet structure complete answers are given. Exam-
ples of more general cases are discussed.

1. Introduction

This paper deals with the questions of how to construct the most general N =1
globally supersymmetric local action in four dimensions (renormalizable or not)
and whether there are up-to-now unknown candidates of anomalies in rigid D =4,
N =1 supersymmetry (SUSY). I consider pure SUSY, i.e. I do not require further
symmetries apart from SUSY and Poincaré invariance.

A well-known method to construct N = 1 supersymmetric actions W is given by

W= [d'x D¥D%g($) +h($.)} +cc,  D*=DD,, D>=D,D% (i.1)

where ¢ denotes collectively the finite set of elementary fields ¢' present in a
given theory and their partial derivatives,

de{o’, 9,0, 9,0,0°,...}. (1.2)
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¢. denotes antichiral linear combinations of the ¢ (D,é.=0) and D,, D, denote
the spinor derivatives (SUSY generators) which are assumed to be represented
linearly on the ¢ according to the SUSY algebra *

{Dﬂ’ Dﬁ} = <5¢i’ 53} a’ a] - [ (3] a] [ abj =07
{D.. D} = —2ic“ .4, (1.3)

Using (1.3) and the BRS operator introduced below one easily verifies that actions
of the form (1.1) are supersymmetric. However it is not known yet whether or in
what cases (1.1) gives the most general supersymmetric action.

To investigate this question and the anomaly problem I shall use a BRS
operator & for the algebra (1.3) which is constructed analogously to the Yang-Mills
case by introducing a ghost C* for each of the operators appearing in (1.2):

Ag {Ca’ &, gd}.

By means of § the integrands of supersymmetric actions and anomalies can be
characterized as solutions of the so-called consistency equation (cf. refs. [1,2]
which in terms of differential forms reads

0§ +dw§t'=0, §#nf'+dng. (1.9
Here

d=dx*a, (1.5)

is the exterior derivative and wf, ¢ are p-forms with ghost number g depending
locally, i.e. polynomially ** on the ¢, on the ghosts and may aiso depend explicitly
on the coordinates. The general solution § of (1.4) with ghost number 0 gives the
integrand of the most general invariant classical action, solutions @} with ghost
number 1 are integrands of candidates of anomalies,

ol =d*x Z(¢), i =d*x Cv ().
Since rigid SUSY is considered the ghosts are constant and (1.4) is equivalent to
8.7 =C%,7;f, F+4,9°,
8(C%,) =CACR, 75, C,+8%+C 7],

* The o%matrices and further conventions used in this paper are listed in appendix C.

** This definition of locality. may be generalized by admitting forms which are infinite series in the
undifferentiated ¢’ but still polynomials in the derivatives of the ¢ Tk‘e results of this paper are
valid also under this weaker assumptlon
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where the 77’s and #7s arc arbitrary local functions of the ¢ and explicit
coordinates x“ (forms and differentials dx“ serve to hide indices).

The paper is organized as follows: Sect. 2 collects assumptions underlying the
investigation, especially the approach to SUSY. In sect. 3 the BRS operator is
defined. In sect. 4 I give the representation theory of the subalgebra {D,, D} =0
of (1.3) which turns out to be essential for the classification of the solutions of
(1.4). In this section I also define a class of theories which I call QDS theories by
the property to contain only special representations of this subalgebra. For this
class of theories (1.4) is solved completely and the result is given in sect. 5. Sect. 6
sketches the proof of this result. In sect. 7 examples for the non-QDS case are
discussed which show that generally there are solutions of (1.4) with ghost number
1, i.e. candidates for pure SUSY uanomalies. Sect. 8 is a brief conclusion. It is
followed by three appendices. The first appendix gives the proof of one of the
theorems used in sect. 6 and of a generalization of this theorem, the second
sketches the derivation of the results given in sect. 4, the third contains the
conventions used in this paper.

Remark (i) The question whether (1.1) gives the most general form of a
supersymmetric action is equivalent to asking whether each supersymmetric action
can be written as a superspace integral of the form

W= fd"x {d26 d%0 g(¥) +d%8 h(,) +cc},

where ¥ = ¥(8, 8, ¢) are superfields and ¥, are superfields whose lowest compo-
nent fields ¢, are D -invariant.

Remark (ii) The question whether there are solutions of (1.4) with ghost
number 1 in globally supersymmetric theories has been investigated at the begin-
ning of the preceding decade [13]. The result obtained there was the absence of
solutions w} of (1.4) in the pure supersymmetric case (i.e. if no symmetries are
considered apart from SUSY and Poincaré invariance). Recently the authors of
ref. [13] remarked [14] that by tacit assumption they investigated only special
supersymmetric theories in ref. [13], namely theories containing only “vector
supermultiplets”, i.e. SUSY multiplets which can be described by means of
unconstrained scalar superfields. Such theories can be proved to have QDS
structure, i.e. the results for QDS theories listed in sect. 5 generalize those of ref.
{13]. I note that the anomaly problem has been taken up again also in ref. [9].

2. Variables and approach to SUSY

- First of all T stress an important point underlying my investigation and my
appm’a,ch to SUSY: throughout this paper the ¢, eq. (1.2), are treated as a set of
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infinitely many variables * which are independent apart from the algebraic rela-
tions

Oy ee- aanqpi =8, .aan)¢"
following from [d,, d,] = 0. A basis for this set of variables is denoted by {¢'} and
may be chosen e.g. as

{67} ={0,,... 0,0 n>0,a,>a,,}. (2.1)

All equations have to hold identically in these variables. In particular the SUSY
algebra is assumed to be represented linearly on these variables and the partial
derivatives act algebraically on them (3, maps the variable ¢ to the variable 9,¢’,
etc.)

Since I consider global SUSY the ghosts C# are constant,

3,C*=0. (2.2)

Differentials d x? and explicit coordinates x“ are treated as additional variables on
which 8, acts according to

3, dxt=0, 9x?=8" (2.3)

The reasons for using this approach are:

(i) The locality of the forms appearing in (1.4) can be easily guaranteed.

(ii) (1.4) is required to hold on off-shell fields, i.c. integrands of actions and
anomalies have to solve the consistency equation (1.4) irrespectively of the x-de-
pendence of the ¢'. Since the ¢’ depend arbitrarily on x, the same holds for their
partial derivatives and this justifies to regard (2.1) as a set of independent
variables.

The locality of the forms appearing in (1.4) of course is an important require-
ment. In particular for G =1 it originates in renormalization theory [1,2] that
anomalies (in lowest loop order) correspond to local functionals of the fields. The
usefulness of the approach to regard the ¢’ as infinitely many independent
variables in connection with locality becomes obvious from the following facts:

Each volume form »$(dx, x) =d*x #(C*, ¢(x)) is exact due to the Poincaré
lemma for forms of x in contractible coordinate patches:

p+0: de,(dx,x,C*) =0 e wo,=dy,_,(dx,x,C7),

(2.4)
p=0: day(x,C*)=0 = wy=0(CY). ‘

* In the mathematical literature this approach is treated in the framework of jet bundlés’[lZ]. ) ' !
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This however does not imply that (1.4) has no solution since this lemma does not
contain any information about the locality of the forms n,_,. Treating the ¢" as a
set of infinitely many independent variables allows us to keep control of the
locality. Namely a lemma can be proved which is analogous to the ordinary
Poincaré lemma and gives the cohomology of d = dx“, where d, acts algebraically
on the ¢” and according to (2.2) and (2.3) on the C*, x? and dx“. It is called the
algebraic Poincaré lemma [3,12] and reads in this case (four dimensions, constant
ghosts):

0<p<4: do,(dx,x,C% ¢)=0 <w,=dn,_ (dx, x, C4, ),
p=0: dw, (x,C*, ¢)=0 = wy=wy(CH),
p=4: d*x Z(x,C4, ¢) (2.5)

i A
=dny(dx, 1, €%, 4) @ =0 Vo',

1

In (2.5) all forms depend locally on the ¢ and 4, /§¢i denotes the Euler derivative
with respect to ¢',

J (-)",...8 i
30" 4S040 rma, “ (8, 0,07)

According to (2.5) volume forms are exact in the space of local forms if and only if
their Euler derivative with respect to each elementary field vanishes. In particular
there may be solutions of (1.4) while a naive application of (2.4) would lead to the
conclusion that there are no solutions of (1.4) even for ghost number 0.

3. BRS operator

Apart from the occurrence of anticommutators (1.3) has the form of a Lie
algebra,

[D4, Dgl=D,Dy—( _)IA”BIDBDA =fasDes
where | A| denotes the grading of D, (cf. appendix C)

D,e{3,.D,, D}, lal=0, lal=lal=1,
fmd the only nonvanishing structure constants f, BC are given by

a_ . _ Dy
ad —fda = —2io ad*
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The BRS operator 8 for the algebra (1.3) is constructed analogously to the
Yang~Mills case [2}:

8¢"=C4D,p",  5C*=3(-)'?'CEC Sy (3.1)
which reads more explicitly (C,; =0o“,,C,)

The ghosts C* have opposite grading compared to the corresponding generators
D,, the translation ghosis are chosen to be real:

cielcs, ¢, 8, ICel=1, g7l =181=0, C*=(C%)", E=(&)"
On differentials and explicit coordinates 8 is defined trivially,

6 dx’=08x"=0.

On functions of the variables ¢", C4, x? dx? the BRS operator is defined as
antiderivation (fermionic first-order differential operator). By construction the
BRS operator is real, fermionic, nilpotent and commutes with the partial deriva-
tives,

52=[a,, 8]=0, |5l=1, 5=5*.

4. D, representations and QDS structure

1 mentioned already that the SUSY algebra (1.3) is similar to a Lie algebra.
However, apart from the occurrence of anticommutators there is another differ-
ence compared t> the Yang-Mills case. Namely the representations of the SUSY
algebra on the variables <" have infinite dimension since the partial derivatives
occur in the algebra. But (1.3) contains two subalgebras, {D,, D} =0 and
{ Dﬁ} 0, whose representations on the ¢” decompose into fmxte-dnnensnonal,
representatnons which are indecomposable (reducible but not completely re-
ducxble) This holds due to the assumption there are only finitely many elementary:,;
fields ¢'. It turns out that the general solution of (1.4) for a given theory depends,
on the kinds of mdecomposable representatlons of these subalgebras presen in
the theory. In anpendlx B the derivation of the representatlon theory of {D_. D;}
=0is sketched ‘The multiplets transformmg -according ‘to representa
{D,, Dg}= 0 are called D -mulnplets The possnble mdecomposable Tepresent
thl’lS are glven m the followmg on 1rreduc1ble SL(Z C) tensors bmlt cf 1
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Fin) F(0)
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Fig. 1.

the component fields of these D -multiplets are irreducible SL(2, C) tensors whose
components are totally symmetric in their undotted and dotted spinor indices
respectively and are linear combinations (5’ = a,¢° of the ¢". There are 3 types of
indecomposable D -multiplets on irreducible SL(2, C) tensors. These types are
denoted by (Q), (Z) and (S) which can be represented by the simple diagrams given
in fig. 1 (the indecomposable D -multiplets of course are analogous). Here
0™,..., 8™ denote the component fields of the D, -multiplets and the arrows
indicate how D, acts on them (see fig. 2: an arrow pointing to the right denotes
symmetrized D, -transformation, an arrow pointing to the left denotes antisym-
metrized D, -transformation). All component fields of a particular multiplet carry
the same number of dotted indices and the number of undotted indices is denoted
by the superscript, e.g. O denotes an SL(2, C) tensor whose -components are
totally symmetric in their » undotted indices and carry a definite number of dotted
indices in which they are totally symmetric as well.

# B+1)
= B(n+l)an+1...ax = ;L"_-}-I'D(anﬂA(n)ﬂn- 1)
Am

Bln=1)
-\\ = B(n—l)an_l...al = (___)TL ;_%T DanA(n)Qn---al
Al

e D
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The (Q) multiplets are quartets of SL(2, C) tensors unless the lowest component
field carries only dotted (but no undotted) spinor indices (in this case they are
triplets).

The (S) multiplets are singlets, i.e. the components of the tensors S are
D,-invariant linear combinations of the ¢" which cannot be written as linear
combination of any D, ¢°.

The zig-zag diagrams representing the (Z) multiplets can have arbitrary lengths,
i.e. there are D, -multiplets with an arbitrary number of component fields. How-
ever it can be shown that a particular theory can contain only (Z) multiplets whose
number of component fields does not exceed some maximal value.

One can easily construct SUSY multiplets (multiplets of the complete SUSY
algebra (1.3)) which contain an arbitrary D -multiplet of fig. 1 without imposing
differential equations for the elementary fields making up these multiplets (cf.
remark at the end of sect. 7). In other words: all D_-multiplets represented by the
diagrams of fig. 1 in fact may occur in supersymmetric theories.

However most of the prominent supersymmetric theories have a simple D,-mul-
tiplet structure: the only indecomposable D_-multiplets occurring in them are (Q)
multiplets (with arbitrary number of indices), singlets $© without undotted indices
and special (Z) multiplets represented by very short zig-zag diagrams contafinyingr
only one arrow pointing to the right. For these special (Z) multiplets I introduce.
the notation (D) (see fig. 3). Theories with this simple D,-multiplet structure are:
called QDS theories in the following.

Definition. A theory is called QDS theory if the D_-representation decom-
poses into a sum of (Q) and (D) multiplets and singlets which have only dotted
indices.

To prove the QDS structure of a theory one has to decompose its D,-represen-
tation into indecomposable parts, i.c. one has to prove the existence of a basis
{¢" = a’¢*} consisting of components of irreducible SL(2, C) tensors 7 such that
each T is a component field of one and only one D,-multiplet represented by

F) F©

/ D.(:H-l)

(n—1),, n+1 *

Qv Q4+ ® yd .
_ 500)

7 D
@ @ D) )
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one of the diagrams given in fig. 3. Note that a theory contains an infinite number
of D, -multiplets since there are infinitely many independent variables ¢'. Thus it
may seem to be difficult to prove the QDS structure of a given theory. In practice
however this turns out to be easier than it sounds since usually one can guess (and
then prove) the complete D, -multiplet structure of a theory after one has deter-
mined the “lowest” indecomposable D, -multiplets containing the undifferentiated
fields and their derivatives of lowest orders. Moreover, if one is interested only in
solutions of i1.4) whose (power counting) dimension does not exceed a certain
value d,,,, {e.g. for reasons of renormalizability) then it is sufficient to determine
only those indecomposable D, ,-multiplets which consist of the undifferentiated
fields and their partial derivatives up to some maximal order which depends on
dmax' —

Note that if a theory has QDS structure then the D -multiplets have QDS
structure as well since 56, is the complex conjugate of D, which implies that
{(¢")*} which is a basis of the ¢ as well makes up indecomposable D, -multiplets.
However in general {($7)*} # {¢"} and in fact generally there is no basis consisting
of components of indecomposable D_-multiplets and indecomposable l_)d-multi-
plets. This complicates the determination of the representation theory of the
complete SUSY algebra (1.3) which in fact is not known on the variables ¢". (The
chiral multiplet discussed below has the unusual property that one can choose
{6 =141

To demonstrate how one determines the D_-multiplet structure of a given
SUSY multiplet I treat a simple example of a SUSY multiplet with QDS structure,
namely a (scalar) chiral multiplet consisting of the elementary fields ¢, ,, F and
the complex conjugate fields @, Jd, F on which D,, acts according to

DaQD = ',0“, Dallfﬁ = EUBF’ DaF = O7
— _ - (4.1)
D=0, D= 20,5, D,JF==2id.0,
where
aaa = o-aadaa

The complete list of indecomposable D, -multiplets arising from (4.1) is given by
(1) (Q) multiplets whose lowesi component fields are given by ¢, F and the
following derivatives of these fields * (m, n >0, O =4,0%):

O3 ...05%,  O™9Gn ... 95F;

“ A set of independent components of these derivatives is a basis for the derivatives of ¢ and F.
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(i) (D) multiplets which in the notation (X, DgX) read
(ot ... o255, - 2i0gin.. .ag;ag;a);

(iii) precisely one singlet (S) given by .

One can check that the (Q) multiplets whose lowest components fields are given
by F and its derivatives contain all derivatives of @ and ¢ apart from those which
make up the (D) multiplets. ¢, F and their derivatives group inte the (Q)
multiplets whose lowest component fields are given by ¢ and its derivatives. This
proves the QDS structure of a chiral multiplet whose lowest component field is a
Lorentz scalar. Further examples of SUSY multiplets which have QDS structure
are “vector multiplets”. A SUSY multiplet whose QDS structure is less obvious
than that of chiral and vector multiplets is given by table 2 in sect. 7.

5. Results for QDS theories

For QDS theories the consistency equation (1.4) has been soived completely for
each ghost number. The result is remarkably simple: for G # (0 there are only
trivial solutions of dw§ + dw§*' =0:

G>1: 80§+duf™'=0 = f=89"1+dnf. (5.1)

In particular there are only trivial solutions with G = 1 and therefore there are no
pure SUSY anomalies in QDS theories.

The nontrivial real solutions with G = 0 can always be written in the form of the
integrand of (1.1):

o +dwl=0, w)=(wl) = ol=d' (D} D%(e)+h(S)]+cc)+dnl,

(5.2)

where § = SO are the D, -singlets appearing in the theory.

Remark. Eq. (5.2) in fact contains more information about the structure of
supersymmetric actions in the QDS case than (1.1) since it implies that in the QDS
case each contribution D?h(¢,) to the lagrangian can be written also in the form
D2D?h (¢) + D?h(S) for appropriate h,, h, (note that S €{¢_} but (S} = {¢.)).
This originates in (6.8).

6. Proof of the results for QDS theories

This section gives the proof of the results stated in sect. 5. Thereby amethdd is
described how one can investigate (1.4) systematically also in the genergl"(npn-QI?Sj):w
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case and it is pointed out where the simple structure of the QDS result originates
and where more general cases differ.

First I list two theorems which will be used within the proof. They treat the
cohomologies of two operators 6_ and b which appear in the following decompo-
sition of the BRS operator (3.1):

8§=6_+8,+6,, (6.1)

. ad
8= 4ig €t~z (6.2)
S,=b+b, b=¢D,, b=£D,, (6.3)
=C%,. (6.4)

Theorem. & _-cohomology:

5_f(C)=0 o f=P(3,£)+0(9,E)+OR+5_Y(C"), Qlio=0,
(6.5)

where R does not depend on the ghosts and

B =£,C%,  Pi=Cug,,  O=EFC%%, (6.6)

This theorem states that the nontrivial * parts of 8 _-invariants have degree 0, 1
and 2 in the C° since ¢ and 9 anticommute. Furthermore there is precisely one
nontrivial contribution to §_-invariants which depends both on ¢ and &, namely
OR. In (6.5) the condition Q| ¢.o = 0 fixes arbitrarily the ghost number-0-part of f
to appear in P (without this condition P and Q both can contain a part depending
only on the ¢). This guarantees that f=P+ Q + @R +8_Y is a direct sum:

P(8,£)+0(0, E)+RO+6_Y(C) =0, Qlzgo=0=P=0=R=5_Y=0.
(6.7)

Egs. (6.5)-(6.7) can in principle be proved by inspecting all polynomials in the
ghosts (separately for each ghost number). A proof can be found in ref. [6].

The cohomology of b (respectively, b), eq. (6.3), depends on the special
supersymmetric structure of a given theory. Here it becomes important which of
the indecomposable D,-representations represented by fig. 1 of sect. 4 appear in
the theory. It turns out that one especially needs the b-cohomology on !, pg-in-

S Fis called (8 )-trivial if f=6_g for some g. Analogously f is called (b)-trivial if f= bg.
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variant functions f(£, ¢) where 1, = lg, denote the generators of SL(2, ©) trans-
formations of undotted indices (cf. appendix C). In the QDS case this cohomology
is remarkably simple.

Theorem. b-cohomology on [, g-invariant functions f(¢, &) in QDS theories:

bf(€, ) =1pf(£,6)=0 = [(&, &) =D’g(d) +h(S) +bY(£, ¢) (6.8)

where S = $ denote the D_-singlets (which are l g-invariant by the definition of
QDS theories) and /3¢ =1,5Y = 0. The proof of this theorem is given in appendix
A.

Eq. (6.8) is the key to the solutions of (1.4) for QDS theories. (6.8) states that b-
and [, g-invariant functions of the ¢ and ¢ are b-trivial unless they are indepen-
dent of £ and that the only b-invariant functions f(¢$) are precisely those which
depend only on the D,-singlets and those which can be written as D?g(¢). These
b-invariants are obviously nontrivial since they do not depend on ¢. Generally (6.8)
does not hold for theories which do not possess QDS structure (cf. sect. 7) and this
is the reason for the fact that the results valid for QDS theories do not hold
generally. In particular, candidates for pure SUSY anomalies arise from nontrivial
b-invariants which depend on £ The absence of such b-invariants implies the
absence of pure SUSY anomalies in the QDS case. I remark that (6.8) arises from
a more general result given in eq. (A.24) of appendix A.

The proof of the results stated in sect. 5 proceeds in several steps (i)-(v) which
are first described briefly and then explained in some more detail. The first three
steps ()-(iii) do not make any assumption on the supersymmetric multiplet
structure and sketch the method used to solve (1.4) in the general case. (iv) and (v)
are valid only for the QDS case.

(i) (a) Each Lorentz-invariant solution »¢ of (1.4) is related to a Lorentz-in-
variant zero form o§ with ghost number g=G +4 which does not depend
explicitly on the coordinates x° and solves

8wf(CA ¢7)=0, wf=oni (C* ¢"), g=G+4.  (69)

(b) w§ is obtained from the corresponding solution of »§ of (6.9) by taking the
4-form-part [w], of a function w(dx?, C*, ¢") which arises from § by replacing
each translation ghost C? contained in o§ with C? + dx*

(051; = [(0]4! (D(dxa, CAr ¢r) __.wg(ca +dx?, ga, Ed’ ‘br)' (6'10)
(i) (6.9) is decomposed into parts of definite translation ghost number (degree
in the C%)

8 f,=0, 8fy+8_fr1=0,

6.11
8ufat Bofyur 8 _fprz=0serr 8.2 =0, (61
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where f, denotes the part of w§ ** which has translation ghost number n. f, (f;)

denotes the part of lowest (highest) translation ghost number contained in w§:

fn
ace

n
of= L f» C°
n=n

= nf,. (6.12)

(iii) (6.11) is investigated starting from the first of these equations. This gives
according to (6.5) due to g > 4:

fu=8_Y,  +P(T,£ ¢)+0(9, & 6), (6.13)

where P and Q have translation ghost number n. Inserting (6.13) into the second
of egs. (6.11) yields (up to a & _-trivial contribution) f, ., in terms of the functions
appearing in f, and shows that the parts P and Q of f, satisfy

bP =bQ = 0. (6.14)

To solve (6.14) one has to compute the b-cohomology. Having done this one
proceeds by inserting f, ., into the third of eqgs. (6.11) etc.
(iv) In the QDS case eq. (6.14) implies

n+2org>5: P=bg,(9,¢, o), Q =bh,(9, &, $),
n=2, g=4 P=99%(s), Q0 =9%09,q(d), (6.15)
p=Dp\(¢) +px(S), a=D%q(s) +aqx35).

(v) In the QDS case eq. (6.15) implies
g25 wf=0m§, (6.16)

D?c*p), O=- %D’z{C#q}, (6.17)

where C*, D), and D), are given by

— — a
C* = ~ %€,4sC°C*°C°CY, D} =(Dyo")
(6.18)

The result of sect. 5 follows from (6.10), (6.16) and (6.17).

() has been proved in refs. [5,7] in a more general version valid not only for
supersymmetric theories or four dimensions. I do not repeat the derivation of part
(a) of the statement (i) but I note that it can be derived by applying & to (1.4) by
‘means of the algebraic Poincaré lemma (2.5). Part (b) follows simply from the fact
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that the operator (s + d) acts on the variables (C* + dx?), £%, &4, ¢" exactly like s
acts on the variables C¥, £2, £4, ¢". This implies

swf=0 < (s+djw=0,

where @ has been given in (6.10). Denoting the p-form-part contained in w by
[w],, the identity (s + d)w = 0 decomposes into the so-called descent equations

slols +dlew); =0, slez+dlw],=0,...,s[w]y=0,

which in particular shows that the 4-form-part [w], of @ indeed solves (1.4).

(ii) respectively (6.11) follows simply from the fact that &, increases the
translation ghost number by one, 8, does not change this number and &5_
decreases it bv one.

The first statement (6.13) of (iii) is a direct consequence of the first of egs.
(6.11) and of (6.5) (due to G >0= g >4 there is no contribution OR(¢) to f,
since @ has ghost number 3) *. The second statement (6.14) of (iii) follows from
the second of eqs. (6.11) which requires 8,f, to be &_-trivial. 8,f, is explicitly
given by

8f,=Z+bP+bQ, Z=58,8_Y,, +bP+bQ.

By means of (6.5) one concludes that Z is 6 _-trivial since (a) Z is 6 _-invariant due
to 8_P=6_0=0and {6_, b} ={6_, b} =0 and (b) each contribution to Z de-
pends both on ¢ and £ but none of these contributions is of the form ®R(¢) since
Z has ghost number (g + 1) > 5. The remaining contributions bP and bQ to 8, fa
are also & _-invariant but depend on the ghosts only via 9 and ¢ (in the case of bP)
respectively via 9 and & (in the case of hQ) and thus they are not 8 _-trivial unless
they vanish, cf. (6.7). This yields (6.14).

(iv) follows from (6.14) by means of {(6.8). Namely for the various values of n, P
is explicitly given by

— & — 1 —. 9,82
P—«_:Ef, ?), n=1  P=9%%5"%¢, ¢), (6.19)
P=980%"*%(& ¢), n=3,4: P=0,

where the superscript of the o’s denotes their ghost number (degree in £). It is
easy to see that the first condition (6.14) is equivalent to

n=0: bo*=0, n=1: bwf?2=0, n=2: bo**=0. (6.20)

* OR cortributes to £, for n=1if further symmetries are included into the investigation since then R
can depend also on the ghosts referring to these symmetries. E.g. Fayet-Iliopoulos contributions {10}
to lagrangians of super-Yang-Mills theories arise from f, =@C where C is an abelian ghost 7{6,8}.
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Since the w’s are [, g-invariant (due to the Lorentz invariance of w§) (6.8) can be
applied to (6.20). Due to g > 4 there is only one case in which the respective w
does not depend on £, namely the case 5 = 4, n = 2. In this case (6.8) states that P
is of the form 1_‘}'d5‘ip given in (6.15). In all other cases the respective o is b-trivial
according to (6.8). This implies that P is b-trivial as well (due to »9%=0).
Treating the second condition (6.14) analogously and inserting the results into
(6.19) gives (6.15).

The first statement (6.16) of (v) is derived from (6.15) as follows: In the case
g>35, P is given by

P=bg;_1(5’ §9 ¢) = 6Ogﬂ _Bg!-

The part Egﬂ is &_-invariant (since g, depends or. the C* only via 9), depends
both on £ and £ ar_ld is not of the form @R(¢) since it has ghost number not less
than 5. Therefore bg, is §_-trivial according to (6.5), i.e. P can be written in the
form

P=38,8,+8_8,,,(C" ¢)
for some g, ,. Analogously one concludes
Q=8h,+6_h,,,.
Inserting this into (6.13) and the result into (6.12) shows that w§ is of the form
w§=8H+0O(n+1), H=g,+h,+8,. 1 +h,,,+Y,,. (621)

where O(n) denotes contributions whose translation ghost number is not less than
n (note that 8H =f, + O(n + 1) due to 8_g, = &_h, = 0). Now the function

oy =wf—6H

is considered. It solves (6.9) as well (due to 6% = 0) but starts at higher translation

ghost number than w§. o is treated like w§ and finally one concludes analo-

gously to (6.21):

wf=8(H')+0(n+2) < wf=8(H+H')+0(n+2). (6.22)
One repeats the arguments until one has shown

wf=0(H+H +H"+...)+0O(5)=8(H+H'+H"+...),

which holds since there are no contributions O(5) with translation ghost number
?EZ,S'S‘inc‘e' the translation ghosts anticommute. This proves (6.16).
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The case g =4, n <2 can be traced back to the case g =4, n > 2. Namely by
the same arguments used in the case g>5 to derive (6.21) and (6.22) one
concludes

g=4,n<2: wi=8(H+...)+0(2).

Subtracting the trivial contribution 8(H + ...) from w{ one gets a S-invariant
function )’ = w}— 6(H + ...) which solves (6.9) but contains only contributions
of translation ghost number not less than 2.

Now consider the case g =4, n = 2. According to (6.15) wj in this case is of the
form

g=4,n=2 w}=8_Y,+P+Q0+0(3), P=39%(¢), Q=99,a(¢),

where p and g are given in (6.15). Each P of this form can be completed to a
solution P of (6.9) which is given in (6.17) and reads more explicitly

i _
- {;C#DZ ~ $eapcaCICOCE0 DY+ ﬂm“} [D%i(4) +p:(9)]. (623)
Most easily one checks that P= 41D’2(C D) solves 8P=0 using

8=ED,+b+5,, {D,,b+8.}=0,

where 5‘; has been defined in (6.18). Analogously one completes Q to a solution
Q of (6.9) (cf. eq. (6.17)). The proof of (6.17) is completed by treating the function

at=wl-P-0-sY,

like @§ in the case g > 5 which finally leads to @¢ = 8(Y; +Y,). Solutions P+0of
(6.9) are trivial if and only if (D?p — D?g) is a total derivative.
Nontrivial P + () yield according to (6.10) solutions w9 of (1.4) given by

wf)=d*x %{BZ[D d))+p2(S)] DZ[D 1(q5)+q_,_(S)]}

The real part of ] is the result stated in sect. 5 for QDS theories.

Remark (i). Tt is interesting to compare the b-cohomology (6.8) to the alge-
braic Poincaré lemma (2.5). The operators b = £D, and d = dx® 9, have a similar
form. However in the case of d the differentials antlcommute and the denvatlves
9, commute while in the case of b the & commute and the derxvatwes D :
anticommute. Now compare (6.8) and (2.5): The n(mtnv:al cohomology classes of d‘
are given by constants &q(C4) (3,C4 = =0) and by those voiumc forms which- have
non-vamshmg Euler derivative with respect to at least ‘one @', Vo ume form,sf
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contain the maximal number of the anticommuting differentials dx? and are
therefore always d-invariant. In the QDS case the nontrivial cohomology classes of
b have a similar structure where the function A(S) take the part of the constants
(D,S =0) and the remaining nontrivial cohomology classes can be obtained by
applying the maximal number of the anticommuting derivatives to functions of ¢.

Remark (iij). The 8-cohomology is now compared to the ordinary Lie algebra
cohomology [11] of semisimple Lie algebras £. In the BRS language the latter is
the cohomology of the operator 6ym given by

N a
o, —8 (C’T,d}) 6=-%C’C’<fm’a—ci,

" ’
where the C’ denote anticommuting Yang-Mills ghosts and the 7, span a
finite-dimensional representation of & according to which the ¢” transiorm. §,,,
of course is the BRS operator of ordinary Yang—Mills theories on the ghosts and
on tensor fields ¢’. The cohomology of &, is given essentially by that of 5, more
precisely:

ym

3ymf(C!,6)=0 = f=P(O)Z($)+3,,8(C', ),

where %, are group scalars constructed of the ¢ and the P’ are polynomials in
Oy = 0,(C’), K=1,...,rank(£) which are certain polynomials of the ghosts and
span the cohomology of 8 (they can be found e.g. in ref. [4]). The fact that
nontrivial 8,,-invariants depend on the ¢ only via group scalars .Z/(¢) expresses a
result well known in mathematical literature, namely the vanishing of the cohomol-
ogy groups H2(#%, M) for all g unless the £-module M is the trivial one (provided
M is finite dimensional). In the SUSY case there are non-zero cohomology groups
H# for nontrivial (infinite dimensional) M. The representatives of these H¢ are
those solutions of (6.9) which depend on the ¢ and these are simultaneously those
solutions of (6.9) which correspond to solutions of (1.4) (e.g. eq. (6.23) yields
representatives of H*). §_ plays the same part for the algebra (1.3) as § does for
an ordinary Lie algebra. Eq. (6.5) yields H# for trivial M: those P(9, &), Q(9, £),
©R which do not depend on the ¢ and have ghost number g make up a complete
list of representatives of H? for trivial M.

7. Examples for the non-QDS case

To demonstrate that the results which are valid for QDS theories do not hold
generally I discuss a simple example of a SUSY multiplet which has not QDS
structure. In particular it is shown that in the presence of this multiplet there are
nonmv:al solutions of the consxstency equation (1.4) with ghost number 1, i.e.
candxdates for pure SUSY anomalies.
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TaBLE ]
Xg A Ves g g ™
D, egA o —2id,5Xp = €aplp 200,54 200V  tepm  2id,9%  (7.)
Dy Ve s €agTp €67 0 0

The muitiplet consists of the fields x,, 4, V,,;, #,, n,, 7 and the respective
complex conjugate fields where y, ¥,  are spin-1 fermions, V' is a complex vector
field, and 4 and 7 are complex scalar fields. On these fields D,, l—)d are defined
according to table 1. One can check that the fields and their partial derivatives
form a multiplet of (1.3) without leading to differential equations for the fields. It
is obvious that this multiplet has not QDS structure since it contains an indecom-
posable D_-multiplet of the (Z)-type represented by the diagram fig. 4. This
(Z)-multiplet is not a (D)-multiplet but a (D")-multiplet (cf. appendix A) since the
arrow in fig. 4 points to the left.

An investigation of the complete D, -multiplet structure (like performed in sect.
4 for the chiral multiplet) shows that this (D’)-multiplet in fact is the only
D -multiplet arising from table 1 which is not a (Q) or (D) multiplet or a singlet
S©_ Therefore this SUSY multiplet has QDSD’ structure (cf. appendix A).

Furthermore one immediately verifies that (6.8) is not valid in this case since
there are nontrivial b- and [, g-invariant functions of the fields which depend on ¢
given by

E%  EXBLS, (72)

where ¢’ is the only D,_-singlet arising from (7.1),

;l;z;} = !l_’d - Ziamixa'

The functions (7.2) are examples of contributions K to the b-cohomology (A.24) in
QDSD’ theories (NK = —K, n=1 in this case). The existence of the nontrivial
b-invariants (7.2) is responsible for the existence of nontrivial solutions of (1.4) with
ghost number 1 given by the D?-transformations of these functions (times the
volume element). A solution of (1.4) arising from £%,, is given by

wh= -1d*x £*D%*y, = d*x £°9,. (73)



446 F. Brandt / Supersymmetric anomaly candidates

The solution (7.3) is obviously nontrivial since according to (7.1) there is no field
whose D_-transformation contains 7,. A solution of (1.4) arising from the second
function (7.2) is given by

w} = d*x £°D*(xb58'). (7.4)

One can check that (7.4) is nontrivial too. One also can construct solutions w)
which depend on the ficlds of the multiplet (7.1) and of further SUSY multiplets.
E.g. from (7.1) and scalar chiral multiplets (4.1) one can construct the following
solution of (1.4):

wh=d* £Dx.f(?)], (7.5)

where f() is a function of the lowest component fields & of the chiral multiplets
which according to eq. (4.1) satisfy D, = 0. The functions £°x, f(@) are further
examples of contributions K to (A.24). These examples show that generally there
exist solutions of (1.4) with ghost number 1 which are therefore called candidates
for pure SUSY anomalies. They are not present in QDS theories (cf. sect. 5).

There is also a solution @9 of (1.4) containing the fields of the SUSY multiplet
(7.1) which cannot be written in the form (5.2), namely

a —_
wf= Ed“x D4 +cc.=d*xam+cc.,

where a is a constant. This solution to (1.4) arises from the nontrivially b-invariant
function. given just by ¢ which represents an example of a contribution L to (A.24)
(since NA = -2 A4, cf. (A.5)). I note that this contribution to a lagrangian is not of
the form (5.2) (since A is not a D,-singlet) but it is of the form of the integrand of
(1.1) (since D, A4 = 0). To construct an example of a solution ) which cannot be
written in the form of the integrand of (1.1) I introduce a further SUSY multiplet
consisting of the fields &, x,, p,» Vad, 7, 7, and the respective complex conjugate
fields. ¢ and # are complex scalar fields, V is a complex vector field and ¥, p, 7
are spin-3 fermions. If one chooses the SUSY transformations of these fields

TaBLE 2
4 Xg Pg Ves # i
Dﬂ ‘ /\—’ﬂ 0 - ZiGaB"P V;B - Ziaaﬁ/\.’ﬁ ﬁtx + Ziamiﬁ& ziaadl;;!&
D P Vpd €af™

Ea‘[éﬁﬂ 0 ]
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according to table 2 one gets a SUSY multiplet which can be proved to have QDS
structure.

From the multiplets given in tables 1 and 2 one can construct the following
D,_-invariant function which is an example of a contribution K to (A.24):

f=X%a—A§. (76)

f is D,-invariant but cannot be written in the form ng(¢)+h(¢ ) for any
(polynomlal) g and A. The corresponding solution

w§=d*x D*(x*x, — A¢)

of (1.4) cannot be written in the form of the integrand of (1.1).

From the multiplet (7.1) one obtains a further SUSY multiplet which has not
QDS structure by setting to zero the fields A, ¢, 7 (this can be done without
imposing differential equations for one of the remaining fields or introducing
further fields, see also remark at the end of this section). The resulting SUSY
multiplet is an antichiral multiplet whose lowest component field is a D,-singlet
SO given by x,. This SUSY multiplet therefore has not QDS structure (recall that
by definition the only D,-singlets appearing in QDS theories are singlets §©, i.e.
singlets which carry only dotted but no undotted indices). I note that there are.
even more D, -multiplets which are not (Q) or (D) multiplets or singlets $.in this
case, namely (Z)-multiplets which have four component fields. This shows that the:
SUSY multiplet obtained from (7.1) by setting to zero A, ¥, = has not QDSD'
structure like the original multiplet (7.1) but has a more complicated Da-multxplet
structure. Such antichiral multiplets have been considered in ref. [9] where the
solutions (7.5) have been found too (of course (7.5) solves (1.4) also in the case
A=¢=m=0). The antichiral multiplet arising from (7.1) for A=¢=7=0
probably cannot be coupled to (minimal) supergravity unless one enlarges it again
to the complete multiplet {7.1).

Remark. The multiplet (7.1) has been constructed starting from the (D’)-mul-
tiplet (x,, 4) and completing it to a SUSY multiplet by introducing the D,- and
D?-transformations of y, and A as further elementary fields. The D,- and
Bd-nansfomations of all fields then are uniquely determined by requiring (respec-
tively using) the SUSY algebra (1.3) which leads to (7.1). It can be shown that in
the same way each D -multiplet given in fig. 1 of sect. 4 whose component fields'7
are elementary fields can’ be completed to a SUSY multlplet w;thout unposmg’
dxfferentlal equations for one of the fields. The SUSY muitlplet m table 2 is
constructed ‘in this way starting from the (D)—multlplet (%, Xa) and the :
multxpiet arising from (7.1) for A=¢=n=0 alse can be obtamed in thls way
starting from the S“ -singlet x,. :




448 F. Brandt / Supersymmetric anomaly candidates

8. Conclusion

It has been shown that the mosi gzeneral form of N = 1 giobally supersymmetric
actions and the answer to the question whether there are anomaly candidates in
four-dimensional global SUSY depends on the structure of the SUSY multiplets,
especially on the representations of the subalgebra {D,, DB} = () present in a given
theory. For a class of theories which contain only special representations of this
subalgebra (QDS theories) all solutions of (1.4) have been classified: in QDS
theories there are only solutions with ghost number 0 and these can always be
written in the form of the integrand of (1.1) (more precisely: in the form (5.2)). In
particular there are no pure SUSY anomalies in QDS theories. This result
however is restricted to the QDS case and examples for the non-QDS case have
been discussed for which there exist solutions of (1.4) with ghost number 1 and
solutions with ghost number 0 which cannot be written in the form of the integrand
of (1.1). Some of these solutions have been given explicitly (cf. sect. 7).

These results originate in the cohomology of the operator b =¢“D,. In the
QDS case this cohomoiogy has been proved to be of the remarkable simple form
(6.8) which implies the particular form (5.2) of the most general invariant action
and the absence of pure SUSY anomalies. In the non-QDS case the b-cohomology
‘has been shown to have more complicated structure in general. In particular
generally there are nontrivial b-cohomology classes in the non-QDS case from
which the candidates of pure SUSY anomalies arise (cf. sect. 7 and eq. (A.24) of
appendix A).

The results presented in this paper have been used aiso within an investigation
of the form of the most general invariant action and the anomaly-problem in
globally supersymmetric Yang—Mills theories and supergravity theories. This inves-
tigation can be found in refs. [6,8].

I thank N. Dragon for many fruitful discussions on various questions wiich
arose during the work on the subject of this paper.

Appendix A

b-COHOMOLOGY IN QDS- AND QDSD'-THEORIES

* This appendix contains the complete proof of (6.8) and derives a more general
result, Namely the investigation of the h-cohomology is extended to theories which
may contain apart from (Q) and (D) multiplets and singlets @ also (D)

~multiplets (cf. fig. A1). The latter are doublets of the (Z)-type like (D)-multiplets
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Fin) FO D e

QD />Q(n+1) >Q(n ) .
AN D(“) >n> 5O
Q(n) Q(G)
Q) (Q) (D) (DY (9)

Fig. A.1.

but the arrow appezring in the diagram representing them points 10 the left
instead of pointing to the right as in the case of (D)-multiplets, Analogously te the
definition of a QDS theory I define:

Definition. A theory is called QDSD’ theery if its D, -representation decom-
poses into a sum of (Q), (D) and {(D’) multiplets and singlets S©.

A basis whose elements make up these D_-multiplets is denoted by B = {ci) } as
in sect. 4. QDSD’ theories have a remarkable property which dlstmgulshes them
from all other theories: They allow to define operators 75 on # whose anticom-
mutators O,, with the D, are given by

Oﬁa 1= {IB, Da} —-I + 26’3“1\] (Al)

on all component fields of (Q), (D) and (D') multiplets and on the singlets $©. In
(A.D 1,5 denote the generators of SL(2, C) transformations of undotted spinor
indices (cf. appendix C) and N is an operator which is diagonal on &, i.e. each ¢"
is an eigenfunction of N (see below). It can be shown that operators t; yieiding
(A.1) exist only on (Q), (D) and (D’) multiplets and on singlets $® but not on
other (Z) multiplets than (D) and (') and not on singlets S, n > 0. (A1) turns
out to be sufficient to compute the b-cohomology completely for GDS theories and
almost completely for QDSD’ theeries. In the following the componeni fields of
(Q)-multiplets are denoted by Q, Q" Q¢+ and F like in sect. 4. D, acts
on them according to

n - +
DuQ(n)ul..,an i ( _) eu‘(a.Q(f l)ozz.“cv,,) + (n + I)Q(: D

ady...a,?

(n—~1) — (n)
DaQ* az...a,,“nF aa

...y
(n+1) — __\n+1 (n)
Q apay...a, ( J a(auF a)?

.ay,

D,F®, . =0. (A2
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The component fields of the (D)-multiplets are denoted by DY, D¢* 1, those of
the (D')-multiplets by U™, U®~D and the singlets by S®. D, acts on them
according to

DaD(n)vz]...a,, =(n+ 1)D(~f+l)aa|...a,.’ DaD(:*—l)ao---an =90,
_ n -1 -1 —_
DaU(n)a,..-an = ( —) ea(alUS_” )az~~-"n)’ DaU(—n )a2'“an =0.
0) —
D50, (A3)

tg is defined as follows:

tﬁQ(")al__.an _- 0’

(n—1) n_1k (n)
tEQ—- al...an_lz(_) n+1Q Bay...ap, 1
el n+1-—k -
tBQ+ ag...a, = “;l +1 Eﬁ(aOQ ap...a,)?
n+1-k
= -1 _\nti a+13
tﬁF(n)al...a,, - eﬁ(aIQ(—n as...a,) + ( ) kQ(-f Boy...a,°
n+1
tBD(n)a,...a,, =O’
+1) —
tBD(r ag...q, EB(a(,D(n)u,...a,,)’
tBU(n)a,...a,, = O’

tﬁU(—n_l)az...a,, = ( - )nnU(n)ﬁaz---”n’
158© =0. (A.4)

On functions of the fields tg is defined as anti-derivation (fermionic first-order
differential operator),
ltgl=1.

One can check explicitly by means of (A.2)-(A.4) that (A.1) holds on . E.g. one
calculates on Q™;

nk n(n+1-k)
= ——— ) ——
{tﬁ’ Da}Q(n)al“'an - n+ lea(ﬂlQ(n a...a,)p + n+1 eB(mQ(")az...an)a

n+l1-k

(n)
n+1 eﬂaQ ay..a,t
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On the other hand one has

n n
lﬁaQ(n)al . = Eea(qu(n)az ...a,)B + _Z—Eﬁ(a,Q(n)az o)t
Subtracting this from the result obtained for {t5, D }JQ™ gives

({tB’ Da} - lﬂa)Q(n)al...a,,

2nk —n(n+1) -
- W(Gc«a.Q .- — @ < B)

n+i-k

¢ 1
+ n+1 GBaQ\n)al...a,,= E(n -2k + z)eﬁaQ(n)a|...a,,

which proves (A.1) on Q"™ and determines NQ™: NQ™ =(n-- 2k + 2)Q'™.
Analogously one verifies (A.1) on all other fields and obtains N. The result for the
(D) and (D') multiplets and the singlets is

ND™=(n+2)D"™, ND{*V=(n+1)D"*D,
NU™ = —pU®™, NU D= —(n+ 1)U Y, (A5)
NS©® =0,

while on the (Q) multiplets it reads

NQ®™ = (n =2k +2)Q™, NQ"~V=(n -2k + 1)Q"Y,

A6
NQQ*V=(n~2k +1)Q¢*Y,  NF™ = (n~2k)F®™. (A6)

k can be chosen freely for each {Q) multiplet, i.e. there is a freedom in the
definition of 75 on the (Q)-multiplets while on the (D), (D’) and (S) multiplets the
definition (A.4) of ¢; and the N-eigenvalues (A.5) are uniquely determined by the
requirement (A.1) and the D, -transformations (A.3). Egs. (A.2)-(A.6) imply the
following identities on %

{tas 16} =0, [l t,] = ~€yaty, [N, t.]1=t., [N,D,]=-D,,
[N, 1,5] =0. (A7)

Each function f(£, ¢) can be decomposed into eigenfunctions of N (where N is
defined trivially on &, N¢é=0)

f(fs ‘5) = Zfr(ga &)’ Nfr = 'fr' (A.&)
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The fourth of 2gs. (A.7) implies [N, b1= —b. Thus bf, has eigenvalue (r — 1) to N
and therfore bf = 0 requires bf, =0 for al! r,

bf=0 o bf=0 Vr. (A.9)

One can therefore investigate bf = 0 without loss of generality for functions f with
definite eigenvalue of N. Furthermore f can of course be assumed to have definite
degree in £ since b increases this degree by one. f therefore can be assumed to be
given by

f=E %, o (9),  Nog o =ro, ., (A.10)

n

where w is totally symmetric in its undotted indices,

wa;..‘a,! =w(a,.,.a,,)‘

bf = 0 is equivalent to

Doy, ap="0. (A.11)
Application of Of , eq. (A.1), to w,, o, and symmetrization in all lower indices
gives
n+r
OFf o, . )=D(a{'3w =——58% w

(a™ay.. aj...ay) 2 (a7 ay...a,)" (A’lz)
The first equality in (A.12) follows from the definition of O, due to (A.11), the
second equality in (A.12) follows from O, =I,, + 34, N due to (A.10) and

n
loa®a,...ay = 5 6B®ay..a,) (A-13)
(A.13) holds due to the assumption of /,g-invariance of f which implies that the
index picture of w, a, 1nd1cates its actve’ transformations property with respect
to laﬁ-transformattons of the ¢' Contracting (A.12) with o5 gives

nD tw (n+r)(n+2)

1---Cp (o a)p = 2 ay...a,?

~-Dtw, Dt:=D“t,. (A.14)

Applying D, to this equation and symmetrizing in al! indices yields due to (A.11)

D Dtw =0, (A.15)

ayp...a,)

ie. Diw,, _, satisfies (A.11) as well. Analogously to the derivation of (A.14) one
concludes (Dtw,, ., has N-eigenvalues r like w, _, due to (A7)

5 (n+r)(n+2)
a,...a,,+nD(a,t thaz...a’n)ﬁ= -.—___—'__—tha,...a,,' (A'16)

~(Dt)’w >
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The contribution (Dt)zwa,...an to (A.16) is treated by means of the following
identities:

(D)’ =Dt +Dgt"0F —1D*%, D*=D°D,, *=1°,, (A.17a)

n-—w

Dﬁtyoﬁywal...a,, = nD(a,thaz...a,;)B + Tthaq...a,,’ (A'17b)
n+r+2

n#0: D, tPD*w,, . .= "—'2"_D"2‘°a,...a,,- (A.17c)

These identities can be proved using (A.1), (A.7) and (A.10). E.g. (A.17c) can be
obtained using t#D?%t?=[¢?, D?}t? first (which holds since t#t?>=0 due to the
first of egs. (A.7)), then working out the commutator [¢#, D?] using (A.1) and
finally evaluating the SL(2, C) generators and N-operators which arise.

Inserting (A.17a) into (A.16), using then (A.17b), (A.17¢c) and solving the
resulting equation for Dtw,, , gives

H(n+)(n+r+ 2)Dtw,,  , = D(“lzﬁ{ -D2% + nDt — n}waz__.an)ﬁ,

n+r+2
(A.18)

where (n++»+2)#0 and n+#0 (the latter due to (A.17¢)). Finally (A.18) is
inserted into (A.14) whick is then solved for w,, _, . The result is

4
Geran ™ T r+2)(n+r)(n+2)(n+1)

D tPP"Da,, o5 (A19)

@)
where the operator P is given by

P = ———1——-D2t2 +nDi — zz-(nz+m +3n +4).
n+r+2 2

This shows that w,, _, =D, «yy 1€ f is trivial unless n €{0, —r, —r — 2}

aplay...

n&E{0, —r, —r—2}: f=bg, g=&M... " ",y o

4
= — . tBpann) .
Moy .., (n+r+2(n+ry(n+2)(n+1) “ar...a

(A20)

I mentioned already that the constant k appearing in (A.4) and (A.6) can be:
arbitrarily chosen for each (Q) multiplet. Therefore the N-eigenvalue r of ali pa;ts
of f which depend on component fields of {Q)-multiplets can be always chosento
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be different from the values (—n) and (—# — 2). One concludes that components
of (Q) multiplets can contribute to nontrivial parts of solutions f of bf = 0 only if
n=0. This reflects a more general result holding for the dependence of b-in-
variant functions on component fields of (Q) multiplets (cf. remark at the end of

this appendix).
The case n =0 needs a special treatment due to (A.17¢). In this case one has

n=0: f=w(é), bf=0=D,w=0. (A21)

Since w is /,g-invariant one concludes from (A1), (A21) and Nw = ro:
; 1
r#0: ro={t*,D,}o=Dt°0= Do < w=-— 7th. (A22)
Making use of (A.22) (several times), (A.1), and l,po = 0 one calculates for n = 0:

1 1 1
= ——Dtw=—(Dt)’w=—D_ (0% — D,t*)t?
o ; Uy rz( ) w 2 a( 8 B ) @

1 1 o _ 1Brra 1, 2-r 2
== 55D e - rzDa(t —tPC%)w = ~ 53D+ 55 Diw
=w= -——————-———1 D*t’w (r+0, —2) (A.23)
r(r+2) ’ ) )

This shows that if bf =0 and n =0 then f is of the form D?g(¢) unless r =0 or
r = —2. By the same arguments used below (A.20) one concludes that component
fields of (Q) multiplets contribute only to solutions which can be written in the
form D?%g($). Altogether the result for QDSD’ theories can be stated in the
following form:

Lemma 1. In QDSD’ theories the solutions f(£, ¢) of bf = ., af =0 with ghost
number n are of the form

n=0: sf=D2g($)+L(d;)+K(<5),
n>0: f=L(¢ é)+K(& ) +bY(£, $), (A.24)
where the N-eigenvalues of K and L equal (—n) respectively (—n — 2)

(N+n)K=0, (N+n+2)L=0,
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and K and L do not depend on the component fields of (Q) multiplets:
L =L(§, D™, pty gy -, S(o))’
K=K(§, D("), D(r+1)’ U("), U(_n—-l), S(O)).

This of course does not mean that each function K or L with the properties
mentioned in the lemma is b-invariant. It only states that if there are any nontrivial
b-invariants in a QDSD’ theory which are not of the form DZ?g(¢$) then they
contain necessarily a contribution K + L (examples of nonirivial b-invariants K
and L can be found in sect. 7). Therefore this lemma is not a complete determina-
tion of the b-cohomology in QDSD’ theories.

However lemma 1 yields a complete result for the b-cohomology in the QDS
case, i.e. in the case where there are no (D’)-multiplets. Namely in this case there
are no elements ¢’ which have negative N-eigenvalues due to (A.5), (A.6) since
the eigenvalues of the (Q)-components can be chosen positive by choice of k. This
shows that there are no contributions L to (A.24) (since these have negative
M-eigenvalues for all n) and the only contributions K which can appear are those
with n=NK = 0. In the QDS case such K can depend only on the singlets since
they are the only fields which have vanishing eigenvalue to N while the eigenval-
ues of all remaining d;’ are positive (by choice of k). Therefore the only contribu-
tions K which can contribute to (A.24) in the QDS case are functions A(S) which
obviously are b- and [, g-invariant. This proves (6.8).

Remark. One can prove the following statement which holds independentiv of
the multiplet structure of a theory and is not restricted to f,g-invariant functions:

Lemma 2. Nontrivial contributions to b-invariant functions f(£, d;) with ghost
number n > 0 do not depend on component fields of (Q)-multiplets and those with
ghost number 0 depend on component fields of (Q}-multiplets only via functions of
the form D2g(¢):

n=0: f=D2%(d)+M(Z", Z, s™),
n>0: f=M(£ Z(™, Z{, ™) +bY (¢, 6).
Here Z{™, Z{”, $' denote the component fields of D, -multiplets of the (Z)
and (S) type (cf. fig. 1 of sect. 4). The lemma is proved analogously to the proof of

lemma 1 by means of operators r, whose anticommutators with D, on all
component fields of the (Q), (Z) and {S) multiplets are given by

{YB, Da} = %GBuNQ,
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where N, is the countin:: uperator of the component fields of the ;" multiplets.
ry is defined according to

rﬁQ(n)a|,..a,, = 0’
(”-1) - {_ n+t (n)
"‘BQ—- o). .. « ) Z(ﬂ ¥ l) Q Bay...a,_?
(n+1) ! )
r5Q+ -y 2(n PN €. "‘(;Q‘ ay...a,)’
(n) : (n-—1) n1n+1)
n I " e
r/iF ay...e, 2(" - I-l‘f‘alQ- az...(v,,)+( ) 2Q+ Ba;...a,?
(m = " = (n) =
rﬁZl" al...a,,_rﬁzl(d “w, ‘a,,_rﬁs a,...a,,_o'
Appendix B

REPRESENTATION THEORY OF {D,, Dy} =0

Like in sect. 4 A" denotes an irreducible SL(2, C) tensor field, i.e. A" is
totally symmetric in its undotted and dotted indices respectively. The superscript
(n) indicates the number of undotted indices of 4", dotted indices are omitted.
The D, -transformation: of A" generally is given by

DAy, 0, =) €ata B Vs (DB,

" aa; ... 0y,"

where B~ Y and B”*" are irreducible SL(2, C) tensors carrying (n — 1) respec-
tively (n + 1) indices (B ™Y, B“*" or both may be zero). The action of D,
represented by the diagrams introduced in sect. 4, see fig. 2.

The possible finite-dimensional indecomposabie D, -multiplets are easily ob-
tained from the following statements:

(i) Diagrams representing D_-multiplets do not contain one of the segments of
fig. B.1
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/FSn) an) /F'{Sn)
n—1 \ n n- n
ol ’—\ pleliasl Q" ”°\\/Q‘+“’ (n #0)
* H . ./
Q(n) Q) Q™
(a) b)
Fig. B.2.

(ii) If a diagram representing a D, -multiplet contains one of the segments of
fig. B.2a then it contains also fig. B.2b unless n = 0 (@ _ vanishes if n = 0).

(i) holds due to the algebra {D,, Dg} =0= D, D, = 3€,,D* and due to the
symmetry of irreducible SL(2, C) tensors which imply the following identities
whose graphical translation is (i):

DalDazA(n)al o = _L_DZEazalA(n)al = 0’

Lay,

_1ip2 -
D(uDBA(")al...a,,) - iD e(aBA(n)a,,..a,,) =0.
(ii) states that D?Q‘ #0 requires Q" V+0 and Q" V+0 unless n=0
(D*Q© # 0 requires QP+ 0). Eg. Q¢ * V=0 implies D*QY*",, , =0 which
contradicts D2Q" + 0 since

n+2

+1) D@y Y, =D*D, Q™ R YPIETY
(n ) Q+ aqy...a, ("’Q ape--ap) 2(f’l+1)

2 .
D Q(n‘a,...a,,'

From (i) and (ii) one easily concludes that fig. 1 of sect. 4 gives a complete list of
diagrams representing indecomposable D, -diagrams, i.e. there exists a basis for
the irreducible SL(2, C) tensor fields such that the representation of {D,,, Dg} =0
on the tensor fields decomposes into a sum of D_-multiplets represented by the
diagrams given in fig. 1 of sect. 4.

Anpendix C. Conventions and notation
C.1. GRADING

The grading || €{0, 1} of a variable ¢ (a field or one of its partial derivatives
or a differential or a coordinate) is defined modulo 2 by the sum of its ghust
=.mber (gh), its form degree (deg) and the number of its spinor indices (doited
and undotteg):

=deg(¢) + gh(e) +m+nr (modulo 2).

Q...
| gt &m



458 F. Brandt / Supersymmetric anomaly candidates
The grading of the variables determines their st.tistics,
el 1e?]
~'Pl¢P2=(‘) ehietl g2t

An object X (variable or operator) is called fermionic if | X | = 1. The grading is
additiv modulo 2, i.e.

IXY|=|X|+1Y| (modulo 2).

Derivatives with respect to a variable act from the left according to

and therefore have the same grading as the variable itself,
| @
el e

The grading of operators which can be represented in the form

(n) E Z frl

e T
k=0r ...r, d‘PA

follows from the grading of the variables. First-order differential operators &,
satisfv the product rule

Bafe'e®) = ( 0¥ )‘P +(- )m‘”w 'o! (ﬁ(moz)-

C.2. COMPLEX CONJUGATION

Complez(_ conjugation of an object X (a variable or an operator) is denoted by
X * or by X. The complex conjugate of a product of two objects X, Y (variables or
operators) is defined by

(Xy)* = ( __)|X|!Y|X*y*.
In particular the complex conjugate @* of an operator & is defined by

orp=(-) """ (@e*)".
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Note that (3/d¢)* and 3/d¢* generally are not identica! but related by

F) *, o 9
(5] -

In particular the derivative with respect to a real fermionic variable is a purely
imaginary operator. The operators D, have the following reality properties:

®) =3, (D) =D,

C.3. SYMMETRIZATION, ANTISYMMETRIZATION

Symmetrization respectively antisymmetrizaticn of indices are deroted by
brackets () respectively [ ], e.g.

1 1 .
o sign()
T ZTaﬂ.)..‘am")’ T[al.“a,,)_ F Z( _) Ta,,(l).".aa(n)’
tom

(2,...a )= —_'
n n. -

where Y. runs over all permutations in the symmetric group, w €S,

C.4. LORENTZ (SL(2, C)) ALGEBRA

Minkowski metric, e?#<9:

N =diag(l, —1, =1, —1), e®d=¢labed] OB
Invariant S1(2, C) tensors
P = b2, W= —ePi= (eFy , eV =¢"=1,

€.,€"° = 88 = diag(1, 1), e, €7 =5% = diag(1, 1).

g-matrices: 0“4, a: row index, B: column index

o_f[1 0O 1_{0 1 z:(ﬂ -—i) 3=(1 0)
7 (0 1)"’ (1 0)"’ i o) T\l -1/

J-matrices:
TAGH . OV O
o € ‘e g yy°

Raising and lowering of spinor indices:

Y= fqp',bsa = fdﬁ"}”ﬁ, U, = 5&_43"!?"8, Y= edﬂ‘l’s
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o*t, % .matrices:

- - b 1= - @
o.abaﬂ = 7}(0‘”0‘" __o.ha.a)aﬂ, a.almﬁ_ = ;(o‘“a" — a'b(r") f

Contraction of spinor indices:

X ="Xe> VX=X
Vector indices in spinor notation:

V. =oc’ V

ao aa” a’

Lorentz (SL(2, C)) generators:
e - %*
lab = o'tzbaﬁ[aﬁ - Eabaﬂld[:‘:’ ldﬁ = (laB) ’

[lab’ l(d] = nbclad + T'udlln‘ - nbd’a(‘ - naclb(l'

Lorentz (SL(2, C)) transformations of spinor- and vecior-indices:
Lugthy = ~€ya¥pyy  Lagly =0, Lighy= €35, Loy =0,

labV(' = ncha - na('Vb’ labtpu = ~(faluxB¢B’ lab;!;d == _‘abdﬁ.lzﬁ
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