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We investigate how to construct the most general invariant action and whether there are 
anomaly candidates in D = 4, N = 1 globally supersymmetric theories. The importance of the 
representation theory of the supersymmetry algebra for these questions is discussed. For a class 
of theories with special supersymmetric multiplet structure complete answers are given. Exam- 
ples of more general cases are discussed. 

1. Introduction 

This paper deals with the questions of how to construct the most general N = 1 
globally supersymmetric local action in four dimensions (renormalizable or not) 
and whether there are up-to-now unknown candidates of anomalies in rigid D = 4, 
N = 1 supersymmetry (SUSY). I consider pure SUSY, i.e. I do not require further 
symmetries apart from SUSY and Poincar~ invariance. 

A well-known method to construct N = 1 supersymmetric actions W is given by 

W=fd4x~2{D2g(ck)+h(&¢)}+c.c. ' D2=D,~D,,, ~ 2 = ~ , , ~ a ,  ( i .1)  

where ~b denotes collectively the finite set of elementary fields ~0 i present in a 
given theory and their partial derivatives, 

~ {¢, 0o¢, aaOb,' .... }. (1.2) 
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~b~ denotes antichiral linear combinations of the 4' (D.4~¢ = 0) and D,,, Da denote 
the spinor derivatives (SUSY generators) which are assumed to be represented 
linearly on the ~b according to the SUSY algebra * 

l - . ,  [oo, 0ol--[0o, 

{D,~, D,~} = - 2Rr~',~aO~. (1.3) 

Using (1.3) and the BRS operator introduced below one easily verifies that actions 
of the form (1.1) are supersymmetric. However it is not known yet whether or in 
what cases (1.1) gives the most general ,~upersymmetric action. 

To investigate this question and the anomaly problem I shall use a BRS 
operator ~ for the algebra (1.3) which is constructed analogously to the Yang-Mills 
case by introducing a ghost C A for each of the operators appearing in (1.3): 

By means of 6 the integrands of supersymmetric actions and anomalies can be 
characterized as solutions of the so-called consistency equation (cf. refs. [1,2]) 
which in terms of differential forms reads 

~('04 G at- dO2G+ I = 0, fl)4G 4= 6~ ac-I + dn3 c.~ (1.4) 

Here 

d = dx"  0. (1 .5 )  

is the exterior derivative and ~op ~, %g are p-forms with ghost number g depending 
locally, i.e. polynomially ** on the 4~, on the ghosts and may also depend explicitly 
on the coordinates. The general solution to ° of (1.4) with ghost number 0 gives the 
integrand of the most general invariant classical action, solutions ~o~4 with ghost 
number 1 are integrands of candidates of anomalies, 

i _ d4x  C ~ ( ¢ ~ ) .  Oj 0 = d4x  . ~ ( ¢ ~ ) ,  tO 4 

Since rigid SUSY is considered the ghosts are constant and (1.4) is equivalent to 

a.e'= c % ~",  .~ . o . ~  °, 

a(CA~eA) = CAC%~"., C ' %  . a~+ c % ~ " ,  

* The era-matrices and further conventions used in this paper are listed in appendix C. 
** This definition of locality may be generalized by admittin~ forms which are infinite series in t h e  

undifferentiated ~i bu t  Still polynomials in the derivatives of the. ~ i  The results of this paper are 
valid also under this weaker assumption. : ~ 
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where the ~"s and 7f"s are arbitrary local functions of the 4' and explicit 
coordinates x" (forms and differentials dx a serve to hide indices). 

The paper is organized as follows: Sect. 2 collects assumptions underlying the 
investigation, especially the approach to SUSY. In sect. 3 the BRS operator is 
defined. In sect. 4 I give the representation theory of the subalgebra {D,~, Dt~} = 0 
of (1.3)which turns out to be essential for the classification of the solutions of 
(1.4). In this section I also define a class of theories which I call QDS theories by 
the property to contain only special representations of this subalgebra. For this 
class of theories (1.4) is solved completely and the result is given in sect. 5. Sect. 6 
sketches the proof of this result. In sect. 7 examples for the non-QDS case are 
discussed which show that generally there are solutions of (1.4) with ghost number 
1, i.e. candidates for pure SUSY d~omalies. Sect. 8 is a brief conclusion. It is 
followed by three appendices. The first appendix gives the proof of one of the 
theorems used in sect. 6 and of a generalization of this theorem, the second 
sketches the de~ivation of the results given in sect. 4, the third contains the 
conventions used in this paper. 

Remark O) The question whether (1.1) gives the most general form of a 
supersymmetric action is equivalent to asking whether each supersymmetric action 
can be written as a superspace integral of the form 

W=fd4x {d2ff d20 g(qt) +d2~ h(qtc) + c.c.}, 

where qt = qt(0 ' 0, 4)) are superfields and qZc are superfields whose lowest compo- 
nent fields 4)c are D,~-invariant. 

Remark (ii) The question whether there are solutions of (1.4) with ghost 
number 1 in globally supersymmetric theories has been investigated at the begin- 
ning of the preceding decade [13]. The result obtained there was the absence of 
solutions co~ of (1.4) in the pure supersymmetric case (i.e. if no symmetries are 
considered apart from SUSY and Poincar6 invariance). Recently the authors of 
ref. [13] remarked [14] that by tacit assumption they investigated only special 
supersymmetric theories in ref. [13], namely theories containing only "vector 
supermultiplets", i.e. SUSY multiplets which can be described by means of 
unconstrained scalar superfields. Such theories can be proved to have QDS 
structure, i.e. the results for QDS theories listed in sect. 5 generalize those of ref. 
[13]. I note that the anomaly problem has been taken up again also in ref. [9]. 

2. Variables and approach to SUSY 

First of  all I stress an important point underlying my investigation and my 
approach to  sUSY: throughout this paper the 4), eq. (1.2), are treated as a s e to f  
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infinitely many variables * which are h~dependent apart from the algebraic rela- 
tions 

following from [0~, Oh] = 0. A basis for this set of variables is denoted by {d~'} and 
may be chosen e.g. as 

{dp'}={Oa ...O,,,q~i: n>~O, ak >~ak+l}. (2.1) 

All equations have to hold identically in these variables. In particular the SUSY 
algebra is assumed to be represented linearly on these variables and the partial 
derivatives act algebraically on them (0, maps the variable q~i to the variable O~q~ i, 
etc.) 

Since I consider global SUSY the ghosts C A are constant, 

OaC A = 0 .  (2.2) 

Differentials dx  ° and explicit coordinates x a are treated as additional variables on 
which 0 a acts according to 

0,~ dx  b = O, Oax b = 6 b. (2.3) 

The reasons for using this approach are: 
(i) The locality of the forms appearing in (1.4) can be easily guaranteed. 
(ii) (1.4) is required to hold on off-shell fields, i.e. integrands of actions and 

anomalies have to solve the consistency equation (1.4) irrespectively of the x-de- 
pendence of the ~p;. Since the ~pi depend arbitrarily on x, the same holds for their 
partial derivatives and this justifies to regard (2.1) as a set of independent 
variables. 

The locality of the forms appearing in (1.4) of course is ar~ important require- 
ment. In particular for G = 1 it originates in renormalization theory [1,2] that 
anomalies (in lowest loop order) correspond to local functionals of the fields. The 
usefulness of the approach to regard the ~b r as infinitely many independent 
variables in connection with locality becomes obvious from the following facts: 

Each volume form to4G(dx, x)  = d4x  ...cp(CA, tip(x)) is exact due to the Poincar6 
lemma for forms of x in contractible coordinate patches: 

p 4 : 0 :  dtop(dX,  x , C A ) = O  ~ top=dr lp_ , (dx ,  x ,  CA),  (2.4): 

p=O:  drop (x ,  cA)  = 0  ** COO=COo(CA). = 

* :In the mathematical literature this approach is treated in the framework of jet bundles 112]. : : 
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This however does not imply that (1.4) has no solution since this lemma does not 
contain any information about the locality of the forms r/p_ ]. Treating the 4'" as a 
set of infinitely many independent variables allows us to keep control of the 
locality. Namely a lemma can be proved which is analogous to the ordinary 
Poincar6 lemma and gives the cohomology of d = dxaO, where 0, acts algebraically 
on the 4'r and according to (2.2) and (2.3) on the C A, x" and dx".  It is called the 
algebraic Poincard lemma [3,12] and reads in this case (four dimensions, constant 
ghosts): 

0 < p  < 4: 

p=O:  

p = 4 :  

dcop (dx ,  x, C A, 6 )  = 0 

do~0 (x ,  C A, 4') = 0 

d4x .~F(x, C A, 4") 

= dr/3(dx, x, C A, 4,) 

,~, % = d~/v_ I (dx,  x, C A, 4,), 

'~" O~o = ~oo(C A),  

¢* ^ . = 0  V~o i. 
0~o' 

(2 .5)  

In (2.5) all forms depend locally on the 4, and J/c~o i denotes the Euler derivative 
with respect to ~0', 

0 
nt9 

Z . = E E ( - - )  a,'''~an~/~a ...~an~ i x (  ) 
~ n>~O aj+ I >~aj 

According to (2.5) volume forms are exact in the space of local forms if and only if 
their Euler derivative with respect to each elementary field vanishes. In particular 
there may be solutions of (1.4) while a naive application of (2.4) would lead to the 

conclusion that there arc no solutions of (1.4) even for ghost number 0. 

3. BRS operator 

Apart from the occurrence of anticommutators (1.3) has the form of a Lie 
algebra, 

[ DA, De] = DADn - ( -)IAIIBIDBD A = fAnCDc, 

where I A I denotes the grading of D A (cf. appendix C) 

Do, = 0 ,  I l- = 1, 

and the only nonvanishing structure constants fA~ c are given by 

: f , a  = f a , .  = _2i t ro  a. 
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operator 6 for the algebra (1.3) is constructed analogously to the The BRS 
Yang-Mills case [2]: 

6dp r= CADAdp r, 6C A = ½ ( - )  I m c " C C f c n  A (3.1) 

which reads more explicitly (C,a = tr",~aC a) 

6 4 / =  ( C"Oa + ~"D,  + ~aD a )d / ,  6C "a = 4i~"~ a, 6~" = 6~ a = O. 

The ghosts C A have opposite grading compared to the corresponding generators 
DA, the translation ghos~is are chosen to be real: 

c A ~ { c  ~, ¢- ,  ~ } ,  I C"  I = ~, I f "  I = I~ ~ t = o, c a = ( c . ) * ,  ~ = ( ~ - ) * .  

On differentials and explicit coordinates 6 is defined trivially, 

6 dx"  = 6 x  a =0 .  

On functions of the variables $~, C A, x a, dx" ,  the BRS operator is defined as 
antiderivation (fermionic first-order differential operator). By construction the 
BRS operator is real, fermionic, nilpotent and commutes with the partial deriva- 
tives, 

6~=[0.,61=0, 161=1, 6=6* .  

4. Do representations and QDS structure 

I mentioned already that the SUSY algebra (1.3) is similar to a Lie a lgebra .  
However, apart from the occurrence of anticommutators there is another differ, 
ence compared t~.~ the Yang-Mills case. Namely the representations of the SUSY 
algebra on the variable~ .~r have infinite dimension since the partial derivatives 
occur in the algebra. But (1.3) contains two subalgebras, {D,, Dr3]=0 a n d  
{D,, D~} = 0, whose representations on the 4)" decompose into finite,dimensional 
representations which are indecomposable (reducible but not completely r e -  
ducible). This holds due to the assumption there are only finitely many elementary 
fields q~/. It turns out that the ~eneral solution of ~1.4) for a aiven the0~!deDends : 
on the kinds of indecc 
the theory. In ~.ppendb 
= 0  i s  sketched. The  
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F('O F (o) 

(Q) n > 1: Q(_n-n +~) n = O: Qo) 

Q(,~) Q(O) 

Z~ ('~-3) ~.Z ~'~-~) Z~('~+I) Z(n+3) 

z[ z?) z? + 

(s) 
Fig. 1. 

the component fields of these D,-multiplets are irreducible SL(2, C) tensors whose 
components are totally symmetric in their undotted a.nd dotted spinor indices 

^ 

respectively and are linear combinations ~b ~ = as& s of the &r. There are 3 types of 
indecomposable D,-multiplets on irreducible SL(2, C) tensors. These types are 
denoted by (Q), (Z) and (S) which can be represented by the simple diagrams given 
in fig. 1 (the indecomposable D,~-multiplets of course are analogous). Here 
Qt") . . . . .  S (") denote the component fields of the D,-multiplets and the arrows 
indicate how D~ acts on them (see fig. 2: an arrow pointing to the right denotes 
symmetrized D,,-transformation, an arrow pointing to the left denotes antisym- 
metrized /),-transformation). All component fields of a particular multiplet carry 
the same number of dotted indices and the number of undotted indices is denoted 
by the superscript, e.g. Q(,) denotes an SL(2, C) tensor whose components are 
totally symmetric in their n undotted indices and carry a definite number of dotted 
indices in which they are totally symmetric as well. 

/ B(n+l) 

A(~) . /  
B('~+1)~,,+~...~1 = ~ D(o,+~ A('O~,. .~) 

B(~-x) %",,,,,. A (~} : ~  B(,~-,) _~...¢,, = (_),~ __~+r D ~ , A ( n )  .... ~,~ 

t T ; ~  ") 
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The (Q) multiplets are quartets of SL(2, C) tensors unless the lowest component 
field carries only dotted (but no undotted) spinor indices (in this case they are 
triplets). 

The (S) multiplets are singlets, i.e. the components of the tensors S t") are 
D,-invariant linear combinations of the 4~ r which cannot be written as linear 
combination of any D,~  s. 

The zig-zag diagrams representing the (Z) multiplets can have arbitrary lengths, 
i.e. there are D,-multiplets with an arbitrary number of component fields; How- 

ever it can be shown that a particular theory can contain only (Z) multiplets whose 
number of component fields does not exceed some maximal value. 

One can easily construct SUSY multiplets (multiplets of the complete SUSY 
algebra (1.3)) which contain an arbitrary D,~-multi01et of fig. 1 without imposing 
differential equations for the elementary fields making up these multiplets (cf. 
remark at the end of sect. 7). In other words: all D~-multiplets represented by the 
diagrams of fig. 1 in fact may occur in supersymmetric theories. 

However most of the prominent supersymmetric theories have a simple D,-mul- 
tiplet structure: the only indecomposable D,-multiplets occurring in them are (Q) 
multiplets (with arbitrary number of indices), singlets S (°) without undotted indices 
and special (Z) multiplets represented by very short zig-zag diagrams containing l 
only one arrow pointing to the right. For these special (Z) multiplets I introduce 
the notation (D) (see fig. 3). Theories with this simple D,~-multiplet structure a r e  
called QDS theories in the following. 

Definition. A theory is called QDS theory if the D,-representation decom- 
poses into a sum of (Q) and (D) multiplets and singlets which have only dotted 
indices. 

To prove the QDS structure of a theory one has to decompose its D,-represen- 
tation into indecomposable parts, i.e. one has to prove the existence of a basis 
{4~ r = a~6 s} consisting of components of irreducible SL(2, C) tensors T (') such that 
each T (") is a component field of one and only one D,-multiplet represented by 

F ('~) F(O) _'"" Q(_'-'). Q(+-+,) . / / "  
• D(") 

Q(n) Q(o) 

(Q) (q)  (D) 
Fig. 3. 

o i  
S(O) 

(s) 
! 
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one of the diagrams given in fig. 3. Note that a theory contains an infinite number 
of D,~-multiplets since there are infinitely many independent variables ~b r. Thus it 
may seem to be difficult to prove the QDS structure of a given theory. In practice 
however this turns out to be easier than it sounds since usually one can guess (and 
then prove) the complete D,~-multiplet structure of a theory after one has deter- 
mined the "lowest" indecomposable D~-multiplets containing the undifferentiated 
fields and their derivatives of lowest orders. Moreover, if one is interested only in 
solutions of ;~,4)whose (power counting) dimension does not exceed a certain 
value dma x (e.g for reasons of renormalizability) then it is sufficient to determine 
only those indecomposable D,~-multiplets which consist of the undifferentiated 
fields and theil partial derivatives up to some maximal order which depends on 

dmax ° 

Note that if a theory has QDS structure then the D4-multiplets have QDS 
structure as well since D 4 is the complex conjugate of D,~ which implies that 
{(~r).} which is a basis of the ~b as well makes up indecomposable D4-multiplets. 
However in general {(d~r) *} 4= {~q and in fact generally there is no basis consisting 
of components of indecomposable D~-multiplets and indecomposable D4-multi- 
plets. This complicates the determination of the representation theory of the 
complete SUSY algebra (1.3) which in fact is not known on the variables ~b ~. (The 
chiral multiplet discussed below has the unusual property that one can choose 

To demonstrate how one determines the D.-multiplet structure of a given 
SUSY multiplet I treat a simple example of a SUSY multiplet with QDS structure, 
namely a (scalar) chiral multiplet consisting of the elementary fields ~o, 0~, F and 
the complex conjugate fields ~, 04, F on which D~ acts according to 

D~o = ~b,, D,~bt~ = e~,~F, D,~F = 0, 
(4.1) 

D , ~ = O ,  O.,d~4 = - 2i0~4(o, O~,ff= _ 2t0~4~ -4 ,  

where 

ct& -- or a4Oa. 

The complete list of indecomposable D,~-multiplets arising from (4.1) is given by 
(i) (Q) multiplets whose lowest component fields are given by ~, ff and the 

following derivatives of these fields * (m, n >/0, [] = Oada): 

~(a,~ . . . .  oq)'r', ~(a.  . . . .  a O ~ '  

* A set of independent components of these derivatives is a basis for the derivatives of  ~o and F.  
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(ii) (D) multiplets which in the notation (X, D~X) read 

= t a n "  - "  (a,, "" " 

(iii) precisely one singlet (S) given by ~. 
One can check that the (Q) muitiplets whose lowest components fields are given 

by ff and its derivatives contain all derivatives of ~ and ~ apart from those which 
make up the (D) multiplets. ~, F and their derivatives group into the (Q) 
multiplets whose lowest component fields are given by tp and its derivatives. This 
proves the QDS structure of a chiral multiplet whose lowest component field is a 
Lorentz scalar. Further examples of SUSY multiplets which have QDS structure 
are "vector multiplets". A SUSY multiplet whose QDS structure is less obvious 
than that of chiral and vector multiplets is given by table 2 in sect. 7. 

5. Results for QDS theories 

For QDS theories the consistency equation (1.4) has been solved completely for 
each ghost number. The result is remarkably simple: for G 4:0 there are only 
trivial solutions of 6to~ + dto~ +1 = 0: 

G>~I: 6to4C+dto3a+l=O ~ t o ? = S r / ~ - ' + d r / ~ .  (5.1) 

In particular there are only trivial solutions with G = 1 and therefore there are no 
pure SUSY anomalies in QDS theories. 

The nontrivial real solutions with G = 0 can always be written in the form of the 
integrand of (1.1): 

~to ° + d r o p = 0 ,  to°= (to°) * ,x, to0=d4x {OE[D2g(t~) + h ( S ) ]  +c.c.} +dr/°,  

(5.2) 

where S = S (°) are the D~-singlets appearing in the theory. 
Remark. Eq. (5.2) in fact contains more information about the structure of 

supersymmetric actions in the QDS case than (1.1) since it implies that in the QDS 
case each contribution O2h(~bc) to the lagrangian can be written also in the form 
O2D2hl(t~) + O2h2(S) for appropriate h 1, h E (note that S ~ {~b c} but {S} 4: {~bc}). 
This originates in (6.8). 

/ 

6. Proof of the results for QDS theories 

This section gives the proof of the results stated in sect. 5. Thereby a method iS 
described how one can investigate (1.4) systematically also in the general (non~QDSi) 
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case and it is pointed out where the simple structure of the QDS result originates 
and where more general cases differ. 

First I list two theorems which will be used within the proof. They treat the 
cohomologies of two operators 6 and b which appear in the following decompo- 
sition of the BRS operator (3.1): 

~ = t~_+ t~0 + ~ + , (6.1) 

0 
= ' "-~ (6.2) _ 41~ ~ a C i d ,  

60 = b + b,  b = ~'~D,~, b = ~"D,~, (6 .3 )  

6+=C~a~. (6.4) 

Theorem. tS_-cohomology: 

~_f(C A)=O ¢* f=P( 'O,~)+Q(O,~)+OR+6 Y(Ca), Qlg=o=O,  

(6.5) 

where R does not depend on the ghosts and 

O a  - a d  ~ &  a &  __ - a &  
~ C  , O (6.6) = = C  ~ . ,  . - ~ C  ~. 

This theorem states that the nontrivial * parts of ~_-invariants have degree 0, 1 
and 2 in the C" since 0 and O anticommute. Furthermore there is precisely one 
nontrivial contribution to ~ -invariants which depends both on ~ and ~, namely 
OR. In (6.5) the condition Q [ ~=0 = 0 fixes arbitrarily the ghost number-0-part of f 
to appear in P (without this condition P and Q both can contain a part depending 
only on the ~b). This guarantees that f = P + Q + OR + ~ Y is a direct sum: 

P('O, ~) + Q(O, ~) + no  + 6_ Y(C A) = O, Q[~:o=O~, P = Q = R  =6_ Y=O. 

(6.7) 

Eqs. (6.5)-(6.7) can in principle be proved by inspecting all polynomials in the 
ghosts (separately for each ghost number). A proof can be found in ref. [6]. 

The cohomology of b (respectively, b), eq. (6.3), depends on the special 
supersymmetric structure of a given theory. Here it becomes important which of 
the indecomposable D~-representations represented by fig. 1 of sect. 4 appear in 
the  theory. It turns out that one especially needs the b-cohomology o n / , t c i n -  

~fis :  Called (6)-trivial if f = ~_ g for some g: Analogously f is called (b)-trivial if f = bg. 
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variant functions f(~, ~b) where l~a = l~,~ denote the generators of SL(2, C) trans- 
formations of undotted indices (cf. appendix C). In the QDS case this cohomo!ogy 
is remarkably simple. 

Theorem. b-cohomology on l~t3-invariant functions f(~, th) in QDS theories: 

bf(~, ~b) = l~ f (~ ,  oh) = 0  ~ f (~ ,  th) =O2g(~b) +h(S) +bY(~, ¢~) (6.8) 

where S = S ¢°) denote the D~-singlets (which are l~a-invariant by the definition of 
QDS theories) and l,,~g = I~,#Y= O. The proof of this theorem is given in appendix 
A. 

Eq. (6.8) is the key to the solutions of (1.4) for QDS theories. (6.8) states that b- 
and la~-invariant functions of the ~ and ~b are b-trivial unless they are indepen- 
dent of ~ and that the only b-invariant functions f(th) are precisely those which 
depend only on the D~-singlets and those which can be written as D2g(~b). These 
b-invariants are obviously nontrivial since they do not depend on ~. Generally (6.8) 
does not hold for theories which do not possess QDS structure (cf. sect. 7) and this 
is the reason for the fact that the results valid for QDS theories do not hold 
generally. In particular, candidates for pure SUSY anomalies arise from nontrivial 
b-invariants which depend on ~. The absence of such b-invariants implies the  
absence of pure SUSY anomalies in the QDS case. I remark that (6.8) arises from 
a more general result given in eq. (A.24) of appendix A. 

The proof of the results stated in sect. 5 proceeds in several steps (i)-(v) which 
are first described briefly and then explained in some more detail. The first three 
steps (i)-(iii) do not make any assumption on the supersymmetric multiplet 
structure and sketch the method used to solve (1.4) in the general case. (iv) and (v) 
are valid only for the QDS case. 

(i) (a) Each Lorentz-invariant solution to~ of (1.4) is related to a Lorentz-in, 
variant zero form tog with ghost number g = G + 4 which does not depend 
explicitly on the coordinates x" and solves 

~to~(CA, ~b') = 0, tog--/=~tlg-l(C~,¢~'), g = G + 4 .  (6.9) 

(b) to4 a is obtained from the corresponding solution of tog of (6.9) by taking the 
4-form-part [to]4 of a function to(dx", C A, 4~') which arises from tog by replacing 
each translation ghost C a contained in tog with C a + dxa: 

to~ = [to]4, to(dx",CA, d~ ' )=t°g(C"+dxa,~,~ ,4~r) .  (6.10) 

(ii) (6.9) is decomposed into parts of definite translation ghost number (degree 
in the C") 

8_ fn=0 ,  8of,, + 8_f_~+, =0 ,  (6 i i1 )  
$+f~_ + 6of~+l + 6-.f~_+2=O'.",6+f~ =0, = 



440 F. Brandt / Supersymmetric anomaly candidates 

where fn denotes the part of tOO G+4 which has translation ghost number n. f,_, (fn) 
denotes the part of lowest (highest) translation ghost number contained in oJ~: 

oJg-- E f~, C* =nfn.  (6.12) OC a n=n_ 

(iii) (6.11) is investigated starting from the first of these equations. This gives 
according to (6.5) due to g >/4: 

L =6_Y~_+, +P(O, ~, 6) +Q(O, (, d)), (6.13) 

where P and Q have translation ghost number n. Inserting (6.13) into the second 
of eqs. (6.11) yields (up to a ~_-trivial contribution) f~÷l in terms of the functions 
appearing in ~ and shows that the parts P and Q of f,_, satisfy 

bP=bQ=O. (6.14) 

To solve (6.14) one has to compute the b-cohomology. Having done this one 
proceeds by inserting f_,+l into the third of eqs. (6.11) etc. 

(iv) In the QDS case eq. (6.14) implies 

n 4:2 or g>~5: P=bg~_(O,~,~b), Q=bh~(O,~,d?), 
n=2 ,  g=4:  P = OaO '~p(~b), Q=OaO,~q(d?), (6.15) 

p=D2pI(6) +R2(S), q--OZql(6 ) +q2(S). 

(v) In the QDS case eq. (6.15) implies 

g>/5:  oJ~=ang, 

g = 4 :  to~ = 8r/03 + P +  0 ,  

(6.16) 

/~---iD'2{C#p}, Q:-4D'2{C#q }, (6.17) 

where C #, D" and D~, are given by 

C # 1 , , - ,a, . ,b, .- ,c, , . . ,d 
= - - ~ E a b c d l _ .  t... L .  t... , 

r 0 0 
o 

(6.18) 

The result of sect. 5 follows from (6.10), (6.16) and (6.17). 
(i) has been proved in refs. [5,7] in a more general version valid not only for 

supersymmetric theories or four dimensions. I do not repeat the derivation of part 
(a) of  the statement (i) but I note that it can be derived by applying 6 to (1.4) by 
means o f  the algebraic Poincar6 lemma (2.5). Part (b)follows simply from the fact 
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that the operator (s + d) acts on the variables (C a + dxa),  ~ ,  (~, ~r exactly like s 
acts on the variables C a, ~'~, ~ ,  ~b r. This implies 

s t o g = 0  ~ (s ?b d)to = O, 

where to has been given in (6.10). Denoting the p-form-part contained in to by 
[oJ]p, the identity (s + d)to = 0 decomposes into the so-called descent equations 

s[to]4 + d[to]3 = O, s[to]3 + dIco]2 = 0 . . . . .  s[to]o = O, 

which in particular shows that the 4-form-part [tD]4 of oJ indeed solves (1.4). 
(ii) respectively (6.11) follows simply from the fact that 8+ increases the 

translation ghost number by one, 8o does not change this number and 8_ 
decreases it by one. 

The first statement (6.13) of (iii) is a direct consequence of the first of eqs. 
(6.11) and of (6.5) (due to G >t 0 = g >~ 4 there is no contribution OR(d~) to f~_ 
since O has ghost number 3) *. The second statement (6.14) of (iii) follows from 
the second of eqs. (6.11) which requires 80fn_ to be 8_-trivial. 80f~ is explicitly 
given by 

8of~_=Z+bP+bQ, Z=8oS_Y,+l+bP+bQ.  

By means of (6.5) one concludes that Z is 8_-trivial since (a) Z is 8_-invariant due 
to 8 _ P  = 8_Q = 0 and {8_, b} = {8_, b} = 0 and (b) each contribution to Z de- 
pends both on ~ and ( but none of  these contributions is of the form OR(4~) since 
Z has ghost number (g  + 1) >/5. The remaining contributions bP and bQ to 8of_~ 
are also 8_-invariant but  depend on the ghosts only via O and ~ (in the case of  bP) 
respectively via 0 and ( (in the case of bQ)  and thus they are not 8_-trivial unless 
they vanish, el. (6.7). This yields (6.14). 

(iv) follows from (6.14) by means of (6.8). Namely for the various values of n, P 
is explicitly given by 

n = O :  e = tog(~:, th), n = l :  P = O'~tog-2(s¢, tk), 
- - ( 6 . 1 9 )  

n = 2 :  e=o,~O'~tog-4(s e,~o), n = 3 , 4 :  e = o ,  

where the superscript of  the o~'s denotes their ghost numbe~" (degree in ~:). It is 
easy to see that the first condition (6.14) is equivalent to 

= O: bto g = O, n = 1: b to  g - 2  = O, n = 2: bto g-4 = O. (6.20) 

OR contributes to f n for n_ = 1 if further symmetries are included into the investigation since then R 
can depend also on the ghosts referring to these symmetries. E.g. Fayet-Iliopoulos contributions [ i0l  
to lagrangians of Super-Yang-Miils theories arise from fn = OC where C is an abelian ghost [6,8]~ 
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Since the to's are latrinvariant (due to the Lorentz invariance of  tog) (6.8) can be 
applied to (6.20). Due to g >/4 there is only one case in which the respective to 
does not depend on ~, namely the case s = 4, n = 2. In this case (6.8) states that P 
is of  the form O,~O~p given in (6.15). In all other cases the respective to is b-trivial 
according to (6.8). This implies that P is b-trivial as well (due to bO ~ =  0). 
Treating the second condition (6.14) analogously and inserting the results into 
(6.19) gives (6.15). 

The first statement (6.16) of (v) is derived from (6.15) as follows: In the case 
g >/5, P is given by 

P = bgn_(O, l~, ~b) = 60gn -bg~_. 

The part bg_, i s  6_-invariant (since g,_, depends on the C ° only via O), depends 
both on ~: and ~ and is not of the form OR(d~) since it has ghost number not less 
than 5. Therefore bg,  is 6_-trivial according to (6.5), i.e. P can be written in the 
form 

P = t~0g, + 6_~_,+l(C A, ~b) 

for some ~,+ l-Analogously one concludes 

Q = 6oh_, + ~-/~,_,+1. 

Inserting this into (6.13) and the result into (6.12) shows that tog is of the form 

to~ = tSH+ O(n  + 1), H = g , , + h , j + ~ , + l + h , + l + Y , + l .  (6.21) 

where O(n) denotes contributions whose translation ghost number is not less than 
n (note that 6 H  = f ,  + O(n + 1) due to 6 g ~  = 6 _ h ,  = 0). Now the function 

cg to o := tog - tSH 

is considered. It solves (6.9) as well (due to 6 z = 0) but starts at higher translation 
ghost number than tog. tong is treated like tog and finally one concludes analo- 
gously to (6.21): 

t o , o g = 6 ( H , ) + O ( n _ + 2 )  ¢e, t o g = 8 ( H + H ' ) + O ( n + 2 ) .  (6.22) 

One repeats the arguments until one has shown 

tog = a( .1,t + H '  + H "  + . . . )  + O ( 5 )  = a( H + H '  + H "  + . . . ) ,  

which holds since there are no contributions 0(5)  with translation ghost number 
~:5 since the translation ghosts anticommute. This proves (6.16). : 

: i 
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The case g = 4, n < 2 can be traced back to the case g = 4, n >1 2. Namely by 
the same arguments used in the case g >/5 to derive (6.21) and (6.22) o n e  
concludes 

g = 4 ,  n < 2 : t o 4  = t~(H + . . . )  + O(2).  

Subtracting the trivial contribution 8(H + . . . )  from to~ one gets a 5-invariant 
function to~4 = tog - 5(H + ...  ) which solves (6.9) but contains only contributions 
of translation ghost number not less than 2. 

Now consider the case g = 4, n = 2. According to (6.15) tog in this case is of the 
form 

g=4,___=2:  t og=5_Y3+e+Q+O(3) ,  P=O~Oap(~b), Q=OaO,,q($), 

where p and q are given in (6.15). Each P of this form can be completed to a 
solution /; of (6.9) which is given in (6.17) and reads more explicitly 

/ ; = ( /  m _ _ .  
~C#D 2 - ~EabcdCaCbCCi~'~trd,iD~'+ Oe, O'~ I [D2p,(~b) +P2(S) ] .  (6.23) 

Most easily one checks t h a t / ;  = ¼iD'2(C#p) solves 6/; = 0 using 

-a--, -- '  + 8+} = O, ~=~ D" +b+5+, {D~., b 

where D" has been defined in (6.18). Analogousl~ one completes Q to a solution 
of (6.9) (cf. eq. (6.17)). The proof of (6.17) is completed by treating the function 

, 4=tog-p-0- r  

like tog in the case g >/5 which finally leads to &~ = ~(Y3 + Y4)- Solutions/; + Q of 
(6.9) are trivial if and only if (~2p _ D2q) is a total aedvative. 

Nontrivial /; + Q yield according to (6.10) so!utions too of (1.4) given by 

i 
to0= d'x + 

The real part of off is the result stated in sect. 5 for QDS theories. 
Remark (i). It is interesting to compare the b'cohomology (6.8)to the: alge- 

braic Poincar6 lemma (2.5). The operators b = ~f~D~ and . . . .  d = dx"  0 a have asimilar 
form. However in the case of d :the differentials anticommute and the derivatives : r i : ' 

0 a commute while in the case o f  b the C ~ commute and the derivatives D,, 
anticommute. Now compare: (6:8) and (2.5): The nontrivial c o h o m o ! ~  classes of d: 

A A are given by constants o30(C ):(aaC i = 0 ) a n d  by  those vohnie :forms which ha'~e 
=non-vanishing Euler  derivative with :respect : to  a t  least  o n e : , ! .  Vohme:  f o ~ :  
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contain the maximal number of the anticommuting differentials dx ~ and are 
therefore always d-invariant. In the QDS case the nontrivial cohomology classes of 
b have a similar structure where the function h(S) take the part of the constants 
(DeS = 0) and the remaining nontrivial cohomology classes can be obtained by 
applying the maximal number of the anticommuting derivatives to functions of ~b. 

Remark (ii). The 6-cohomology is now compared to the ordinary Lie algebra 
cohomology [11] of semisimple Lie algebras ~'. In the BRS language the latter is 
the cohomology of the operator 6~. m given by 

0 0 
6y m = g__  [ f I T  .4~r~ g ~- I F J p K e  I 

iv, iOqbr, -~,~ ,~ Jjr OCZ, 

where the C I denote anticommuting Yang-Mills ghosts and the T t span a 
finite-dimensional representation of ff  according to which the ~b" transform. 6~,,,, 
of course is the BRS operat.~r of ordinary Yang-Mills theories on the ghosts and 
on tensor fields ~b ~. The coho:-nology of 6y,n is given essentially by that of tS, more 
precisely: 

6rrnf(C', 6 )  = 0  e=~ f =fi({91~)..~i(6 ) + 6y,ng(C' ' dp), 

where ~ /  are group scalars constructed of the ~b and the pi are polynomials in 
O K := OK(Ct), K = 1 . . . . .  rank(if) which are certain polynomials of the ghosts and 
span the cohomology of 8 (they can be found e.g. in ref. [4]). The fact that 
nontrivial 6ym-invariants depend on the ~b only via group scalars ~/(th) expresses a 
result well known in mathematical literature, namely the vanishing of the cohomol- 
ogy groups Hg(,g, M) for all g unless the ~'-module M is the trivial one (provided 
M is finite dimensional). In the SUSY case there are non-zero cohomology groups 
H g for nontrivial (infinite dimensional) M. The representatives of these H g are 
those solutions of (6.9) which depend on the tk and these are simultaneously those 
solutions of (6.9) which correspond to solutions of (1.4) (e.g. eq. (6.23) yields 
representatives of H4). 6_ plays the same part for the algebra (1.3) as 6 does for 
an ordinary Lie algebra. Eq. (6.5) yields H g for trivial M: those P(O, ~), Q(O, ~), 
OR which do not depend on the 4~ and have ghost number g make up a complete 
list of representatives of H g for trivial M. 

7. Examples for the non-QDS case 

To demonstrate that the results which are valid for QDS theories do not hold 
generally I discuss a simple example of a SUSY multiplet which has not QDS 

structure. In particular it is shown that in the presence of this multiplet there are 
n0ntriviai solutions of the consistency equation (1.4) with ghost number 1, i.e, 
candidates for pure SUSY anomalies. 
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TABLE 1 
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D ,  ~o,~A 0 - 2iO,,t~Xt3 - ~,,t~t~ 2id,~l~ A 2ia~,iVt~ a + E,~t~rr 2ia,,e,~ a (7.1) 

The multiplet consists o f  the fields A'~, A, V~,~, qt~, rt,~, ~" and the respective 
complex conjugate fields where X, 0, rt are spin- ½ fermions, V is a complex vector 
field, and A and ,r are complex scalar fields. On these fields D r, D~ are defined 
according to table 1. One can check that the fields and their partial derivatives 
form a multiplet of (1.3) without leading to differential equations for the fields. It 
is obvious that this multiplet has not QDS structure since it contains an indecom-i 
posable D~-multiplet of the (Z)-type represented by the diagram fig. 4. This 
(Z)-multiplet is not a (D)-multiplet but a (D')-multiplet (cf. appendix A) since the 
arrow in fig. 4 points to the left. 

An investigation of the complete D~-multiplet structure (like performed in sect. 
4 for the chiral multiplet) shows that this (D')-multiplet in fact is the  only 
D,,-multiplet arising from table 1 which is not a (Q) or (D) multiplet or a singlet 
S ¢°). Therefore this SUSY multiplet has QDSD' structure (cf. appendix A). 

Furthermore one immediately verifies that (6.8) is not valid in this case since 
there are nontrivial b- and l~a-invariant functions of the fields which depend o n ~  
given by 

a ~p  --p~ 
~:~X., ~: X,~O,~O , (7.2) 

where ~ '  is the only D~-singlet arising from (7.1), 

~'~ = ~,i - 2iO,~e,X". 

The functions (7.2) are examples of contributions K to the b-cohomology (A.24) in 
QDSD' theories ( N K  = - K ,  n = 1 in this case). The existence of the nontrivial 
b-invariants (7.2) is responsible for the existence of nontrivial solutions of (1.4) with 
ghost number 1 given by the D2-transformations of these functions (times the 
volume element). A solution of (1.4) aris;_~,~ from ~X,, is given by 

~d x ~"~zX,, = d4x ~"n,,. 0 ) 1 ~  _ I 4 (7.3) 

~ o  

Fig. 4. 
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The solution (7.3) is obviously nontrivial since according to (7.1) there is no field 
whose D:transfonnation contains ~7~. A solution of (1.4) arising from the second 
function (7.2) is given by 

e 0 (7.4) 

One can check that (7.4) is nontrivial too. One also can construct solutions ~o~ 
which depend on the fields of the multiplet (7.1) and of further SUSY multiplets. 
E.g. from (7.1) and scalar chiral multiplets (4.1) one can construct the following 
solution of (1.4): 

tO 1 = d4x ~ a O 2 [ X o t f ( ~ ) ] ,  (7.5) 

where f (~)  is a function of the lowest component fields ~ of the chiral multiplets 
which according to eq. (4.1) satisfy D ~  = 0. The functions ~g~f(~o) are further 
examples of contributions K to (A.24). These examples show that generally there 
exist solutions of (1.4) with ghost number 1 which are therefore called candidates 
for pure SUSY anomalies. They are not present in QDS theories (cf. sect. 5). 

There is also a solution ~o ° of (1.4) containing the fields of the SUSY multiplet 
(7.1) which cannot be written in the form (5.2), namely 

¢0 ° = 2 d 4 x  D2A + c .c .  = d4x a'n" + c .c . ,  

where a is a constant. This solution to (1.4) arises from the nontrivially b-invariant 
function given just by ~o which represents an example of a contribution L to (A.24) 
(since NA = - 2 A ,  cf. (A.5)). I note that this contribution to a lagrangian is not of 
the form (5.2) (since A is not a D:singlet) but it is of the form of the integrand of 
(I.1) (since D,A = 0). To construct an example of a solution ¢o4 ° which cannot be 
written in the form of the integrand of (1.1) I introduce a further SUSY multiplet 
consisting of  the fields ~, .~,~, p,~, 1 ~ ,  ~, ~ .  and the respective complex conjugate 
fields, ff and ~- are complex scalar fields, V is a complex vector field and £, p, 
are spin-½ fermions. If one chooses the SUSY transformations of these fields 

TABLE 2 

0 - 2ia~,t~.  (z,,ti 

I i : I 
i i  ! 

- 2ia~# ~ + 2iO~aP a 2 iO,~a Va a : 

0 0 
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according to table 2 one gets a SUSY multiplet which can be proved to have QDS 
structure. 

From the multiplets given in tables 1 and 2 one can construct the following 
D,~-invariant function which is an example of a contribution K to (A.24): 

f = X"X~ - A6. (7.6) 

f is D,,-invariant but cannot be written in the form D2g(~b)+ h(~b¢) for any 
(polynomial) g and h. The corresponding solution 

o,4 ° --  d ' x  ,2(x. o _ 

of (1.4) cannot be written in the form of the integrand of (1.1). 
From the multiplet (7.1) one obtains a further SUSY multiplet which has not 

QDS structure by setting to zero the fields A, ~b, ~r (this can be done without 
imposing differential equations for one of the remaining fields or introducing 
further fields, see also remark a t  the end of this section). The  resulting SUSY 
multiplet is an antichiral multiplet whose lowest component field is a D~-singlet 
S °~ given by X~. This SUSY multiplet therefore has not QDS structure (recall that 
by definition the only D~-singlets appearing in QDS theories are singlets St °), i.e. 
singlets which carry only dotted but no undotted indices). I note that there a r e  
even more D~-multiplets which are not ( Q ) o r  (D) multiplets or singlets St°~ i n ithis 
case, namely (Z)-multiplets which have four component fields. This shows that the 
SUSY multiplet obtained from (7.1) by setting to zero A, ~, "tr has not Q D S D '  
structure like the original multiplet (7.1) but has a more complicated D~-multiplet 
structure. Such antichiral multiplets have been considered in ref. [9] where the 
solutions (7.5) have been found too (of course (7.5) solves (1.4) also in the  case 
A = ~ = 7r = 0). The antichiral multiplet arising from (7.1) for A = ~b = ~ = 0  
probably cannot be coupled to (minimal) supergravity unless one enlarges it again 
to the complete multiplet (7.1). 

Remark. The multiplet (7.1) has been constructed starting from the (D')-mul- 
tiplet (X,~, A) and completing it to a SUSY multiplet by introducing the D,~- and 
D2-transformations of X,, and A as further elementary fields. The D,,- and 
D~-transformations of all fields then are uniquely determined by requiring (respec- 
tively using) the SUSY algebra (1.3)which leads to (7.1). It can be shown that  i n  
the same way each D~-multiplet given in fig. 1 o f  sect. 4 whose com~nen t  fields 
a r e  elementary fields can b e  completed tol a SUSY multiplet wRfi0ut :~posifig 
differential equations for one of t h e  fields. The Si 
constructed in this way starting f rom t h e  (D)-mult 
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8. Conclusion 

It has been shown that the mos~ general form of N = 1 globally supersymmetric 
actions and the answer to the question whether there are anomaly candidates in 
four-dimensional global SUSY depends on the structure of the SUSY multiplets, 
especially on the representations of the subalgebra {D,, D e} = 0 present in a given 
theory. For a class of theories which contain only special representations of this 
subalgebra (QDS theories) all solutions of (1.4) have been classified: in QDS 
theories there are only solutions with ghost number 0 and these can always be 
written in the form of the integrand of (1.1) (more precisely: in the form (5.2)). In 
particular there are no pure SUSY anomalies in QDS theories. This result 
however is restricted to the QDS case and examples for the non-QDS case have 
been discussed for which there exist solutions of (1.4) with ghost number 1 and 
solutions with ghost number 0 which cannot be written in the form of the integrand 
of (1.1). Some of these solutions have been given explicitly (cf. sect. 7). 

These results originate in the cohomology of the operator b = ~:~D~. In the 
QDS case this cohomoiogy has been proved to be of the remarkable simple form 
(6.8) which implies the particular form (5.2) of the most general invariant action 
and the absence of pure SUSY anomalies. In the non-QDS case the b-cohomology 
has  been shown to have more complicated structure in general. In particular 

generally there are nontrivial b-cohomology classes in the non-QDS case from 
which the candidates of pure SUSY anomalies arise (cf. sect. 7 and eq. (A.24) of 
appendix A). 

The results presented in this paper have been used also within an investigation 
of the form of the most general invariant action and the anomaly-problem ~n 
globally supersymmetric Yang-Mills theories and supergravity theories. This inves- 
tigation can be found in refs. [6,8]. 

I thank N. Dragon for many fruitful digcussions on various questions which 
arose during the work on the subject of this paper. 

Appendix A 

b-COHOMOLOGY IN QDS- AND QDSD'-THEORIES 

This appendix contains the complete proof of (6.8) and derives a more general 
result. Namely the investigation o f  the b-cohomology is extended to theories which 
:may Contain apart from (Q) and (D) multiplets and singlets S (°) also (D' )  
multipIets (of. fig. A1). The latter are doublets of the (Z)-type like (D)-multiplets 
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F('0 F(O) 

Q(_n-1) Q(+n+l) Q('~) / "~x~ 

• D( ,~ )  U( ,~)  Q(n) Q(O) 

(Q) (q)  (D) (D') 
Fig. A.1. 

Si0) 

(S) 
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but the arrow appearing in the diagram representing them points to the left 
instead of pointing to the right as in the case of (D)-multipletz, Analogously te the 
definition of a QDS theory I define: 

Definition. A theory is called QDSD' theery if its /),-representation decom- 
poses into a sum of (Q), (D) and (D') multiplets and singlets S °). 

A basis whose elements make up these D~-multiplets is denoted by .~' = {~-'} as 
in sect. 4. QDSD' theories have a remarkable property which distinguishes them 
from all other theories: They allow to define operators tt3 on ~ whose anticom- 
mutators Oa~ with the D,~ are given by 

] ? 
Oa,, := {tt3, D,~} = It3 ~ + ~et3,,/~ (A l )  

on all component fields of (Q), (D) and (D') multiplets and on the singlets S c°). In 
(A.1) l~t 3 denote the generators of SL(2, C) transformations of undotted spinor 
indices (cf. appendix C) and N is an operator which is diagonal on o~', i.e. each ~" 
is an eigenfunction of N (see below). It can be shown that operators t o yieiding 
(A.1) exist only on (Q), (D) and (D') multiplets and on singlets S ~°) but not  on 
other (Z) multiplets than (D) and (D') and not on singlets S ('), n > 0. (A.1) turns 
out to be sufficient to compute the b-cohomology completely for QDS theories and 
almost completely for QDSD' theories. In the following the component fields of 
(Q)-multiplets are denoted by QOO, Q~-i), Q~ + l) and F ~") like in sect. 4. D~ acts 
on them according to 

_X"~. t~(--') (n + 1)Q(~ +l) D 0 ( ' )  ==( J , , ( , , , ~ -  a2 . . . . .  ) + ~ "  ~ 1  . . - o t n  Olot l  . . . o l n ~  

D.Q(_.-1) = nF(,O 
Ot 2 . . .  O~ n OtOt 2 . . .  Ol n 

Oa(.)(n+l) ~n+! E Fin) 
~;~+ O'o(]t I . . . a n  ~ ( - - -  I ~t(O/0 ¢~|*.*lfltn)') 

D F ('0 = O. 
~t OtI . • .  DIn 
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The component fields of the (D)-multiplets are denoted by D~n)> D(+ n+~), those of 
the (D')-multiplets by U (n), U(_ n-~) and the singlets by S (°). D~ acts on them 

according to 

D,~D tn~ ,  ,~,, = ( n  + 1)D(+ n+l) 
. . .  Gt~ 1 . . . t ~ n ~  

D . U ~ % ,  . .  = t _ ~ % r l ~ . - .  
. . .  ~, ] ~ ( O t l  " J -  a 2 . . . e t n ) ,  

Da S(°) = O. 

oon +" +' ;o . . . : .  = o, 

D~U~"- i )  = 0 .  
Ot 2 • . .  Of n 

(A.3)  

t o is defined as follows: to is defined as follows: 
t ~ ( n )  = O, 

O ~  O ~ l . . - a  n 

nk  
t o o ( n - l ) a  a = ( -- ~ n - - o ( n )  

- -  ~...._~ z n + 1 ~ 0°tl"'°tn-l' 

n + l - k  
t / ' i ( n + l )  - D - -  E / ' ~ ( n )  
O ~ +  ai)'"ctn n + 1 otao'~ Otl...an)' 

toF("~l  . . . . .  = 
n + l - k  

n + l  
E0(~,Q(_n- I) 

ot 2 . . .  o t n )  
+ ( - - ~ n + l b f l ( n + l )  

] s ~ +  OOil.,.~n~ 

toD(")~, . . . .  . = O, 

toD(n+l)+ = ,: t3 (n)  
O r 0 . , .  ~x n t"O(~t{l~ a i . . . a n ) '  

toU<"~, .... . = 0 '  

to H(n- l )~ t  a = g - ~ n ~ l l ( n )  
- -  2 " ' "  n X J " ~  ~ o t 2 . . . ~ n  ~ 

toSt°) = O. (A.4)  

On functions of the fields t 0 is defined as anti-derivation (fermionic first-order 
differential operator),  

It01 = 1 .  

One can check explicitly by means of (A.2)-(A.4) that (A.I) holds on ~ .  E.g. one 
calculates on Q("): 

(n) 
i t # ,  Da} Q a, .... , , = - - -  

n k  n ( n  + 1 - k )  
.: I"~ ( n ) .a- 

n + 1 ~a(al~ az...a.)O -- n + 1 
E 1300 

O ( a l ~  a2...an)Ot 

n + l - k  
: JC 

n + l  
O c x ~  ct I . . . t i  n"  
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On the other hand one has 

n n 
l n(n) = --,: n(") --E g')(n) 
o.~ -,..... 2"a(~'~ a2...-.)o + 2 O(a,~ ~2--.-.)~" 

Subtracting this from the result obtained for {t 0, D,,}Q (") gives 

({t., Do} - '  ~'~("' 

2 n k - n ( n  + 1) 

2(n + 1) 
¢ g)(") -- a <-, ~8) a(am ~'¢ oz...a,)O 

+ 
n + l - k  

r~',.) - ! t  n - 2 k  + , ~ a 
n + 1 "~o~ , , , . . .~ , , -  

which proves (A.1) on Q(") and determines NQ("): N Q  (") = (n =- 2k + 2)Q ("). 
Analogously one verifies (A.1) on all other fields and obtains N. The result for the 
(D) and (D') multiplets and the singlets is 

ND (m = (n + 2)D ("), 

NU (") _-_ -nU(.), 

N S  (°) = 0, 

ND(+.+')=(n + I ) D ~  +'), 

NUt__. - 1)= _ (n + 1)U (2- l), (A.5) 

while on the (Q) multiplets it reads 

N Q  (n) = ( n  - 2 k  + 2)Q (n), 

NQ(+ + ' ) =  ( n  - 2 k  + 1)Q~ + i), 

NQ(_ "-l)= ( n -  2k + 1)Q~ -1), 

N F  (m = ( n  - 2 k ) F  ("). 
(A.6) 

k can be chosen freely for each (Q) nmltiplet, i.e. there is a freedom in the 
definition of t o on the (Q)-multiplets while on the (D), (D')  and (S) multiplets the 
definition (A.4) of t 0 and the N-eigenva|ues (A.5) are uniquely determined by the 
requirement (A.1) and the D,,-transformations (A.3). Eqs. (A.2)-(A.6) imply the 
following identities on ~': 

{t... t A =o. [t..,. ,,.] = -,,(..to). [H. t..]=t... [N. Do]= -no.  

[ s ,  too] = 0 .  ( g . 7 )  

Each function f(¢,  4;) can be decomposed into eigeniunctions of N (where N is 
defined trivially on ~, N¢ = 0) 

f(~:, 4;) = E L(¢,4;), NL=rL • (A,8) 
r 
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The fourth of eqs. (A.7) implies [N, b] = - b .  Thus bfr has eigenvalue ( r  - 1) to N 
and ther~:Lore bf  = 0 requires bf~ = 0 for al! r, 

b f = O  ~ bf~=O Vr° (A.9) 

One can therefore investigate bf  = 0 without loss of generality for functions f with 
definite eigenvalue of N. Furthermore f can of course be assumed to have definite 
degree in s c since b increases this degree by one. f therefore can be assumed to be 

given by 

. . . .  , ( A . 1 0 )  to`', . . . . .  N o , ° , . . o o  . . . .  , 

where to is tota~ty " " symmetric in its undotted radices, 

to ̀ 'l ""an = tO(at " "` 'n)" 

bf  = 0 is e0uivalent to 

D(`'toa, . . . . .  ) = O. (A.11) 

Application of 08`',  eq. (A.1), to to`', ...... and symmetrization in all lower indices 
gives 

n + r  
Oa(`'to`'~ . . . . .  ) = D(`'tato`'J ...... ) = 2 t3a(atoa~ . . . . .  )" (A.12) 

Tile first equality in (A.12) follows from the definition of Oa, due to (A.11), the 
I second equality in (A.12) follows from Oa, ~ = la` . + ~ea`'N due to (A.10) and 

n 
lat`'to`" ' ...... )=  -~ea(`" to`" ' . . . .  ,,). (A.13) 

(A.13) holds due to the assumption of l~a-invariance of  f which implies that the 
index picture of to~, . . . . .  indicates its actt,~ ~ transformations property with respect 
to/ , ,s-transformations of the ~r. Contracting (A.12) with 6~ gives 

- Dt w`'~ ...`'. + nD(`" tato ̀ '2. ..`'.)a = 
(n  + r ) ( n  + 2)  

2 to`"" ' " " '  D t : = D " t ` ' .  (A.14) 

Applying D,, to this equation and symmetrizing in all indices yields due to (A.11) 

D(`'Dtt%, ...... ) = 0, (A.15) 

i.e. Dt.~%, . . . . .  satisfies (A.11) as well. Analogously to the derivation of (A.14) one 
concludes (D t t% . . . .  , has N-eigenvalues r like to`'1 . . . .  ,, due to (A.7)): 

- ( D t ) 2 t % ,  ...~. + nD(`',taDttoo2...~.)t3 = 2 

Z 

(n  + r ) ( n  + 2) 
Dtt%, . . . .  ,. (A.16) 
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The contribution (Dt)2t%~...,~ to (A.16) is treated by means of the following 
identities: 

( D t ) 2 = D t + D l ~ t Y O t 3 v - 7 ~ D 2 t 2 ,  D2:=D~D,~, t 2 := t~ t~ ,  (A.17a) 

D o t ~ O ~  to,~ ~ . . . . .  = nD(,~ tt3t%: . . . .  ~)~ + - - - f - D t t % ,  . . . . .  , (A.17b) 

n #: 0: Dt,~tg.O2t2t%2 ~,~)t3 = n + r + 2 ~ 2 "' 2 D" t  t%~ . . . . .  . (A.17c) 

These identities can be proved using (A.1), (A.7) and (A.10). E.g. (A.17c) can be 
obtained using taD2t  2=  [t ~, D2]t 2 first (which holds since ta t  2= 0 due to the 
first of eqs. (A.7)), then working out the commutator [t t3, D 2] using (A.1) and 
finally evaluating the SL(2, C) generators and N-operators which arise. 

Inserting (A.17a) into (A.16), using then (A.17b), (A.17c) and solving the 
resulting equation for Dtt%,  . . . . .  gives 

½ ( n + l ) ( n + r + 2 ) D t ~ % , . . . , ~  = D ~ t  ~ n + r  + 2 D2t2 + n D t - n  °J'~2 . . . .  ")~' 

(a.18) 

where (n + r + 2 )~  0 and n =~ 0 (the latter due to (A.17c)). Finally (A.18) is 
inserted into (A.14)which is then solved for toe, ..... . The result is 

4 
to,~ . . . .  ~ ( n + r + 2 ) ( n + r ) ( n + 2 ) ( n + l ) D ( , , ~ t t 3 P < ~ ' ° t % 2  ..... )t3, (A.19) 

where the operator P("") is given by 

p(n,r) = 
1 n 

2 DZt 2 + nDi - z-~(n2 + rn + 3n +4) .  
n + r +  

This shows that t%,...~ n = D<,~ r/~2 ...... ), i.e. f is trivial unless n ~ {0, - r ,  - r -  2}: 

• ~n--I n ~ l O , - r , - r - 2 } :  f = . b g ,  g = l ~ ' . . . ~  rl~,, . . . .  n-,' 

4 
(n + r + 2)(n + r ) ( n  + 2)(n + 1) t 'rtn'r ' toa~ 2 ~ ' ~  . . . .  . "'I,A.201 r/,~2...,~n 

i 

I mentioned already that the constant k appearing in (A.4) and (A.6) can be: 
arbitrarily chosen for each (Q) multiplet. Therefore the N-eigenvalue r of allparts 
of f which depend on component fields of (Q)-multiplet~ can be always chosen t o  
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be different from the values ( - n )  and ( - n  - 2). One concludes that components 
of (Q) multiplets can contribute to nontrivial parts of solutions f of bf = 0 only if 
n = 0 .  This reflects a more general result holding for the dependence of b-in- 
variant functions on component fields of (Q) multiplets (cf. remark at the end of  
this appendix). 

The case n = 0 needs a special treatment due to (A.17c). In this case one has 

n = 0: f =  to(q~), b f =  0 ,~, D,~to = 0. (A.21) 

Since w is/,,a-invariant one concludes from (A.1), (A.21) and Nto = roJ: 

1 
r :~0 :  r t o = { t  '~, D,~lto=D~t~to= - D t t o  ¢* to= - - D t t o .  (A.22) 

F 

Making use of (A.22) (several times), (A.1), and l~t3to = 0 one calculates for n = 0: 

1 1 1 
- = = -~D~ '~ - Dt3t'~)tt3to to = -Dt~or -~ (Ot)2to ( 0  t3 

l z  D2t2t° 1 ~ -7oo(t -t o 8 ) 0 , = - - -  
- - / ' t o  

1 2 - r . - - ~ - - .  
2r 2 D2t2to + ~ Dtto 

~ w =  - - D Z t 2 t o  ( r ~ 0 ,  - 2 ) .  (A.23) 
r ( r  + 2) 

This shows that if b f =  0 and n = 0 then f is of the form DZg(~b) unless r = 0 or 
r = - 2 .  By the same arguments used below (A.20) one concludes that component 
fields of (Q) multiplets contribute only to solutions which can be written in the 
form DZg(~b). Altogether the result for QDSD'  theories can be stated in the 
following form: 

Lemma 1. In QDSD'  theories the solt~tions f(~,  t~) of bf - -  ,at3f = 0 with ghost 
number n are of the form 

. = 0 :  st= O2g( ;) + + K(d), 

n > 0 :  f = L ( ~ , ~ h ) + K ( ~ , ~ ) + b Y ( ~ , ~ h ) ,  (A.24) 

where the N-eigenvalues of K and L equal ( - n )  respectively ( - n  - 2) 

( N + n ) K = O ,  ( N + n + 2 ) L = O ,  
i 
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and K and L do not depend on the component fields of (Q) multiplets: 

L = L(~:, D ('), D~_ +'), U ('), U(_ "-'), S(°)), 

K = K(~, D ('), D~+ ~+'), U ("), Ut_ "-'~, St°)). 

This of course does not mean that each function K or L with the properties 
mentioned in the lemma is b-invariant. It only states that if there are any nontrivial 
b-invariants in a QDSD' theory which are not of the form D2g(t~) then they 
contain necessarily a contribution K + L (examples of nontrivial b-invariants K 
and L can be found in sect. 7). Therefore this lemma is not a complete determina- 
tion of the b-cohomology in QDSD' theories. 

However lemma 1 yields a complete result for the b-cohomology in the QDS 
case, i.e. in the case where there are no (D')-multiplets. Namely in this case there 
are no elements ~r which have negative N-eigenvalues due to (A.5), (A.6) since 
the eigenvalues of the (Q)-components can be chosen positive by choice of k. This 
shows that there are no contributions L to (A.24) (since these have negative 
P,/-eigenvalues for all n) and the only contributions K which can appear are those 
with n -- NK = 0. In the QDS case such K can depend only on the singlets since 
they are the only fields which have vanishing eigenvalue to N while the eigenvai- 
ues of all remaining 4~ r are positive (by choice of k). Therefore the only contribu- 
tions K which can contribute to (A.24) in the QDS case are functions h(S) which 
obviously are b- and/,,a-invariant. This proves (6.8). 

Remark. One can prove the following statement which holds independently of 
the multiplet structure of a theory and is not restricted to i,,~-invariant functions: 

Lemma 2. Nontrivial contributions to b-invariant functions f(~, 4~) with ghost 
number n > 0 do not depend on component fields of (Q)-multiplets and those with 
ghost number 0 depend on component fields of (Q)-multiplets only via functions of 
the form O2g(t~): 

n=O: f =D2g(&) + M(Z~), 7 t~'_~, ,STY'), 

n>O:  f=M(~,ZI~) ,Z[ , ' ) ,S (~ ' )+bY(~ ,dp) .  

Here Z} ~), Z~ "), S (') denote the component fields of D~-multiplets of the (Z) 
and (S) type (eft fig. 1 of sect. 4). The lemma is proved analogously to the proof of 
lemma 1 by means of operators r e whose anticommutators with D e on all 
component fields of the (Q), (Z) and (S) multip!ets are given by 

= '  ~e/3 a NQ, 
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where N o is the countip:~ ~,erato'~ ,ff the component fields of ,he (~) multiplets. 
r ,  is defined according, to 

r o Q ( n ~ , . . . , , ,  = O, 

. . . .  ; 2 ( n  + 1) ~ ~"~ .. . .  "-~' 

a l l "  " " O t n  (lO ~1 "" 'Otn) ~ 2(n e Q:') 

r ~ F ( " ) . ,  . . . . . .  = _ _  ~(,, ,,-:) 
o ( n -  1) ~ n t_oOt+ I) 

+ ( - - 1  2X~+ ~ e q . , . a  n, 

ro 7~"~ = r , S ( n ~ , .  = O. "-'t ,~ . . .~ , ,  = r ¢ Z ~ ' :  .~,, ..~,, 

Appendix B 

REPRESENTATION T H E O R Y  OF {D~,, Dt~} = 0 

Like in sect. 4 A °"  denotes ~rl irreducible SL(2, C) tensor field, i.e. A <~) is 
totally symmetric in its undotted and dotted indices respectively. The superscript 
(n) indicates the number of undottcd indices of A ~'), dotted indices are omitted. 
The D,/transformatioti of A ('J generally is given by 

D , A ( " ) , , I . . . , ,  ' = ( - i " e  B( , -  l) 1)B(,+ l) 
l o~(Otl aZ,..an) + ( n  + aal,..an. 

where B t" -  i) and B t '+ 1) are irreducible SL(2, C) tensors carrying (n - 1) respec- 
tively (n + 1) indices (B ('-~), B ~''+'~" or both may be zero). The action of D<, is 
represented by the diagrams introduced in sect. 4, see fig. 2. 

The possible finite-dimensional indecomposable D,,-multiplets are easily ob- 
tained from the following statements: / 

(i) Dizgrams representing D,~-multiplets do not contain one of the segments of 
fig. B.1 

'",,.,\, / ./  
Fig. B.l.  
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F ('~) F (n) F('O 

,,') (n-I) . /  e~N'~. Q (4,.n+1) Q £ n - i ) . / b Q ( I n + l  , 

Q(n) Q(,,) Q(.) 

(a) (b) 
Fig. B.2. 
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# 0) 

(ii) If a diagram representing a D,,-multiplet contains one of  the segments of 
fig. B.2a then it contains also fig. B.2b unless n = 0 (Q_ vanishes if n = 0). 

(i) holds due to the algebra {D e, Dr3} = O ~ D ~ D ~ =  ~ 2 ~e~aD and due to the 
symmetry of irreducible SL(2, C) tensors which imply the following identities 
whose graphical translation is (i): 

D'~ID"2A (m = ~D2E"z~'*AU'~q ...... = O, 
Ctl...ol n . 

' . . . . .  ) , . - . 2  - 0  = ~ lJ  E(a¢l~l a j . . . a . ) - -  " 

(ii) states that D2Q¢n)~O requires Q~+"+~)4:0 and Q~-1)4 :0  unless n = 0  
(DZQ~°)-~O requires Q~)~  0). E.g. n t "+~)=0  implies DaQ ° '+n = 0  which 
contradicts D2Q ~'~ ~ 0 since 

n + 2  
1) O~2') '+ l ' ~ " ~ ' - - " "  . . . . .  =OaD("~d(n'~'-- " . . . .  " ) -  2(n + 1) o z Q v ' ~ '  . . . . .  ( n  + 

I 

From (i) and (ii) one easily concludes that fig. 1 of sect. 4 gives a complete list of 
diagrams representing indecomposable De-diagrams, i.e. there exists a basis for 
the irreducible SL(2, C) tensor fields such that the representation of {D,, D 0} = 0 
on the tensor fields decomposes into a sum of D,,-multiplets represented by the 
diagrams given in fig. 1 of sect. 4. 

Appendix C. Conventions and notation 

C.1. GRA.DING 

The grading I q~ I ~ {0, 1} of a variable q~ (a field or one of its partial derivatives 
e: a differential or a coordinate) is defined modulo 2 by the sum of its gh~;,st 
~ :tuber (gh), its form degree (deg) and the number of its spinor indices (dotted 
and undotted): 

&l--.&m I'P~, ..... [=deg(¢) +gh(cp) + m + n  (modulo 2). 
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The grading of the variables determines their SLLtistics, 

1~02 = ( __ ) i~ l t l ,P " l  ~26,01 " 

An object X (variable or operator) is called fermionic if I Xl  -- 1. The grading is 
additiv modulo 2, i.e. 

I X Y I - - I X I + I Y I  (modulo2).  

Derivatives with respect to a variable act from the left according to 

&ps 

and therefore have the same grading as the variable itself, 

i°l 
The grading of operators which can be represented in the form 

. 0 0 
G(.)= E E fr ,  .... k((p) O~ r' "'" O(P rk 

k = O  r j  . . . r  h 

follows from the grading of the variables. First-order differential operators ~t~ 
satisfy the product rule 

e,,,(,~',~:) = (~,,,~'),~ ~ + ( -)'~', ' , '  '~",~'(e, , , ,~).  

C.2, COMPLEX CONJUGATION 

Complex conjugation of an object X (a variable or an operator) is denoted by 
X* or by .~. The complex coTljugate of a product of two objects X, Y (variables or 
operators) is defined by 

( X Y )  * = ( -  ) IxI!YI X * Y * .  

In particular the complex conjugate tO* of an operator ¢' is defined by 

¢ * ~  = ( - ) ' ~ '  ~*' (e~,p*)*. 
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Note that (0/&p)* and O/0q~* generally are not identical but related by 

In particular the derivative with respect to a real fermionic variable is a purely 
imaginary operator. The operators D A have the following reality properties: 

(0.)* =0,,, ( D . ) *  =Da.  

~-matrices: 

C.3.  S Y M M E T R I Z A T I O N ,  A N T I S Y M M E T R I Z A T I O N  

Symmetrization respectively antisymmetrizatien of indices are denoted by 
brackets ( ) respectively [ ], e.g. 

1 1 
= ~sign(~') T = ro . ,  r~ , .o .1  ~ . , E ( - ,  -oo . , . . . ~o , . , .  r(~,...,,,> ~ . ,  ~., , , .- . . , , ,  ,~ 

where E,~ runs over all permutations in the symmetric group, ~r ~ S,. 

C.4.  L O R E N T Z  (St(2, e)) A L G E B R A  

Minkowski metric, e"b~d: 

rl~ h = diag( 1, - l ,  - 1, - i ) ,  E "b~e = e t"b*el, e 0123 = 1. 

Invariant SL(2, C) tensors 

" ~/3 * " E ~ t 3 = - e  t~', e ' ~ t~=-e  0 a = ( ~  ) , e I~=e 12=1, 

e,,ye vt~ = 6~ = diag(1, 1), e,i+e #i = 8a # = diag(1, 1). 

o-matrices: ~r",#i, a: mw index,/3: column index 

1 0). 0), ~,=(0 ~). o.2 (0, -0)' ~ 3 = ( 0 - ,  

~a~ia __ t&iyE~ty(Fa 

Raising and lowering of spinor indices: 

q,~ = %~,~,  4, ° = ~ % ,  ~ = % ~ ,  ~,~ = ~ 
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o, ab, fiat,.matrices: 

Contraction of spinor indices: 

O x  := O~'x,~, 

Vector indices in spinor notation: 

V,, a ----- (7" oL~Va. 

Lorentz (SL(2, C)) generators: 

fial, a~ = ¼( ~ . e b  _ ~bo..  ) '~ 

7,~ '= 7 , ~  ~ 

[ l o b ,  l c j  ] = r lbcl  aa + rl, , , t lbc --  ~ b a l  ac - "qacl bd . 

Lorentz (SL(2, C)) transformations of spinor- and vector-indices: 

l .bV, = nb~Vo - n. , ,V~,  t j , , ~  = -,~,,~,,~q,~, tob~O ~' = - ~ . b ~ ' ~ ,  ;' 
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