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We show how geometricalquantities as distance, topology and riemannian metric can be
constructedfrom the correlationfunctionsin generalstatistical systems.

1. Introduction

It is an old dream that a unified description of physics should explain the
remainingfree parametersof the standardmodel.String theories[1] arenowadays
the best candidatesfor a unification of all forces. They suffer, however, from a
proliferation of possible ground states [2]. Although these theories are very
predictivefor a givengroundstate(at leastin principle), this predictivity is lost as a
consequenceof the absenceof selectioncriteria for the groundstate.Onemaystill
attempt to extract some general featuresof effective low-energy theories from
general featuresof string theories.A computationof fermion massesor gauge
couplingsrequires,however, the selectionof the “true” ground stateamongthe
(infinitely many?) possibleground states of string theory. A similar problem
appearedalreadyin earlierattemptsof unification in higherdimensions(Kaluza—
Klein theories[3]): There aremany possibleclassicallystablecompactificationsof
internal space~.

The proliferation of possibleground statesmay be viewed as an embedding
problem: How should four-dimensionalspace-timebe embeddedinto higher-di-
mensionalspace-time?Or, evenmoregenerally:How shouldthe four-dimensional
energy—momentumtensorbe embeddedinto the(infinite-dimensional)spaceof all
possibleoperators?We believethat the proliferation of ground statesconstitutes
the centralcrisis for all attemptsto unificationwhere four-dimensionalspace-time
is not givena priori. It seemsto usveryunlikely that this problemcanbeovercome

* The possible compactificationswill even depend on continuous parameters[4] if we admit that

internal spacemaybe a noncompactmanifold [5] or orbifold [6].
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by pure consistencyrequirements.(It is sometimeshoped that nonperturbative

stringfield theorymay selecta unique groundstate.) Indeed,different classically
stable ground stateswill simply lead to different hamiltonians.Many of these
hamiltonianswill also havean acceptablequantumground statewhich minimizes
the energy(as definedby this given hamiltonian).There is then no consistency

criterion which would exclude such a ground state.With presentcriteria it is
impossibleto say which ground state is “better” than another,since thereis no
way to compareenergiesdefinedwith respectto different hamiltonians~. Evenif
we imposeadditional symmetryrequirementslike maximal four-dimensionalsym-
metry or Poincarésymmetry,SU(3) X U(1) gaugeinvarianceor the spontaneously
broken symmetry SU(3)x SU(2)X U(1) of the standardmodel, there is little
reasonwhy the ground stateshouldbe unique. In consequence,we will haveto
find new criteria why certainspace-timesgive a betterdescriptionof reality than

others.“Which space-timeto select?”— this seemsto be the centralquestionfor
the future of unification.

Before attackingthis problem,one should first answeranotherquestion:How
do conceptslike space,time andgeometryemergeat all if thespace-timemanifold
is not given a priori? We are usedto formulatea theory in a given space-time
manifold. This is unsatisfactorysince space-timeshould be understood as a
propertyof matter ratherthan a preexistingcategory.Space-timemanifestsitself
only throughthe motion of matter and seemsto makeno sensewithout matter.
(Here matter includesgravitationalfields like the graviton.) The frameworkfor a

discussionof thisquestionis generalstatistics[71.This dealswith generalstatistical
systemsof infinitely many degreesof freedomwithout an apriori identification of
operatorswith observableslike energy.The identification of structuresbetween
operatorswith the observedpropertiesof space-timeshould be done only after
formulating criteria why certain operatorstructuresgive a betterdescriptionof
reality thanothers.

In this paperwe establisha generalframeworkhow spaceandgeometryariseas
propertiesof correlation functions. Let us first ask how we could measurea
distancein a statisticalsystemwithout postulatingLorentz invarianceandphotons
travelling with the speedof light. Intuitively, wewould saythat two points x1, x2
are far away from eachother if the correlationbetweenall operatorsdefinedat
the point x1 and those definedat x2 is small. We also know that correlation
functions necessarilyreflect the propertiesof a given geometry(like symmetries,
topologyetc.).It seemsthereforereasonableto attemptthe inverseprogram,i.e. to
extract all geometricalinformation from the propertiesof correlation functions.
We demonstratein thispaper that theseintuitive ideasindeedwork. Geometrical

* The sameproblem appearsin an embryonicway in four-dimensionalgravity. There are different

solutionswith timelike Killing vectorswhich are not connectedcontinuouslyto eachother. Only the
solutionwith maximal four-dimensionalsymmetry is unique.



C. Wetterich/ Geometryfrom generalstatistics 301

conceptslike distance,topology,metric or symmetrycanbe formulatedin termsof
the connectedtwo-point function.

Oneof the basictools in this investigationstemsfrom the observationthat the
normalizableoperatorsform a Hilbert space.The scalar product allows one to
introducea distancein operatorspace.This permitsone to quantify the concept
that for two points x1 and x2 close to each other the correspondingoperators
v(x1) and v(x2) should also be close to each other. The connectedtwo-point

function can be expressedin terms of the scalarproductin operatorspace.The
geometryof operatorspaceis then usedto definegeometricalconceptsrelatingto
smalldistancesascontinuousspace,local topologyandmetric. Forthe geometryat
large distanceswe will strongly rely on an additional notion, namely that the
(connected)correlationfunction shouldvanishfor infinite distanceandvice versa.
This last requirementis not fulfilled for arbitraryoperatorsinducing a geometry.
In a senseit constitutesa first (still veryweak)selectioncriterion for the choiceof

geometrieswhich are well suited to describethe real world. We will briefly
commenton additionalpossibleselectioncriteriain the conclusions.

For simplicity we carry out all constructionsfor a finite numberof degreesof
freedom N. Generalstatisticsis defined in terms of sequenceswith N —~ ~ as
discussedin detail in ref. [7].

2. Structuresin the spaceof operators

ConsiderN continuousvariabless’~(degreesof freedom)parametrizingIP~”and
a positive-definiteprobability density p(s). We assumethat p(s) is continuous

everywherein ~N and has a finite integral Z = Jp(s) ds. A map v(s): ~N ....~

definesan operator if the expectationvalue

Ky) =Z1fv(s)p(s) ds (2.1)

exists(in the senseof Lesbesquesintegrals).Two functionsv1 and v2 which differ
only on a subsetof ]~Nwith measurezero definethe sameoperator,i.e.

f (v1(s) — v2(s))
2p(s)ds= 0 = v

2. (2.2)

Operatorsare thereforeassociatedwith representativesof the equivalenceclasses
of mapsdiffering only on a zeromeasureset.They form a (real) vectorspaceV~,.

Since we are interestedin correlationsbetweenoperatorswe concentrateon
normalizableoperators,namelythosefor which

11v11
2=Kv2 (2.3)
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is defined.For normalizabley the function j~= pl/
2 u is squareintegrablein 11 N

The normalizable operators form a vector space ,72 C V~.The “correlation”
betweentwo normalizableoperatorsu, w,

Ku, w) = Ku~w) = Z1fu(s)w(s)p(s) ds, (2.4)

always exists and definesa scalarproduct Ku, w) on ,22. As is well known the
spaceof squareintegrablefunctionsis completeandseparablewith respectto the
norm inducedby the scalarproduct.The spaceX2 of formalizableoperatorsis a
Hilbert space~.

For higher correlationswe may consider the space 51~11 of all operatorsfor
which K I u I “) is defined(n E N~J,n ~ 2). 51” is againa vectorspaceand 51~tmis a
true subspaceof X” for m > n. The scalarproduct(2.4) and the inducednorm
(2.3) are thereforedefinedfor all ~ With respectto this norm 51” is separable,
but not completefor n > 2. There are Cauchy sequencesin 51” whose limit

belongsto 512 but is not an elementof sr. For arbitraryoperatorsu
1, u2 E51”

the expectationvaluesof productsaredefinedfor

(vfu~), p,qEN, p+q~n. (2.5)

We call 51’ the spaceof all correlatableoperators,i.e. thoseu(s) for which (y~o) is
defined for arbitrary k E N~i. (51c51”) for all n.) Again the vectorspace51’ is
separablebutnot completewith respectto the norminducedby the scalarproduct
(2.4). The expectation values of products (uj01u~2 . .. u~) are defined for all

p, E ~, V1 E51’. Arbitrarily high correlationscan be evaluatedfor the correlatable
operators.We can therefore introducean abelianproductbetweenoperatorsin
51’. It is definedby the pointwisemultiplication of functions

(u1, u2) E51’X51’—’ ~ u2 = w
w(s) =v~(s).v2(s) (2.6)

The constant function u(s)= 1 is the identity operator of this multiplication,
y~1 = v. The vectorspace51’ with the multiplication operation(2.6) forms a

commutativealgebra(over Ef~)with anidentity ~.

* Sincetheidentity function w(s) 1 is normalizabletheexistenceof the norm(2.3) implies that v is

an operator(2.1). We alsoobservethat 11v1 — u211 = 0 implies (w, u1) = (w, u2) for w E 2~2such
that our definition of operators(2.2) is consistentwith thestructureof ~T

2.
** We note that X is everywheredensein X2, ~ = %~2Thecontinuousnormalizable(correlatable)

functionsare everywheredensein ,g?’2(X) and similar for k times (infinitely often) differentiable
functions.Without lossof generalitywe couldrestrictour discussionto infinitely often differentiable
correlatableoperatorsu(s) (thealgebrapreservesthis property).
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Let usnextconsidervariabletransformations.They arecharacterizedby invert-

ible functions f(s),

f: ~N ~,N f= det~~-- >0, (2.7)

which aredefinedon the RN exceptfor somezeromeasureset.The imageof f is
again R~’except for a zero measureset (we denote theseby RN R~N) The
function f shouldbe continuousand differentiable in R”. An operator u(s)

transformsas

u(s)—~u(f(s))=(f(u))(s). (2.8)

We canusethis transformationto definean isomorphismof scalarproducts

Ku’w’)f = Z lfds Pf( s)v’(s)w’(s),

p1(s) =fp(f(s)),

z=fdsp(s) =Jdspf(s), (2.9)

with

Kf(u), f(w))f= Ku, w). (2.10)

Here we note that operatorsu, w which are normalizable with the probability
density p are not necessarilynormalizable with respectto Pf. Only the trans-
formedoperatorsf(v), f(w) are guarantedto benormalizablewith Pf.

Similarly, if u, w arecorrelatablewith respectto p the transformedoperators
f(v), f(w) arecorrelatablewith respectto Pf. For all functionsu(s) onehas

f(u+w) =f(u) +f(w),

f(Au) =Af(u),

f(u.w) =f(v) ~f(w). (2.11)

The transformationf therefore conservesthe algebraic structure of 51’ (e.g.
f((u1 + u2)u3)= (f(v1) --f(u2))f(u3) etc. ). It mapsthe algebra51’ definedwith p
on thealgebraf(X) definedwith p1. Sincef~ is well definedfor all operatorsin
f(X) a variabletransformationestablishesan isomorphismbetween51’ and f(511.
It was shown in ref. [7] that variable transformationscan be used to map two
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arbitraryprobabilitydensitiesp and p’ into eachother. We concludethat thereis
a one-to-onecorrespondencebetweenalgebrasdefinedwith p or p’. The choiceof
p is irrelevantfor the possiblestructuresbetweenoperatorswhich arisefrom the
algebra 2’. It is associatedwith a “coordinate choice” in variable space.With
respectto the product

(fog)(v(s)) =u(f(g(s))), (2.12)

the variabletransformationsform a group. It is the group of generalcoordinate
transformationsin N dimensions,denotedby gen~.The variable transformations
which leavethe scalarproductbetweenall operatorsinvariant,

Ks(v), s(w)) = Ku, w), (2.13)

are called symmetries.All operators obtained from each other by symmetry
transformationshavethe sameexpectationvalue. The symmetriesfrom the sub-
group sgen~characterizedby an invariantvolume element

fp(f(s)) =p(s). (2.14)

They defineautomorphismsof 2’ for a givenprobalitydensityp. In additionthere
are variable transformationsf acting within 2’ which are not symmetries.As a
necessary and sufficient condition this demands that the scalar product

Kf(v), f(w)) is definedfor all u, w ~X. Oneconcludesfrom

Kf(u), f(w)) =(uwp1-ip~),

p~-i=~p(f~1(s)), (2.15)

that the ratio Pf-’/P shouldbe anormalizableoperator,i.e. the integral

fdsp~
t(s)p2(f~t(s))f~2(s) (2.16)

shouldexist.
Infinitesimalvariable transformationsact as linear operatorsin 2’,

u —‘ u + 6u,

a
5v(s)= _~U(5)__..V(5) (2.17)
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Multiplication with a given operatorw can also be interpretedasan operationin

2’. The associatedoperatori~actslinearly in 2’,

~(v)=wu. (2.18)

It does,however,not conservethe product structure(~(vu’)~ ~Xu)i~(u’)). The
operations(2.17) and(2.18) do in generalnot commute.

3. Continuous and differentiable operators

Let us consider a family of nonnalizable operators u(xIL ; s) u(x) which
dependon parametersx~.Theparametersarecartesiancoordinatesof someopen
regionof R’t(~= 1,..., d). An operatoris continuousat x if

limllv(y) —u(x)II=0. (3.1)

Here the limit y —* x is induced by the topology of R” and (3.1) must hold
independentlyof the limiting procedurefor all y in a local neighbourhoodof x.

An operatorfamily v(x) is differentiablein a point x if thereexist continuous

operators(a~vXx)E2’2 suchthat for all ~ = 1,..., d,

lim I(u(x + �z~x~)— u(x))/�z1x~L— a~u(x) = 0. (3.2)
E’0

Differentiation commuteswith the operationsof forming expectationvalues and

scalarproducts

3~Ku(x))= Ka~v(x)), (3.3)

a~Ku
1(x),u2(x)> = Ku1(x), a~v2(x))+ Kv2(x),d~v1(x)) (3.4)

(We assumethat both u1 and v2 aredifferentiable.Continuityanddifferentiability
of u1(x) implies continuity and differentiability of the correspondingexpectation
values.) The product of two differentiable operatorsu~,u2 is differentiable if
u1(x)u2(x)E.Z

2,

d,~(u
1(x)u2(x))= u1(x)3~u2(x)+ u2(x)ö~ui(x). (3.5)

An operatorfamily u(x) is twicedifferentiableif all 3~u(x)aredifferentiable,with
an obvious generalizationto higher derivatives.For k times differentiable u(x)

with positivenorm IIv(x)II> 0 the norm IIv(x)II is also k timesdifferentiable,

Ku, 3 v)
o~IIu(x)II= IIuH (3.6)
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4. Distance

Let usconsidera family of normalizableoperatorsu(x) which arecontinuousin
anopenregionR c R”, dim R = d. We also demandthat u(x~,s) is differentfrom
the constantoperatorfor all x E R,

IIu(x) — Ku(x))II>0. (4.1)

This allowsusto introducea normalizedoperatorfamily, ~p(x)E

u(x)

~(x) = IIu(x) - Kv(x))II’ (4.2)
- u(x)—Kv(x))
tp(x) = q(x) — Kco(x)) = IIu(x) — Ku(x)>II’ (4.3)

II~(x)II= I1q(x) — K~(x))II= 1. (4.4)

We finally require that thereis a open region R c R (dim R = d) where two
operators~(x) and ~(y) aredifferent for x # y,

II~(x)— ~(y)II = 0 ~x~’=y~, (4.5)

andneverorthogonal

K~(x),~(y))#0. (4.6)

for all x, y E R. We call anoperatorfamily v(x) which fulfills the conditions(3.1)
(4.1) (4.5) (4.6) a prefield definedin R. Continuity (3.1) implies that (4.6) is always
fulfilled for some region R ç R. The operatorfamily ~(x) is the corresponding

normalizedprefield.We want to usethe connectedtwo-point function,

G(x, y) = K~(x),~(y))~=K~(x), ~(y))

= Ktp(x)tp(y)) — Ktp(x))Ktp(y)), (4.7)

in order to introducea distancein R in terms of this correlation.Within R the
correlation G(x, y) is continuouswith respectto x and y, strictly positive and
boundedby one,

0<G(x,y)~1 (4.8)

with

G(x, y) = 1 ~ =y~. (4.9)
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If the prefield u(x) is k timesdifferentiablewithin R, the correlationG(x, y) is k
times differentiablewith respectto x or y within R. We introducethe symmetric
function D(x, y)=D(y, x)by

D(x, y)~(D(x,y)) = ~(G~1(x, y) — 1)1/2. (4.10)

Here wedefine for D ~ 0 the continuouspositivescalingfunction j.t(D)> 0. This
guarantees

D(x, y) ~0, (4.11)

D(x, y) =0~x=y. (4.12)

We requirepAD) to remainfinite for all D whichoccurwithin R anddemandthat
Dj..t(D) is monotonicallyincreasingsuchthat D is uniquelydefinedin termsof G.

This still allows that ~ divergesfor somefinite Dm~which measuresthe maximal
extensionof R andoccursat the boundaryfor G(x, y) —~ 0. On the otherhandan
arbitrarily largeextensionof R ~ —~ °°)requiresthat p..(D) remainsfinite for

all finite D and D(x, y) —~ ~ alwaysimplies G(x, y) —~ 0.
We next want to usethe norm inequality

II~(x)— ~(y)II II~(x)— ~(z)II+ II~(y)— ~(z)II,

(1— G(x, y))~2~ (1— G(x, z))~2+ (1— G(y, z))~2, (4.13)

in order to establishthat D(x, y) definesa distance

D(x, y) ~<D(x, z) +D(y, z) (4.14)

at least within a regionR ç R. Indeed,the distanceinequality follows from (4.13)
provided j.t(D) hasthe property

F(D
1) +F(D2) ~F(D3) =~D1+D2 ~D3 (4.15)

with

F(D) = ~D~(D)(1 + ~D2~2(D))_V
2. (4.16)

The property(4.15) holdsfor infinitesimally small D if ~.t(0)= j~> 0 andj.il(0)> 0.

On the otherhand,it cannotbe implementedfor D —~ oc where F(D) approaches
one.Condition (4.15) is a sufficient, but not a necessaryconditionfor D to define
a distance.
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As an illustration,onemay considera correlationfunction which ressemblesat
largedistancesthe two-point function of a four-dimensionalscalarfield theory in
flat space,

G(x, y) = (1 + r2 exp(mr))1,

r2= ~(x~_y/L)2. (4.17)

Choosing

= ‘~/5Jexp(~mD), (4.18)

onesimply finds

D2 = r2. (4.19)

The function /2(D) fulfills (4.15) only if D
1 and D2 aresmallerthana “boundary

distance”D(m) which is determinedby

D2=i[exp(_m~) —exp(—2mD)I (4.20)

and obeys (for all m) b
2 ~ -~. The norm inequality (4.13) assuresthe distance

inequality(4.14) only for this rangeof D. Nevertheless,(4.14)is obviously fulfilled

for arbitraryD.
— We concludethat every prefield definesa distancefor somefinite openregion
R c R. The extensionof R dependson the choiceof /L(D). For

= (1 _D2)V2, (4.21)

one has

D=V~(1—G)1”2 (4.22)

and R = R. This particularchoiceimplies a maximal distance

Dmax=%/~. (4.23)

The units of D are, of coursearbitrary.We can alwaysrescaleD by an appropri-

ate rescalingof .t suchthat /2D remainsfixed. The function p. hasthe dimension
of an inverselength andwe may fix units by settingp.~= 1. In fact, p.~plays the
role of a fundamentallength scale. Its significancewill becomemoreapparentin
the following sections.

The possibilityto implementarbitrarily largedistanceswithin R (p.
0D —* oo) is in

generalnot given. In this case p.(D) must be definedfor 0 ~ D <~ such that a
nonvanishingcorrelation G(x, y)> 0 implies a finite distanceD(x, y) and vice
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versa. If the distanceinequality (4.14) should hold for D(x, y) —~ ~ the prefield
u(x) musthaveadditionalpropertieswhich guarantee,for example,the necessary
relation

G(x,y)=0=~G(x,z)=0 or G(y,z)=0 (4.24)

for all z <R. We will comebackto suchstructuresin sect. 9.

5. Metric

In thefollowing we assumethat v(x) is differentiable.If ~ is defined(4.1), (4.3)
it is also differentiableby virtue of (2.6). The squareof an infinitesimal distance
canthenbe usedto definea metric

g~~(x)= - ~ ~—~D2(x, y)~ (5.1)

(We assumein the following that p.(D) is at least twice differentiableat D = 0.)
The first derivativeof D2 at x = y vanishes,

~D2(x, y)~ = —2p.~2~G(x,

= —2p.~

= —p.~23MK~2(x))= 0. (5.2)

In fact, D is differentiableat D = 0,

= ~p.~_(G_1 — 1)~2~

= ~ - K~(x), ~

a
=p.~II~(y)

=p.~iII_~_~(y)II. (5.3)
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Small distancestakethe form.

D2(x, y) =g~(y~_x/L)(y~~_x*~)+ higher-orderterms. (5.4)

The metric (5.1) canbe expressedas a correlationbetweenoperators3~(x),

g~~(x)=p.~2Kä~(x), 8~~(x)). (5.5)

It is definedin termsof the correlationfunction G(x, y) up to a free constant/2o•

Otherwiseit is independentof the choiceof p.(D). We finally establishthat g,~is
a riemannianmetric with positivesignature,

det ~ (5.6)

if ~ fulfills the condition

IIa,~II>0,

(5.7)

for an arbitraryorthogonalmatrix Q/L. Indeed,g~.,is a symmetricmatrix andcan
be diagonalizedby an orthogonaltransformation(~= diag(A

1,..., Ad))

g. = OLOvg (5.8)

Everyeigenvalue

— —2 — 2A, = ge, = /2o II~j~II (5.9)

is positive semidefiniteandbecomespositivedefinite by virtue of (5.7). Condition
(5.7) is also necessarysince all diagonal elementsg~must be positive in an
arbitrarily rotatedbasis.

The condition(5.7) playsa crucial role for the existenceof a metric in termsof
correlationfunctions.It meansthat thereis no direction for which the expectation
value of the “kinetic operator” 3~8~associatedwith ~ vanishes.In a more
algebraiclanguageit is equivalentto the conditionthat the partial derivatives
form a set of d linearily independentoperatorsin 2’2. We emphasizethat (5.7)
implies the condition (4.5) but is actually stronger.

An operatorfamily u(x) E2’
2 is called a field defined in a (d-dimensional)

regionRM c R” if, for all x E RM, it is
(i) continuous(3.1) andinfinitely often * differentiable(3.2);

(ii) different from the constantoperator(4.1) such that ~(x) is defined and
differentiable

* We couldrequireonly differentiabilityof v(x). Our strongerconditionensuresthat all derivativesof

the metric exist andare continuous.
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(iii) fluctuating in d directionsin the sensethat the d derivativeoperators8~
areall linearily independent(5.7).

Every field definesa riemannianmetric ~ in RM which is unique up to an
overall scalefactor /2o• We can usethis metric to definea geodesicdistanceDg in
the standardway. In generalDg will be different from D. Since G cannotalways
be expressedas a function of Dg it is not evenpossibleto establisha functional
relationbetweenDg and D in the mostgeneralcase ~‘. Nevertheless,the distance

inequality (4.14) implies by constructionfor arbitraryp.(D),

Dg(X, y) ~D(x, y). (5.10)

In particular, D —~ cc implies Dg —~ co•

It is instructive to considera few simple examples. Let 0, be orthonormal
operatorswith vanishingexpectationvalues

K0,)=0, KO~O~)=~11. (5.11)

We startwith one-dimensionalexamples,where

~ =a1(x)01+a2(x)02,

a~+a~=1. (5.12)

The correlationandthe metric read(/2o = 1)

G(x, y) =a1(x)a1(y) +a2(x)a2(y), (5.13)

g11 = a(x)
2 + a~(x)2= a~(x)2(1— ai(x)2)’. (5.14)

Wemay compare the distance

D = ~(1 — G)~2= (2— 2a
1(x)a1(y) — 2a2(x)a2(y))

1”2 (5.15)

with the geodesic distance

Dg=~~dxlIafl(1_a~)_1/2=arcsjfl a
1(y)—arcsin a1(x) (5.16)

(Eq. (5.16) holds for a~> 0 everywherebetweenx and y. For a <0 the sign of the
r.h.s. has to be inverted and the contributionsof regionswith different sign of a~
have to be added.)

* In field theory the correlation function may not only dependon the geodesicdistancebut alsoon

propertiesof thecurvaturetensor[8].
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The first exampledescribesa circle in X2:

a1=sinx, a2=cosx,

G = cos(y—x),

Dg= Iy—xI,

D=(2—2cos(y—x))
1”2. (5.17)

Wemay obtain D = Dg by a different choiceof p., namely for

~ 1—cosD 1/2
cosD ) (5.18)

The boundaries of R are givenby (4.6), namely ~r/4 <x <IT/4 such that R covers

only one quarter of the circle. In contrast, RMextends to the whole realaxis. An
infinite geodesic distance would require, however,an infinite numberof windings
around the circle. These features can be easily generalized:If G can be expressed
as a function of Dg we can always obtain within a certain range Dg = D by a
suitable choice of p.. Within R all distancesobtainedfrom (5.12) are bounded
since the r.h.s. of (5.16) is boundedandat mosttwo valuesof a

2 can correspond to
a given valueof a1.

The secondexamplehasa singularityof the metric at x = 0 (with R defined by

Ix~<i),

++~/x(1—x) forx>0
a1= ________ (5.19)

forx<0,

+(1 _2x)2{x(1 -x)[~_x(1 -x) - ~x(1 -x) ]}1 for i>0

+(1 + 2x)2{_x(1 +x)[~ +x(1 +x) — ~/—x(1+x) 1} for x <0.

(5.20)

For small I x onehas

ds~(3IxI)’~
2IdxI (5.21)

and Dg remainsfinite at x = 0. In fact, the “coordinatesingularity” at x = 0 can
be removedby a redefinition of the coordinate x = F(x). The correlation is
continuousin the whole interval — ~- <x < ~ with G(— ~, ~) = 0. All distancesin
R remainboundeddespitethe divergenceof the metric at x = 0.
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Our third exampleis two dimensional.We considerfor x~+ x~<(1 + c2Y~’,

~(x
1x2) = x101 +x202 + c~Ix~+ x~03

+~/1_(1+c2)(x~+x~)04, (5.22)

where ~ is notdifferentiablefor x1 = x2 = 0 (exceptfor c = 0) andat theboundary
x~+x~= (1 + c

2)~.The metric reads(p.o = 1)

________ 2 2 X
1

g11=1+c
2 +(1+c )x~+x~ 1_(1+c2)(x~+x~)

2 2
________ 2 2

g
22=1+c +(1+c ) 1_(1+c2)(x~+x~)

X1X 2 X1X2
+(1+c

2) (523)12 1—(1+c2)(x~+x~)

For small x~+ x~we can neglectthe last term and find, with standardpolar
coordinatesaroundthe origin at x

1 = x2 = 0,

ds2=(1+c2)(dr2+ l~C2r2 d~2). (5.24)

For c
2> 0 this representsthe geometryof a cone.There is a true singularity at

r = 0 which cannot be removedby a changeof coordinatesand R is not a
riemannianmanifold. The geodesicdistanceis, nevertheless,finite everywherein
R (including theboundary).The correlationG( —x

1, —x2 x1, x2) = 1 — 2(x~+ x~)
vanishesfor x~+x~= ~. This determinesthe boundary of R for c

2 ~ 1. In
summary,various types of singularitiescan arise from very simple ~ with only a
few operators.On the other hand,it seemsimpossibleto obtain arbitrarily large
distancesif ~ involvesonly a finite numberof operators.

6. Topology

We canusethecorrelationG(x, y) in order to definea topology.The notion of
a local neighbourhoodof a point x canbe inducedfrom thedistanceD (4.10).For
this purposethe different possiblechoicesof the function p.(D) areequivalent.If
u(x) is a field the definition of a local neighbourhoodin terms of the geodesic
distanceD

5 is also equivalent.The regionR is a manifold andR~= R fl RM is a
riemannian manifold. (We remind that R’M is the subset of RM for which

G(x, y)> 0 everywhere(4.6).)
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It may happenthat R’M covers R only except for some sets of points 2 with
dimensionsmallerthan or equalto d — 1. In this caseR is not guaranteedto be a
riemannianmanifold. It may have cusps or edges at the “singular” points 2.
(Compareexample(5.22).) Such singularitiesare an obstruction to find a metric
everywherein R, evenif we cover R by differentcoordinatepatches~. A violation

of (5.7) typically leads to such an obstruction.On the other hand, “coordinate
singularities” (compareexample(5.19)) can be removedby choosingappropriate
patchesand coordinates.If R/R’~containsonly coordinatesingularitieswe can
find an “atlas” such that R is a riemannianmanifold.

Within R” the open region R may have (d — 1)-dimensionalhypersurfacesas
boundaries. (These boundaries may have boundaries themselves. Also R needs not
to be connected.)Within theseboundedregions(or within R’~ if thereis no d — 1
dimensionalboundary)theremay in addition be sets of points with dimension
smallerthan d — 1 whichdo not belongto R — for exampleisolatedpointsor lines.
Wewill denoteby S the set of points in R” which are arbitrarily close ** to R but
not within R. If appropriate,we also include in S the “points at infinity” (for
x —~ cc) on the boundary~~_1 of the compactifiedversionof R’~’.For all points I in
S leastoneof the following propertiesmusthold:

(i) IES~’;
(ii) the operator u(I) is not definedor u is notcontinuousin I;

(iii) the point i belongs to the set S~of points where u(I) is a constant
operator.Then IIu(I) — Kv(I))H = 0 such that ~(I) may not be defined ((4.1)
violated);

(iv) the point I belongsto the set S= of “identifiable points”. This meansthat
thereexistsa point y E RU S, y ~I, suchthat II~(I)— ~(~)II= 0((4.5)violated);

(v) the point i belongsto the setS~for whichG(I, y) = 0 for somey E R U ~

((4.6)violated).
Case(i) can alwaysbe eliminatedby a changeof coordinatesx = F(x’) which

preservesthe topologyof R” butmaps5d- 1 into a hyperspherewith finite radius.
For simplicity we work in this sectionwith coordinateswhere S hasno points at
infinity. The formulation in termsof the original coordinatescanbe recoveredat
the endby inverting the coordinatechange.We will also omit possibleboundaries
of the type (ii) andassumethat u is continuouseverywherein R U S.

For purposesof topology we only need the existenceof G(x, y) but not
necessarily(4.1). It is sufficient that 1im~.. ,~ G(x, y) andlim~..., ~ lim~, ~ G(x, y)
areuniquely definedfor all I, j3 E S~and x, y E R. This allows oneto extendthe

* Thesesingularitiesmayalsobeanobstructionto find an“atlas” for R consistentwith an embedding

in a higher-dimensionalspace.(The two-dimensionalcone cannotbe smoothly embeddedin p
3.)

Then R is a manifoldonly with the “atlas” resultingfrom its embeddingin act.
** We use herethe canonicaldistance in tI”. This also appliesto the dimensionalityof subsetsof S

which aretreatedassubsetsof II”. From thepoint of viewof themanifoldR (without embeddingin
ad) theboundaryhas,of course,always dimensiond — 1.
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definition of G to include S0. Indeed, the conditions (4.5) and (4.6) can be
formulatedin termsof the correlationG(x, y),

G(x, y) = 1 ~x=y, (6.1)
G(x, y) > 0. (6.2)

Let usconsidertwo curvesW~,~‘2 in R which intersectat the boundaryin I E

We choosex ~ ~ y E ~‘2 andobservethat along eachcurve the limits lim~
G(x, z) andlim~~G(y, z) existsince G is boundedbetweenzeroandone and
v(x) is continuousin i. The questionis only if G(I, z) canbe definedindepen-
dently of the choiceof curve.A necessaryandsufficient conditionis the existence
of

lirn lirnG(x, y) = G(I, 1) (6.3)
x—’x y—’x

independentof the curves ~ W2 and the order of limits. In this caseone has

G(i, I) = 1. The inequality

lim(1 — G(x, z))”
2 ~ lim(1 — G(y, z))”2

1/2
+ lirn lirn(1—G(x, y)) (6.4)

x—’x y—~x

implies that G(I, z) is defineduniquely and continuousat I. For two points I,
~ E S

0 where G(I, I) andG(j3, 53) areuniquely defined,the limit

G(i, 33) = lirn lirnG(x, y) (6.5)
x—.x y—.y

is also uniquelydefined.Furthermore,the existenceof the limit (6.3) is equivalent

to the existenceof

lim~(x)=t~(I). (6.6)

Theindependenceof (6.6) from the limiting procedurefollows from

lirn lirnII~(x)—~(y)II=O. (6.7)
x—•x y—’x

In consequence,we can weaken the condition (4.1) and include in R all points
where (6.3) is defined. Possible remaining points where the limit (6.3) is not
defineduniquelyform the boundarysetS~andwill not be consideredfurther.

We nextturn to the“natural boundaries”S andS. UnlessS= is emptythere
will be at least two distinct points in R = R U S = betweenwhich the distance
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vanishes.Wewill identify two pointsin R or S wheneverG(x, 53) = 1 or G(I, 33) =

1. Indeed,G(x, y) remainswell definedafterthis identification for all x, y E R U
S. Inequality (4.13) implies

G(I, 33) = 1 G(x, I) = G(x, 33) (6.8)

for all x where G is defined.Similarly, the continuity of G at the identified points
follows from the continuity of G in R U Swithout identification and(6.8).

As a consequenceof the identification the set R can, in general,intersectitself.
We will concentrateon the casewhereR is not self-intersecting.This requires,in
particular,that no point in R canbe identified with a point in S,. As a necessary
conditionwethereforedemandthat for all x E R, y E R U S there is a constant ~
suchthat for all e <~ thereexistsa continuousfunction ~(E) which tendsto zero
with e andhasthe property

~ (6.9)

This condition is strongerthan (6.1). It guaranteesthat there is no point of
intersectionwithin R but it is not yet sufficient to excludesuchpoints in S. For a
generalizationof condition (6.9) we consider in 2’2 all operators ~(x) whose
distancefrom a given operatorç~(I)is smallerthan �, x, I E R U S,~,

UE(~(I))= (~(x),II~(x)— ~(I)II <e}. (6.10)

The set ~ is non-selfintersectingif for all I thereis a valuee suchthat thereexists
an invertible mapfrom U~to somelocalneighbourhoodU of a point in R’~.In this
casewe considerU as a coordinatepatchwhichoverlapsoneor severalpartsof R
which are “closeto I” in the senseof (6.10). If R is notselfintersectingit canbe
made a manifold M by use of an atlas consisting of patchescovering R plus

patchesU coveringthe identified points.
We conclude that R has S~as the only possiblenaturalboundary. On this

boundarythe distanceD tends to infinity or to Dm~,dependingon the choiceof
p.(D). The correlation G(x, y) is continuouseverywherein R U 5,,,. It defines
completely the topology of the set R. We emphasizethat the topology of a
manifold M cannot be reducedto either the topology of the parameterspace
which is a submanifoldof R’~or the topology of the operatorspace2’2. It is a
propertyof the mapping~ from parameterspaceto operatorspacewhichselectsa
d-dimensionalsubmanifoldof X2.

We finally mentionthat ~ is a riemannianmanifold if
(i) R is a riemannianmanifold;

(ii) R is not self-intersecting;
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(iii) The identification of points in S = does not induce “true singularities”
(cusps,edgesetc) in ft. (Coordinatesingularitiesare tolerated.)

In this context we observethat the condition (4.1) for the definition of a field
maybeweakenedwithoutaffectingthe metric structure.We mayinclude in RM all

points I whereg~~(I)is uniquelydefinedas lim~., ~ g~(x)eventhough II v(I) —

Kv(i))II mayvanish. (This implies that the limit (6.3) also existsat I.) If the metric
is definedeverywherein S the identification is alwaysconsistentwith the metric

structure.(This follows from the definition of the metric in termsof G (5.1) and
(6.8).)A newsingularity at I E S canonly ariseif lim~~g~,~(x)is not defined
uniquely or if g,~is not infinitely often differentiablein I.

In summary, riemannian manifolds with arbitrary dimension and arbitrary
topologycanarisein our formalism.Everyd-dimensionalmanifold canbe mapped
on an open regionR within R” after cutting out appropriatesets of pointswith
dimensionsmallerthan d (cf. the discussionin ref. [7]). The definition of topology
in terms of the correlation G “repairs” thesecuts by gluing appropriatepieces
togetheras a result of the identification of points betweenwhich the distance
vanishes.Moreover, our formalism can describesets or manifolds which are not
riemannianmanifolds becauseof singularitiesof the curvaturetensor.Suchspaces
havebeendiscussedas internalspacesin higher-dimensionalgravity (“noncompact

spaces”[5]) and string theories(“orbifolds” [6]). Beyond that, the formalism is
evenflexible enoughto accommodateintersectingsetsof points.Wewill, however,
restrictthe following discussionto manifolds.

So far we havechosento embedR in R”. This is not necessary.We could
replaceR~!by any other d-dimensionalparametermanifold as, for example,the
torus T”. Since ~(or G, ~ neednot to be continuouseverywhereon T” thereis
no additional requirement like periodicity which would restrict the choice of
prefields. Discontinuitiesor the vanishingof G act as “cuts” on the parameter
manifold. For every prefield ~ defined in an openregion R c Rd thereexistsan
equivalentprefield QT defined in RT CTd which leads to the sametopology in
termsof G (andvice versa).The parameterspaceis a purely auxiliary construc-
tion. Its only relevant geometricalcontent is its dimension. If we deal with a
manifold M it is often convenientfor practical purposesto choosea parameter
spacewith the sametopologyas inducedby the correlation.The identification of
points in S= is then in exactcorrespondenceto the identification of parametersin

different coordinatepatchesof the parametermanifold.
We finally note that topology and geometryare entirely determinedby the

behaviourof u in R. (Thepropertiesof the boundariescanbe infered from it.) In
the following discussion we will simply omit the boundariesof R with the
understandingthat oneshoulddealwith S as describedin thissection.If appropri-
ate, disconnectedparts of R may be viewed as different coordinate patches
describinga d-dimensionalmanifold. Insteadof overlappingpatcheswe usehere
the equivalentconceptof identificationof boundarypoints,with the understanding
that overlappingpatchesareprovided as discussedabove.
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7. Fieldsas embeddingsin operatorspace

As we haveseenthe coordinatesx play only an auxiliary role. We shouldbe
able to describethe geometricalconceptsin a coordinatefree setting. From a
moreabstractpoint of view our attemptto describetopology,distanceand metric

in termsof the correlationG leadsto thefollowing generalconstruction:We deal
with (continuous)embeddingsof a d-dimensionalmanifold M into a subspaceof
the infinite-dimensionalspaceof operatorswith unit norm ~ This subspace,
which we denote by 2’~, is orthogonal to the constant operator

Kc6) = 0, (7.1)

andhasthe additionalpropertythat two operators~, i~’ areneverorthogonalwith

K~,~‘) > 0. (7.2)

Since 2’2 is a Hilbert spacewe canchoosean orthonormalbasis0, (5.11),

= La,0,, (7.3)

suchthat 2’~is definedby the conditions

Ea~=1, La1a>0. (7.4)

The conditions(7.4) are invariantunder(infinite-dimensional)orthogonaltransfor-

mationsin 51~2•Usingappropriaterotationswe canalwaysfind a basiswherethe
secondconditionin (7.4) reads

0< a1 <1,

O~a~<l forj>1. (7.5)

On the boundaryof 2~ at leastoneof the a, vanishes.An arbitraryfinite-dimen-
sional manifold can be embeddedin 2’~.For the given manifold there exist
infinitely manypossibleembeddings.A normalizedprefield ~ specifiesa particular
embeddingM —* 2~.The metricstructure(5.5) is inducedby the naturalmetric in
51’~which in turn is inducedby the naturalmetric in 2’2,

ds
2= ~ da, dad. (7.6)

Indeedthe embedding

~(x) = ~a,(x)0~ (7.7)
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induces

ds2= ~ dxv. (7.8)

The metric

da. 3a.

= E ~ ~ = K3~,.t,~(x)8~~(x)) (7.9)

coincideswith (5.5) for /2o = 1. A riemannianmanifold correspondsto aninfinitely
often differentiable embedding. In particular, all partial derivatives ö~a,are

continuousin appropriatecoordinatepatches.In addition, the embeddingmust
fulfill the condition (5.7) for the linear independenceof the derivativeoperators,

b~bvEa~aja~a,= 0 b~= 0. (7.10)

A normalizedfield ~ defined in a riemannianmanifold M specifiesa particular
embeddingof this type.

We note that only theparticularchoiceof p.(D) (4.21)definesthedistanceD in
M as the canonicaldistancein 2’~.This choiceof p.(D) is obviously not suitable
for the description of “large distances”.Although the “geometry at small dis-
tances”and the topologycanbe infered from the scalarproduct(2.4) in 512 this
will not hold for the “geometryat largedistances”.Thelarge-distancegeometryis
related to particular properties of almost orthogonal operators which will be
discussedin sect.9.

We finally emphasizethat our simple geometricalconstructiononly ariseson

the level of the normalized(pre)field ~. The manifold M is notgiven apriori when
we define the prefield v which is an embeddingin 2’2• The structureof M can
only be determineda posteriori once we have mappedthe prefield u into ~
accordingto (4.3). The map v —p ~ from 512 to 2’~ may leadto singularities(for

IIu(I) — <u(I))II = 0 and ~(I) not defined) or induceadditional identifications (if

11i3(x) — c5(y)II = 0 for someconstantc, i3 = u — Ku)). It can also smoothenout
singularitiesof the original embeddingv.

8. Generalcoordinatetransformationsandsymmetriesof themetric

We are free to changethe coordinatesof the parameterspaceR,

x~=F~(x’), (8.1)

u(x) —~v’(x’)=u(F(x’)). (8.2)
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The mapF: R’ —~ R is in generala mapbetweentwo differentregions in R”. (We
require F to be continuous,differentiableand invertible everywherein R’ and R

exceptfor zeromeasuresets.)If F is a one-to-onemapR —~ R it definesa general
coordinatetransformation.Its actionon the operatorsu(x) obtainsby replacingx’
by x on the r.h.s.of (8.2),

v(x) —~v’(x)=v(F(x)). (8.3)

Underinfinitesimal transformations,

F~(x)=x~— ~L(x), (8.4)

a field v(x) or ~(x) transformsas a scalarandtheir derivativesasvectors,

v’(x) =u(x) +~u(x),

=

6a~u=—8,L~aPu—~”aPa,~u. (8.5)

This implies immediatelythat the metric hasthe standardtransformationproperty
undergeneralcoordinatetransformations(gene),

= ~ _a~~Pg~~— ~ (8.6)

Two fields v(x) and u’(x) related by (8.3) lead to equivalentgeometries.The
inducedmetrics g,~,,andg~differ only by a generalcoordinatetransformation.

Symmetriesof themetric g~1.ariseif thereexist Killing vectors~ = OzK~(x)
suchthat the associatedinfinitesimal transformationsleave ~ invariant,

a~K~Pg~~+ ~ + K~B~g~= 0. (8.7)

A symmetryof the correlationfunction,

G’(x, y) = G(x, y), (8.8)

can also be realizedby an appropriategeneralcoordinatetransformation(8.3). By
the construction(5.1) every symmetry of the correlationfunction inducesa corre-
spondingsymmetryof the metric. For example,if G dependsonly on (X~A — yIL)
x (xi, — with R = R’~the metric is invariant underd-dimensionaltranslations
and rotations.

A convenientway to realize a symmetryof G is the associationof a coordinate
transformationF with a variabletransformations which leavesthe scalarproduct
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invariant (2.13).As a simple examplewe consider,with N = d,

p(s) =exP{_~E(s~)2}=exp(—~s~s~), (8.9)

v(x) ~ (8.10)

where u is a field in the wholeRd. Obviously,p is invariantunderrotationsof the
s~and the effect ot this rotation on u correspondsto a rotation of x~.The
resulting correlationfunction G and metric g~must havethe symmetry SO(d).
Every (variable-) symmetry s which acts nontrivially within the d-dimensional
subsetof X~ definedby the embedding~ leadsto a symmetryof G. Theinverse
is not true: A symmetry of G is not necessarilyassociatedwith a variable
transformation.We finally mentionthat gen~is not a symmetry of the metric.
Althoughgen~is a subgroupof sgen~for N> d this subgroupshouldnot actas a
transformation ~ —~ ç~’. Otherwise the expectation value (5.5) would have to
vanish.Our formulation correspondsto the metric in a fixed gauge.

The variable transformationss which leave the probability density invariant

form the groupsgen~.In general,only a small subgroupG C sgen~acts among
the operators ~(x) (g(i~(x))= ~‘(x) = ~(x’); x, x’ E R, g E G) whereas most
transformationschange~(x) into a new field ~‘(x) ($(~(x))= ç~’(x)# ~(x’), ,~E

sgenN/G).Since the scalarproduct

K~p’(x),~‘(y)) = K~(x),ç~(y)) (8.11)

as well as all other geometricalconstructionsusedso far remain unchanged,the
(pre)fields ç~(x)and ~‘(x) (or v(x) and u’(x)) define the same geometrical

structure.For a given probabilitydensity(action)thereare infinitely many differ-
ent fields ~(x) which describethe samegeometry. The transformationsin the
quotientsgen~/Gact as isomorphismsbetweenequivalentgeometricalstructures.

9. Long-distancebehaviour

The constructionof geometryin termsof the correlationfunction introducesa
natural length scale(“fundamentalscale”)p.~~. We fix units by the choice /2o = 1
suchthat an infinitesimally small distancecoincideswith the distanceinducedby
the scalarproductin ~2 As we haveseenin the examplesat the endof sect.5 it
is not alwayspossibleto reachlargedistances.We will now turn our attentionto
fields which permit a long-distancebehaviour.
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ConsiderG(x, y) as a function of y for a fixed point x. For y in thevicinity of
x the correlation decreasesin all directionsfrom the maximum at y = x. The
decreasecontinueseither until G reacheszero or y hits the boundaryof R for
G(x, y) = G~.or else a saddlepoint or minimum appearsfor somecritical value
Gcr. We denoteby Rmon(X) the region in R aroundx for which G is larger than
this critical value,

Rmon(X) = {y, G(x, y) > Gcr},

Gcr~0. (9.1)

We may representRmon as the sumof “equicorrelationsurfaces”,

RG(x) = {y, G(x, y) = G}, (9.2)

suchthat the boundaryof Rmon correspondsto RGer~We assumethat the geodesic
distanceDg is finite everywherein Rmon.Let usdefine the function Dg(G) as the
minimumvalue of the geodesicdistancebetweenx and a point y within R~’(x).

This establishes~5(x, y) as a function of G(x, y) with

~g(X, y) ~<D5(x, y). (9.3)

Sincethe inequality in (9.3) is saturatedfor a particularpoint y for everyvalueof
Dg we conclude from (5.10) that Dg correspondsto the maximal value that the
distanceD could possiblytakenfor a givenvalueof G> Gcr.

As a first requirementfor a field to admit a long-distancebehaviourwe demand
that Dg(Gcr) becomesmuch larger thanone for at leastonepoint x E R,

Dg(Gcr) >Dl.d.>> 1 (9.4)

(For definitenesswe maytake for Did at least10.) For a finite-dimensionalsphere

with unit radiusthereis a maximal valueof Dg. This explainsthe impossibility to
constructarbitrarily largedistanceswith a finite numberof orthonormaloperators
(our examplesin sect. 5). On the otherhand the infinite-dimensionalunit sphere
admits lineswith infinite length betweentwo points x and y on theboundaryof
51~,suchthat G(x, z)decreasescontinuouslybetweenoneandzero for z moving
from x to y.

We may illustrate the long-distancebehaviourof fields with two examples.For
the first one we considerinfinitely many orthonormaloperators(4.11) which we
orderwith an index n~,p. = 1,..., d; — cc <np, <cc. We define

~(x) =ck(x) ~fk(x~’n~)0fl,,. (9.5)
{n,’}
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Here the function fk dependsonly on (x’~— n~)(x,~— ni,) anddecreasesrapidly if
this argumentbecomesmuch largerthan k2 for example

fk(x~—n’2) = (k2/ir)’~~’2exp{_k2(x~_nM)(x~,—n~)}. (9.6)

The normalization

—1/2

ck(x) = (~/k2)’t/’2 ~ exp{_2k2(x~—n~)(x~,—n~,)} (9.7)

{nM}

is periodicin all x~.The correlationfunction

G(x, .v) = E fk(xM —n~)fk(y~—n’~)ck(x)xk(y)
(n,’)

ck(x)ck(y)

= c(x+y))ex~2~~~ (9.8)vanishesonly for (x — y)2 —* cc• For k2~ 1 the normalizationCk becomesalmost
independentof x (ck (2ir/k2Y”4). In this limit the metric becomesflat,

a a
g,~~(x)= ~ ~—jG(x, ~

=k2&,~~—~ ln ck(x). (9.9)

On the other hand, for k2 in the vicinity of one the metric reflects strongly the
discretenessof the operatorsO~’since the periodicsecondterm in (9.9) becomes
important. For fields with a long-distancebehaviourwe can often find related
“averagefields” [9],

= Ck’(x)fdyfk’(x -y)~(y), (9.10)

which leadto a smootheningof the metric for k’ << 1. Averagefields areuseful in
order to havea smoothmetric in a discretesettingas in lattice theories.

For k2 ~ 1 we finally note that we canchoosea distanceD(G) in closeanalogy
to (4.17) and(4.18),

D Dg kr,

p.(D) = {~(exP ~D2— 1)). (9.11)

The function p.(D) is definedfor all positiveD andcondition (4.24)is fulfilled.
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Secondly,we continuethe exampleof the lastsection(8.9) (8.10),which leadsto

~(x)

d/2

— (1~) ex~{_1 +277 (9.12)

with

d/2

exp — x’~x
1+i~ 1+77 ~

d

(1~77) ex~(_i~x~x~)}. (9.13)

The correlationfunction

G(x, y) =c(x)c(Y){( 1~ )d/2 ex~(_1 ~~2) exp(_ ~2)

d

(177) exp(_
1~(~2+~2))}, (9.14)

~ 4
2=~(x~’—y’~)(x

11—y,~),(9.15)

vanishesfor

~2 1~77~2+77(1+277)~ ln(1+ 477(11+77)). (9.16)

This correlationis positiveeverywherewithin the region

R = (x; x~x~<x~},

17(1 + 277)d 1

2~ ln(1+ 477(1+77))’ (9.17)

and vanishesonly on the boundaryat “oppositepoints” G(x, — x) = 0 for =
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x~.Carryingout theconstructionof Rmon(O)onefinds a nonvanishingcritical value
for Gcr. We concentrateon ~1<<1 where

77d 1 1
~ —in-— ~g —. (9.18)21r 4~ ~T

In this limit onehas

~(x) —77~4exp{_ ~(x~ —s~)(x~,_s~)}— (477)~4, (9.19)

G(x, y) exp{_ ~(x~ —y~)(x~_~~)}— (

477)d/2 (9.20)

Gcr (4)d/8 (9.21)

The metric is given by

= ~ (9.22)

and the geodesicdistancebetweenx = 0 and y = x~,

— d 1 1/2

Dg=Dg= ~4-ln~— , (9.23)

can be large only for exponentially small values of 77. We conclude that every
function p.(D) (4.10) for which D fulfills the distanceinequalitymust divergefor
Dma,,~ (d in 1/477)h/’2. In this examplethe impossibility to define p. for all D is
closely relatedto thefact that Ktp(x)tp(y))decreasesfasterthanKço(x))Ktp(y)) for
largevaluesof 42

Theseproblemsleadusto a secondrequirementfor fields admitting a long-dis-
tancebehaviour:We demandthat there existsa function p.(D) which remains
finite for all positive D such that D fulfills the distanceinequality everywherein
R. Then D(G) is an invertible function for all positive G with the property

limD(G) —~cc~ (9.24)

The example(9.5) fulfills this criterion for sufficiently smallk (9.11). The further
developmentof the conceptof spacewithin generalstatisticswill involve a much
moredetailedinvestigationof the propertiesof fields which admita long-distance
behaviour.
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10. Metric from correlation function of free scalar field theory

In the precedingsectionswe have shown that geometrical conceptscan be

formulatedunderverygeneralcircumstances.So far we havechosenvery simple
examplesin order to demonstratethis generality.Nevertheless,our conceptsare
directly applicableto realisticphysical theoriesas field theoryor string theory. In
this sectionwe constructexplicitly the metric gb,,. from the correlationfunctionof

a free scalarfield.
In flat d-dimensionaleuclideanspacethe action for a scalarfield,

x(x) = ~exp(—iq~x’~)x(q),

~(~q) ~*(q), (10.1)

reads

S= ~

p=exp(—S). (10.2)

Wework on a torus with finite volume (2. (One may take f2—* cc at the end.)As
long as we imposea sharpcutoff A with q2 <A2 (q2 = &~‘q,~q~),the number of
degreesof freedomx(q) (which correspondto S” in sect. 2) remainsfinite. For a
finite number of degreesof freedom the scalar field x(x) is a normalizable
operator.

Kx2(x))=Z’f~x x2(x) exp(—S),

Z = J..cix exp(—S) (10.3)

(Functional integrationstandshere as a shorthandfor integrationover all modes

x(q).) Onefinds

Kx2(x))= E ~exp[—i(q,~, _q,~)x~]K~(q)~*(ql))

= ~ G(q)121
qq2 ~

= (
2~.)_df ddq G(q), (10.4)

q

2 <A2



C. Wetterich/ Geometryfrom generalstatistics 327

with

= G(q)~qq~fl’,

G’(q) =zk(q)(q2+m2) (10.5)

(In the last expression in (10.4) we havetaken fi—* cc.)

In the limit A —~ cc the numberof degreesof freedom becomesinfinite. An
operator u(x) E512 in generalstatisticsmust remainnormalizablein this limit.
For z~(q)= 1, however,x(x) ceasesto be normalizablefor A —~ cc~For a defini-
tion of a normalizableoperatorwe may either introducea smooth momentum
cutoff by choosing z~(q)=f~2(q)or keep Zk = 1 and introduce averagedfield
operators

= Jddyfk(y -x)x(y),

4~k(q)=f~(q)x(q). (10.6)

Here fk(x — y) is given by (9.6) and fk(q) corresponds to the Fourier transform of

fk(x),

f,,(q) =ex~(_~). (10.7)

In both casesone finds

c~2= (~2(x) )Zk=1 = Kx2(x))z
5=f~2

=(2~)_dJddq (q2+m2y’ ex~(_~~)

=2udkd_2fdyyd/2_1(y+ ~)exp(—~y)

- m
2

=2udk”~2Id -~- , (10.8)

with

u,~= 2~~-’~~2F(+d),

I
3(0)V~’, 14(0)’2,
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‘d+2(
0) = (d — 2)Id(O) for d> 2,

m2 m2 m2
Id(-~-) =‘d(O — -~TI1_2(~-) ford>2,

m2 k2
‘2 ~ = ln—~ for k2 >> m2,k m

‘1 ~ =~rk/m for k2>>m2. (10.9)

The operatorfamily .~,5k(x)(or x(x) with zk = f~2) obeysall criteria for a field.
The metric therefore follows directly from (5.5),

~ ~qq(q2+m2)_lf~(q)

k2 ‘d+2(0) m2
Ad=~—~-Id(m/’k) ~ . (10.10)

If we choosek2 >> m2 we may expand

k2 ‘n- m
A

3=~(1+~ç~+...)~

k
2 m2 k2

A
4= ~_~-(i + ~in—~ +...). (10.11)

This metric is flat andwe canobtain g,,,,, = 6~by a suitablechoiceof k2/p.~ The
integralshavebeenperformedfor f2—~cc butall formulaecaneasily be evaluated
on a torus with finite volume as well. The topology is then recoveredfrom the

periodicity of K 4k(x)4k(y)) following the prescriptionof sect 6.
The derivation of the metric from the Greenfunction in coordinatespace

requiressomecare.As is well known, the Greenfunction G0(x — y) = K~(x)~(y)>
diverges for y —*x (zk = 1, A —, cc). The leading terms for r

2 <<m2 (r2 =

~ —y~Xx”—y~)read

1 m 1
———-+-——m2IrI ford=3

4idrl 4~ 8’,r
G

0(y—~x)= 1 1 r
2

4ir2r2 + l
6lT2m ln—~ for d=4. (10.12)
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Using the average field cbk(x) (10.6) for a definition of the field v(x) we may

naively try to obtainthe two-pointfunction by averagingover G0,

O(x —y) =c~Jdd1zd’~z’fk(x —z)fk(y —z’)G0(z—z’)

=c~Jd’~zf,~(z)Go(x_y+z) (10.13)

c~
2=fd’~zf,~(z)Go(z). (10.14)

Here we haveusedthe identity

fd”zfk(x—z)fk(z—Y) =f~(x—y),

k=k/V~. (10.15)

The function G is finite and normalizedaccording to (4.9). The metric should

follow from differentiation(5.5),

g~=Ad~V,

Ad- _2/2~2c~Jddrfk(r)[G~(r)+ ~r2Gg(r)]. (10.16)

(Herewe usethe factthat G
0 is a function of r

2 anddefine G~= 3/3r2G
0 etc.)

We observe,however,that the leadingtermsG0 r
2~’~cancelin (10.16),whereas

the terms m2 give a negativecontribution to Ad! Obviously, somethingmust
havegonewrong, sincethe averagingaccordingto (10.13) leadsto G> 1 for small
valuesof r2 <<m’2 (m2 ~ k2). This is impossiblefor the correlationfunction of a
normalizableoperator4k•

Indeed,the cancellationof thecontributionfrom theleadingtermin G
0 is very

sensitiveto the precisebehaviourof G0 for r —~ 0. We should rememberthat
operatorsaredefinedas thelimit of infinitely manydegreesof freedom(A —~ cc) of

a systemwith a finite numberof degreesof freedom(finite A). For finite A the
Greenfunction for x approachesa constantfor r —~ 0. We regularizethe leading
term (for d = 4),

1 1
~ (10.17)

and take � A
2 to zero at the end.The normalization(10.14) is not alteredby

this procedure,but the metric differs from the unregularizedexpression(10.16) if
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we use GSA) and take � —+ 0 after evaluating Ad. The regularized procedure
reproducesnow correctlythe leadingterm for A4 in (10.11).At this point onemay
wonder if the necessityof a regularizationintroduces some ambiguity in the
derivationof the metric from the correlationfunction of

4k~ This is not the case,
as can be seeneasily in momentumspacewhere (10.10) is independentof the
preciseform how the sum overmomentais cut off for q2 A2, A2 >> k2. For any
regularizationbasedon an effective momentum cutoff the metric is uniquely
definedand,of course,independentof the formulation in coordinateor momen-
tum space.

Infinitesimal distancesare invariantunder rescalingsof the coordinatesx ~‘ —*

ax’s since this is a particular coordinate transformation(comparesect. 8). The
metric scalesg~,,—~ a2g~~,whereasit is invariant underfield rescalingsx — 13x
if p.

0 is kept fixed. On the otherhand,the metric dependson the “averagescale”
k if we takea fixed /2o~We maywish to definea distancefrom the Greenfunction
of a free scalar field (with standardnormalization of the kinetic term) which is
independentof the detailsof the averaging.In this caseit is more appropriateto
relate~ to the averagingprocedureandwe choose(for d> 2) *

(10.18)

2

(10.19)

Here thepowery is fixed by the dimensionof
4k~ This guaranteesthat the metric

is now invariant under a simultaneousscaling of coordinatesand fields which
leaves the kinetic term invariant, i.e. p2 = a2~”~.Oneobtains

(10.20)

andthe metric becomesindependentof the scalek. The k-independentconstant
b

0 may finally be chosensuch that Ad = 1 for a free masslessfield with standard
kinetic term, i.e.

d—2

2 k
2. (10.21)

We observethat the choice of scale(10.18)guaranteesthat we can “measure
distances”with the two-point functions of arbitraryscalarfields, as long as their
mass is much smaller than k! We expect that this property generalizesto
interactingfields, provided the normalizationof the kinetic term is fixed properly

* If we want to measuredistancesin units of the canonical distance in the spaceof unit norm
operators,we have,of course,to keep p~= 1.
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at length scalesof the order k’ and all relevantadditional length scaleswhich
may be introducedby the interaction are much smaller than k. The relation

~ =Ad&~,~follows the symmetriesof the action for an interactingfield theory
andthe questionreducesto thepossibility of a convenientanduniversalchoiceof
the scale factor p.0. We also believe that our construction of the metric from
correlation functions can be generalizedto fields carrying spinor indices or
Lorentz indices. In string theories the correspondingconstruction should use
suitablevertex operatorsfor u(x). In particular, if string theoriesare finite, the
vertex operators representingu(x) should be normalizable and an averaging
involving the scalek could be avoided.

At this point we shouldmentiona particularityof the long-distancebehaviour
for four-dimensionalmassiessfields. For r

2 >> k”’2 the Greenfunction (10.13) is
simply proportionalto G

0 (10.20),

G(r) =c~G0(r). (10.22)

(Theuseof a regularizedGSA) is hereirrelevant.)For a masslessfield onefinds for
the distance(4.10)in the limit r

2k2>> 1

D2p.2(D) 2 d
2 = —~-(G’’ — 1) = 4ud 1d(0)kGO, (10.23)

p.o p.
0 d—2

whichyields, for d = 4,

D
2p.2(D)

2 =2r2. (10.24)
p.

0

In four dimensionsD coincideswith the geodesicdistancer provided p.
2(D)/p.~

approachestwo for D2k2>> 1. The possibility to defineadistanceD with a scaling
function p.(D)/p.

0 which becomesindependentof all length scalesin the limit
D —*cc seemsto be particularfor four-dimensionalmasslessfield theories.We do
not know if thereis a relation betweenthis propertyand the descriptionof our
world with four-dimensionalspace-timeusinga field theorycontainingthe photon
as a masslessfield.

So far we havealwaysworked in this sectionwith field theoriesin flat space.
The readermay suspectthat the whole discussioncan be reducedto symmetry
arguments:“flat spacein — flat spaceout”. The main point of this discussionis,
however,that wedo not needto know that the Greenfunctionscomefrom a field
theorywhich alreadyis formulatedusinggeometricalconcepts.The knowledgeof
the Greenfunction G5’

t) (10.12),(10.17)is sufficient to constructthe geometry!
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Furthermore,our constructionequallyapplies to nonflat geometries.For example,
we may keepthe flat spaceaction (10.2)but introducemodifiedoperators

4k(x) =fk(_D~LD,.~)x(x), (10.25)

wherethe function fk (10.7)now dependson the covariantlaplacianwith a curved

backgroundmetric ~ insteadof fk(—a~a,)usedpreviously.This “distortion” in
the definition of the basic field reflects itself in a “distortion” of the Green
function andresults in a deviationof g,~from a flat spacemetric.

As a distinct possibilitywe could also usethe actionof a free field propagating
in a curvedbackgroundcharacterizedby ~ The modificationsof the singular

behaviourof the two-point functionG0 in a curvedbackgroundarewell known [8].
Using a regularizedexpressionof the type (10.17) (with r the geodesicdistance,
bestexpressedin normal coordinates)anda definitionof

4~k (10.25)adaptedto the
samebackgroundmetric, one cancarry out all constructionssimilar to flat space.

For k2 >> m2, k2 >> R(G), k4 >> R ~~(G)R~”°(G) etc. onefinds from symmetry
anddimensionconsiderations(with a suitable normalizationof p.

0)

Cl C2
g~=G~+~R(G)G~+ ~R~(G)

C

-‘---~-R (G\RPUA(G +
,2pO~A’~ I v ..

Here R~,~~,7(G)denotesthe curvaturetensorformedwith G,,~,,(similar for R,~V(G,
R(G))andc, areconstants.In principle, ~ canbe usedas well as G,~,,in orderto
describea geometry.If we identify k with the PlanckmassM~the differencesare
minor as long as the curvatureremainssmall on the Planck scale. On the other
hand,the averaging(10.25)may actuallysmoothenout sufficiently mild singulari-
tiesof thegeometrydefinedby G~.In otherwords,a mild singularityin invariants
formed from the curvature tensor R,.,VPU(G) may not appearin corresponding
invariantsformedfrom the curvaturetensor~ The nonlineartransforma-
tion (10.26)may map a singularbackgroundmetric ~ into a regularmetric g~.
Onemay evenargue that ~ correspondsto the “true” metric since in practice
one needscorrelationfunctionsfor a measurementof distancesandonly a finite

resolution canbe attained.

11.Conclusions

We havedemonstratedhow to constructgeometryfrom the two-point correla-
tion function. The conceptsof distance,topology, and Riemannianmetric are
introducedin a very generalcontext.We only use the existenceof a field, i.e. a
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family of operatorswith norm onewhich dependin a differentiableway on oneor

severalparameters.Our approachshouldconstitutethe fundamentalframework
for the emergenceof space in general probabilistic systems.Besides this, our
approachrevealsgeometricalstructuresin a multitudeof situationsin statistical
mechanics.As an example,we discussthe Ising modelin a constantmagneticfield
in the appendix.

Our constructionexhibitsa fundamentallength scalel~= p.~~. After the funda-
mental constantsc and h which are related to the unification of spaceandtime
and the duality betweenlocation and momentumthe fundamentallength should
bethe last fundamentalconstantin nature.The fundamentallength l~arisesfrom

the “emergenceof space”.More precisely,it is relatedto the fact that ~ hasno
dimension due to the normalization condition I~II= 1. This implies that the

correlationfunctionsof ~ aredimensionless.Any relationbetweena distanceand
correlationfunctionsmust thereforeintroducea proportionalityconstantwith the
dimensionof a length.Puttingp.0 = 1 measuresdistancesin units of the canonical

distancein the spaceof operatorswith unit norm. We expectthat the conceptof
space looses its universal meaningat distancesof the order of l~.Indeed,two
fields with a similar behaviourof their correlationfunctions at distancessuffi-
ciently largecomparedto l~may well havevery different correlationfunctionsat
distancesof the order l~.

There are infinitely many ways of choosing fields which define a geometrical
structure.Which oneshouldbe selectedto describe“real space”— this bringsus
back to the questionposed in the introduction. A first selectionarises from the
requirementthat the geometryshouldnot only describedistancesof the order l~
but also allow for distanceslarge comparedto l~.In particular, a vanishing

connectedtwo-point function shouldbe equivalentto infinite distance.Although
theserequirementsare not realizedfor genericfields therestill remain infinitely
many possibilitiesto selectfields which admit such a long-distancebehaviour.In
particular,the notion of infinitely many degreesof freedomis notyet neededsince
long distancescanevenbe describedwith a single degreeof freedom(9.5).

Geometryis a structurein the spaceof operators.As suchit doesnotneedthe
specification of an action. In particular, the field defining the geometry must not
coincide with variables in the functional integral. This is not new. A similar
situation arisesin field theory in a momentumrepresentationof the functional
integral or in the representationof string theories as two-dimensional field
theories.So far we haveonly usedthe Hilbert spacestructureof the spaceof all
normalizable operators.All geometrical quantities have ultimately been con-
structedwith the help of the scalarproductfrom operatorswith unit norm in the
subspace512 This constructionis independentof the choice of the probability
densityor action as we haveshown by establishingexplicitly suitable equivalence
transformations.It is also independentof the numberof degreesof freedomN
sinceall Hilbert spacesare isomorphic.At this stage,nothingparticularhappensin
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the limit N —~ cc which is definedas a limit of sequenceswith increasingN (for
details seeref. [7]) *• We havenot yet usedthe notionsof correlatableoperators,
operatormultiplicationor the requirementKç6(x)) = 0. Theywill play a role in the

further developmentof selectioncriteria for “real space”.
If u(x) is a field in R andis correlatablethe squaredoperatorsu2(x) or, more

generally,v”(x) may alsodefine fields. Theywill leadto the sametopologybut in
generalinducea different metric. It seemsto be reasonableto demandfor “real
space” that all u”(x) should leadto the samegeometryat least at long distances
and for suitable averagesof theseoperators(9.10). This may be generalizedto
other composite operatorslike u3~uetc. We also may considerseveralindepen-
dent fields. We haverestrictedso far our discussionto the (connected)two-point
function.Additional requirementsfor “real space”shouldarisefrom the consider-
ation of higher correlations(cluster properties ...). In addition, one has to
introducea time structureandrequire the compatibility of spaceandtime.

All this is presumablynot sufficient to select“real space”uniquely. In particu-
lar, many local field theorieswill remainas candidatesto describe“real space”.
Intuitively real spaceshouldnot dependvery sensitivelyon the precisechoice of
thefield. Assumethat therearemany fields ,6

0(x) all meetingthecriteria for “real
space”mentionedabove.(Thepreciseformulation of thesecriteria still needsto
be worked out.)If a is a continuousparameter(or set of parameters)the “best”
spaceshouldbe the onewhich is leastsensitiveto small changesof a.This concept
may finally lead to a very strongselectioncriterion. This becomesapparentif one
realizesthat a change in the action S = — ln p is equivalentto a changeof
operatorsaccordingto (2.8), (2.9). For example,a small changeof theparameters
of the standardmodel is equivalentto a small changeof the fields. If this change
occurswithin the fields ~,,(x) which are acceptablefor a definition of spaceone
may beled to a new extremumconditionfor g~as a function of a.Onemay even
speculatethat this fixes the “best parameters”.In this respectlocal field theories
havethe enormousadvantagethat their long-distancebehaviouris veryinsensitive

to the addition of irrelevant operatorsin the action. The universality of the
long-distancebehaviourreduces the selection problem to the selection of the

universality class and the selection of the “best parameters”within a given
universalityclass.

In summary, this paper should only be consideredas the beginning of the
developmentof geometricalconceptsin generalstatistics.We hope,nevertheless,
that our discussiondraws some attention to the problem of selection of the
space-timestructurewhich correspondsto reality. This problem is at the basis of
the crisis of unification arising from the proliferationof possiblegroundstates.

* We notethat only ~ mustbedefinedin thelimit N —~~ whereasv(x) mustnot necessarilyremain a
normalizableoperator.
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Appendix A

ENLARGED GEOMETRY IN ISING MODELS WITH CONSTANTMAGNETIC FIELD

The constructionof geometryfrom the correlationfunction shouldnot only be

consideredas the basicgeometricalsettingfor a unified field theory.It canalsobe
applied to a multitude of situationsin statisticalmechanics.As a simpleexample

for a geometricstructurewe considerthe Ising model with a constantmagnetic
field B. The action is relatedto the probability densityp(s)by

exp(—SB) =p exp(—4S(B)), (A.1)

P=exp(_P~ ~ (A.2)
{n~’)~

4S(B)=B ~ s,1~, (A.3)
(n”}

Here the sumover nM extendsover the sitesof a d-dimensionallattice and LeM

denotesa sumoverunit vectorsin the different lattice directions.The numberN
of variabless” s,~is given by the numberof lattice sites andmay be takento
infinity at theend.Forthe Ising model we takediscretevariabless,~= ±1. This is

relatedto a formulation with continuouss,~as the limit where p approachesthe
distribution

p= fl{~(s0~—1)+6(s~,,+1)}p0, (A.4)
{n,’}

and p0 given by (A.2). For finite N we usea periodiclattice suchthat invariance

underthe discretelattice translationsis guaranteed.
We now introducea (d + 1)-dimensionalgeometry(x

4 (x~,B)) by the field

u(x~,B) =s(x’~)exp(—4S(B)), (A.5)

with

s(x~)= ~ fk(xM — n~)s
0,, (A.6)

{~V}

defined in analogywith the example(9.5) and (9.6). (We use p. for d-dimensional
and/2 for (d + 1)-dimensionalindices.)All relevantquantitiescanbe expressedin
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termsof the expectationvalue of s with a magneticfield and the corresponding
two-pointfunction

Ks)B = Ks~~)B= fDs s,~exp(—SB), (A.7)

GB(dlL) = K5fl~’5fl~’+d~’>B= JDs5n~5n~±d~exp(—SB)’ (A.8)

G~(d~)= GB(dlL) — Ks>~, (A.9)

fDs=Z~ fl ~ , JDsp(s)=1. (A.10)
{m”} s,,,,~=±1

One finds

Ku(x, B)) = ~ f~(x~— n~)Ks)B, (A.11)
{~V}

Kv(x, B), u(y, B’))= ~ ~
{n”} {dM}

(A.12)

Ku(x, B)u(y, B’)) — Ku(x, B))Ku(y, B’))

= ~ f~(x~— n~)f~(y~— n~— d~)(GB±B(d~)— Ks)BK5)B), (A.13)
{n”} {d”}

and definesthe normalizedfield ~ as

~(x, B) =ck(x, B)(u(x, B) — Ku(x, B)>), (A.14)

with

c~2(x,B) = ~ ~ (A.15)
{nM} {d~’}

(G~B(d~)+ Ks)~B— Ks)~). (A.16)

We note that ~ is defined for all x and B since G~(d~)~ 0 and (5)B is a
monotonicallyincreasingfunction of B. The correlationG(x, B; y, B’) is positive
for all x, y E Rd and B, B’ E R since

Ks>~±B’~ Ks)BK5>B’. (A.17)

For the symmetric phase,~ is continuousand differentiablefor all valuesof B
suchthat R R’~1.In the spontaneouslybroken phase Ks>B developsa disconti-
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nuity at B = 0 for N —~ cc• (All quantitiesremain continuousfor finite N.) We

expectthe appearanceof geometricalsingularitiesat B = 0 for N -~ cc~

Let us considerthe limit k2 << 1. (The fundamentallength scalep.~~’is here
proportionalto the lattice spacing.)We can thenapproximatesumsby integrals,

Efk(x~ —np) fd”zfk(x_z) = 1,
{~V}

Efk(x~ ‘~)fk(Y~—np) fd’~zfk(x_z)fk(y—z)
{nM}

(A.18)

suchthat Ku) and Ck becomeindependentof x~,

Ku(x, B))=Ks)B=s(B),

c~2(x,B) =c2(B, k) =g(B, k) —s2(B),

g(B, k) = E fk/~(d~)G
2B(d~). (A.19)

{d
M}

The metric

g,~=c~{Ka~va~v—a~(v)a~Ku>— +c~ô
4c~2ô~c~2} (A.20)

can againbe expressedin terms of correlationfunctions in a constantmagnetic
field. The d-dimensionalsubmetric

~ 4k
4c~(B)~ fd’~zz~(z~— d~)fk(z)fk(z—d)G

2B(d)
{d”}

= k
2(1 + Ks)~c~(B))8,~,~— k4c~(B)~ d,~d~fk/~(d)G

2B(d)
(d~)

2 a ln c
2(B, k)

= ~k2 a ln k2 (A.21)

becomesflat in leadingorder.The off-diagonalelementsvanish,

~ Jddzz~fk(z)fk(z— d)G
2B(d)

{d~)

= —+k
2c~(B)~~d~fk/~(d)G

2B(d) =0, (A.22)
(d*}
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since GB(— d) = GB(d). Finally, oneobtains

1 a2 a2
gBB= ~-~-~ln c2(B, k) + +c2(B, k)s2(B)~-~lns2(B). (A.23)

We seethat g
4~can be expressedin terms of the quantities s(B) and g(B, k)

(A.18) andtheir derivativeswith respectto B and k. It remainsto be seenif this
or similar geometricalstructuresin statisticalmechanicsareof somepracticaluse.
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