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We show how geometrical quantities as distance, topology and riemannian metric can be
constructed from the correlation functions in general statistical systems.

1. Introduction

It is an old dream that a unified description of physics should explain the
remaining free parameters of the standard model. String theories [1] are nowadays
the best candidates for a unification of all forces. They suffer, however, from a
proliferation of possible ground states [2]. Although these theories are very
predictive for a given ground state (at least in principle), this predictivity is lost as a
consequence of the absence of selection criteria for the ground state. One may still
attempt to extract some general features of effective low-energy theories from
general features of string theories. A computation of fermion masses or gauge
couplings requires, however, the selection of the “true” ground state among the
(infinitely many?) possible ground states of string theory. A similar problem
appeared already in earlier attempts of unification in higher dimensions (Kaluza—
Klein theories [3]): There are many possible classically stable compactifications of
internal space *.

The proliferation of possible ground states may be viewed as an embedding
problem: How should four-dimensional space-time be embedded into higher-di-
mensional space-time? Or, even more generally: How should the four-dimensional
energy-momentum tensor be embedded into the (infinite-dimensional) space of all
possible operators? We believe that the proliferation of ground states constitutes
the central crisis for all attempts to unification where four-dimensional space-time
is not given a priori. It seems to us very unlikely that this problem can be overcome

* The possible compactifications will even depend on continuous parameters [4] if we admit that
internal space may be a noncompact manifold [5] or orbifold [6].
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by pure consistency requirements. (It is sometimes hoped that nonperturbative
string field theory may select a unique ground state.) Indeed, different classically
stable ground states will simply lead to different hamiltonians. Many of these
hamiltonians will also have an acceptable quantum ground state which minimizes
the energy (as defined by this given hamiltonian). There is then no consistency
criterion which would exclude such a ground state. With present criteria it is
impossible to say which ground state is “better” than another, since there is no
way to compare energies defined with respect to different hamiltonians *. Even if
we impose additional symmetry requirements like maximal four-dimensional sym-
metry or Poincaré symmetry, SU(3) X U(1) gauge invariance or the spontaneously
broken symmetry SU(3) X SU(2) X U(1) of the standard model, there is little
reason why the ground state should be unique. In consequence, we will have to
find new criteria why certain space-times give a better description of reality than
others. “Which space-time to select?” — this seems to be the central question for
the future of unification.

Before attacking this problem, one should first answer another question: How
do concepts like space, time and geometry emerge at all if the space-time manifold
is not given a priori? We are used to formulate a theory in a given space-time
manifold. This is unsatisfactory since space-time should be understood as a
property of matter rather than a preexisting category. Space-time manifests itself
only through the motion of matter and seems to make no sense without matter.
(Here matter includes gravitational fields like the graviton.) The framework for a
discussion of this question is general statistics [7]. This deals with general statistical
systems of infinitely many degrees of freedom without an a priori identification of
operators with observables like energy. The identification of structures between
operators with the observed properties of space-time should be done only after
formulating criteria why certain operator structures give a better description of
reality than others.

In this paper we establish a general framework how space and geometry arise as
properties of correlation functions. Let us first ask how we could measure a
distance in a statistical system without postulating Lorentz invariance and photons
travelling with the speed of light. Intuitively, we would say that two points x;, x,
are far away from each other if the correlation between all operators defined at
the point x, and those defined at x, is small. We also know that correlation
functions necessarily reflect the properties of a given geometry (like symmetries,
topology etc.). It seems therefore reasonable to attempt the inverse program, i.e. to
extract all geometrical information from the properties of correlation functions.
We demonstrate in this paper that these intuitive ideas indeed work. Geometrical

* The same problem appears in an embryonic way in four-dimensional gravity. There are different
solutions with timelike Killing vectors which are not connected continuously to each other. Only the
solution with maximal four-dimensional symmetry is unique.
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concepts like distance, topology, metric or symmetry can be formulated in terms of
the connected two-point function.

One of the basic tools in this investigation stems from the observation that the
normalizable operators form a Hilbert space. The scalar product allows one to
introduce a distance in operator space. This permits one to quantify the concept
that for two points x, and x, close to each other the corresponding operators
v(x;) and v(x,) should also be close to each other. The connected two-point
function can be expressed in terms of the scalar product in operator space. The
geometry of operator space is then used to define geometrical concepts relating to
small distances as continuous space, local topology and metric. For the geometry at
large distances we will strongly rely on an additional notion, namely that the
(connected) correlation function should vanish for infinite distance and vice versa.
This last requirement is not fulfilled for arbitrary operators inducing a geometry.
In a sense it constitutes a first (still very weak) selection criterion for the choice of
geometries which are well suited to describe the real world. We will briefly
comment on additional possible selection criteria in the conclusions.

For simplicity we carry out all constructions for a finite number of degrees of
freedom N. General statistics is defined in terms of sequences with N — o« as
discussed in detail in ref. [7].

2, Structures in the space of operators

Consider N continuous variables s* (degrees of freedom) parametrizing R" and
a positive-definite probability density p(s). We assume that p(s) is continuous
everywhere in RY and has a finite integral Z = [p(s) ds. A map v(s): RN > R
defines an operator if the expectation value

<u>=z—1fu(s)p(s) ds (2.1)

exists (in the sense of Lesbesques integrals). Two functions v, and v, which differ
only on a subset of R" with measure zero define the same operator, i.e.

J(vi(s) =v2(5))’p(s) ds = 0= v, =0,. (2.2)

Operators are therefore associated with representatives of the equivalence classes
of maps differing only on a zero measure set. They form a (real) vectorspace V,.

Since we are interested in correlations between operators we concentrate on
normalizable operators, namely those for which

loll?=<v?) (2.3)
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is defined. For normalizable v the function & = p!/?v is square integrable in RY.
The normalizable operators form a vector space .Z2C V,. The “correlation”
between two normalizable operators v, w,

(v, wy=Co-w) =Z7" [u(s)w(s)p(s) ds, (2.4)

always exists and defines a scalar product (v, w) on %2 As is well known the
space of square integrable functions is complete and separable with respect to the
norm induced by the scalar product. The space .72 of normalizable operators is a
Hilbert space *.

For higher correlations we may consider the space " of all operators for
which (|v|") is defined (n €N, n > 2). ™ is again a vector space and .Z™ is a
true subspace of " for m > n. The scalar product (2.4) and the induced norm
(2.3) are therefore defined for all #”. With respect to this norm %" is separable,
but not complete for n > 2. There are Cauchy sequences in .Z”" whose limit
belongs to %% but is not an element of #™”. For arbitrary operators v,, v, €.%Z"
the expectation values of products are defined for

(vfv§),  p,aeN, ptgs<n. (2.5)

We call .% the space of all correlatable operators, i.e. those v(s) for which {v*) is
defined for arbitrary k € N. (F c.%") for all n.) Again the vectorspace .% is
separable but not complete with respect to the norm induced by the scalar product
(2.4). The expectation values of products {vPw%z...vf*) are defined for all
D; €N, v, €%. Arbitrarily high correlations can be evaluated for the correlatable
operators. We can therefore introduce an abelian product between operators in
Z. 1t is defined by the pointwise multiplication of functions

(V) V) EFXTF D0 v,=wEZ,

w(s) =v,(s) - va((s). (2.6)

The constant function v(s)=1 is the identity operator of this multiplication,
v-1=v. The vectorspace .# with the multiplication operation (2.6) forms a
commutative algebra (over R) with an identity **,

* Since the identity function w(s)=1 is normalizable the existence of the norm (2.3) implies that v is
an operator (2.1). We also observe that [lv; — v,ll =0 implies {w, v,) = {w, v,) for w € Z? such
that our definition of operators (2.2) is consistent with the structure of 72

** We note that % is everywhere dense in %2, Z = % % The continuous normalizable (correlatable)
functions are everywhere dense in .Z2(.%) and similar for & times (infinitely often) differentiable
functions. Without loss of generality we could restrict our discussion to infinitely often differentiable
correlatable operators v(s) (the algebra preserves this property).
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Let us next consider variable transformations. They are characterized by invert-
ible functions f(s),

u
A

fiRYNS RN, f=det

>0, (2.7)

su

which are defined on the R except for some zero measure set. The image of f is
again R" except for a zero measure set (we denote these by @N, R'Y). The
function f should be continuous and differentiable in RY. An operator uv(s)
transforms as

v(s) = o(f(s)) = (f(v))(s). (2.8)

We can use this transformation to define an isomorphism of scalar products
(o'w' )= Z‘lfds p(s)v'(s)w'(s),
pr(s) =fp(f(9)),

Z=fdsp(s) =fdspf(s), (2.9)
with
(f(v), f(w))r= v, w). (2.10)

Here we note that operators v, w which are normalizable with the probability
density p are not necessarily normalizable with respect to p;. Only the trans-
formed operators f(v), f(w) are guaranted to be normalizable with p,.

Similarly, if v, w are correlatable with respect to p the transformed operators
f(v), f(w) are correlatable with respect to p;. For all functions v(s) one has

flo+w)=f(v) +f(w),
f(a) =Af(v),
f(v-w)=F(v)-f(w). (2.11)

The transformation f therefore conserves the algebraic structure of 7 (e.g.
f(vy +v)vs) =(f(v)) + f(v,))f(vy) etc. ). It maps the algebra 7 defined with p
on the algebra f(.%") defined with py- Since f ~1 is well defined for all operators in
f(#) avariable transformation establishes an isomorphism between % and f(.%).
It was shown in ref. [7] that variable transformations can be used to map two
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arbitrary probability densities p and p’ into each other. We conclude that there is
a one-to-one correspondence between algebras defined with p or p’. The choice of
p is irrelevant for the possible structures between operators which arise from the
algebra Z. It is associated with a “coordinate choice” in variable space. With
respect to the product

(fo8)(v(s)) =v(f(8(5))), (2.12)

the variable transformations form a group. It is the group of general coordinate
transformations in N dimensions, denoted by gen,. The variable transformations
which leave the scalar product between all operators invariant,

(s(v), s(w)> =<v, w), (2.13)

are called symmetries. All operators obtained from each other by symmetry
transformations have the same expectation value. The symmetries from the sub-
group sgen,, characterized by an invariant volume element

Fp(f(s5)) =p(s). (2.14)

They define automorphisms of .# for a given probality density p. In addition there
are variable transformations f acting within % which are not symmetries. As a
necessary and sufficient condition this demands that the scalar product
{f(v), f(w)) is defined for all v, w € %Z. One concludes from

(F(v), f(w)> =(vwp-1p~1),
1 -1
pp1= ?p(f (), (2.15)
that the ratio p;-1/p should be a normalizable operator, i.e. the integral

[dsp()p?(f1(5))f 2(s) (2.16)

should exist.
Infinitesimal variable transformations act as linear operators in %,

v—v+éu,

a
as“

dv(s) = —£&“(s)—v(s). (2.17)
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Multiplication with a given operator w can also be interpreted as an operation in
%. The associated operator w acts linearly in 7,

w(v) =wo. (2.18)

It does, however, not conserve the product structure (W(vv') # w(v)w(v')). The
operations (2.17) and (2.18) do in general not commute.

3. Continuous and differentiable operators

Let us consider a family of normalizable operators v(x*;s)=uv(x) which
depend on parameters x*. The parameters are cartesian coordinates of some open
region of R4(u =1,..., d). An operator is continuous at x if

yliE}CHU(y)—v(x)II:O. (3.1)

Here the limit y —»x is induced by the topology of R¢ and (3.1) must hold
independently of the limiting procedure for all y in a local neighbourhood of x.

An operator family v(x) is differentiable in a point x if there exist continuous
operators (3,vXx) € % such that forall p =1,..., d,

li_r)t})||(v(x+eAx") —v(x))/edx* —3,0(x)|=0. 3.2)

Differentiation commutes with the operations of forming expectation values and
scalar products

3ﬂ(v(x)> = <aﬂv(x)), (3.3)
3v1(x), vx(x)) =<vy(x), 3,0,(x)) + (vy(x), 4,v4(x)> (34)

(We assume that both v, and v, are differentiable. Continuity and differentiability
of v(x) implies continuity and differentiability of the corresponding expectation
values.) The product of two differentiable operators v,, v, is differentiable if
v(vy(x)eZ?,

3, (v1(x)vy(x)) =vy(x)d,0,5(x) +v,(x)d,0,(x). (3.5)

An operator family v(x) is twice differentiable if all d,v(x) are differentiable, with
an obvious generalization to higher derivatives. For k& times differentiable v(x)
with positive norm [|v(x)|| > 0 the norm ||o(x)| is also k times differentiable,

.9
o ()l = L0

ol (3.6)
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4. Distance

Let us consider a family of normalizable operators v(x) which are continuous in
an open region R ¢ R?, dim R = d. We also demand that v(x*, s) is different from
the constant operator for all x €R,

lo(x) = Cv(x))1>0. (4.1)

This allows us to introduce a normalized operator family, ¢(x) .72,

B v(x)
() = oy = Dl

(42)
v(x) —Cu(x))
lo(x) = Co(x I’
lg(x)l=lle(x) = {e(x)ll=1. (4.4)

We finally require that there is a open region RcR (dim R =d) where two
operators ¢(x) and @(y) are different for x # y,

¢(x) =e(x) —Lo(x)) = (4.3)

I6(x) —¢(y)ll=0ex*=y*, (4.5)
and never orthogonal

(¢(x), @(y)»=#0. (4.6)

for all x, y € R. We call an operator family v(x) which fulfills the conditions (3.1)
(4.1) (4.5) (4.6) a prefield defined in R. Continuity (3.1) implies that (4.6) is always
fulfilled for some region R € R. The operator family ¢(x) is the corresponding
normalized prefield. We want to use the connected two-point function,

G(x, y) ={e(x), ¢(¥))=<&(x), ¢(y))
=<Ce(x)eo(y)) — (e(x)Xe(y), (4.7)

in order to introduce a distance in R in terms of this correlation. Within R the
correlation G(x, y) is continuous with respect to x and y, strictly positive and
bounded by one,

0<G(x,y) <1 (4.8)
with
G(x,y)=1ext=y* (4.9)
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If the prefield v(x) is k times differentiable within R, the correlation G(x, y) is k
times differentiable with respect to x or y within R. We introduce the symmetric
function D(x, y)=D(y, x) by

D(x, y)p(D(x, y)) =v2(G}(x, y) - 1)"%. (4.10)

Here we define for D > 0 the continuous positive scaling function w(D) > 0. This
guarantees

D(x,y)=0, (4.11)
D(x,y)=0ox=y. (4.12)

We require (D) to remain finite for all D which occur within R and demand that
Du(D) is monotonically increasing such that D is uniquely defined in terms of G.
This still allows that u diverges for some finite D_,, which measures the maximal
extension of R and occurs at the boundary for G(x, y) — 0. On the other hand an
arbitrarily large extension of R (D, ,, — ®) requires that w(D) remains finite for
all finite D and D(x, y) — « always implies G(x, y) = 0.

We next want to use the norm inequality

le(x) —e(W)I<lig(x) —e()I+lle(y) —¢(2)ll,
(1-G(x,¥)*<(1-G(x,2))*+(1-G(y,2))%,  (413)
in order to establish that D(x, y) defines a distance
D(x,y) <D(x, z) +D(y, z) (4.14)

at least within a region R € R. Indeed, the distance inequality follows from (4.13)
provided u(D) has the property

F(D,) +F(D,) >F(D;) =D, +D,>D, (4.15)
with
1 —1
F(D) = —=Du(D)(1+ $D%*(D)) & (4.16)

The property (4.15) holds for infinitesimally small D if u(0) = u,> 0 and u'(0) > 0.
On the other hand, it cannot be implemented for D — « where F(D) approaches
one. Condition (4.15) is a sufficient, but not a necessary condition for D to define
a distance.



308 C. Wetterich / Geometry from general statistics

As an illustration, one may consider a correlation function which ressembles at
large distances the two-point function of a four-dimensional scalar field theory in
flat space,

G(x,y)=(1+r? exp(mr))—l,

rr=Y (x* —y*y (4.17)
7
Choosing
u(D) = V2 exp(3mD), (4.18)
one simply finds
D*=r2, (4.19)

The function u(D) fulfills (4.15) only if D, and D, are smaller than a “boundary
distance” D(m) which is determined by

D? = }[exp(—mD) — exp( —2mD)] (4.20)

and obeys (for all m) D? < . The norm inequality (4.13) assures the distance
inequality (4.14) only for this range of D. Nevertheless, (4.14) is obviously fulfilled
for arbitrary D.

We conclude that every prefield defines a distance for some finite open region
R c R. The extension of R depends on the choice of u(D). For

p=(1-D%""" (4.21)
one has

D=V2(1-G)"? (4.22)
and R = R. This particular choice implies a maximal distance

D= V2. (4.23)

max

The units of D are, of course arbitrary. We can always rescale D by an appropri-
ate rescaling of u such that 4D remains fixed. The function x has the dimension
of an inverse length and we may fix units by setting u,= 1. In fact, ug ! plays the
role of a fundamental length scale. Its significance will become more apparent in
the following sections.

The possibility to implement arbitrarily large distances within R (D — ®) is in
general not given. In this case u(D) must be defined for 0 < D < = such that a
nonvanishing correlation G(x, y) > 0 implies a finite distance D(x, y) and vice
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versa. If the distance inequality (4.14) should hold for D(x, y) — « the prefield
v(x) must have additional properties which guarantee, for example, the necessary
relation

G(x,y)=0=G(x,z)=0 or G(y,z)=0 (4.24)

for all z < R. We will come back to such structures in sect. 9.

5. Metric

In the following we assume that v(x) is differentiable. If & is defined (4.1), (4.3)
it is also differentiable by virtue of (2.6). The square of an infinitesimal distance
can then be used to define a metric

i}
D2
2 Ix* Ay” (x, )

8u(x)= (5.1)

y=x

(We assume in the following that u(D) is at least twice differentiable at D =0.)
The first derivative of D? at x =y vanishes,

ad
—D?*(x, = —2u5 2 —G(x,
( Y)‘m o 5w G )

y=x

0
—2M62<¢(X),“—¢;(x)>

= gL (x)) =0, (5.2)
In fact, D is differentiable at D =0,
2 p| = Bur (G-
ay* p-o 21" ay* G=1

ad
= ‘/fﬂo—lay—”\/l —{é(x), &(y)>

x=y

=pg! 3 ullcp()’) qo(x)ll

(5.3)

=g
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Small distances take the form.
D*(x, y) =g,,(y*—x*)(y” —x") + higher-order terms. (5.4)
The metric (5.1) can be expressed as a correlation between operators d,6(x),
£10(X) = 5 X0, 5(x), 3,6(x)). (55)

It is defined in terms of the correlation function G(x, y) up to a free constant u,,.
Otherwise it is independent of the choice of u(D). We finally establish that 8, is
a riemannian metric with positive signature,

det g,, >0, (5.6)
if ¢ fulfills the condition
llo;¢lt> 0,
9,0 =0!9,¢, (5.7)

for an arbitrary orthogonal matrix O}. Indeed, 8, is a symmetric matrix and can
be diagonalized by an orthogonal transformation (g = diag(A,..., A,)

§;=0!0g,,. (5.8)
Every eigenvalue
)\i=§,~i=,l.L0_2||3i(,5”2 (5.9)

is positive semidefinite and becomes positive definite by virtue of (5.7). Condition
(5.7) is also necessary since all diagonal elements 8,, must be positive in an
arbitrarily rotated basis.

The condition (5.7) plays a crucial role for the existence of a metric in terms of
correlation functions. It means that there is no direction for which the expectation
value of the “kinetic operator” d,$d,¢ associated with ¢ vanishes. In a more
algebraic language it is equivalent to the condition that the partial derivatives 9,9
form a set of d linearily independent operators in .Z 2. We emphasize that (5.7)
implies the condition (4.5) but is actually stronger.

An operator family v(x)€.%? is called a field defined in a (d-dimensional)
region Ry C R? if, for all x € R, it is

(i) continuous (3.1) and infinitely often * differentiable (3.2);

(i) different from the constant operator (4.1) such that @(x) is defined and

differentiable

* We could require only differentiability of v{x). Our stronger condition ensures that all derivatives of
the metric exist and are continuous.
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(iii) fluctuating in & directions in the sense that the d derivative operators d, ¢
are all linearily independent (5.7).

Every field defines a riemannian metric g,, in Ry which is unique up to an
overall scale factor u,. We can use this metric to define a geodesic distance D, in
the standard way. In general D, will be different from D. Since G cannot always
be expressed as a function of D, it is not even possible to establish a functional
relation between D, and D in the most general case *. Nevertheless, the distance
inequality (4.14) implies by construction for arbitrary u(D),

D,(x,y)>D(x,y). (5.10)
In particular, D — o implies D, — .
It is instructive to consider a few simple examples. Let 0, be orthonormal
operators with vanishing expectation values
0,> =0, 0,0,)=35,. (5.11)
We start with one-dimensional examples, where
¢ =a,(x)0; +a,(x)0,,
al+a3=1. (5.12)
The correlation and the metric read (u,= 1)

G(x, y) =a(x)a(y) +ay(x)ay(y), (5.13)
g1 =aj(x)> +ay(x)? =aj(x)}(1 - ay(x)?) . (5.14)

We may compare the distance
D=V2(1-G)"*=(2-2a(x)a(y) —2ay(x)ay(y))""*  (5.15)

with the geodesic distance

y -
D, = f dx'|aj|(1—af) Y2 _ arcsin a,(y) — arcsin a,(x) (5.16)
(Eq. (5.16) holds for a{ > 0 everywhere between x and y. For a; < 0 the sign of the

r.h.s. has to be inverted and the contributions of regions with different sign of a}
have to be added.)

* In field theory the correlation function may not only depend on the geodesic distance but also on
properties of the curvature tensor [8).
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The first example describes a circle in .72

a,=sin x, a,=Ccos x,

G =cos(y—x),

D,=ly—xl,

D=(2-2cos(y—x))"% (5.17)

We may obtain D = D, by a different choice of u, namely for

2 (——1 —cos D )1/2. (5.18)

w(D) = D cos D
The boundaries of R are given by (4.6), namely 7 /4 <x < /4 such that R covers
only one quarter of the circle. In contrast, R, extends to the whole real axis. An
infinite geodesic distance would require, however, an infinite number of windings
around the circle. These features can be easily generalized: If G can be expressed
as a function of D, we can always obtain within a certain range D,=D by a
suitable choice of x. Within R all distances obtained from (5.12) are bounded
since the r.h.s. of (5.16) is bounded and at most two values of a, can correspond to
a given value of a,.

The second example has a singularity of the metric at x = 0 (with R defined by
x| < 3),

3+ yx(1-x) for x>0

a, = (5.19)
s—y—x(1+x) for x <0,
1120 (x(1-%)[3 —x(1—x) - x(T-x) ]}_1 for x>0
E§u= -1
11 +2x)2{—x(1 +x)[%+x(1 +x)—y—x(1+x) ]} for x <0.
(5.20)

For small | x| one has
ds=3lx1)""?ldx| (5.21)

and D, remains finite at x = 0. In fact, the “coordinate singularity” at x =0 can
be removed by a redefinition of the coordinate x = F(x). The correlation is
continuous in the whole interval — 2 <x < 1 with G(— 3, 3) =0. All distances in
R remain bounded despite the divergence of the metric at x = Q.
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Our third example is two dimensional. We consider for x7 +x3 < (1 + ¢,
F(x1x,) =x,0, +x,0, +cyxi+x304

+1— (1+c?)(x2+x2)0,, (5.22)

where ¢ is not differentiable for x; = x, = 0 (except for ¢ = 0) and at the boundary
x?+x2=(1+c?)"L The metric reads (o= 1)

1+¢2 x{ L+¢2)? x}
=1+c +(1+c ,
& x?+x32 ( ) 1= (1+c?)(xi+x3)
2 2
X2 2 X3
=1+c? +(1+¢? ,
82 oy R G P )
X1X5 2 XX
2 2
=c +(1+c . 5.23
12 x?+x3 ( ) 1= (1+c?)(xf+x3) (5.23)

For small x?+x? we can neglect the last term and find, with standard polar
coordinates around the origin at x; =x, =0,

ds’=(1+c?)|dr*+ r? dgoz). (5:24)

1+ c?
For ¢? > 0 this represents the geometry of a cone. There is a true singularity at
r=0 which cannot be removed by a change of coordinates and R is not a
riemannian manifold. The geodesic distance is, nevertheless, finite everywhere in
R (including the boundary). The correlation G(—x,, —x,;x;, x,) =1—2(x? + x2)
vanishes for x?+x3>=1. This determines the boundary of R for c¢’<1. In
summary, various types of singularities can arise from very simple & with only a
few operators. On the other hand, it seems impossible to obtain arbitrarily large
distances if ¢ involves only a finite number of operators.

6. Topology

We can use the correlation G(x, y) in order to define a topology. The notion of
a local neighbourhood of a point x can be induced from the distance D (4.10). For
this purpose the different possible choices of the function w(D) are equivalent. If
v(x) is a field the definition of a local neighbourhood in terms of the geodesic
distance D, is also equivalent. The region R is a manifold and R)y=RNRy is a
riemannian manifold. (We remind that R), is the subset of R, for which
G(x, y)> 0 everywhere (4.6).)
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It may happen that R, covers R only except for some sets of points £ with
dimension smaller than or equal to d — 1. In this case R is not guaranteed to be a
riemannian manifold. It may have cusps or edges at the “singular” points x.
(Compare example (5.22).) Such singularities are an obstruction to find a metric
everywhere in R, even if we cover R by different coordinate patches *. A violation
of (5.7) typically leads to such an obstruction. On the other hand, “coordinate
singularities” (compare example (5.19)) can be removed by choosing appropriate
patches and coordinates. If R /R, contains only coordinate singularities we can
find an “atlas” such that R is a riemannian manifold.

Within R? the open region R may have (d — 1)-dimensional hypersurfaces as
boundaries. (These boundaries may have boundaries themselves. Also R needs not
to be connected.) Within these bounded regions (or within R¢ if there is no d — 1
dimensional boundary) there may in addition be sets of points with dimension
smaller than d — 1 which do not belong to R — for example isolated points or lines.
We will denote by S the set of points in R which are arbitrarily close ** to R but
not within R. If appropriate, we also include in S the “points at infinity” (for
x — ) on the boundary S¢~! of the compactified version of R For all points ¥ in
S least one of the following properties must hold:

(i) xesé

(ii) the operator v(x) is not defined or v is not continuous in x;

(iii) the point ¥ belongs to the set S, of points where v(¥) is a constant
operator. Then |lv(¥) — (v(¥))|/=0 such that @(x) may not be defined ((4.1)
violated);

(iv) the point X belongs to the set S_ of “identifiable points”. This means that
there exists a point y € RUS_, y #X, such that ||g(%) — ¢(y)|l = 0 ((4.5) violated);

(v) the point ¥ belongs to the set S_ for which G(%, y) =0 for some ye RUS,_,
((4.6) violated).

Case (i) can always be eliminated by a change of coordinates x = F(x’) which
preserves the topology of R but maps S¢~! into a hypersphere with finite radius.
For simplicity we work in this section with coordinates where S has no points at
infinity. The formulation in terms of the original coordinates can be recovered at
the end by inverting the coordinate change. We will also omit possible boundaries
of the type (ii) and assume that v is continuous everywhere in R U S.

For purposes of topology we only need the existence of G(x, y) but not
necessarily (4.1). It is sufficient that lim, _, ; G(x, y) and lim, _ ; lim, , ; G(x, y)
are uniquely defined for all X, y €S, and x, y € R. This allows one to extend the

* These singularities may also be an obstruction to find an “atlas” for R consistent with an embedding
in a higher-dimensional space. (The two-dimensional cone cannot be smoothly embedded in R3)
Then R is a manifold only with the “atlas” resulting from its embedding in R4,

** We use here the canonical distance in R% This also applies to the dimensionality of subsets of S
which are treated as subsets of R. From the point of view of the manifold R (without embedding in
R%) the boundary has, of course, always dimension d — 1.
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definition of G to include S,. Indeed, the conditions (4.5) and (4.6) can be
formulated in terms of the correlation G(x, y),

G(x,y)=1lex=y, (6.1)
G(x,y)>0. (6.2)

Let us consider two curves %, %, in R which intersect at the boundary in X € S,
We choose x € @,, y €%, and observe that along each curve the limits lim, _, ;
G(x, z) and limy_,x G(y, z) exist since G is bounded between zero and one and
v(x) is continuous in x. The question is only if G(X, z) can be defined indepen-
dently of the choice of curve. A necessary and sufficient condition is the existence
of
lim lim G(x, y) = G(X, X) (6.3)
xX—XxX y—Xx
independent of the curves &, %, and the order of limits. In this case one has
G(x, x) = 1. The inequality

lim (1 - G(x, 2))"? < lim (1-G(y, z))""?
x—X y—Xx

+ lim lim (1 - G(x, y))l/2 (6.4)

XX y—ox

implies that G(X, z) is defined uniquely and continuous at ¥. For two points ¥,
y € S, where G(%, x) and G(¥, 7) are uniquely defined, the limit

G(x,y) = lim lim G(x, y) (6.5)

X=X y-oy

is also uniquely defined. Furthermore, the existence of the limit (6.3) is equivalent
to the existence of

lim 6(x) = (7). (6.6)
The independence of (6.6) from the limiting procedure follows from

lim llm ||QD(X) é(y)ll=0. (6.7)

X=Xy

In consequence, we can weaken the condition (4.1) and include in R all points
where (6.3) is defined. Possible remaining points where the limit (6.3) is not
defined uniquely form the boundary set §0 and will not be considered further.
We next turn to the “natural boundaries” S_ and S_. Unless S_ is empty there
will be at least two distinct points in R=RuU S_ between which the distance



316 C. Wetterich / Geometry from general statistics

vanishes. We will identify two points in R or S whenever G(x, y)=1or G(x, y) =
1. Indeed, G(x, y) remains well defined after this identification for all x, y € RuU
S... Inequality (4.13) implies

G(%,7)=1=G(x, %) =G(x, ¥) (6.8)

for all x where G is defined. Similarly, the continuity of G at the identified points
follows from the continuity of G in R U S without identification and (6.8).

As a consequence of the identification the set R can, in general, intersect itself.
We will concentrate on the case where R is not self-intersecting. This requires, in
particular, that no point in R can be identified with a point in S_. As a necessary
condition we therefore demand that for all x € R, y € R U S there is a constant €
such that for all € < € there exists a continuous function 8(e) which tends to zero
with € and has the property

G(x,y) > 1-€= (x* —y*)(x, ~7,) <8%(e). (69)

This condition is stronger than (6.1). It guarantees that there is no point of
intersection within R but it is not yet sufficient to exclude such points in S. For a
generalization of condition (6.9) we consider in %2 all operators @(x) whose
distance from a given operator ¢(x) is smaller than €, x, X € RuU S.,

U.(8(%)) = (6(x), l6(x) ~ $(D)lI <e}. (6.10)

The set R is non-selfintersecting if for all X there is a value e such that there exists
an invertible map from U, to some local neighbourhood Uofa point in R¢. In this
case we consider U as a coordinate patch which overlaps one or several parts of R
which are “close to x” in the sense of (6.10). If R is not selfintersecting it can be
made a manifold M by use of an atlas consisting of patches covering R plus
patches U covering the identified points.

We conclude that R has S.. as the only possible natural boundary. On this
boundary the distance D tends to infinity or to D,,,,, depending on the choice of
w(D). The correlation G(x, y) is continuous everywhere in RUS,,. It defines
completely the topology of the set R. We emphasize that the topology of a
manifold M cannot be reduced to either the topology of the parameter space
which is a submanifold of R or the topology of the operator space %2 It is a
property of the mapping ¢ from parameter space to operator space which selects a
d-dimensional submanifold of .72

We finally mention that R is a riemannian manifold if

(i) R is a riemannian manifold;

(i) R is not self-intersecting;
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(iii) The identification of points in S_ does not induce ‘“true singularities”
(cusps, edges etc) in R. (Coordinate singularities are tolerated.)

In this context we observe that the condition (4.1) for the definition of a field
may be weakened without affecting the metric structure. We may include in R, all
points X where g,,(X) is uniquely defined as lim, _, ; g,,(x) even though [lv(¥) —
{v(x))|l may vanish. (This implies that the limit (6.3) also exists at x.) If the metric
is defined everywhere in S_ the identification is always consistent with the metric
structure. (This follows from the definition of the metric in terms of G (5.1) and
(6.8).) A new singularity at ¥ € S_ can only arise if lim, _, ; g,,(x) is not defined
uniquely or if 8uv is not infinitely often differentiable in X.

In summary, riemannian manifolds with arbitrary dimension and arbitrary
topology can arise in our formalism. Every d-dimensional manifold can be mapped
on an open region R within R¢ after cutting out appropriate sets of points with
dimension smaller than d (cf. the discussion in ref. [7]). The definition of topology
in terms of the correlation G “repairs” these cuts by gluing appropriate pieces
together as a result of the identification of points between which the distance
vanishes. Moreover, our formalism can describe sets or manifolds which are not
riemannian manifolds because of singularities of the curvature tensor. Such spaces
have been discussed as internal spaces in higher-dimensional gravity (“noncompact
spaces” [5]) and string theories (“orbifolds” [6]). Beyond that, the formalism is
even flexible enough to accommodate intersecting sets of points. We will, however,
restrict the following discussion to manifolds.

So far we have chosen to embed R in R¢. This is not necessary. We could
replace R? by any other d-dimensional parameter manifold as, for example, the
torus T*. Since @lor G, gw) need not to be continuous everywhere on T¢ there is
no additional requirement like periodicity which would restrict the choice of
prefields. Discontinuities or the vanishing of G act as “cuts” on the parameter
manifold. For every prefield ¢ defined in an open region R C R? there exists an
equivalent prefield ¢, defined in R cT¢ which leads to the same topology in
terms of G (and vice versa). The parameter space is a purely auxiliary construc-
tion. Its only relevant geometrical content is its dimension. If we deal with a
manifold M it is often convenient for practical purposes to choose a parameter
space with the same topology as induced by the correlation. The identification of
points in S_ is then in exact correspondence to the identification of parameters in
different coordinate patches of the parameter manifold.

We finally note that topology and geometry are entirely determined by the
behaviour of v in R. (The properties of the boundaries can be infered from it.) In
the following discussion we will simply omit the boundaries of R with the
understanding that one should deal with S as described in this section. If appropri-
ate, disconnected parts of R may be viewed as different coordinate patches
describing a d-dimensional manifold. Instead of overlapping patches we use here
the equivalent concept of identification of boundary points, with the understanding
that overlapping patches are provided as discussed above.
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7. Fields as embeddings in operator space

As we have seen the coordinates x play only an auxiliary role. We should be
able to describe the geometrical concepts in a coordinate free setting. From a
more abstract point of view our attempt to describe topology, distance and metric
in terms of the correlation G leads to the following general construction: We deal
with (continuous) embeddings of a d-dimensional manifold M into a subspace of
the infinite-dimensional space of operators with unit norm %2 This subspace,
which we denote by % 2, is orthogonal to the constant operator

(¢>=0, (7.1)
and has the additional property that two operators ¢, ¢’ are never orthogonal with
(g, ¢'>>0. (7.2)

Since .72 is a Hilbert space we can choose an orthonormal basis 0, (5.11),

¢=2a0, (7.3)

such that Z?2 is defined by the conditions

Yat=1, Y a,a;>0. (7.4)
; i

The conditions (7.4) are invariant under (infinite-dimensional) orthogonal transfor-
mations in .Z2. Using appropriate rotations we can always find a basis where the
second condition in (7.4) reads

O0<a, <1,

0<a;<1 forj>1. (7.5)

On the boundary of .72 at least one of the a; vanishes. An arbitrary finite-dimen-
sional manifold can be embedded in .#2. For the given manifold there exist
infinitely many possible embeddings. A normalized prefield ¢ specifies a particular
embedding M — % 2. The metric structure (5.5) is induced by the natural metric in
Z? which in turn is induced by the natural metric in %2,

ds?=5" da; da;. (7.6)
Indeed the embedding
¢(x) = La,(x)0, (7.7)
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induces
da; da;
ds?=Y — —dx* dx". 7.8
s ;ax“ ax” e (7.8)
The metric
da; da; . .
8= );, PP (0,6(x)3,¢(x)) (7.9)

coincides with (5.5) for u, = 1. A riemannian manifold corresponds to an infinitely
often differentiable embedding. In particular, all partial derivatives d,a; are
continuous in appropriate coordinate patches. In addition, the embedding must
fulfill the condition (5.7) for the linear independence of the derivative operators,

b*b* Y d,a,0,a,=0=b*=0. (7.10)

A normalized field ¢ defined in a riemannian manifold M specifies a particular
embedding of this type.

We note that only the particular choice of w(D) (4.21) defines the distance D in
M as the canonical distance in .%2. This choice of w(D) is obviously not suitable
for the description of “large distances”. Although the “geometry at small dis-
tances” and the topology can be infered from the scalar product (2.4) in %2 this
will not hold for the “geometry at large distances”. The large-distance geometry is
related to particular properties of almost orthogonal operators which will be
discussed in sect. 9.

We finally emphasize that our simple geometrical construction only arises on
the level of the normalized (pre)field ¢. The manifold M is not given a priori when
we define the prefield v which is an embedding in .#2. The structure of M can
only be determined a posteriori once we have mapped the prefield v into ¢
according to (4.3). The map v — & from Z?2 to .7 2 may lead to singularities (for
llv(x) — (v(x))||=0 and @(%) not defined) or induce additional identifications (if
[|15(x) — ci(y)ll =0 for some constant ¢, § =v — {v)). It can also smoothen out
singularities of the original embedding v.

8. General coordinate transformations and symmetries of the metric

We are free to change the coordinates of the parameter space R,
xt=F*(x"), (8.1)

v(x) v (x")y=v(F(x")). (8.2)
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The map F: R’ — R is in general a map between two different regions in R% (We
require F to be continuous, differentiable and invertible everywhere in R’ and R
except for zero measure sets.) If F is a one-to-one map R — R it defines a general
coordinate transformation. Its action on the operators v(x) obtains by replacing x’
by x on the r.h.s. of (8.2),

v(x)—»v'(x)=v(F(x)). (8.3)
Under infinitesimal transformations,
Fr(x) =x*— £#(x), (8.4)
a field v(x) or @(x) transforms as a scalar and their derivatives as vectors,
v'(x)=v(x)+oév(x),
dv=—¢",v,
89,v=—3,£"3,0 — £9,0,v. (8.5)

This implies immediately that the metric has the standard transformation property
under general coordinate transformations (gen,,),

88,,= —9,£°8,,—0,6°8,,— £°9,8,,. (8.6)

Two fields v(x) and v'(x) related by (8.3) lead to equivalent geometries. The
induced metrics g, and g, differ only by a general coordinate transformation.

Symmetries of the metric g,, arise if there exist Killing vectors £°(x) = 6°K2(x)
such that the associated infinitesimal transformations leave g,, invariant,

0,Kfg,, +9,Klg,,+K,g,, =0. (8.7)
A symmetry of the correlation function,
G'(x, y)=G(x, ), (8.8)

can also be realized by an appropriate general coordinate transformation (8.3). By
the construction (5.1) every symmetry of the correlation function induces a corre-
sponding symmetry of the metric. For example, if G depends only on (x* —y*)
x(x, — y,) with R = R¢ the metric is invariant under d-dimensional translations
and rotations.

A convenient way to realize a symmetry of G is the association of a coordinate
transformation F with a variable transformation s which leaves the scalar product



C. Wetterich / Geometry from general statistics 321

invariant (2.13). As a simple example we consider, with N =d,

d
p(s) = exp{—w h (s“)z} = exp( —7s,s*), (8.9)
pu=1

o(x) =exp{—%(s"—x“)(su—xu)}, (8.10)

where v is a field in the whole R¢. Obviously, p is invariant under rotations of the
s* and the effect ot this rotation on v corresponds to a rotation of x*. The
resulting correlation function G and metric 8, must have the symmetry SO(d).
Every (variable-) symmetry s which acts nontrivially within the d-dimensional
subset of .7 2 defined by the embedding ¢ leads to a symmetry of G. The inverse
is not true: A symmetry of G is not necessarily associated with a variable
transformation. We finally mention that gen, is not a symmetry of the metric.
Although gen, is a subgroup of sgen,, for N > d this subgroup should not act as a
transformation ¢ — ¢’. Otherwise the expectation value (5.5) would have to
vanish. Our formulation corresponds to the metric in a fixed gauge.

The variable transformations s which leave the probability density invariant
form the group sgen,. In general, only a small subgroup G C sgen, acts among
the operators ¢(x) (g(¢(x)=¢'(x)=¢@(x"); x, x’ €R, g = G) whereas most
transformations change @(x) into a new field ¢'(x) (§(&(x)) =¢'(x) = g(x"), §
sgen,/G). Since the scalar product

(¢'(x), ¢'(y)) ={(x), $(y)) (8.11)

as well as all other geometrical constructions used so far remain unchanged, the
(predfields ¢(x) and ¢'(x) (or v(x) and v'(x)) define the same geometrical
structure. For a given probability density (action) there are infinitely many differ-
ent fields @(x) which describe the same geometry. The transformations in the
quotient sgen, /G act as isomorphisms between equivalent geometrical structures.

9. Long-distance behaviour

The construction of geometry in terms of the correlation function introduces a
natural length scale (“fundamental scale”) g '. We fix units by the choice p,=1
such that an infinitesimally small distance coincides with the distance induced by
the scalar product in Z 2. As we have seen in the examples at the end of sect. 5 it
is not always possible to reach large distances. We will now turn our attention to
fields which permit a long-distance behaviour.
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Consider G(x, y) as a function of y for a fixed point x. For y in the vicinity of
x the correlation decreases in all directions from the maximum at y =x. The
decrease continues either until G reaches zero or y hits the boundary of R for
G(x, y)= G, or else a saddle point or minimum appears for some critical value
G.,. We denote by R,,,,(x) the region in R around x for which G is larger than
this critical value,

Rpon(%) = {y, G(x, y) > Gq},
G, >0. (9.1
We may represent R, as the sum of “equicorrelation surfaces”,
Rg(x) ={y, G(x, y) =G}, (9.2)

such that the boundary of R ., corresponds to R; . We assume that the geodesic
distance D, is finite everywhere in R . Let us define the function l_)g(f}-) as the
minimum value of the geodesic distance between x and a point y within Rz(x).
This establishes Eg(x, y) as a function of G(x, y) with

l_)g(x, y) <D,(x,y). (9.3)

Since the inequality in (9.3) is saturated for a particular point y for every value of
l_)g we conclude from (5.10) that Bg corresponds to the maximal value that the
distance D could possibly taken for a given value of G > G,,.

As a first requirement for a field to admit a long-distance behaviour we demand
that Eg(Gcr) becomes much larger than one for at least one point x € R,

D,(G,)>D 4> 1 (9.4)

(For definiteness we may take for D, , at least 10.) For a finite-dimensional sphere
with unit radius there is a maximal value of Bg. This explains the impossibility to
construct arbitrarily large distances with a finite number of orthonormal operators
(our examples in sect. 5). On the other hand the infinite-dimensional unit sphere
admits lines with infinite length between two points x and y on the boundary of
2 2, such that G(x, z) decreases continuously between one and zero for z moving
from x to y.

We may illustrate the long-distance behaviour of fields with two examples. For
the first one we consider infinitely many orthonormal operators (4.11) which we
order with an index n*, u=1,..., d; — <n, <. We define

¢(x) =cp(x) X fi(x* —n*)0,u. (9.5)
{n*}
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Here the function f, depends only on (x* —n*)(x, —n,) and decreases rapidly if
this argument becomes much larger than k2, for example

fel(x# —n#) = (k2/m)"? exp{—k>(x* —n*)(x, —n,)). (9.6)

The normalization

—1/2
cp(x) = (7T/k2)d/2 Y exp{—2k2(x” -n*)(x, — n#)} (9.7)
{n,}
is periodic in all x*. The correlation function
G(x,y) = X fulx* —n*) fi(y* —n*)c (x) x,(¥)
{n,}

_ cp(x)er(y) 112 vn  un _

- _——c,%(%(x +y)) exp{—ik (x* -y )(xu y#)} (9.8)

vanishes only for (x —y)? - . For k% < 1 the normalization ¢, becomes almost
independent of x (¢, = (2w /k?)4/*). In this limit the metric becomes flat,

3 9
g,.(x) =ax—uwG(x, y)

X =y
=k?8,, — 30,9, In ¢, (x). (9.9)

On the other hand, for k2 in the vicinity of one the metric reflects strongly the
discreteness of the operators O since the periodic second term in (9.9) becomes
important. For fields with a long-distance behaviour we can often find related
“average fields” [9],

(%) = Co(x) [dy fi(x =) 6(¥), (9.10)

which lead to a smoothening of the metric for k' < 1. Average ficlds are useful in
order to have a smooth metric in a discrete setting as in lattice theories.

For k? < 1 we finally note that we can choose a distance D(G) in close analogy
to (4.17) and (4.18),

D=D,=kr,

o) 1/2
u(D) = {F(exp iD? - 1)} . (9.11)

The function u(D) is defined for all positive D and condition (4.24) is fulfilled.
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Secondly, we continue the example of the last section (8.9) (8.10), which leads to

¢(x) =C(X){exp[— %(X“ —s¥)(x, —Su)]

2n ds2

1+ 27

S x“x“]}, (9.12)

with

TR

d
27 u
exp(—— T an x#)}. (9.13)

The correlation function

G(x,y) =c(x)c(y){(‘l—__‘__qz—;,—)d/2 exp(—ﬁzz) exp(— %Az)

d 2

C1+29

2n

2 2
T+ 27 (3% +4%)

exp

}, (9.14)

= 3(xt ) (x,+y,), A= (6t -y (x, -y, (9:15)

vanishes for

n d
A’ = Z+p(1+29)— In|1+ ———|. 9.16
Taq> T+ 2m) o inl s oms (5:16)
This correlation is positive everywhere within the region
R= {x; xHx, <x§},
1+2n)d
xg B IL(_TL)_ln 1 -+ 3 (9'17)
2w 4n(1+7)

and vanishes only on the boundary at “opposite points” G(x,—x) =0 for x*x, =
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x2. Carrying out the construction of R ..(0) one finds a nonvanishing critical value
for G_. We concentrate on n < 1 where

xi= —In— <« —. (9.18)
In this limit one has

B(x) =4/ exp| = o (x* =) (=) | — (m) Y, (919)

G(x,y)= exp{ - %(x“ —y*)(x, —y#)} — (4n)d/2, (9.20)

G = (4m)"". (9.21)

The metric is given by
8ur= 5=0,,, (9.22)

and the geodesic distance between x =0 and y =x_,

ol

- d 1)\
Dg= e = (Zlnz‘;") . (923)

can be large only for exponentially small values of 1. We conclude that every
function w(D) (4.10) for which D fulfills the distance inequality must diverge for
D,..<(d In 1/4%)'/2, In this example the impossibility to define u for all D is
closely related to the fact that {@(x)o(y)) decreases faster than {¢(x)){¢(y)) for
large values of A2.

These problems lead us to a second requirement for fields admitting a long-dis-
tance behaviour: We demand that there exists a function u(D) which remains
finite for all positive D such that D fulfills the distance inequality everywhere in
R. Then D(G) is an invertible function for all positive G with the property

lim D(G) — o». 9.24

Jim D(G) (9:24)
The example (9.5) fulfills this criterion for sufficiently small k& (9.11). The further
development of the concept of space within general statistics will involve a much

more detailed investigation of the properties of fields which admit a long-distance
behaviour.
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10. Metric from correlation function of free scalar field theory

In the preceding sections we have shown that geometrical concepts can be
formulated under very general circumstances. So far we have chosen very simple
examples in order to demonstrate this generality. Nevertheless, our concepts are
directly applicable to realistic physical theories as field theory or string theory. In
this section we construct explicitly the metric g, from the correlation function of
a free scalar field.

In flat d-dimensional euclidean space the action for a scalar field,

x(x) = Xexp(—iq,x*)x(q),

x(—a)=x*(q), (10.1)

reads

S=30Y z,(q)(q* +m*)x*(q)x(q),

p=exp(—9). (10.2)

We work on a torus with finite volume (2. (One may take {2 — « at the end.) As
long as we impose a sharp cutoff A with g <A* (¢* = 8*"q,q,), the number of
degrees of freedom y(gq) (which correspond to s* in sect. 2) remains finite. For a
finite number of degrees of freedom the scalar field y(x) is a normalizable
operator.

(x)) =Z“f9x x*(x) exp(—S),

Z = [9x exp(-5) (10.3)

(Functional integration stands here as a shorthand for integration over all modes
x(g).) One finds

x(x)) = L Lexo| —ia, —a))x*[<x()x*(a'))

= Y G(g™!

q
q2<A2

= (2v)_dfqz<A2ddq G(q), (10.4)
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with
(x(@)x*(a')) =G(q)8,,07",

G™(q) =z(q) (g +m?) (10.5)

(In the last expression in (10.4) we have taken £ — x.)

In the limit A — o the number of degrees of freedom becomes infinite. An
operator v(x) €.%? in general statistics must remain normalizable in this limit.
For z,(q) = 1, however, x(x) ceases to be normalizable for A — «. For a defini-
tion of a normalizable operator we may either introduce a smooth momentum
cutoff by choosing z,(q) =f;*(q) or keep z, =1 and introduce averaged field
operators

$e(x) = [dy fill y —x)x(¥),

éi(a) =fi(a)x(a)- (10.6)

Here f,(x —y) is given by (9.6) and f,(g) corresponds to the Fourier transform of

filx),

2
q
fk(CI)=eXD(—m)- (10.7)
In both cases one finds

e 2 ={B7(x) Jopmt = (XP(X)z—pi2

[ %)

- (27r)_d/ddq (q2+m2)_1 exp(—lfl—g)

2k
£ }’n2 -1
=20dk"‘2f0 dy y"/z‘l(wr | ew(-2y)
m2
=21)dkd_21d(?), (10.8)

with
Ud_l — 2d+17Td/2F(%d),

L0)=V2w, I(0)=2,
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I, ,(0)=(d—2)I,00) ford>2,

nl2 rn2 m2
L\ 77 | =1d(0) = 5 1laa| 17 for d > 2,
m? | 2 o ]
I, el nW or k> m-,
m?
I = =qk/m for k%> m?. (10.9)

The operator family ¢,(x) (or x(x) with z, =f;?) obeys all criteria for a field.
The metric therefore follows directly from (5.5),

_ _ -1
8 =13 R La,a,(a®+m?)” fi(q)
q

=A4,0,,,
k% [ I,,,00 m?
A | - k_) (1910
If we choose k2> m? we may expand
T N
3ul 2 k ’
k? m?  k?
A= gz |l gtz + (10.11)

This metric is flat and we can obtain g,, =3, by a suitable choice of k2/uj. The
integrals have been performed for {2 — » but all formulae can easily be evaluated
on a torus with finite volume as well. The topology is then recovered from the
periodicity of {¢,(x)¢,(y)) following the prescription of sect 6.

The derivation of the metric from the Green function in coordinate space
requires some care. As is well known, the Green function G(x —y) = {x(x)x(y)>
diverges for y >x (z;=1, A —> ). The leading terms for r’<m=2 (r’=
8, (x* —y*)x¥ —y*)) read

1 m 1
- —+ —m?|r] ford=3
dwir] 47w 8
GO(y —)X) = 1 1 r2
prc R T L ford=4.  (10.12)
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Using the average field ¢,(x) (10.6) for a definition of the field v(x) we may
naively try to obtain the two-point function by averaging over G,

G(x—y) =ct[d’z d%2' fi(x = 2)fily =2')Go(z = 2")
= c,%fddzf,;(z)GO(x —y+2z2) (10.13)

;= fddzf,;(z)Go(z). (10.14)

Here we have used the identity
[dz fu(x =2) fil 2 =¥) =filx ~),

k=k/V2. (10.15)
The function G is finite and normalized according to (4.9). The metric should
follow from differentiation (5.5),

8uv =,4fd6

)
A 2
A, = —2p.o“zc,%fddrf,;(r)[G(’,(r) + ErZG(')’(r) . (10.16)

(Here we use the fact that G, is a function of r2 and define G|, =4/3r>G, etc.)
We observe, however, that the leading terms G, ~ r>~¢ cancel in (10.16), whereas
the terms ~ m? give a negative contribution to A 4 Obviously, something must
have gone wrong, since the averaging according to (10.13) leads to G > 1 for small
values of r?2 < m ™2 (m? < k?). This is impossible for the correlation function of a
normalizable operator ¢,.

Indeed, the cancellation of the contribution from the leading term in G is very
sensitive to the precise behaviour of G, for r —» 0. We should remember that
operators are defined as the limit of infinitely many degrees of freedom (A — ) of
a system with a finite number of degrees of freedom (finite A). For finite A the
Green function for y approaches a constant for r — 0. We regularize the leading
term (for d = 4),

1 1

GBA)= mm, (10.17)

and take € ~A~? to zero at the end. The normalization (10.14) is not altered by
this procedure, but the metric differs from the unregularized expression (10.16) if



330 C. Wetterich / Geometry from general statistics

we use G§V and take € —0 after evaluating 4,. The regularized procedure
reproduces now correctly the leading term for A4, in (10.11). At this point one may
wonder if the necessity of a regularization introduces some ambiguity in the
derivation of the metric from the correlation function of ¢,. This is not the case,
as can be seen easily in momentum space where (10.10) is independent of the
precise form how the sum over momenta is cut off for g? = A%, A*> > k2. For any
regularization based on an effective momentum cutoff the metric is uniquely
defined and, of course, independent of the formulation in coordinate or momen-
tum space.

Infinitesimal distances are invariant under rescalings of the coordinates x* —
ax* since this is a particular coordinate transformation (compare sect. 8). The
metric scales g,, — a‘zg#,,, whereas it is invariant under field rescalings y — Bx
if p, is kept fixed. On the other hand, the metric depends on the “average scale”
k if we take a fixed p,. We may wish to define a distance from the Green function
of a free scalar field (with standard normalization of the kinetic term) which is
independent of the details of the averaging. In this case it is more appropriate to
relate p, to the averaging procedure and we choose (for d > 2) *

wi=of 07 farx (a0 | (10.18)

y=—. (10.19)

Here the power v is fixed by the dimension of ¢,. This guarantees that the metric
is now invariant under a simultaneous scaling of coordinates and fields which
leaves the kinetic term invariant, i.e. 82 = a*~% One obtains

w3 =bocp 2 ~ k? 10.20
otk

and the metric becomes independent of the scale k. The k-independent constant
b, may finally be chosen such that 4,=1 for a free massless field with standard
kinetic term, i.e.

ud = ——k2 (10.21)

We observe that the choice of scale (10.18) guarantees that we can “measure
distances” with the two-point functions of arbitrary scalar fields, as long as their
mass is much smaller than k! We expect that this property generalizes to
interacting fields, provided the normalization of the kinetic term is fixed properly

* If we want to measure distances in units of the canonical distance in the space of unit norm
operators, we have, of course, to keep py=1.
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at length scales of the order k™! and all relevant additional length scales which
may be introduced by the interaction are much smaller than k. The relation
8,, =A,8,, follows the symmetries of the action for an interacting field theory
and the question reduces to the possibility of a convenient and universal choice of
the scale factor p,. We also believe that our construction of the metric from
correlation functions can be generalized to fields carrying spinor indices or
Lorentz indices. In string theories the corresponding construction should use
suitable vertex operators for v(x). In particular, if string theories are finite, the
vertex operators representing v{x) should be normalizable and an averaging
involving the scale k& could be avoided.

At this point we should mention a particularity of the long-distance behaviour
for four-dimensional massless fields. For r? > k™2 the Green function (10.13) is
simply proportional to G, (10.20),

G(r) =c2Gy(r). (10.22)

(The use of a regularized G{?) is here irrelevant.) For a massless field one finds for
the distance (4.10) in the limit r?k2>> 1

D*u?*(D) 2 d
2 F(G_l =1 =40, (O Gy (10.23)
0 0
which vyields, for d = 4,
D**(D
# —2,2 (10.24)
Mo

In four dimensions D coincides with the geodesic distance r provided u*(D)/u?
approaches two for D?k? > 1. The possibility to define a distance D with a scaling
function u(D)/u, which becomes independent of all length scales in the limit
D — « seems to be particular for four-dimensional massless field theories. We do
not know if there is a relation between this property and the description of our
world with four-dimensional space-time using a field theory containing the photon
as a massless field.

So far we have always worked in this section with field theories in flat space.
The reader may suspect that the whole discussion can be reduced to symmetry
arguments: “flat space in — flat space out”. The main point of this discussion is,
however, that we do not need to know that the Green functions come from a field
theory which already is formulated using geometrical concepts. The knowledge of
the Green function G{V (10.12),(10.17) is sufficient to construct the geometry!
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Furthermore, our construction equally applies to nonflat geometries. For example,
we may keep the flat space action (10.2) but introduce modified operators

éi(x) = fi(=D*D,)x(x), (10.25)

where the function f, (10.7) now depends on the covariant laplacian with a curved
background metric G, instead of f,(—d%3,) used previously. This “distortion” in
the definition of the basic field reflects itself in a “distortion” of the Green
function and results in a deviation of 8, from a flat space metric.

As a distinct possibility we could also use the action of a free field propagating
in a curved background characterized by G,,. The modifications of the singular
behaviour of the two-point function G, in a curved background are well known [8].
Using a regularized expression of the type (10.17) (with r the geodesic distance,
best expressed in normal coordinates) and a definition of ¢, (10.25) adapted to the
same background metric, one can carry out all constructions similar to flat space.
For k2> m?, k*> R(G), k* >R, ,,(G)R***°(G) etc. one finds from symmetry
and dimension considerations (with a suitable normalization of u,)

¢

sz;.w(G)

¢
8,=G, + pR(G)G,w +

C3
+ —ZR

p (G)R?™(G) + ... (10.26)

HPTA

Here R,,,,(G) denotes the curvature tensor formed with G,, (similar for R, (G,
R(G)) and c; are constants. In principle, g, can be used as well as G,, in order to
describe a geometry. If we identify k& with the Planck mass M|, the differences are
minor as long as the curvature remains small on the Planck scale. On the other
hand, the averaging (10.25) may actually smoothen out sufficiently mild singulari-
ties of the geometry defined by G,,,. In other words, a mild singularity in invariants
formed from the curvature tensor R,,,.,(G) may not appear in corresponding
invariants formed from the curvature tensor R, ,(g). The nonlinear transforma-
tion (10.26) may map a singular background metric G,, into a regular metric g,,,.
One may even argue that g,, corresponds to the “true” metric since in practice
one needs correlation functions for a measurement of distances and only a finite

resolution can be attained.
11. Conclusions
We have demonstrated how to construct geometry from the two-point correla-

tion function. The concepts of distance, topology, and Riemannian metric are
introduced in a very general context. We only use the existence of a field, i.e. a
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family of operators with norm one which depend in a differentiable way on one or
several parameters. OQur approach should constitute the fundamental framework
for the emergence of space in general probabilistic systems. Besides this, our
approach reveals geometrical structures in a multitude of situations in statistical
mechanics. As an example, we discuss the Ising model in a constant magnetic field
in the appendix.

Our construction exhibits a fundamental length scale /, = u; . After the funda-
mental constants ¢ and 4 which are related to the unification of space and time
and the duality between location and momentum the fundamental length should
be the last fundamental constant in nature. The fundamental length /, arises from
the “emergence of space”. More precisely, it is related to the fact that ¢ has no
dimension due to the normalization condition ||@ll=1. This implies that the
correlation functions of ¢ are dimensionless. Any relation between a distance and
correlation functions must therefore introduce a proportionality constant with the
dimension of a length. Putting u, = 1 measures distances in units of the canonical
distance in the space of operators with unit norm. We expect that the concept of
space looses its universal meaning at distances of the order of /,. Indeed, two
fields with a similar behaviour of their correlation functions at distances suffi-
ciently large compared to /, may well have very different correlation functions at
distances of the order /.

There are infinitely many ways of choosing fields which define a geometrical
structure. Which one should be selected to describe “real space” — this brings us
back to the question posed in the introduction. A first selection arises from the
requirement that the geometry should not only describe distances of the order [
but also allow for distances large compared to [,. In particular, a vanishing
connected two-point function should be equivalent to infinite distance. Although
these requirements are not realized for generic fields there still remain infinitely
many possibilities to select fields which admit such a long-distance behaviour. In
particular, the notion of infinitely many degrees of freedom is not yet needed since
long distances can even be described with a single degree of freedom (9.5).

Geometry is a structure in the space of operators. As such it does not need the
specification of an action. In particular, the field defining the geometry must not
coincide with variables in the functional integral. This is not new. A similar
situation arises in field theory in a momentum representation of the functional
integral or in the representation of string theories as two-dimensional field
theories. So far we have only used the Hilbert space structure of the space of all
normalizable operators. All geometrical quantities have ultimately been con-
structed with the help of the scalar product from operators with unit norm in the
subspace .Z2. This construction is independent of the choice of the probability
density or action as we have shown by establishing explicitly suitable equivalence
transformations. It is also independent of the number of degrees of freedom N
since all Hilbert spaces are isomorphic. At this stage, nothing particular happens in
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the limit N — o which is defined as a limit of sequences with increasing N (for
details see ref. [7]) *. We have not yet used the notions of correlatable operators,
operator multiplication or the requirement {@(x)) = 0. They will play a role in the
further development of selection criteria for “real space”.

If v(x) is a field in R and is correlatable the squared operators v>(x) or, more
generally, v(x) may also define fields. They will lead to the same topology but in
general induce a different metric. It seems to be reasonable to demand for “real
space” that all v¥(x) should lead to the same geometry at least at long distances
and for suitable averages of these operators (9.10). This may be generalized to
other composite operators like vd,v etc. We also may consider several indepen-
dent fields. We have restricted so far our discussion to the (connected) two-point
function. Additional requirements for “real space” should arise from the consider-
ation of higher correlations (cluster properties ...). In addition, one has to
introduce a time structure and require the compatibility of space and time.

All this is presumably not sufficient to select “real space” uniquely. In particu-
lar, many local field theories will remain as candidates to describe “real space”.
Intuitively real space should not depend very sensitively on the precise choice of
the field. Assume that there are many fields ¢ (x) all meeting the criteria for “real
space” mentioned above. (The precise formulation of these criteria still needs to
be worked out.) If a is a continuous parameter (or set of parameters) the “best”
space should be the one which is least sensitive to small changes of «. This concept
may finally lead to a very strong selection criterion. This becomes apparent if one
realizes that a change in the action S = —In p is equivalent to a change of
operators according to (2.8), (2.9). For example, a small change of the parameters
of the standard model is equivalent to a small change of the fields. If this change
occurs within the fields ¢ (x) which are acceptable for a definition of space one
may be led to a new extremum condition for g,, as a function of a. One may even
speculate that this fixes the “best parameters™. In this respect local field theories
have the enormous advantage that their long-distance behaviour is very insensitive
to the addition of irrelevant operators in the action. The universality of the
long-distance behaviour reduces the selection problem to the selection of the
universality class and the selection of the ‘“best parameters” within a given
universality class.

In summary, this paper should only be considered as the beginning of the
development of geometrical concepts in general statistics. We hope, nevertheless,
that our discussion draws some attention to the problem of selection of the
space-time structure which corresponds to reality. This problem is at the basis of
the crisis of unification arising from the proliferation of possible ground states.

* We note that only ¢ must be defined in the limit N -« whereas v(x) must not necessarily remain a
normalizable operator.
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Appendix A

ENLARGED GEOMETRY IN ISING MODELS WITH CONSTANT MAGNETIC FIELD

The construction of geometry from the correlation function should not only be
considered as the basic geometrical setting for a unified field theory. It can also be
applied to a multitude of situations in statistical mechanics. As a simple example
for a geometric structure we consider the Ising model with a constant magnetic
field B. The action is related to the probability density p(s) by

exp(—Sg) =p exp( —4S(B)), (A1)
p= exp( -8 anus,,“eu), (A2)

{n#} e*
AS(B) =B }_ s, (A3)

{n*}

Here the sum over n* extends over the sites of a d-dimensional lattice and ¥,.
denotes a sum over unit vectors in the different lattice directions. The number N
of variables s* =s,, is given by the number of lattice sites and may be taken to
infinity at the end. For the Ising model we take discrete variables s,. = +1. This is
related to a formulation with continuous s,. as the limit where p approaches the
distribution

p= {1—[#}{5(%# —1) +8(s,« + D}pg, (A4)

and p, given by (A.2). For finite N we use a periodic lattice such that invariance
under the discrete lattice translations is guaranteed.
We now introduce a (d + 1)-dimensional geometry (x* = (x*, B)) by the field

v(x*, B) =s(x*) exp( —4S(B)), (A.S)
with

s(x*) = X fl x* = n*) s (A-6)

{n*}

defined in analogy with the example (9.5) and (9.6). (We use u for d-dimensional
and 4 for (d + 1)-dimensional indices.) All relevant quantities can be expressed in
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terms of the expectation value of s with a magnetic field and the corresponding
two-point function

(s)p= (s,,u>3=st 5. exp(—Sg), (A7)
Gp(d*) = (suSpmrn)n = [DS Sy an exp(—Sp), (A8)
G5(d*) = Gy(d*) = ()%, (A.9)
Jps=z'T1 ¥ , [Dsp(s)=1. (A.10)
{m#} s,u=+1
One finds
{v(x, B)) =Y fu(x* —n*){s)p, (A.11)

{n*}

{v(x, B), v(y, B")) = > Efk(x“_”'L)fk(}’”'”“'d”)GBHB'(d“)’

(n#} {d¥)
(A.12)

(v(x, B)v(y, B')) —{v(x, B)XXv(y, B'))
= X X filx* = n*) fi(y* —n* —d*)(Gpip(d*) —{s)p{s)p’), (A.13)

{n*} {a*}

and defines the normalized field ¢ as

é(x, B) =c,(x, B)(v(x, B) —v(x, B))), (A.14)
with
¢ ’(x, B)= ¥ X fi(x* —n*)fi(x* —n¥ —d*) (A.15)
{n#} {a*}
(G5a(d*) + ()35 — {)}). (A.16)

We note that ¢ is defined for all x and B since G(d*)>0 and (s)p is a
monotonically increasing function of B. The correlation G(x, B; y, B’) is positive
for all x, y € R and B, B’ € R since

(sY5+m > (s)p(s)p. (A.17)

For the symmetric phase, ¢ is continuous and differentiable for all values of B
such that R = R4*!. In the spontancously broken phase (s) develops a disconti-
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nuity at B=0 for N - », (All quantities remain continuous for finite N.) We
expect the appearance of geometrical singularities at B =0 for N — o,

Let us consider the limit k% < 1. (The fundamental length scale ug' is here
proportional to the lattice spacing.) We can then approximate sums by integrals,

1

Y filx* —n*) = [d'z fi(x—z) =1,

{n*}

Y fi(x —n) fu(y* —nt) = [d% fi(x = 2) il y = 2)

{n"}
=fiez(x—y), (A.18)
such that {(v) and ¢, become independent of x*,
(v(x, B))=(s)p=s(B),
ciX(x, BYy=c™*(B, k) =g(B, k) —s*(B),

g(B, k)= ka/ﬁ(d”)Gza(d“)- (A.19)
{a*}
The metric
8= cﬁ{(aﬁvaﬁv) — 3 w3 v) — 4ck6 c; %, c;z} (A.20)

can again be expressed in terms of correlation functions in a constant magnetic
field. The d-dimensional submetric

= 4U(BY L [d'22,(2, —d,) fi(2) fi( 2~ d)Gp(d)

{d"}
=k2(1+ (s)5c}(B))3,, —k*ci(B) ¥ d,d,f, ,5(d)G,p5(d)
{a*}
2k261n c"*(B, k)6 Aol
T d dIn k2 w (A-21)

becomes flat in leading order. The off-diagonal elements vanish,

u

~k2c£(B) Y [d'z2,fu(2) fulz = d)Gap(d)
{d“)

8up

‘kzc,%(B)— I dufia()G2u(d) = (A22)
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since Gg(—d) = Gz(d). Finally, one obtains

182 2

d
805 = 7 35310 < 2(B, k) +1c2(B, k)s*(B) 31 s(B).  (A23)

We see that g;; can be expressed in terms of the quantities s(B) and g(B, k)
(A.18) and their derivatives with respect to B and k. It remains to be seen if this
or similar geometrical structures in statistical mechanics are of some practical use.
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