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We discuss solutions to the nonlinear GLR evolution equations in the nonperturbative part of
the low-x 5 region. A new definition of the critical line is obtained, and we conclude that there is
only one solution which matches the perturbative Gribov-Lipatov—Alterelli-Parisi evolution.

1. Introduction

It is well known that perturbative QCD leads to a parton distribution of a
hadron which grows rapidly with 1/x. This increase eventually will violate the
unitarity constraints, even at large values of Q2 and it is therefore unavoidable
that the conventional perturbative QCD evolution scheme will break down and
give way for nonperturbative physics. At large Q?, however, the strong coupling
constant is still small, and we are thus in the novel situation of entering the
nonperturbative region with a small coupling constant. At the moment we cannot
do better than studying just the edge of this kinematic domain, using a careful
analysis of Feynman diagrams. This analysis shows that, compared to the conven-
tional evolution framework, new partonic interactions becoming important and
lead to large screening effects (shadowing) inside the structure functions. More
than ten years ago Gribov, Levin, and Ryskin [1] suggested that these new partonic
interactions could be represented by a nonlinear term in the evolution equation:

2 0

3¢(xB’ q2) _ NCaS 2 ¢(xB5 q/Z) - d q
dIn(l/xg)  w fK(qz’q ) 1_asT #(xs, q )277, (1.1)
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where
IF(xg, 4°)
¢(xB,q2)=T—, (1.2)
F(xg, q%) =x5G(xg, q%),
5= 2N .
0 9Q0 ? ( * )
and
d(x5, 4"%) a.’$(xg, 4%)

. (1.4)

K(q* q" XB> ) = - 27 2 2
(0% ) blrm 07 = e T el (a0

The negative sign of the second (nonlinear) term in (1.1) is intimately connected
with the Abramovsky—Gribov—Kanchelli [2] cutting rules, and it has the effect of
damping the increase of the structure functions at small x. QJ is the new scale that
is responsible for the value of the screening correction. It is worthwhile mentioning
that R} derived in ref. [3] is equal to RZ =12 (1/Q7).

It should, however, be stressed that the derivation of this equation from QCD
holds only in that kinematic region where the second term is still small. From the
theoretical viewpoint, on the other hand, the most interesting region is that of
smaller x where the parton density is large while «, is still small: a better
understanding of the dynamics in this domain would be extremely valuable also in
many other fields of high-energy physics, e.g. in high-energy heavy-ion collisions,
the structure of typical inelastic events in hadron—hadron scattering at high
energies, nuclear shadowing or baryon number violation in the electroweak theory
(3,41

In view of this interest it seems instructive to further investigate the nonlinear
evolution equation (1), even in those kinematic domains where we cannot be sure
how well it describes QCD. So far most of our understanding is based upon the
semiclassical approach [1,5,6] and on numerical studies [5,8-10]; in this paper we
attempt to use, as much as possible, analytic methods. Our main result is a novel
derivation of the existence of a critical line. Furthermore, we shall conclude that in
the nonperturbative region the equation has only one unique solution. In sect. 2 we
describe our approach which will lead us to a nonlinear differential equation. This
equation will be investigated in sect. 3, together with the main implications for the
behavior of the structure function at low xg. Corrections to this equation as well as
the correct set up of initial conditions (“matching procedure”) for the GLR
equation are discussed in sect. 4. We conclude in sect. 5 with a short discussion of
our results.
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2. The method

Throughout our discussion we will make a crucial simplification, namely we
shall ignore the running of «,: it is only in this approximation that we have been
able to find an analytic method of studying the nonlinear evolution equation. On
the other hand, as far as the basic properties of the equation are concerned, there
are no qualitative differences between the equations with running or with fixed
coupling constant. This applies, in particular, to the existence of the critical line
and to the behavior of the solution along this line.

The nonlinear evolution equation we wish to investigate is given in eq. (1.1).
Away from the critical line we make the following ansatz for the moments
(f(w, Q) of the structure function F(xg, Q?):

flo, Q%) =f(w) e?@X=70, (2.1)
where r =In(Q?/A%), o =n — 1, ry=1In(Q?%/A?) (here Q} is the starting point for

our evolution equation) and

1
f(w, ©%) = ['dixy xB7F (x5, Q%) = [d In—e R0/ F(xy, 0%). (22)
0 B

It will be more convenient to use the function ¢(w, Q?) rather than the structure
function F. From (1.2) it follows that

df(w, Q?
d’(wa QZ) =/dy e~ wy—yo) ¢,(y’ QZ) = ew)’u%
.
= V() f(w) ey X,
0
— p(w) e T@Xr—r0), 03

where y = In(1/xy), y,=In(1/x,) and
Y(0) =1-y(w). (24)

Substituting this ansatz into the evolution equation (1.1), we have the following
conditions on ¢(w) and the function y(w) which determines the evolution in Q2

o
asch 1 dw

) T o 2—7Ti¢(w_“’,)¢(“")x(l—7(w—w')_V(w'))

xexp(~[7(@ —w') + ¥ ()] (r—ry)). (2.5)

CYSA,C
(1= 7(0)) | #(0) ex(~F(w)(r =)
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Here we have made use of the eigenvalue condition [11]

fdquK( 2 /2) eyr’= (1_ )eyr (2 6)
. q-, q X Y .

with
x(1=v)=2¢(1) —¢(y) —¢(1—v), (2.7)

where ¢(t)=d In I'(t)/dt denotes the derivative of the logarithm of Euler’s
gamma function. The integral on the r.h.s. of eq. (2.5) is evaluated by means of the
saddle-point method:

a N,
{w B e —v(w))}aw) exp(— (@) (r = ry))

=" aiNc d%qbz(%) zwl/zwzv"(:/z)(r—ro) w273 )r o) 29

Eq. (2.8) is the starting point of our study. First one notices that for large
enough ® we can neglect the r.hss., and y can be calculated from the linear
equation

ach

w —

X(l_ypert(w))=0' (29)

It should be noted that in the so-called double-leading-log approximation [12]:

1
x(A=y)= 1= (2.10)
4
which leads to
aSNC
v(w) = . (2.11)
mw

This is just the singular part of the anomalous dimension of the two-gluon
operator. However, in the critical region where the r.h.s. of eq. (2.8) is of the same
order as the Lh.s., we find another condition on ¥:

w
’7nonpert( w) = 27n0npert( E ) . (212)
It has the simple solution

Ynonpert(®@) = Co. (2.13)
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Both solutions should match at a certain w_;:

yperl( wcrit) = ‘Ynonpert( wcrit) ’ (2 14)

and its value can be determined from the matching conditions (2.12) and

aYnonpert Ynonpert

= , 2.15

dw w ( )
which leads to the equation

a7pert _ ‘?pert ) (216)

Jw w
Egs. (2.15), (2.16) and (2.9) give an equation for %y, ; = y(w;):
1 ~ Yeri d 1 - _cri
X( ‘YCrll) _ X( 7 t) (217)

?crit - d(l - 7crit) .

The above equation is just the same that was received in ref. [1] in the semiclassical
approach. For w_., the result is

crit

a N

S C

Werip = X(l - 7cril)‘ (218)
mw
Within the semiclassical approximation one defines evolution paths in the
(y =In(1/x), r =In(Q?/A?))-plane. Starting from the integral representation of
our solution:
2 do _
¢(XB, Q ) = fﬁd’(“’) exp(w(y = Y0) = Yperr( @) (r — ”0))’ (2.19)

we follow ref. [1] and use the saddle-point approximation. For large y and r the
saddle point is determined by

dy

T de

Yy —Yo (r—ry). (2.20)
This equation describes the family of curves y = y(r) which pass through the point
Y=y, r=r,, and o is a constant of motion. Any such curve can be considered
[1,5,13] as an evolution path of the parton distribution, and the semiclassical
approximation of (2.19) along this path provides an approximate estimate of the
structure function. For w < e, a case of particular interest is the critical trajec-
tory. It is the “last” trajectory for which we can use the linear equation (since the
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nonlinear term in the GLR equation is still small). Its equation is obtained from
(2.19):

d? ™ '_);crit
Y =Yoo= 7~

- de Derit . (r - rO) - ach X(l - ’ycrit) (r B rO). (221)

Using the solution of (2.17), namely ¥, = 0.63 (see ref. [1] for details), we rewrite
(2.21):

T 0.63 0.217
TR iy

S

Y=Y (r—ry). (2.22)

The structure function along the critical line follows from eq. (2.3):

dw dy
F(xB, QZ) = e(r—ro)fmf(w) exp(wa

- ?pert(w))(r - rO)’ (223)

Werit

where f(w) has to be determined from initial conditions. As an example, the
condition xG(x, Q3) =8(y —y,) would lead to f(w) = e“’. We believe, however,
that the correct way of calculating f(w) proceeds via matching the solution (2.19)
to the solution of the nonlinear equation along the critical line. We will return to
this point below.

Let us now further study the region o <. We return to the function vy in
the nonperturbative region (2.13) and determine the constant C:

7nonpert(wcrit) = 7pert( wcrit) = ycrit ’ (224)
C = Lot (2.25)
w

crit

Using egs. (2.13) and (2.25) we cast eq. (2.5) into the form

a N Yorit
{w— S CX(l— ’ycl'l m)}¢(w)

T crit

aiN, 1 (
= — —xl1-
T P

Yerit

a))fd)(w—w')d)(w’);i—:;. (2.26)

crit

As a result, ¢(y, r) becomes

1
d)(y’Qz):.z_;;fdwd)(w)exp[w(y—yo)— w(r—ro)|.  (227)
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Introducing the new variable

L (r=ro) (2.28)
we notice that ¢ depends only upon z *, and eq. (2.26) takes the simple form

d ach 1 '7crit d
=i 2 e

crit

X
T ¢y

Crszl\,c _1_ 1— ?crit _d_
Werje dZ

)¢2(z). (2.29)

It can even further be simplified by the following rescaling:

W rit - ag
— 2, d)=_'¢), (230)
Verit b

zZ =

where use has been made of eq. (2.18). The equation then becomes

() & - oo

= —X(l—diz)&(zy (2.31)

It is an ordinary nonlinear differential equation which can be studied by standard
methods [14].

However, in this form it is still too complicated and we begin our study with a
somewhat simpler version. Namely, instead of the evolution equation (1.1) we
switch to the double-log approximation (DLA) which have been defined in (2.10)
and (2.11). It should be noted that in this approximation eq. (1.1) is replaced by the
simpler nonlinear evolution equation for F = x 3G

F(y,r) NcaSF N2a? g2 3
P el (OO B g o O M O

In this approximation, eq. (2.31) becomes

1 (1_i)i_‘_‘—_2 2.33
(1—‘?(wcm))7(wcrit) dz d2¢ d)_ d) ’ ( . )

* This property of GLR equation was firstly noted in ref. [5].
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Using eq. (2.10) for y we can calculate w_;, and ¥, from eqs. (2.17) and (2.18).

The result is

crit

2N, aq

‘Vcrit = %’ Werjt = T . (234)
It means that
_ 4N.a,
zZ= - (y=yo)—(r—ry). (2.35)

With a few changes of notation eq. (2.33) takes the simple form

— b= —¢>. (2.36)

The analysis of this equation will be the subject of sect. 3.

3. The nonlinear differential equation

First it may be instructive to view this equation as an equation of motion of a
point particle in a classical potential. If we put ¢ =x and z =1¢, the equation
becomes

d*x dx

@ T )

or

d’x dx 9 a1
8‘1‘7:5—5(5)6 - 13X ) (31)

i.e. the potential has the form
U(x) =7(3x%—3x7). (3.2)

(fig. 1). One further notes the friction term which has the sign opposite to the
usual case. Starting from the origin x = 0 and moving in the positive direction we
expect three classes of solutions: (i) Solutions with small initial energy will come to
a stop, turn back and pass the point x =0 in the negative direction. When it
reaches the potential wall on the negative-x axis it is reflected again and starts to
move in the positive direction. Due to the “antifriction” term, it accelerates all the
time, and when it reaches the barrier on the r.h.s., it will have enough energy to
pass and to move to infinity; (ii) Solutions with sufficiently large initial energy will
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Fig. 1. The potential function eq. (3.2).

625

directly climb over the potential barrier and escape to infinity; (iii) In between
these two classes there is one distinguished solution which comes to a stop just on

the top of the barrier and remains there forever.

For a closer investigation we turn to a fixed point analysis of (3.1). Let us

introduce y =% and rewrite the equation
y=y—x(1-x),

x=y.

(3.3)

(3.4)

There are two fixed points, at (x, y)= (0, 0) and (x, y)=(1, 0). We linearize the

equations of motion in the vicinity of these points:

Y=Y —3x,

x=y
near x =0 and

Y=y~ X,

X=-y

(3.5)

(3.6)

(3.7)

(3.8)

near x = 1, defining ¥ = 1 — x. In the first case we find degeneracy (both eigenval-

ues are equal to 3), and the solutions are

x(t) =Ae* + Bt e/,

y(t)=3[A e+ Bt e/ + B e/,

(3.9)
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0.0 0.0333 0.0666 0.1000 0.1333 0.1666 0.2000

: I L 1
-0.2 : !

0.8020 0.8665 0.9333 1.0000  1.0667 1.1333 1.2000
X

Fig. 2. (a) Solutions near the fixed point at the origin; (b) Solutions near the second fixed point (1, 0).

Eliminating the time variable we obtain for y(x) at x =0 or t » — o

. X o Inln x 310
=1x+ + . .
Y e T Y« In’x (3.10)
Close to the fixed point (0, 0) all solutions approach the direction y = 3x (fig. 2a).
The dependence upon A and B appears in the expansion (3.10) only in nonleading
terms of the order of 1/In%x.
For the case of the second fixed point we have two different eigenvalues with
opposite signs:

1L+2 1=
— az————i—.

o =

(3.11)
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Fig. 3. Connecting the two fixed points.

Hence the fixed point is hyperbolic, and the direction of incoming and outgoing
solutions are

y=—a,x (3.12)

(fig. 2b). Combining the two figures in one common map (fig. 3), it becomes clear
that there is one unique solution, x(¢), that leaves the origin and ends at the
second fixed point (the subscript “sat” stands for “saturation” and will be ex-
plained below). All the other solutions that emanate from the origin will miss the
second fixed point and either will stay below this distinguished solution and turn
backwards (until x becomes negative and, hence, unphysical), or it lies above and
moves upwards towards infinity.

We will now argue that the unique solution x, which ends at the second fixed
point is the only acceptable one. Namely consider the ratio y/x. For all solutions
other than x, it can be shown that it tends to infinity for sufficiently large time ¢.
To see this we first note that all solutions except for x, will sooner or later
become large. We therefore study egs. (3.3) and (3.4) in the region of large x.
Combine the two equations into a relation for dy /d x:

dy

ya= —%X(I—X) (3'13)

and introduce the new variable v =1/x. For v — 0 we find

d 1
wrr oy (3.14)
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We can have one of the two cases: either v?(dy/dv) > 1, and eq. (3.13) becomes

29y ! 3.15
Wi T a2 (3.15)
with the solution
y= i1)‘3/2. (3.16)
V6
Consequently,
Y L1 3.17
—=yw=—=—= > ®, .
W= e (3.17)
Alternatively, assume v%(dy/dv) < 1. Then (3.13) gives
! 3.18
y= 4U2 ’ ( . )
and again
y
— — o, 3.19
- (3.19)

Therefore all solutions which come close to infinity have the property that y/x
gets large. On the other hand, this ratio has a simple meaning. If we write, for
x(t), the integral representation

dow
x(t) = [z—m_x(w) e, (3.20)

then

= S (3.21)

i.e. y/x is the mean value of w. So, if y/x — o, the mean value (i.e. the dominant
value in the integral representation (3.20)) of w becomes large. But as we have
discussed before, for w > w_,; we should return to the perturbative solution. In
other words, a solution to the nonlinear equation in the nonperturbative region
which receives its main contribution from large w-values has to be rejected since it
does not match the perturbative solution.

It is not difficult to translate these results into the behavior of the structure
function (cf. fig. 4). Our time variable was defined before (2.28) and in (2.30): one
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T semiclassical (t)

1 L L L L

0.0 6.1833 12.367 18.550 24.733 30.917 37.100

t

Fig. 4. Comparison of xg, (lower curve) and the semiclassical solution (see eq. (3.32); upper curve). As
a common starting point we have chosen x ., (0) = X i 1assical(0) = 6 X 1073,

particular value belongs to the critical line, and we choose it to be Z=1¢=0. The
value of x(0) can be specified only after the matching procedure which will be
described below. At fixed g2, t = « means xg — 0. Solutions in fig. 3 which are
above xg ., therefore, belong to structure functions which grow very strongly.
Those which are below turn back and eventually become negative (and hence
unphysical). Both classes are rejected. The only acceptable one is x,, which ends
at the second fixed point: x,, approaches a constant value, i.e. the structure
function saturates [15] (this also explains the subscript “sat”).

Let us discuss a few properties of the solution x,. Collecting the notations
(egs. (2.2), (2.3), (2.19) and (2.30)) (or, alternatively, using directly (2.32)), we find
for the structure function

Q5

_ 02
Fxy, Q%) =¢™ gy =" ¢0fx(t). (3.22)

We define the two slopes with respect to » and y:

1 dF
F or

1dx y
l1—-——=1- =, (3.23)
X

Y | xp fixed = =
B ¥ fixed x dt

where r —r,=In(Q?/Q2) and

1 9F

4Na, 1dx 4Ny
F dy x dt X’

g2 fixed ™ x dt ks X

vl Q% fixed = (3,24)

Near the two fixed points solutions move very slowly. Therefore we expect for the
distinguished solution x,, provided the value x(0) is sufficiently small, that y/x
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remains close to 4 for a long time, hence both y’s are approximately constant.

Consequently, we can approximate the structure function in the vicinity of the

critical line. At fixed x:
Q2
F(xg, Q* ocV—, 3.25
( B ) Q5 (xp) ( )

where Q%(xg) is the solution of the equation for the critical line, namely
Z(xg, Q3) =1t(xy, 03) =0, and at fixed Q*:

xo(qz) )ZNCaS/‘n'

Xg

F(xB, QZ)CI ( , (3.26)
where x, again satisfies #(x,, Q%) =0.

As a second result, we establish the behaviour of the deep inelastic structure
function at x5 — 0O:

b0
*

F(xg, Q%) =Q? {I—Cexp

2y (4N°aslnﬁ —1nQ—2))}. (3.27)

2 T Xpg Qg

It is interesting to note that we could use this result for the profile function of
quark—quark scattering at high energies. In ref. [16] a picture of hadron-hadron
sattering at high energies has been developed in which the size of the constituent
quarks is small enough to allow for the use of perturbative QCD for quark—quark
scattering. If this picture is accepted, we could use (3.27) and parametrize the
profile function in the following way:

a(s, by) = (1—c(:—0)w0

where wy= (V2 — 1)2N,a /7 and R(s) « In s.

Finally, it should be stressed that our solution x, is quite different from the
semiclassical one that has been used in refs. [6,10] for the solution of GLR
equation to the right of the critical line. We demonstrate this by applying the
semiclassical approximation to (3.10). We make the ansatz

O(R(s) —b,), (3.28)

x(t) =e¥® (3.29)

and assume  to be a smooth function of ¢. If furthermore s < 2 we are allowed
to put

— =42’ (3.30)
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and obtain a simple equation for :

g7 — g+ ¢ = e’ (3.31)

It can be solved easily:

X (3.32)

(1 Cehy

(the factor C has to be specified by imposing suitable the initial condition). From
this solution one can see that it does not reproduce the correct behaviour of the
deep inelastic structure function at r —» +x (cf. eq. (3.27)): in fig. 4 we compare
the behavoiur of x,(¢) with the semiclassical solution of eq. (3.32), matching them
at £ =0 in such a way that x,,(0) = X . mictassica(0) = 6 X 1073,

4. Higher-order corrections and matching procedure

So far we have restricted ourselves to leading approximations. In this section we
consider various corrections. First we adress the question of stability, i.c. we look
at solutions in the vicinity of those considered in sect. 3 and show that deviations
remain small. In sect. 3 we have restricted ourselves to a special class of solutions,
namely those which depend upon z (eq. (3.10)) but not x and g? separately. In
this section we shall investigate more general solutions, but stay in the vicinity of
the solutions of sect. 3. We return to the DLA equation (2.32) and search for
solutions of the form

F= ﬁe’ xg () +A(t, r), (4.1)
aS
where
4a N,
t= - (y—=yo) = (r—ry). (4.2)

Our goal is to show that 4 is small. Calculating derivatives of F and retaining, in
eq. (2.32), only terms up to the order A, we obtain the following equation for A:

4a,N, 34  a,N, alN,
= __ A-2 o

A 4.3
T  or T bom asxSat (4.3)

or

a4
— = il1-2x(1)]4, (4.4)
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where 4 = 3A /dt. Solutions are found easily:

dv |
A= fﬁf(l«') explvr+ E[o[l—zx(t,)] dt’) (4.5)
or
B 1 o ,, dx’
/ f(y) exp(vr+ 4_f(0) [1-2+ y(x") ) (40)

If we now chose the initial condition A(t = 0) =0, we can specify f(v) in eq. (4.6),
namely f(v)=1, and (4.6) becomes the integral representation of the modified
Bessel function:

Vo, AT MO, x'
A(t,r)—\/rj;(o)[l 2x]———y(x,) 11(\/ [( [1-2x ]( )). (4.7)

As to the magnitude of A, there are two potentially dangerous points in the
integral of (4.7), namely x — 0 and x — 1. For x — 1 the integral diverges logarith-
mically, but

(1-2x")

——=dx’' <0, 4.8
S 50 (4.8)

and (4.7) is oscillating and thus never grows (such oscillations have been seen first
in the computer study of ref. [5]). For x - x,,

A e‘/Zrln(x/xU)’ (49)

and this can be large of the order e” only if x/x(0) = ¢’/2. But since x/x(0) < 1/«
and does not depend on r, A will be small for all values r > In(1/a,). We thus
conclude that A never gets large, i.e. the solution x of the previous section is
stable against small perturbations.

As a second class of corrections, we leave the DLA approximation and return to
eq. (2.31). We briefly investigate how much its solutions differ from those of the
DLA equation (3.10). Let us rewrite this equation in the following form:

X 1—icri d — —
( g — —1}¢= -2 (4.10)
o dz
‘ycntX( d-z—)

Here the function y(1 — ) has a rather complicated form, but we remember that

our matching has been done at w = w,;, and we therefore can expand around this
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point. We return to (2.26) and expand in w: on the Lh.s. the first two terms cancel,
and on the r.h.s. we retain the leading term. Substituting for @ d/d z, we obtain

d 2 _
(55 = ] = 2™ (4.1)

This equation could be reduced to the DLA equation (3.1) changing Z to
zZ= 27critzl'

Thus eq. (4.11) has two fixed points at ¢ =0 and ¢ = 1, and the only difference
lies in the eigenvalues near these fixed points. )

Our general equation (4.10) still depends only upon ¢ and é and not on Z, but
we cannot apply the same standard methods which we have used in the DLA case.
Indeed it turns out that eq. (4.10) cannot be reduced to the differential equation of
the definite order due to the very complicated form of the kernel y(1 —d/dz).

Nevertheless we are able to investigate the behaviour of the solution in the
vicinity of ¢ — 1 making the following ansatz:

¢ =1-44,
Ad =e 7,
b =a,48. (4.12)
For «; we have, from (4.10),
X(l B ycm) .

Fox(1+@,) a,—1=0. (4.13)
Eq. (4.13) can be solved numerically, and it turns out that the minimal value of
@, ~ 0.85. It means that the solution approaches the saturation limit (¢ — 1) much
faster than in the DILA approximation, but at the moment we cannot connect the
two fixpoints and hence cannot prove that the saturating solution exists.

The final point of this section is the determination of f(w) in (2.23) or ¢(w) in
(2.27). 1t is obtained from the correct specification of boundary condition, which
we will name “matching procedure”. In short, we propose to proceed as follows. In
the nonperturbative region we can accept only the distinguished solution x, of
the previous section. The task is then to find solutions of the linear equation which
on the critical line match this solution. Since the location of the critical line is
known only up to its intercept on the y-axis, there is still some freedom: we still
need to impose some initial condition in the perturbative region.

In somewhat more detail, we describe this “matching procedure” for finding the
solution to the GLR equation in the full kinematical region of deep inelastic
scattering in three steps:
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(1) Start from some initial distribution of gluons at fixed Q% = Q2. We need to
know the structure function as well as its slope since our linear equation is of the
second order. Thus we should use as initial conditions:

F(y=ln(1/xB), r=r0)=Fi""“‘(y) (4.14)
and
) 1 aF(y, r
et = ( ) (4.15)
Fmeut(y) ar rerg
or
i 1 aF(y, r)
input _ __ 4.16
‘Yy Fmput(y) ay rero ( )

(2) Find the value of y, and specify the scale of our variable ¢ in a such way
that

. $0Q5
Fr™(yg) = == -x(0) (4.17)
and
. X (0)
mput(yg) =1 — —=—= 4.18
Yr (y0) xsa((o) ( )
or
input 4NCaS xsal(o) 4 19
Yy (YO)_T o (0) (4.19)
(3) Solve the linear evolution equation
d°F a,N
= F (4.20)
ay ar T
with the following initial condition:
d)OQ(% 'x.:sat(O)
F(y, r)= 0); =1- :
(y r) as X( ) y xsal(O)
att=0 and y>yg;
F(y, r=rg) =F™(y);  y(y, r=ry) =%""(y); (4.21)

at y <y, and r=r,.
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The following example may help to clarify this matching procedure. Assume
that

1

Finput(y) = (_) = eay’ ,y)i)nput(y) =a.
X

One can find the value of y, from the equations

Maﬂs xsal(O)
- ™ xsat(o) ’

a

$0Q5

S

e =

-x(0).

(note that x,(0) should be considered as a function of x,, and therefore is not an
independent variable). As an example, we chose a = %, a,=02, and QS =
10 GeV2. Then x,(0)=6x10"> and y,=0.4. Fig. 4 shows how x, and the
semiclassical solution (3.32) differ from each other: with the same starting point at
x =6x 1073, the semiclassical approximation reaches saturation earlier than the
exact solution.

However one also sees that this matching procedure cannot work for arbitrary
values of a. Indeed, for large z,

2N a

ilells
a> ,
mw

we are not able to find y, since for all values of ¢ the ratio %,(0)/x/(0) is
smaller than 3. The physical meaning of this observation is very simple. The
nonlinear term in the evolution equation imposes some limitation on the increase
of the structure function. It means that not all input distributions garantee that
with our starting value Q% = Q2 we are below the critical line in the perturbative
region. The steeper the input distribution is, the lower (and more to the right) lies
the critical line.

Of course all this discussion is only qualitative. To deal with realistic situations
we need to study the solution of the evolution equation with a more complicated

kernel; in particular we should take into account the running coupling constant a.

5. Conclusions

In this paper we have tried to investigate solutions of the nonlinear evolution
equation in the nonperturbative region. It is completely unclear whether these
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equations are correct beyond the perturbative region, but we just wanted to see
what kind of constraint information from perturbative QCD can provide for the
continuation into the nonperturbative regime. All previous insight had been based
upon the semiclassical approximation. In this paper, we have avoided to make use
of this approximation, but tried to use alternative analytic methods as much as
possible. As a result of this intention, we had to ignore the dependence of the
coupling constant upon the momentum scale, i.e. we have used a fixed «.

As the main result we have found (but without making any claim for mathemati-
cal rigor) that there is only one solution which matches the known perturbative
solution; it becomes flat for xz — 0, i.e. it supports the idea of saturation. As an
immediate consequence of this uniqueness, one should expect that the x distribu-
tion of xG at fixed low Q? which is usually considered to be a rather free input to
the evolution equation has a well-defined continuation towards small x . This is in
perfect qualitative agreement with experience from computer studies of the GLR
equation: the nonlinear evolution equations clearly distinguish between “natural”
and “unnatural” initial distribution, in that the latter ones are more strongly
corrected in course of the Q2 evolution than the former ones. More strongly, our
discussion in this paper shows that certain initial distributions are unacceptable
within our matching procedure. As an example we can use our solution for the
natural parametrization of the initial gluon distribution at Q2 = g2. It should be
stressed that such an initial distribution looks quite different from the one used in
ref. [8].

A detailed analysis, within the well-known operator expansion and renormaliza-
tion group equation, of the transition from perturbative to nonperturbative QCD is
still missing. We can, however, say in general words how our analysis could be
interpreted in this language. Starting in the (Q?—In(1/xy))-plane from the
lower-right part, i.e. in the perturbative region, we first have the linear evolution
equation, and the Q%-evolution is determined by the anomalous dimensions of the
leading-twist operators. Since we have restricted ourselves to gluons only, it is the
two-gluon operator which matters. Moving upwards in the kinematic plane towards
small x5 (which is equivalent to w — 0 or # — 1), the anomalous dimensions of the
two-gluon, four-gluon, ... operators all threaten to become large individually (they
go as 1/w), and the neglect of nonleading-twist operators is no longer justified.
The GLR equation with its nonlinear term is nothing but an attempt to find the
sum of them. As soon as this nonlinear term becomes important, the Q2 depen-
dence of the solutions is described by a new function, v, ... (), which has no
longer the meaning of a single anomalous dimension but represents the collective
effect of all nonleading-twist terms in the operator expansion. The 1/w singular
disappears and is replaced by the regular C-w behavior with C o 1/a,. Within
our matching procedure, the continuation into the nonperturbative region requires
(and determines!) nonperturbative terms. On the critical line, perturbative and
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nonperturbative description match; for large Q2 it coincides with the result
obtained from the semiclassical approximation.

It should be emphazised that most of this discussion would also remain valid if
we add higher-order terms to the GLR equation: ¢>, ¢*,... The essential step in
our matching procedure is expressed (2.9) and can easily be generalized to

w
Fanpea(©) = 1T | (5.1

and it has always the solution (2.10). This indicates that our results may be of
rather general validity.

One of us (E.L.) would like to thank the DESY Theory Division for its kind
hospitality.
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