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We discusssolutionsto thenonlinearGLR evolution equationsin the nonperturbativepartof
the lOW~XBregion.A new definition of the critical line is obtained,andwe concludethat thereis
only one solutionwhich matchesthe perturbativeGribov—Lipatov—Alterelli—Parisievolution.

1. Introduction

It is well known that perturbativeQCD leads to a parton distribution of a
hadronwhich grows rapidly with 1/x. This increaseeventuallywill violate the
unitarity constraints,even at large valuesof Q2, and it is thereforeunavoidable
that the conventionalperturbativeQCD evolution schemewill break down and
give way for nonperturbativephysics.At large Q2, however, the strong coupling
constant is still small, and we are thus in the novel situation of entering the
nonperturbativeregionwith a small coupling constant.At the momentwe cannot
do better than studyingjust the edge of this kinematic domain, using a careful
analysisof Feynmandiagrams.This analysisshowsthat, comparedto the conven-
tional evolution framework, new partonic interactionsbecoming important and
lead to large screeningeffects (shadowing)inside the structurefunctions.More
thanten yearsagoGribov, Levin, andRyskin [1] suggestedthat thesenew partonic
interactionscould be representedby a nonlinearterm in the evolution equation:

_____ = ~fK(q2 q~2){1~as~~2) } ~XB, ql2)~, (1.1)
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where

8F(x q2)
4(x

8,q
2)= öq2 (1.2)

F(xB, q2) XBG(XB, q2),

32N~
(1.3)

and

,2 2

2 ,2 / ,2\ 4(x
8, q ) q~41(xB, q )K(q , q )~xB, q ) = , 2 — , 2 ,2 , 2 (1.4)

(q—q)t (q—q)t(qt +(q_q)t)

The negativesign of the second(nonlinear) term in (1.1) is intimately connected
with the Abramovsky—Gribov—Kanchelli[21cutting rules,andit hasthe effect of
dampingthe increaseof the structurefunctionsat small x. Q~is the newscalethat
is responsiblefor the valueof thescreeningcorrection.It is worthwhile mentioning

that R~derived in ref. [31is equalto R~= 12 (1/Q~).
It should, however,be stressedthat the derivation of this equationfrom QCD

holdsonly in that kinematicregionwherethe secondtermis still small. From the
theoreticalviewpoint, on the other hand, the most interesting region is that of
smaller x where the parton density is large while a~is still small: a better
understandingof thedynamicsin this domainwould be extremelyvaluablealso in
many other fields of high-energyphysics,e.g. in high-energyheavy-ioncollisions,
the structure of typical inelastic events in hadron—hadronscattering at high
energies,nuclearshadowingor baryonnumberviolation in the electroweaktheory

[3,4’.
In view of this interestit seemsinstructiveto further investigatethe nonlinear

evolutionequation(1), evenin thosekinematic domainswherewe cannotbe sure
how well it describesQCD. So far most of our understandingis basedupon the
semiclassicalapproach[1,5,61andon numericalstudies[5,8—101;in this paperwe
attempt to use,as much as possible,analytic methods.Our main result is a novel
derivationof the existenceof a critical line. Furthermore,weshall concludethat in
the nonperturbativeregionthe equationhasonly oneuniquesolution.In sect.2 we
describeour approachwhich will leadus to a nonlineardifferential equation.This
equationwill be investigatedin sect.3, togetherwith the main implicationsfor the
behaviorof the structurefunction at low XB. Correctionsto thisequationaswell as
the correct set up of initial conditions (“matching procedure”) for the GLR
equationarediscussedin sect. 4. Weconcludein sect.5 with a short discussionof
our results.
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2. The method

Throughout our discussionwe will make a crucial simplification, namely we
shall ignore the running of a~:it is only in this approximationthat we havebeen
ableto find an analyticmethodof studyingthe nonlinearevolutionequation.On
the other hand,as far as the basicpropertiesof the equationareconcerned,there

are no qualitative differencesbetweenthe equationswith running or with fixed
coupling constant.This applies,in particular, to the existenceof the critical line
andto the behaviorof the solution along this line.

The nonlinearevolution equationwe wish to investigateis given in eq. (1.1).
Away from the critical line we make the following ansatzfor the moments
(f(w, Q2))of the structurefunction F(xB, Q2):

f(w, Q2) =f(w) ~ (2.1)

where r = ln(Q2/A2), w = n — 1, r
0 = ln(Q~/A

2)(hereQ~is the startingpoint for
our evolutionequation)and

f(w, Q2) = fdxB x~2F(xB, Q2) = fd ln~e~’~~ F(xB, Q2). (2.2)

It will be moreconvenientto use the function 4(w, Q2) ratherthan the structure
function F. From (1.2) it follows that

~(w, Q2) = fdy e~°~ ~(y, Q2) = ~ df(w,Q2)

1
= y(&)f(w) ~

Qo

= 4(w) e°~, (2.3)

where y = ln(1/xB), y
0 = ln(1/x0) and

~(w) = 1 —y(w). (2.4)

Substitutingthis ansatzinto the evolution equation (1.1), we havethe following
conditionson 4(w) and the function ~(w) which determinesthe evolutionin Q

2:

a
5N~ -

— —x(l — -r(o)) 11(co) exp(—y(oi)(r—ro))

a
2N 1 dw

= - —~---~—f—----~(w—w’)cb(w’)x(l -~(w -w’) -~‘))

~ 4~ 2~n

(2.5)



620 J. Bartels,E. LeL’in / GLRsolutions

Herewe havemadeuseof the eigenvaluecondition[11]

fK(q2 q’2) eyr’ =x(l — y) e~T (2.6)

with

x(l — y) = 2~/i(1)— ~i(y) — ~fr(1 — y), (2.7)

where ~(t) = d In F(t)/dt denotes the derivative of the logarithm of Euler’s
gammafunction. The integralon the r.h.s.of eq.(2.5) is evaluatedby meansof the

saddle-pointmethod:

- ~ - ~(w))}~) exp(-~o)(r - re))

çCI~2(~)l exp( 2Y(
2)(r ro)). (2.8)

Eq. (2.8) is the starting point of our study. First one notices that for large

enough a we can neglect the r.h.s., and ~ can be calculatedfrom the linear
equation

—

W — ~X(1 — ypert(~ü))= 0. (2.9)

It shouldbe notedthat in the so-calleddouble-leading-logapproximation[12]:

1
x(l — ~)= —, (2.10)1 —y

which leadsto

aN
y(w) = ~ (2.11)

This is just the singular part of the anomalousdimension of the two-gluon

operator.However, in the critical regionwherethe r.h.s.of eq. (2.8) is of the same
order as the l.h.s., we find anotherconditionon ~:

~nonpert(w) = 2~nonpert(~). (2.12)

It hasthe simple solution

~nonpert(°~) = Cw. (2.13)
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Both solutionsshouldmatch at a certain o~)crit:

ypert(wcrit) = ynonpert(wcrit), (2.14)

and its valuecanbe determinedfrom the matchingconditions(2.12) and

Ynonpert — Ynonpert 2 15

3w — w

which leadsto the equation

= ~ ~2 16

aw

Eqs.(2.15), (2.16) and(2.9) give an equationfor ~c~jt =

x(i — ~crit) — — d~(1— ~crit) 2 17

~crit — d(1 — ~crit) ( . )

The aboveequationis just the samethatwasreceivedin ref. [1] in the semiclassical
approach.For Wcrit the resultis

aN
Wcrjt = ~ — ~crit) (2.18)

Within the semiclassicalapproximation one defines evolution paths in the

(y = ln(1/x), r = ln(Q2/A2))-plane.Starting from the integral representationof
our solution:

dw
~(xB, Q2) = f~—~(w)exp(w(y_yo) - ~pert(~))(r - re)), (2.19)

we follow ref. [1] and use the saddle-pointapproximation.For large y and r the
saddlepoint is determinedby

d5~y—y
0=——.(r—r0). (2.20)

dw

This equationdescribesthe family of curves y = y(r) which passthroughthe point
y = y0, r = r0, and w is a constantof motion. Any such curve can be considered
[1,5,131as an evolution path of the parton distribution, and the semiclassical
approximationof (2.19) along this path provides an approximateestimateof the
structurefunction. For w <WCrjt a caseof particular interest is the critical trajec-
tory. It is the “last” trajectoryfor which we can usethe linear equation(sincethe
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nonlinearterm in the GLR equationis still small). Its equationis obtainedfrom
(2.19):

5crit
~ .(rr)=~ — (r—r

0). (2.21)
dw Wcrit a5N~x(l — Ycrit)

Usingthe solution of (2.17),namely ~crjt = 0.63 (see ref. [1] for details),we rewrite
(2.21):

~ 0.63 0.21i~-
Y_Yo=~__~~X(O37)(r_ro)= asNc(T?0~ (2.22)

The structurefunction along the critical line follows from eq. (2.3):

~ (2.23)

where f(w) has to be determinedfrom initial conditions. As an example, the
condition xG(x, Q~)= ~(y —y0) would leadto f(w) = e~’°.Webelieve, however,
that the correctway of calculatingf(w) proceedsvia matchingthe solution (2.19)
to the solution of the nonlinearequationalong the critical line. We will returnto
this point below.

Let us now further study the region w <Wcrjt. We return to the function Y in
the nonperturbativeregion(2.13)and determinethe constantC:

~nonpert(wcrjt) = Ypert(went) = Ycrit’ (2.24)

C=~t. (2.25)
wcrjt

Usingeqs.(2.13) and (2.25)we cast eq.(2.5) into the form

a~f\
T~ ~crit

w————~1———--w 4(w)
IT

a2N 1 / dw’
= ——~—~—xl1— _-~w f4(w —w’)4(w’)--—. (2.26)

~ ~ wc~ 2irz

As a result, 4(y, r) becomes

~(y, Q2) = ~-~--Jdw ~(w) exp~w(y-y
0) - ~tw(r_ro)j. (2.27)



J. Bartels, E. Levin / GLR solutions 623

Introducingthe newvariable

Ycnit

z=y—y0—————(r—r0) (2.28)

we noticethat 4 dependsonly upon z ~, andeq. (2.26) takesthe simple form

d a~N~ Ycnit d
—-——--x 1-——— q~(z)dz ~- Went dz

a
2N 1 ~cnit d

= —-—-~----~—x1—————— çt2(z). (2.29)
~ ~ dz

It canevenfurther be simplified by the following rescaling:

— — a~
z=-~——z, ‘�~=—~4~~ (2.30)

Ycnit 4~o

whereusehasbeenmadeof eq. (2.18).The equationthenbecomes

X(1Ycnjt) d d — -

- ——x 1—-— ~(z)
Ycnit dz dz

= —x i — ~(~) (2.31)dz

It is an ordinarynonlineardifferential equationwhich can be studiedby standard
methods[14].

However, in this form it is still too complicatedandwe begin our studywith a
somewhatsimpler version. Namely, instead of the evolution equation(1.1) we
switch to the double-logapproximation(DLA) which havebeendefined in (2.10)
and(2.11). It shouldbenotedthat in this approximationeq.(1.1) is replacedby the
simpler nonlinearevolution equationfor F = xBG:

i32F(y,r) Na N2a2
_______ = —~-----~F(y,r) — C S er F2(y, r). (2.32)dy8r t~o~T

In this approximation,eq.(2.31)becomes

(1 ~~(~cnjt))~(wcnjt) (i - ~)~_~= 2 (2.33)

* This propertyof GLR equationwasfirstly notedin ref. [5].
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Using eq. (2.10) for x we cancalculate WCrit and ~Cnit from eqs.(2.17) and (2.18).
The result is

- 2N~a5
Ycnit = ~‘ Went = . (2.34)

It meansthat

4N~a~
2= (y—y0)—(r—r0). (2.35)

With a few changesof notationeq.(2.33) takesthe simpleform

d
2~ dcl - —

_~2 (2.36)

The analysisof this equationwill be the subjectof sect.3.

3. The nonlinear differential equation

First it may be instructiveto view this equationas an equationof motion of a
point particle in a classicalpotential. If we put 4 = x and z = t, the equation
becomes

d2x dx
= — ‘(x —x2)

dt2 dt “

or

d2x dx 8

(3.1)

i.e. the potentialhasthe form

U(x)=~(~x2—4x3). (3.2)

(fig. 1). One further notes the friction term which has the sign oppositeto the
usualcase.Startingfrom the origin x = 0 andmoving in the positive directionwe
expectthreeclassesof solutions:(i) Solutionswith small initial energywill cometo
a stop, turn back and passthe point x = 0 in the negativedirection. When it
reachesthe potentialwall on the negative-xaxis it is reflectedagainandstarts to
movein the positivedirection. Due to the “antifriction” term, it acceleratesall the
time, and when it reachesthe barrier on the r.h.s., it will haveenoughenergyto
passandto move to infinity; (ii) Solutionswith sufficiently largeinitial energywill
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020 ~

u~

0. 08

0 o.o~ 2.0

Fig. 1. Thepotential functioneq. (3.2).

directly climb over the potential barrier and escapeto infinity; (iii) In between
thesetwo classesthereis onedistinguishedsolution which comesto a stopjust on
the top of the barrierand remainsthereforever.

For a closer investigationwe turn to a fixed point analysis of (3.1). Let us
introducey = ~ and rewrite the equation

(3.3)

x=y. (3.4)

There are two fixed points,at (x, y) = (0, 0) and(x, y) = (1, 0). We linearizethe
equationsof motion in the vicinity of thesepoints:

(3.5)

(3.6)

nearx = 0 and

(3.7)

1= —y (3.8)

nearx = 1, defining 2 = 1 — x. In the first casewe find degeneracy(both eigenval-
uesareequalto ~),andthe solutionsare

x(t) =A e1~2t+Bte1”2’,

y(t) =~[A e’’2~+Btet/2t] +B el/2t. (3.9)
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0.0:

0.0 0.0333 0.0866 0.1300 0.1333 0. 666 0.2000

02

0. 80~0 0.8605 0.9333 1.0080 1.0687 I. 1333 1.2000

x
Fig. 2. (a)Solutionsnearthe fixed point atthe origin; (b) Solutionsnearthesecondfixed point(1, 0).

Eliminating the time variablewe obtain for y(x) at x — 0 or t —÷ —

x lnlnx
y
2X+ 2ln x +o( ln

2x )~ (3.10)

Closeto the fixed point (0, 0) all solutionsapproachthe direction y = ~x (fig. 2a).
The dependenceupon A and B appearsin the expansion(3.10)only in nonleading
termsof the orderof 1/ln2x.

For the caseof the secondfixed point we havetwo different eigenvalueswith
oppositesigns:

i+V~ i—v~
a

1 2 ‘ a2 2 (3.11)
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‘y ‘~

Fig. 3. Connectingthe two fixed points.

Hencethe fixed point is hyperbolic, and the direction of incoming and outgoing
solutionsare

y = —a122 (3.12)

(fig. 2b). Combining the two figuresin onecommonmap(fig. 3), it becomesclear
that thereis one unique solution, Xsat(t), that leavesthe origin and endsat the
secondfixed point (the subscript “sat” stands for “saturation” and will be ex-
plainedbelow). All the other solutionsthat emanatefrom the origin will miss the

secondfixed point andeitherwill stay below this distinguishedsolution and turn
backwards(until x becomesnegativeand,hence,unphysical),or it lies aboveand
movesupwardstowardsinfinity.

We will now arguethat the uniquesolution Xsat which endsat the secondfixed
point is the only acceptable one. Namelyconsiderthe ratio y/x. For all solutions
other than Xsat it can be shown that it tends to infinity for sufficiently largetime t.

To see this we first note that all solutions except for Xsat will sooneror later
become large. We therefore study eqs. (3.3) and (3.4) in the region of large x.
Combinethe two equationsinto a relationfor dy/dx:

dy

y~—=y—~x(1—x) (3.13)

andintroducethe new variable v = 1/x. For v —~ 0 we find

dy 1
yv

2-~—= —y— ~ (3.14)
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Wecan have one of the two cases:either v2(dy/dv)>> 1, and eq. (3.13) becomes

dy 1
= — -~—~- (3.15)

with the solution

1
= i~-3/2 (3.16)

Consequently,

y 11
—=yv=—

1=-~i=-—*00• (3.17)

Alternatively, assumev
2(dy/dv)<< 1. Then (3.13) gives

1
y= —~---~, (3.18)

and again

-s (3.19)

Thereforeall solutionswhich comeclose to infinity havethe property that y/x
gets large. On the other hand,this ratio has a simple meaning.If we write, for
x(t), the integral representation

~-dw
x(t) = I —2(w) e”t, (3.20)

.‘ 2~t

then

~, fwi(w) e~t dw

= , (3.21)Jx(w)e dw

i.e. y/x is the mean value of w. So, if y/x —s oc, the mean value (i.e. the dominant
value in the integral representation(3.20)) of w becomeslarge. But as we have
discussedbefore, for w > WCnit we should return to the perturbativesolution. In
otherwords, a solution to the nonlinearequationin the nonperturbativeregion
which receives its main contribution from large w-values has to be rejected since it
does not match the perturbative solution.

It is not difficult to translatetheseresults into the behaviorof the structure
function(cf. fig. 4). Our time variablewas definedbefore(2.28)andin (2.30):one
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X ~micla~icaI(t)

0.0 6.1833 12.367 18.550 25.733 30.917 77.100

Fig. 4. Comparisonof Xsat (lower curve)andthesemiclassicalsolution(seeeq.(3.32);uppercurve). As
a commonstartingpoint we havechosenXsat(0) = Xscmiciassicai(0) = 6x iO~.

particularvalue belongsto the critical line, andwe chooseit to be 2 = t = 0. The
value of x(0) can be specified only after the matchingprocedurewhich will be
described below. At fixed q2, t —s oc meansXB —* 0. Solutions in fig. 3 which are
above Xsat~ therefore, belong to structure functions which grow very strongly.
Thosewhich are below turn back and eventuallybecome negative(and hence
unphysical). Both classes are rejected. The only acceptable one is Xsat which ends

at the secondfixed point: Xsat approaches a constant value, i.e. the structure
function saturates[15] (this also explainsthe subscript“sat”).

Let us discussa few propertiesof the solution X5at~ Collecting the notations
(eqs. (2.2), (2.3), (2.19) and (2.30)) (or, alternatively, using directly (2.32)),we find
for the structurefunction

F(xB, Q2) = er_no ~Q
0

2~= er_ru ~
0~x(t). (3.22)

We define the two slopeswith respectto r and y:

13F ldx
YIx~fixed~ 11, (3.23)

F ör x~fixed X dt x

where r — r0 = ln(Q
2/Q~)and

1 3F 4N~a~1 dx 4N~a~y
~IQ2fij~ed= —— = _____ = —. (3.24)

F0yq2f~ed 7T xdt ir x

Nearthe two fixed pointssolutionsmove very slowly. Thereforewe expectfor the

distinguishedsolution Xsat, provided the value x(0) is sufficiently small, that y/x
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remainsclose to ~ for a long time, henceboth y’s are approximatelyconstant.
Consequently,we can approximatethe structurefunction in the vicinity of the
critical line. At fixed XB:

F(xB, Q2) a ~ , (3.25)Q
0(X B)

where Q~(xB)is the solution of the equation for the critical line, namely
2(xB,Q~)= t(xB, Q~)= 0, andat fixed Q

2:

2 2N~a,/irxo(q )
F(xB,Q2)a , (3.26)

xB

wherex
0 againsatisfiest(x0, Q

2) = 0.
As a secondresult, we establishthe behaviourof the deepinelastic structure

function at XB —~ 0:

(~— 1) 4N~a
5 x0 Q

2
F(xB,Q2)=Q2— 1—Cexp — 2 ln~——ln~ . (3.27)

It is interestingto note that we could use this result for the profile function of
quark—quarkscatteringat high energies.In ref. [16] a pictureof hadron—hadron
satteringat high energieshasbeendevelopedin which the sizeof the constituent
quarksis small enoughto allow for the useof perturbativeQCD for quark—quark
scattering.If this picture is accepted,we could use (3.27) and parametrizethe
profile function in the following way:

s
a(s, b~)= 1—C — @(R(s) —br), (3.28)

so

where w
0 = ~ — 1)2N~a5/irand R(s) a ln s.

Finally, it should be stressedthat our solution XSat is quite different from the
semiclassicalone that has been used in refs. [6,10] for the solution of GLR
equation to the right of the critical line. We demonstratethis by applying the
semiclassicalapproximationto (3.10). We makethe ansatz

x(t)=e~
t~ (3.29)

andassume~/i to be a smoothfunction of t. If furthermore~ << ç~~2we are allowed
to put

d2x
_~2 e4 (3.30)
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andobtain a simpleequationfor cu:

I =+e~’. (3.31)

It canbe solved easily:

1
(3.32)

(1 + C e_t/4)2

(the factor C has to be specified by imposing suitable the initial condition). From
this solution one can seethat it doesnot reproducethe correctbehaviourof the
deepinelasticstructurefunction at t -.s + (cf. eq. (3.27)): in fig. 4 we compare
thebehavoiurof Xsat(t) with thesemiclassicalsolution of eq.(3.32),matchingthem
at t = 0 in such a way that Xsat(0)= Xsemiciassicai(0)= 6 x 10

4. Higher-order corrections and matching procedure

So far we haverestrictedourselvesto leadingapproximations.In this sectionwe
considervarious corrections.First we adressthe questionof stability, i.e. we look
at solutions in the vicinity of thoseconsideredin sect. 3 andshow that deviations

remainsmall. In sect.3 we haverestrictedourselvesto a specialclassof solutions,
namely thosewhich dependupon z (eq. (3.10)) but not x and q2 separately. In
this sectionwe shall investigatemore generalsolutions,but stay in the vicinity of
the solutionsof sect. 3. We return to the DLA equation(2.32) and searchfor
solutions of the form

F= _~~erXsat(t) +~1(t,r), (4.1)

where

4a N
S C~() (4.2)

Our goal is to show that zl is small. Calculatingderivativesof F andretaining, in
eq. (2.32),only termsup to the order ~, we obtain the following equationfor ~:

4aN8.~ aN a2NcbS C = ~ (4.3)

~r 8r ir 4
01Ta5

or

— = — 2x(t)]zl, (4.4)
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where ~I= 8L1/dt. Solutionsare found easily:

LI = J~-~f(v)ex~(vr+~~~~ft[1_2x(tP)J dt’) (4.5)

or

dv 1 x(t) dx’
exp vr+_J [1—2x’] , . (4.6)

2~i 4r’ x(O) y(x )

If we now chosethe initial condition LI(t = 0) = 0, we canspecifyf(v) in eq. (4.6),
namely f(v) = 1, and (4.6) becomesthe integral representationof the modified
Besselfunction:

/1 x(t) dx’ I x(t) dx’
4(t, r) = ~ r’(o) [1— 2x’] y(x’) ~ [1— 2X’]y(x~) . (4.7)

As to the magnitudeof LI, there are two potentially dangerouspoints in the
integralof (4.7), namelyx —* 0 and x —s 1. For x —s 1 the integraldivergeslogarith-
mically, but

x (1—2x’)f , dx’<O, (4.8)
x(O) y(x )

and(4.7) is oscillatingandthus nevergrows(suchoscillationshavebeenseenfirst
in the computerstudyof ref. [5]). For x —s x0

LI aeV2r/xo), (4.9)

andthis canbelargeof the order en only if x/x(0) e’’
2. But since x/x(0) � 1/as

and does not dependon r, LI will be small for all values r>> ln(1/a
5). We thus

concludethat LI never gets large, i.e. the solution XSat of the previous section is
stableagainstsmall perturbations.

As a secondclassof corrections,we leavethe DLA approximationandreturnto
eq. (2.31). We briefly investigatehow much its solutionsdiffer from thoseof the
DLA equation(3.10). Let us rewrite this equationin the following form:

{X(1~cr0) ~ (4.10)

YcnitX(1 —

Herethe function x(l — w) hasa rathercomplicatedform, butwe rememberthat
our matchinghasbeendoneat w = WCnit~andwe thereforecanexpandaroundthis
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point. We returnto (2.26)andexpandin w: on the l.h.s. the first two termscancel,

and on the r.h.s.we retain the leading term.Substitutingfor w d/d2, we obtain

— Ycrit} = Y~1t~2. (4.11)

This equationcould bereducedto the DLA equation(3.1) changing2 to

2 =
2YcnitZ’.

Thus eq. (4.11) hastwo fixed points at q5 = 0 and 4 = 1, and the only difference
lies in the eigenvaluesnearthesefixed points.

Our generalequation(4.10) still dependsonly upon 4 and 4. andnoton 2, but
we cannotapply the samestandardmethodswhich we haveusedin the DLA case.

Indeedit turns out that eq. (4.10)cannotbe reducedto the differential equationof
the definite order dueto the verycomplicatedform of the kernel x(l — d/d7).

Nevertheless we are able to investigate the behaviour of the solution in the
vicinity of 4, —s 1 making the following ansatz:

LI4, = e_n~Iz,

= a
1LI4. (4.12)

For a1 we have,from (4.10),

(4.13)

Ycnitx(i +ai)

Eq. (4.13) canbe solved numerically, and it turns out that the minimal value of
0.85. It means that the solution approaches the saturation limit (4, —s 1) much

fasterthan in the DLA approximation,but at the momentwe cannotconnectthe
two fixpoints andhencecannotprovethat the saturatingsolution exists.

The final point of this sectionis the determinationof f(w) in (2.23) or 4,(w) in
(2.27). It is obtainedfrom the correctspecificationof boundarycondition, which

we will name“matchingprocedure”.In short,we proposeto proceedasfollows. In
the nonperturbativeregion we can acceptonly the distinguishedsolution x55~of
the previoussection.The taskis then to find solutionsof the linear equationwhich
on the critical line match this solution. Since the location of the critical line is
known only up to its intercepton the y-axis, there is still somefreedom:we still
needto imposesomeinitial condition in the perturbativeregion.

In somewhatmoredetail,we describethis “matchingprocedure”for finding the
solution to the GLR equation in the full kinematical region of deep inelastic
scattering in three steps:
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(1) Startfrom some initial distribution of gluonsat fixed Q2 = Q~.We needto
know the structurefunction aswell as its slopesinceour linear equationis of the
secondorder. Thus we shoulduseas initial conditions:

F(y = ln(l/xB), r = r
0) = FmnPut(~) (4.14)

and

1 3F(y, r)input = (4 15)
r F~P1~t(y) i3r r=r0

or

1 3F(y, r)7input = (4 16)

FrnPut(y) i9y r.-r5~

(2) Find the value of y0 and specifythe scaleof our variable t in a suchway
that

FmnPu
t(y

0) = ~xsat(0) (4.17)

and

7inPut(y0) = 1 — sa (4.18)
xsat

or

4Na ~ ~(0)
~inPut(y) = C S sa (4.19)

IT xsat~ I

(3) Solvethe linear evolutionequation

8
2F aN

____ = ~s~~_F (4.20)
t9y8r ~r

with the following initial condition:

4,
0Q~ ~sat(°)

F(y, r)= x(0); Yn’l
xsat

att=0 and y>y0

F(y, r=r0) =FrnPut(y); Yn(Y, r=r0) _YInPu

t(y); (4.21)

aty<y
0 and r=r0.
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The following examplemay help to clarify this matchingprocedure.Assume
that

1 a
F~~Put(y)= — = e~’y, YinPut(y) =a.

XB

Onecan find the value of Yo from the equations

4N~a
5 ±sat(0)

a=
~T Xsat(O)

~x(0).

(notethat ±sat(0)shouldbe consideredas a functionof Xsat andthereforeis not an
independentvariable). As an example, we chose a = ~, a~= 0.2, and Q~=
10 GeV

2. Then Xsat(0)= 6 x iO~~and y
0 = 0.4. Fig. 4 shows how Xsat and the

semiclassicalsolution (3.32) differ from eachother:with the samestartingpoint at
x = 6 x iO~

3,the semiclassicalapproximationreachessaturationearlier than the
exact solution.

Howeverone also seesthat this matchingprocedurecannotwork for arbitrary
valuesof a. Indeed,for largez,

2NCaS
a>

‘IT

we are not able to find y
0 since for all values of t the ratio ~sat(O)/xsat(O) is

smaller than ~. The physical meaningof this observationis very simple. The

nonlinearterm in the evolution equationimposessomelimitation on the increase
of the structurefunction. It meansthat not all input distributionsgaranteethat

with our startingvalue Q
2 = we arebelow the critical line in the perturbative

region. The steeperthe inputdistribution is, the lower (andmore to the right) lies

the critical line.
Of courseall this discussionis only qualitative.To dealwith realisticsituations

we needto studythe solution of the evolution equationwith a morecomplicated
kernel; in particularwe shouldtakeinto accountthe runningcouplingconstanta~.

5. Conclusions

In this paper we havetried to investigatesolutionsof the nonlinearevolution
equation in the nonperturbativeregion. It is completelyunclearwhether these
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equationsare correctbeyondthe perturbativeregion, but we just wantedto see
what kind of constraint information from perturbativeQCD canprovide for the
continuationinto the nonperturbativeregime.All previousinsight hadbeenbased

upon the semiclassicalapproximation.In this paper,we haveavoidedto makeuse
of this approximation,but tried to use alternative analytic methodsas much as
possible.As a result of this intention, we had to ignore the dependenceof the
coupling constantupon the momentumscale,i.e. we haveuseda fixed a~.

As the main result we havefound (but without making anyclaim for mathemati-

cal rigor) that thereis only one solution which matchesthe known perturbative
solution; it becomesflat for xB —~ 0, i.e. it supportsthe ideaof saturation.As an
immediateconsequenceof this uniqueness,oneshouldexpectthat the XB distribu-

tion of xG at fixed low Q2 which is usually considered to be a ratherfree input to
theevolutionequationhasa well-definedcontinuationtowardssmall xB. This is in
perfect qualitative agreement with experience from computerstudiesof the GLR
equation: the nonlinear evolution equations clearly distinguishbetween“natural”
and “unnatural” initial distribution, in that the latter ones are more strongly
correctedin courseof the Q2 evolution than the former ones. More strongly, our
discussionin this paper shows that certain initial distributionsare unacceptable
within our matchingprocedure.As an examplewe can use our solution for the
naturalparametrizationof the initial gluon distribution at Q2= q~.It shouldbe
stressed that such an initial distribution looks quite different from the one used in
ref. [8].

A detailed analysis, within the well-known operator expansion and renormaliza-
tion group equation, of the transition from perturbativeto nonperturbativeQCD is
still missing. We can, however, say in general words how our analysis could be
interpreted in this language. Starting in the (Q2 — ln(1/xB))-plane from the
lower-right part, i.e. in the perturbative region, we first have the linear evolution
equation, and the Q2-evolution is determined by the anomalous dimensions of the
leading-twist operators. Since we have restricted ourselves to gluons only, it is the
two-gluonoperatorwhichmatters.Moving upwardsin the kinematicplanetowards
small XB (which is equivalentto w -.* 0 or n —* 1), the anomalousdimensionsof the
two-gluon, four-gluon,... operators all threaten to become large individually (they
go as 1/w), and the neglectof nonleading-twistoperatorsis no longer justified.
The GLR equationwith its nonlinearterm is nothing but an attemptto find the
sum of them. As soonas this nonlinearterm becomesimportant, the Q2 depen-

dence of the solutions is describedby a new function, Ynonpert(~°)’which has no
longer the meaningof a singleanomalousdimensionbut representsthe collective
effect of all nonleading-twistterms in the operatorexpansion.The 1/w singular
disappears and is replaced by the regular C . w behaviorwith C a 1/a

5. Within
our matchingprocedure,thecontinuationinto thenonperturbativeregionrequires
(and determines!) nonperturbative terms. On the critical line, perturbativeand
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nonperturbativedescription match; for large Q2 it coincideswith the result
obtainedfrom the semiclassicalapproximation.

It shouldbe emphazisedthat mostof this discussionwould also remainvalid if
we add higher-ordertermsto the GLR equation: 4,3, 4,4,~•. The essentialstepin
our matchingprocedureis expressed(2.9) andcaneasily be generalizedto

~nonpert(w) =n~nonpent(_)~ (5.1)

and it has always the solution (2.10). This indicates that our resultsmay be of
rather generalvalidity.

One of us (E.L.) would like to thank the DESY Theory Division for its kind

hospitality.
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