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The symmetry scattering theory based on the Harish-Chandra-Helgason theory of spherical 
functions on noncompact Riemannian symmetric spaces is extended to treat all spherical 
harmonics on the hyperboloid SO( 2,l )/SO(2). The required conditions for an extension of the 
symmetry scattering theory to treat all spherical harmonics on arbitrary noncompact 
Riemannian symmetric spaces are elaborated. 

I. INTRODUCTION 

The symmetry scattering considers the symmetry of a 
system as a constraint on its evolution and calculates its 
scattering properties due to this effect.’ Symmetry scat- 
tering thus studies the asymptotic behavior of the eigen- 
functions of an algebra of differential operators invariant 
under some group of transformations, then compares that 
behavior with one of the eigenfunctions of differential 
operators invariant under a more trivial symmetry, i.e., 
corresponding to a flatter group. By this comparison, a 
scattering operator related to the interaction due to the 
different symmetries is defined. 

This scattering theory is based on the theory of spher- 
ical functions on noncompact Riemannian symmetric 
spaces developed by Harish-Chandra and Helgason’ since 
the required eigenfunctions of the invariant differential 
operators can be gained from expansions using spherical 
functions. 

The attractive feature of this approach lies in the 
possibility to find explicit expressions for the quantities 
involved in scattering by group theoretical methods, i.e., 
it allows us to find the wave functions and the corre- 
sponding S-matrices without direct solution of the differ- 
ential equations governing the system. 

The Harish-Chandra-Helgason theory has also been 
applied to scattering problems by other authors: Perelo- 
mov3 in connection with coherent states, Semenov-Tyan- 
Shanskii4 in connection with automorphic functions, and 
Freund’ when dealing with scattering onp-adic spaces. In 
spite of this vast range of applications, symmetry scatter- 
ing can only treat special scattering problems due to the 
restriction of the Harish-Chandra-Helgason theory. In 
particular, this theory is not valid for pseudo-Riemannian 
spaces. For example, it allows the construction of the 
spherical functions on the hyperboloid SO ( 2,l )/SO ( 2)) 
but it is not applicable to the one-sheeted hyperboloid 
SO( 2,l )/SO( 1,l) (see, for example, Ref. 6). Further, it 
allows the construction of spherical functions only in the 

coordinate system adapted to the decomposition G 
=KAK, where G is the studied symmetry group, K is its 
maximal compact subgroup, and A is an Abelian sub- 
group.2 On the hyperboloid this coordinate system is the 
spherical one. 

Now, in a series of papers devoted to the group the- 
oretical approach to scattering7 it was shown that the 
algebraic methods allow us to solve the Laplace equation 
on both types of hyperboloids, as well as in different co- 
ordinate systems (spherical and hyperbolic). Hence, it is 
natural to search for extensions of the symmetry scatter- 
ing theory to deal with (i) pseudo-Riemannian spaces 
and (ii) different coordinate systems. 

Concerning the first point, there is considerable work 
done* so that an extension of the symmetry scattering 
along this direction should be possible but is not dis- 
cussed here. In this paper a first attempt to extend the 
symmetry scattering along the second direction is made. 
For this purpose we treat the simple example of the sym- 
metric space of rank one SO ( 2,l )/SO ( 2 ) but in a manner 
amenable to be generalized to other spaces. 

The paper is organized in six sections. After the In- 
troduction, in Sec. II the Harish-Chandra-Helgason the- 
ory is used to construct the spherical functions on the 
hyperboloid SO ( 2,1 )/SO ( 2 ) , i.e., the spherical harmon- 
ics in spherical coordinates. In Sec. III a similar proce- 
dure is applied to the construction of the spherical har- 
monics on the same hyperboloid but using hyperbolic 
coordinates. The connection of the spherical harmonics 
with quantum scattering problems is indicated in Sec. IV. 
In Sec. V the spherical functions for arbitrary noncom- 
pact Riemannian symmetric spaces are given in the stan- 
dard language of harmonic analysis to facilitate the un- 
derstanding of the proposed extension of the symmetry 
scattering theory. The results of our considerations are 
summarized in Sec. VI. 
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II. SPHERICAL HARMONICS ON THE HYPERBOLOID 
SO(2,1)/SO(2) AND THE HARISH-CHANDRA 
METHOD 

Omitting all algebraic details of the Ha&h-Chandra 
methods explained, for instance, in Refs. 2 and 6, we treat 
here the essence of this approach on the example of the 
Riemannian symmetric space X= SO ( 2,l )/SO ( 2)) i.e., 
on the hyperboloid parametrized by x$-x: -xi = 12 > 0. 
The construction of the spherical functions on this hyper- 
boloid is equivalent to diagonalize the Laplace operator 

a2 a2 a2 
*=zg-zyP 2 

or, more precisely, to obtain the angular dependent parts 
of its eigenfunctions. We call an arbitrary solution of the 
Laplace equation on the hyperboloid a spherical har- 
monic on X irrespectively of its quantum numbers and of 
the chosen coordinate system. 

On the hyperboloid there are three main coordinate 
systems:9 

(a) spherical: 

x2=rsinh(6)sin($), 

x3=rcosh(6); 

(b) hyperbolic: 

(la) 

xt=rsinh(w), 

(lb) 

and 
(c) parabolic or horispherical: 

x2 = tie”, 

x3=r[cosh(a) +-g2ea]. 

(lc) 

In our case the coordinate system (la) will in fact be a 
cylindrical coordinate system, but for more general 
spaces, SO ( n, 1 )/SO (n ) , similar coordinate system are 
called spherical. 

After separating the radial variable r, the angular- 
dependent parts of the Laplace operator in these three 
coordinate systems are 

Ae*4’sinh(8) ae La(sinMe)$) +sin&e) $ , (24 

and 

(2c) 
a2 a a2 *a,B=;jT;2+;;j;;+e-2n --T , afl 

As it is well known,‘” only irreducible representations 
respectively. 

(2b) 

@ with j= -i+ik, 0 < k < CO belonging to the principal 
continuous series of the unitary representations of the 
SO( 2,l) group can be realized on the two-sheeted hyper- 
boloid. For them, the eigenvalue of the Laplace-Beltrami 
operator is equal to j( j+ 1) = -$- k2. Thus, to construct 
the spherical functions on the hyperboloid X it is neces- 
sary to find the eigenfunctions of the operator (2) corre- 
sponding to this eigenvalue. 

The remarkable achievement of Harish-Chandra was 
the discovery of the simple solution of the Laplace equa- 
tion for arbitrary symmetric spaces which is a generali- 
zation of the plane waves.’ The Harish-Chandra plane 
waves for the hyperboloid X are the eigenfunctions of the 
Laplace operator in horispherical coordinates that do not 
depend on the variable /3. It is clear from expression (2) 
that these waves are given by 

fj(OZ) =e”j 

=[cosh(8)+sinh(0)cos(4)]-“2+ik 
(3) 

= [sinh(w>+cosh(o)cosh(q)]-“2+i’. 

Above, the explicit expressions for the Harish-Chandra 
plane waves in the three coordinate systems are given. 

From the parametrization of X it is seen that the 
Harish-Chandra plane wave describes a wave whose front 
lies on the parabola cut on the hyperboloid by the plane 
x1 +x3 = ea=const. The movement of the wave corre- 
sponds to the parallel translation of this cutting plane. 

From the Harish-Chandra plane waves it is then pos- 
sible to construct generalized spherical functions, 
Yh(W) =yk,(G im4. The idea is to expand a Harish- 
Chandra plane wave in terms of the spherical functions 
Ykm(Q,$) corresponding to the same eigenvalue of the 
Laplace operator, i.e., 

fjla)= C, C,ydwl (4) 
n=o+1,*2,... 

where j= --f+ik, and then to project this expansion into 
one of its sum terms. 

For this purpose we introduce a projector p3, in the 
following manner: 
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Pm: f(X)++ JsO,,, KJsks)fcwpc~), (5) 

where $,([) is a matrix element of the irreducible rep- 
resentation of SO,( 2) characterized by the number m, i.e., 
&CC) =emimc, R(5‘) is a rotation through the angle 5, 
i.e., an element of SO (2), dp (t) is the normalized invari- 
ant measure on SO ( 2)) and f(x) is some eigenfunction of 
the Laplace operator (2). 

This solution of the Laplace equation describes a wave 
whose front lies on a circle cut on the hyperboloid by the 
plane x3 = const. The movement of this wave corresponds 
to the translation of this cutting plane along the x3 axis 
from infinity to the vertex of the hyperboloid and then 
after reflection back to infinity. 

III. SPHERICAL FUNCTIONS IN HYPERBOLIC 
COORDINATES ON THE HYPERBOLOID 

By applying pJ, to fi(a) we obtain 

c,YdWe 
in+ 

s 0 

To find the spherical harmonics in hyperbolic coor- 
dinates, 

Y&(o,q) = (l/ $G)Y~,(w)eCV 

=c,ydw. (6) 

Note that for the hyperboloid the above projection 
amounts to a Fourier expansion since the unknown func- 
tion Y,,(6) follows from 

using the Harish-Chandra approach, we use similar steps 
as in Sec. II. We introduce the projector 

$;(C)%V(x)dp(C), (12) 

y,,(e) - s 

277 

e-“‘@fj(a)d#. (7) 
0 

Using Rq. (6) yields 

y,,(e) 

2mlY(m+l)T($+ik-m) 

where $;( 6) is a matrix element of the irreducible repre- 
sentation of SOJ 1,l) characterized by the number ~1, i.e., 
$;*CC) =e+S W) is an element of SO( 1,l ), i.e., a “ro- 
tation” through the “angle” 6, dp( 5) is the normalized 
invariant measure on SO( 1,l ), and f(x) is some eigen- 
function of the Laplace operator (2). 

Now applying this projector to a Harish-Chandra 
plane wave yields 

with 
Y@(O) =2 ryf-4) ei~(,,2)_ik(sinh(w))~n 

tanhm(f3)cosh-“2+ik(6) = 
2T(m+ 1) 

r&-ik-ip)r(~-ik+ip~ 
r($--ik) 

XzF&(m--ik+i)&m--ik+;);m+l;tanh2(8)). 
(9) 

Above, the relation” 

X~~~~~2~.+(tanh(o)) 

r(f-ik-ip)r(;-ik+ip) 
r(&--ik) 

e(cosh( 0>)= #[cosh(@ 

+sinh(6)cos(4)lYd$ (10) 

has been taken into account. 
The normalizing factor is chosen to satisfy the con- 

dition 

with {= tanh(w). Here the relation” 

ef;k>=e” r(n+l) SW [z+cosh(t) m-j-A-1 
w-0+1) o 

s 
m r~,,(e)r~,,(e)sinh(e)de=S(k-k’). (11) 

0 

x cash ( or)dr, 

with Re(il+a) > 1, has been used. 

(14) 
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FIG. 1. The PGschl-Teller potential V(0) =(m’-;)/sinh2(0). The 
meaning of the quantities appearing here is indicated in the text. The 

FIG. 2. The PGschl-Teller barrier Y(w)=(~2+t)/cosh2(0). The 

axes are in arbitrary units. 
meaning of the quantities appearing here is indicated in the text. The 
axes are in arbitrary units. 

This solution of the Laplace equation describes a 
wave whose front lies on the hyperbola cut on the hyper- 
boloid by the plane x1 = const. The evolution of this wave 
corresponds to the motion of its front along the x1 axis 
going from + 03 to - UJ and suffering a partial reflection 
around the vertex of the hyperboloid. 

IV. CONNECTION OF THE SPHERICAL FUNCTIONS 
ON THE HYPERBOLOID WITH THE SCATTERING 
THEORY 

The substitution of the spherical function Yk,( 0) by 
the new function G,,(e) = ,/-Y,(e) transforms 
the Laplace equation 

fb,pde) = - W+;ma3) 

into the Schrodinger equation 

a%,(e) m2-f 
- a20 +sinh2(8)aa =k%.da (15) 

where the real non-negative number k fixing the irreduc- 
ible representation of the SO(2,l) group coincides with 
the wave number of the particle in the potential scattering 
theory. 

Using Eq. (8) it is easy to find the explicit expression 
of the S-matrix for the scattering on the repulsive (if 
1 m 1 #O) PBschl-Teller potential, 

(16) 

Thus, the knowledge of the spherical function on the hy- 
perboloid in spherical coordinates solves automatically 
the scattering problem for the Piischl-Teller potential 
represented in Fig. 1. 

Now, the Laplace equation in hyperbolic coordinates 

1.5 

1.0 

0.5 

0.0 

~&‘&WI) = - (k2+i) h&w), 
after the substitution of the function Y kcc appearing in the 

Yb(o,q) = ( l/fi)Ykp(W)eipV 

by the new function 

%nb) = &osh(w)YkJo), 

is transformed into the Schriidinger equation 

a2E@(W) p2+t 
-a,+cosh’(o) Q,(o) =k2Zb(m). (17) 

Thus, knowing the function Y&(w) on the upper sheet of 
the two-sheeted hyperboloid solves automatically the 
scattering problem for the Poschl-Teller barrier shown in 
Fig. 2. It should be noted that in this case the scattering 
problem is on the infinite straight line instead of being on 
the infinite ray as it was in the previous case. Therefore, 
instead of one scattering quantity, i.e., the scattering am- 
plitude, two quantities, the reflection and the transmis- 
sion coefficients, must be calculated. Again, from the 
analysis of the asymptotic properties for w+ f CO of the 
wave given in Pq. ( 13) the transmission and reflection 
coefficients, D and R, can be found. For instance, we 
have12 

D= 
sinh2( rk) 

sinh2(rrk) +cosh2(np)’ (18) 

V. THE SPHERICAL FUNCTIONS FOR ARBITRARY 
NONCOMPACT RIEMANNIAN SYMMETRIC 
SPACES 

Let G/K be a noncompact Riemannian symmetric 
space. To find the spherical functions on it, we begin to 
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construct its Harish-Chandra plane waves. These waves 
are constructed by introducing an appropriate set of co- 
ordinates on G/K, the horispherical coordinates. These 
coordinates G3x=nhk are related to the Iwasawa de- 
composition of the group G=NAK. If 9 is the Lie alge- 
bra of G and .9 = 9’ +X is a Cartan decomposition, 
then the Iwasawa decomposition of G is the exponentia- 
tion of the decomposition 9 =J+‘+ & +X, where JZ’ is 
any maximal Abelian subspace of 9, and c/lr is the sum 
of the root spaces of Y taken over the set of all positive 
simple roots with respect to some ordering. 

s 
dk,= 1. 

K/M 

Now, this theorem is nothing but the projecting proce- 
dure explained in Sets. II and III. 

The Harish-Chandra plane waves are the eigenfunc- 
tions of the invariant differential operators on G/K under 
G which do not depend on (n ), so the only dependence 
left is on the coordinate (h). However, since .z’ is Abe- 
lian, the invariant differential operators acting only on the 
coordinates (h) have constant coefficients. Hence, the 
Harish-Chandra plane waves are the exponential func- 
tions depending on the variable hc4 or equivalently on 
the variable aE.&. With i1~&*, the set of complex-valued 
linear functions on ,pP, they can be written in the follow- 
ing manner: 

Find in G/K a set of coordinates that separates the 
action of the invariant differential operators; choose a 
complete set of eigenfunctions depending on a subset of 
the coordinates whose generators do not lie in -c9; then, 
the projection of Y, into this set of eigenfunctions pro- 
vides the generalized spherical functions depending on 
the complementary subset of coordinates and behaving 
like the chosen eigenfunctions with respect to the initial 
subset of coordinates. In the theorem, the complete set of 
eigenfunctions is given by the characters of the represen- 
tations of K. Note that G/K still contains the subgroup K. 

W,(xK) =gAcx), (19) 

where XEG, A:G I-M!, A(x) =A(ne”k) =a. 

To retain the standard notation of Harish-Chandra,2 
we supplement ,l with half the sum of the positive roots of 
the Cartan algebra, 

In Sec. III we use the reduction SO(2,l) 3SO( 1,l) 
and the complete set of eigenfunctions are gained from 
the representations of SO( 1,l >, i.e., the functions 
e@‘r, II, q3R. Now, these functions form a complete set 
of eigenfunctions. Further, the integrals over SO ( 1,l) de- 
fining the projector operators, (12), are convergent, so 
that for this space the Harish-Chandra-Helgason ap- 
proach is valid. 

VI. CONCLUSION 

p=i C a; 
cd+ 

the eigenfunctions become 

Using the Harish-Chandra plane waves and the pro- 
jection into irreducible representations of both SO( 2) and 
SO( 1,l >, it was possible to extend the Harish-Chandra- 
Helgason formalism to treat all types of spherical har- 
monics on the hyperboloid SO (2,l )/SO( 2). 

yn(xjy)‘--e(i%-p)*(X). (20) 
The inclusion of the factor p is convenient when dealing 
with invariant measures on G adapted to its Iwasawa 
decomposition. 

From these plane waves, the generalized spherical 
functions are gained. Harish-Chandra and He&son 
proved that the folding of \vl with the characters of the 
representations of K provide all generalized spherical 
functions on G, i.e., all eigenfunctions of the invariant 
differential operators with f(kxk’) =f( kx) =X(k)f(x), 
where x(k) is the character of a representation of K. We 
explicitly have the following theorem. 

Theorem:2 The generalized spherical functions on G 
are given by 

The extension to arbitrary Riemannian symmetric 
spaces, G, depends on the existence in the different reduc- 
tions GIH, of sufficiently many representations of H, 
and also of the convergence of the integrals of the type 
(5 ), ( 12)) and (21) taken over these groups. Since these 
two issues are for noncompact groups by no means triv- 
ial, a general extension of the theory is still missing. How- 
ever, the considerations of this paper provide, in partic- 
ular cases, the way to extend the symmetry scattering 
theory to different coordinates. 
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