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Theanomalousdimensionof thetwist four gluonic operator(74) in deepinelasticscatteringis
calculatedin the double log approximation(DLA) of perturbativeQCD. It turns Out that at
N —~1 y

4(N — 1) is close to 272((N— 1)/2) where 72 is theanomalousdimensionof the leading
twist operator.It meansthat at N —~1 the contribution of the twist four operatorto the deep
inelasticstructurefunctionbecomesvery important andgives rise to the screeningcorrectionto
the deep inelasticstructurefunction as wastaken into accountin thenonlinearGLR evolution
equation.

1. Introduction

It is well known that the deepinelasticstructurefunction rapidly increasesin
the low-x region. It is the reasonwhy we haveto takeinto accountthe absorption

(shadowing)correction(see ref. [1] for details).In refs. [1,21it wasshown that the
main contributionto the absorptioncorrectionscomes from the “fan” diagrams

(see fig. la) where two gluonsannihilate in one. In the t-channel thesediagrams
are thosewheretwo gluonstransit into four (seefig. la).

On the otherhandthereis thewidespreadopinion that operatorswith different
dimensionscannotmix in the renormalizationgroup equation(see ref. [31where
this point of view has beenadvocatedin the most direct and explicit way). The
abovetransition is nothing more than the specific exampleof such mixing. Thus
the questionariseshow to explain this conflict.
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Our answerto this questionis givenin sect.2, wherewe consideras an example
the “fan” diagrams.It is shown in sect. 2 that for theseFeynmandiagramsthe
anomalousdimensionof the twist four gluonic operator(y4) becomesequalto

74(W) = 272(w/2) (1)

where 72 is the anomalousdimensionof the leading twist operatorwhile w is
equalto N — 1 (N is energy—momentindex). It meansthat y~increasesat small w

(x —* 0) more rapidly than 72 and at w = w~~(q
2)the full (canonicalplus anoma-

lous) dimensionsof the leadingtwist operatorandthe twist four operatorturn out
to be equal.Thus we cannotneglectthe contributionof the next twist operatorto
the deepinelasticstructurefunction at w ~ wcr.

In sects.3 and4 the anomalousdimensionsof all twist four gluonicoperatorare
calculatedin the doublelog approximation(DLA) of perturbativeQCD. In other
words it meansthat only the terms of the order of (a

2 ln(1/x) ln q
2~~are taken

into accountin the perturbationexpansion.In the generalcasenotonly two pairs
of gluonsin t-channelcan interactbut also all gluons. The first caseis related to
two pomeron-likeexchangein t-channel in the old-fashionedreggeonlanguage
while the secondoneis nothingmorethan the so-calledmany particleReggepoles
or the new boundedstatesin t-channel[4]. It is worthwhile mentioningthat we try
to use here the reggeonlanguagebecausewe firmly believe that namely the
reggeonapproachis veryclose technicallyto theusual energy—momentsrepresen-
tation, has a clear space-timeinterpretationand is more adequateto Feynmann
diagramswhich is our perturbative QCD than the formal approachbasedon

Wilson’s operatorexpansionand the renormalizationgroup.We seeour goal in
establishinga moretransparentrelationbetweenthe both languages.

It turns out that the anomalousdimensionof the operatorwhichcorrespondsto
two Pomeron exchange(see fig. ic) is very close to the position of the two
pomeroncut (see fig. ib). This result confirms the assumptionthat wasmadein
refs. [1,2,5] andallows usto neglectas a first stepthe contributionof all diagrams
exceptthe diagramsof fig. lb in the regionof large q2 and small x. Namelythis
approachhasled to the nonlinearGLR-evolutionequation[1], andthis papercan
be consideredas a first stepin the improvementof it.

In sect.5 the emissionof the soft gluonsis consideredandit is shownthat such
anemissiondoesnot leadto infrared singularities.

We would like also to mentionfrom the beginning that the correct evolution
equationfor the anomalousdimensionsof highertwist operatorshavebeenwritten
in ref. [61.Ourgoal wasto solve theseequationsin theregionof small x or w —~ 0.
However on the way we got the equationsfor the anomalousdimensionof the
twist four operatorin the simpler DLA form thanthe one usedin ref. [6].

We would also like to note that we do not usethe techniquedevelopedin ref.

[7] for DLA preferringthe direct summationof the Feymandiagramssince it looks
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(a) (b) 2

~ ~ /Q2,xB ~

~ ~ ~?
Fig. 1. (a) The simplest“fan” diagram.(b) Themixing of the operatorsin the simplest“fan” diagram.

(c) Theanomalousdimensionof the twist four operatorin thetwo-ladderapproximation.

moretransparentfrom our point of view. Howeverwe checkedthat all our results
could be obtainedin a suchtechniquetoo.

2. The mixing of operatorsof differenttwists

In this sectionwe would like to clarify what is meantby mixing of operatorsof

different twists. Let us start from an attemptto rewrite the ‘fan’ diagramof fig. 1
in termsof operatorsof different twists in theDLA of QCD.The easiestwayto do
this is to go to the momentrepresentation.In this representationthe contribution
of the diagramof fig. 1 to the w momentof the deepinelasticstructurefunction
looks as follows:

F(w) = dQ’2 C
2(Q

2,~2)(gluon(QF2) 0(2) Igluon(Q’2))

Q~wQ

xc
4(Q’

2, p~2)t(NI0(4)IN), (2)

whereQ’2 is the virtuality of the intermediategluonic state(seefig. lb) and /L2 is
an arbitrary scale of QCD. 1/wQ’2 is the propagatorof two gluons in the
t-channelin DLA.

F(w) as a physicalquantitydoesnot dependon the scalep.. We canchoosethis
scalep. = Q’. In thiscasethe matrix element<gluon(Q’2)~O(2~gluon(Q~2)>is very
simpleandis equalto 1 in our normalization.The coefficientfunction C

2(Q
2,Q’2)

is also well known,namely

C
2(Q

2,Q’2) = (~7~)
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where 72 is the anomalousdimensionof the leadingtwist operatorwhile 1 is the
canonicaldimensionof it.

The dependenceof the matrix elementof ~ on the largevirtuality Q’2 is

Qf2 —2±y4(~)

(NI0~~~(Q’2)IN)=(~)
whereQ~is the typical virtuality insideof the nucleon(N) and 2 and y~are the
canonicaland anomalousdimensionof the twist four operator.

Thus we areable to calculatethe integral (2) integratingover Q’ in an explicit
way. Finally we have

d ,2 2 l+y

2(~) ,2 —

2+y

4(w)

F(w) = f (~~)~ (NI o~
4~(Q~)IN)

1 1 ~l+~~(~O) —2+

74w)

wl—y4(w)+y2(w) Q~ —

x(NI0~
4~(Q~)IN). (3)

Looking directly at the integral (2) we canconcludethat thefirst term in eq.(3)
correspondsto the value of Q’ of the order of Q

0. It meansthat in this casewe
cannotcalculatein anexplicit way the matrix elementof the operator0(2), so it is
better to rewrite the first term in the form

1 1 Q
2 1+)~~(W)

—. —f (NI0~2~(Q~)lN),
(0 174+72 Qo

absorbingall the bottompartof the diagramin fig. lb as somerenormalizationof
the matrix element(N I 0~2~(Q~)IN).

In the secondterm of eq.(3) the typical valueof Q’ is of the order of Q, so for
it the form in eq.(3) is correct. Finally eq.(3) canbe reducedto

1 1
F(w)=—

(0 l74(W)+72(W)

Q2 1±~

2(w)

(NI0~
2~(Q~)IN)-(~) (NI0(4)(Q~)IN)}.

(4)
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From eq. (4) we can easily see that for the small values of the anomalous
dimensions72 and y~which are of the order of a~* the attempt to take into
accountthe mixing of operatorsof different twists leadsusonly to a renormaliza-
tion of their matrix elements.This statementis in an agreementwith the general
theorems[3,8].

However the situation changescrucially if ‘>‘~ — 72 tends to 1. This is just the
casewhenthe total dimensionsof theleadingtwist operatorandthenext twist one
becomeequal and they both give contributionsof the sameorder to the deep
inelastic structurefunction. The integral (3) gives an extra log(Q2/Q~),and the
final answerfor F(w) canbe written in the form

Q2 Q2 ~1+)~(~)

F(w) = alo~(~) . (~) (NI0~4~(Q~)IN) (5)

in the region w—* ~ where ~~cr can befound from the relation

1 + 72(°~cr) — Y4(°~cr)= 0. (6)

Eq. (4) can be interpreted as a mixing of two operators since the typical
virtuality in the diagram of fig. lb was sufficiently large, namely Q’2 QQ

0.
However within the same accuracywe can consider the above result as the
contributionto the anomalousdimensionof the twist four operatorin mixing with
the leadingtwist operatorbecausethe leadingandthe next twist operatorsgive the
samecontributionat w =

The abovestatementdoesnot contradictany generaltheorems[8]. Howeverit
should be stressedthat we introduce the new mass scale (Q~)(<N I O~I N))
whichwe call the typical virtuality of the gluon inside the nucleon.Evenmore we
would like to note that Q~wasintroducedin such a way that <N I O~I N) —~ 0 at
4Q~—~ 0. This scaleis irrelevantto the initial virtuality of the photonfrom which

we start to solve the evolution equation(see ref. [7] for detail discussionof this
point). The physicalorigin of this new scaleis, of course,confinementthat breaks
the conformal symmetry of QCD. This is the reasonwhy we can apply to the
operatorexpansiononly generaltheoremsof a massivetheorybut not for massless

ones~ The lastremark is the realorigin of somemisunderstandingbetweenthe
standardapproachadvocatedin ref. [3] and the onewhichwe arediscussingnow.

To estimatethevalue of theanomalousdimensionof the twist four operatorlet
us considerthe diagramof fig. lc in DLA of perturbative QCD. In DLA the

* For simplicity we neglectherethe runningof ~.

** We are very grateful to J. BartelsandJ. Blumlein for discussionon this subject.
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solution of GLAP evolution equation [9,10] for the deep inelastic structure

function of gluons in the leadingtwist approximationlooksas follows:

2 I4Ncas Q2 1xG(x, Q ) a exp ln~ln— . (7)

In the moment representationthe anomalousdimensionrelated to the above
solution is equal to

N~a
5

72(m) = + O(a~), (8)
‘2TW

wherethe correctionof the orderof a~doesnot increasein the region of small w.

The diagramof fig. ic canbe written in the form

c4(Q’
2, Qo2, w)<N I 0(4)(Q~,(0)1 N)

= I~-~d2QtM(Q~, Q
0)T exp{72(w — w’)r’ + y2(w’)r’ — 2r’}, (9)

where r’ = 1n(Q’
2/Q~).In eq. (9) we took into account that the anomalous

dimensionof the leadingtwist operatordid not dependon thesquaredmomentum
transfer Q~in DLA (see ref. [11for the detail discussionof this point). The
amplitude M(Q~,Q

0) describesthe emissionof four gluons from the nucleon.
Thus it is obviousthat we caninterpret the integralover as follows:

fd2QtM(Qt, Q0) = <NI 0(
4)(Q~)I N).

We would like to draw attentionto the fact that the aboveintegral introducesthe
new scaleQ~which has the physical meaningof the correlationradius between

two gluons insidethe nucleon(see also ref. [7]). It is also very essentialthat we
assumethat the aboveintegral is convergentwith respectto the integrationover
Q

5.
For larger’ we canusethe saddle-pointapproximationto calculatethe integral

over w’ which gives the answer

c4(Q’
2, Q~,W)<N I 0(4)(Q~,(0)1 N)

aexP{
72(~)r’+72(-~)r’—2r’}<NIO(4)(Q~)IN). (10)
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>A>
Fig. 2. The“fan” diagram.

Thus one can seedirectly from eq. (10) that the anomalousdimensionof the
twist four operatorfor the diagramsof fig. lc is equalto

74(W) =272(i) = ~. (11)

We canfind thevalue of Cr from eq.(6) which leadsto

3N~a~
~

0cr =
iT

The detail analysisof all ‘fan’ diagrams(seefig. 2) showsthat

2N~a~
(12)

iT

(seerefs. [1,11,12]). It meansthat the contributionsof the leadingtwist operator
and the next onebecomeof thesameorderat x = Xcr where

1 b Q2
ln— =

Xcr 114 Q~

if we takeN~= 3 and a~= 4iT/b ln(Q2/A2).
However the principal dynamical assumptionin ref. [1] was that the main

contributionto the anomalousdimensionof the twist four gluon operatorcomes
from the diagramsof fig. lc type. In the next threesectionswe would like to prove
this assumptionand we are going to calculate the anomalousdimensionof the
twist four gluon operator in DLA in a consistentway taking into account all
essentialdiagrams.
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3. Anomalous dimensionof the twist four operator in DLA (generalapproach)

3.1. SELECTION OF DIAGRAMS

We restrictourselvesto the calculationof the anomalousdimensionof the twist
four gluon operatorin DLA of perturbativeQCD sincewe are interestedin the
kinematicalregionwhere the anomalousdimensionsare largeenoughy 1. This
is just the regionof small x, wherethe smallnessof the QCD coupling constanta~
is compensatedby the large value of the ln(l/x) (a~ln(1/x) ~ 1). In DLA the
kernel of the GLAP [9,101evolution equation(P~(oj)) looks as follows:

Na
P~(W)=_~_s~ (13)

and describesthe exchangeof a gluon in the s-channelbetweentwo t-channel
gluonsas shown in fig. 3a.It is worthwhile mentioningthat the kernelof the FKL

equation[131hasthe sameform despitethe fact that FKL equationwasthe result
of the summationof contributionsof the order of (a~ln(1/x))’~in eachorder of
the perturbationexpansionbut not (a~ln Q2Y1 as it was done in the GLAP

equation.
Let us denoteby arrows the direction of the longitudinal momentaor the

fraction of the hadronmomentumx in the Breit frameof the t-channel(vertical)
gluons in fig. 3b. It wasshown in the early seventies[4] that the only interaction
betweenlineswith different directionof the arrowsgives rise to thelargeln(l/x).
It meansthat only pairsof gluonswith the colours indices “a” and“b”, “c” and

“b”, “a” and “d” or “c” and “d” but not “a” and “c” or “b” and “d” could
interactin fig. 3b. Thus thereareonly four type of s-channelgluons in fig. 3b that
are ableto interactin arbitraryorder. Eachof them is ‘hard’ in the sensethat it
carriesthe dominantfraction of the longitudinalcomponentof the momentum x
transferredin the t-channel(xk, X~ >> Xq

2 in fig. 3b).
Using the directionof lines in the diagramswe canclassifythem in the following

way:
[2,2]: the stateof four gluons in the t-channel in which two of them havethe

samedirectionof the energyfraction x, (the samearrows) as shownin fig. 3b.
[3,1]: the statein which threegluonshavethe samedirectionof the arrows(see

fig. 3d).
Theseare two stateswhich we haveto discussseparatelyin the frameworkof

DLA. They cannotby mixed sinceotherwisetwo gluonswith the samedirectionof
the arrowswould haveto interactin order to changethe directionof oneof the
arrows.Howeversuchan interactiondoesnot give a log(l/x) contributionas it has
beenmentionedbefore [4].
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(d)~a~

q
2

~ (1v 13 a

(c) k 1

i/~

q~ (f)

,~ q~ q~ q2

q~ ________ k2

q~
q~

Fig. 3. (a) The interactionof gluons in the Born approximation.(b) The interactionof gluonsin the
[2,2] state. (c) The diagram for the [2,21 state. (d) The diagram for the [3,11state. (e) Self-energy

correction.

It turnsout that the most importantstateis [2,2] which we aregoing to discuss
in a separatesection (sect. 4). The contribution of [3,1] will be consideredin
subsect.3.5.

Generally speaking the double log contributions could also come from the
diagrams with emission of “soft” gluons for which Xk1 >>xq1 ~xq2 in fig. 3b.
However such gluonsdo not contributeto the anomalousdimensionsince four
gluons in the t-channelcreatethe colourlessstate.Sothe doublelog contributions
from “soft” gluon emissionare cancelledin the sumof the diagrams,including

both realandvirtual “soft” gluons. The lastonesareshownasdashedlines in fig.
3c. This propertyhasbeendiscussedmanytimes(seefor exampleref. [17]) andhas
very transparentphysicalmeaning.Indeed,a “soft” longwavegluon could be only
emitted coherentlyby the stateof four gluons as a whole. However such an
emissionis verysmall (vanishesin DLA) due to the zeroglobal chargeof our four
gluon operator.In sect. 5 we illustrate this point in detail.
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There is anothertype of “soft” gluons (with small transversemomenta)that
correspondsto the interaction between the t-channel lines. All these gluons
togetherwith the self-energy(reggeization)correctionsof t-channelgluonsshould
be summedup separately.However it is shown that this emissionalso doesnot
contributeto the valueof anomalousdimension(seesect. 5).

3.2. COLOUR STRUCTURE

Before performingthe calculationlet us discussthe colour of the four gluon
statein t-channel.Fourcolour indicesof SU(3) canbe contractedin thefollowing
way:

1~ab~cd; 2. 6ac5bd ~ ~aa~ac

4.dabedcde; 5. dacedbde; 6. dadedbce;

7.fabefcde; 8. face fbde; 9 fadefbce (14)

Howeverin SU(3)we havefour relationsbetweenthesetensors,namely

fabefcde +facefdbe +fadefbce = 0, (15)

which existsin any SU(N) group.

dabedcde + daceddbe + dadedbce = ~(8ab6cd + ~ac5bd + ~ad6bc)’ (16)

fabefcde +fcbe fade + ~ab~5cd + ~ad~bc — 8ac~bd= 3dacedbde, (17)

dabedcde — dadedbce ~facefbde = ~(8ad~bc — 8ab5cd). (18)

The last threerelationsarevalid only in SU(3)~.Thus in SU(3) thereare only
threeindependentcolour tensors.It is convenientto choosethem asthe projectors
on the SU(3)representationfor the pairof gluons.For the pair (a, b) they look as
follows:

= 86ab~cd’

= ~fabefcde,

P
8= abed cde’

P ~ C C C .....2.a a
6d A27 — 21.°ac°bd~ UadUbc 4~’ab1’cd — 5UabeUcde ~

2i2
P

10 +P16 = ~‘~ad’~bc — t

5ac~5bd — ~fabefcde). (19)

* We are gratefulto A. Bukhvostovwho point out theserelations.
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(a) SU(3)

H dc +

o b oh 2

(b)SU(2)

o b~

Fig. 4. TheFirtz relationfor thegluon interaction.

From eqs.(17) and(18)we canderive a new identitywhich looks like Firtz’ one
and turns out to bevery convenientin all practicalcalculations~‘.

~
2fadefcbe = ~{~ab~cd — ~ad8bc — ~ac~bd) + ~dabedcde + ~fabefcde

= 3P
0+ ~P8+ ~ —P2.,, (20)

which is pictured in fig. 4a using a circle for d-tensorand a point for ~fa~cIt is

interestingto note that 10 and T~ido not contribute to eq. (20) so the transition
amplitudesto thesestatesdueto the exchangeof ones-channelgluon areequal to
zero. The situationfor SU(2) is much simpler since thereis no d-tensorin this

group and only the first three colour structuresfrom eq. (14) are enough to
describethe colour statesof four gluons. The Firtz-like identity for SU(2) is shown

in fig. 4b.

3.3. POLARIZATION STRUCTURE

Let usdiscussnow the polarizationstructureof the twist four operator.It is well
known (seerefs. [1,9,19])that only longitudinal (nonsense)polarizationof t-chan-
nel gluonswith A = 0 gives the main leading log(l/x) contribution. In this sense
the polarizationstructureof the amplitudesshownin figs. 3b and3d is very simple,

* We aregrateful to J. Bartelsfor discussionsof this point with us. We would like alsoto mention that

he is usingeq. (20) in his attempt to gettheequationfor anomalousdimensionof high twist operator
[6] from his reggeontechnique[15].
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namelyA0000.Howeverwe haveto work in the specific axial gaugewherewe have
for the gluonic field A~the following relation:

= 0, Q,~= Q,~~ Q’
2 = 0,

sinceonly in such a gauge[16] we were able to reducethe whole set of Feynman
diagramsto the ladderonesin DLA. In the axial gaugethe polarizationstructure
of the gluon propagatorlooks as follows:

q~Q~+ Q~q~
d~(q)=g~~—(qQ’) (21)

and transformsthe vector into the vector —qt,~/xq~.It could be seendirectly
from eq.(21) since

q~ 2a
p~d,~~(q)= ~

and the secondterm doesnot contributein the leading log(1/x) approximation
(see ref. [1] for details).

Thus the four gluon amplitude turns out to be proportionalto the productof
four transversemomentaqta~q

1c~q1b~qtd~~, which could be contractedinto a
scalarin two ways:

e1 = (qtaqtd) (qtbqtc) and e2 = (qtaqtb) (q~q~d). (22)

We cannotaddan additionalpowerof the transversemomentasinceit violatesthe
log integrationovervirtuality dq~or the conditionto get ln Q

2 contribution.
It is easily to see that the amplitude of the “hard” gluon exchangein the

s-channel(seefig. 3a)has the form in DLA. Indeed,in DLA the productof
the triple gluonvertex ~ with the polarization —qt~Q,~~/xq(pQ’)is equalto

______ = —2q
1~~

in axial gauge(see eq. (21)) and the amplitude of the interactionworks as
since

A a 2q11~d~~2q35~.

* We useherethe Sudakovvariables,namelyq~= XqP~~+ a5Q~+ q~.

** The fact that the amplitudeis proportionalto q~reflectsthe gaugeinvarianceof QCD.In thelimit
q,

2 -+ 0 (q~ q~,in our case) thelongitudinal polarizationcoincideswith the scalarone(e~= q,~)
and an emissionof suchgluonsshouldbenegligible.
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TABLE 1
The transition matrixfor e

1 and e2

Initial\Final e1 e2

e1 1

e2 1

Strictly speakingit is possibleto write onemorescalar,namely(qtaqtc)(qt~qt~).

Howeverthis scalarcannotenterthe gamein DLA for the state[2,21(see fig. 3b)
since the exchangeof gluonsbetweenlineswith the samedirectionof the arrows
((a, c) or (b, d) in fig. 3b) cannotleadto a log(1/x) contribution.We haveto take

into accountthis structurefor the state[3,11which is shownin fig. 3d.
Now let us observehow the Lorentz structure actsif we addone additional

interaction,saybetweenlines c and b. It is obviousthat the structuree1 turns out

to be the sameafter the interactionif the previousone (k0 in fig. 3c) gaveusthe
structuree1 (see eq.(22)) as the result of the interactionbetweenlines (c, b) or
(a, d). The productof transversemomentaq1 q1~* reducedonegluon propaga-
tor andprovidedthe log integrationoverq~(factordq~/q~1in the integral).As a
result the product (q~1q2~)(q1’1q1~)goes to ~ which also hasthe form
of e1. Thesituation changesfor the exchangeof a gluon(k2 in fig. 3c)betweenthe
lines c and d. In this case we get the new structureof e2 type from e1 =

(q~1q2~)(q~~q31)since

d4 1 2

= ~q21(q4~q4~)(q3~q31)

after trivial integrationover the azimuthalangle~ of the momentumq~ q2~.
Finally, the interactionbetweenlines (a, d) or (b, c) transfersthe structurese1

and e2 to e1 with additional factor ~ in front of the transition e2 —‘ e1. The
interaction between(a, b) and (c, d) works in the sameway. So we get the
transitionmatrix of table 1.

3.4. THE FULL TRANSITION MATRIX

In this subsectionwe are going to discussthe full transition matrix including

both the transition between different momentum tensors and different colour
multiplets of SU(3).The transitionmatrix dependson what state[2,2] or [3,1] we
are discussing.Here we would like to continuemostly the discussionof the [2,21

* In DLA it is always possibleto numeratethe s-channelgluons in sucha way that their transverse

momentaare in theorder of increase,namely ko~>>k11>> k2,>> ... So q0~ q,~ k0 q~, qit — k1
~ q0~q2~ k2 ~ q1~and so on (seefig. 3b for notation).
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statebutwe arepreparingall elementsto calculatethe anomalousdimensionfor
the [3,1] state,too, postponingthe detailedconsiderationto subsect.3.5.

The first remarkis very simple.The point is that thetransitionsbetweene1 and

e1 or e2 ande2 arealso diagonalfor differentmultiplets of colour SU(3).It means
that their transitionamplitudecould bewritten in the form

M,~J~J= 8,~P3jJAjNcP,~, (23)

where we label the colour SU(3) multiplets 0,8, 8, 10 + Ti~i and 27 by j, i,
respectively;a- and p denotethe momentumstructure:a- = 1 or 2 means or e2.
p,(l) is the sameas in eq. (19) while p(

2) are the projectorson the colour stateof
gluon pair (b, c) whichcanbe obtainedfrom P

1”~by the substitutiona -~ c in eq.
(19). Using eq. (20) it is easyto calculatethe valuesof A1 in eq. (23) which are
equalto

A0=l, A8=A8=~, A10=A~=0, A27=—~. (24)

Nondiagonaltransitionsare describedby a somewhatmore complicatedfor-
mula, namely

M,~T~J= ~(l — ~ (25)

The factor ~ in eq.(24) is correlatedwith the transitionmatrix for the momentum
structures(see table 1) and ~ aregivenin the table 2.

At this momentit seemsthat the problem has practicallybeensolved sinceat
thefirst sightwe are ableto write the simpleevolution equationfor the coefficient
function C~’

21,namely

dC~2’2~(p,j) a

d ln Q2 = 2 ~ i). (26)

So the only problem is to find the eigenvaluesof eq. (26). Let us note that the

TABLE 2
The transitionmatrix for the multipletsof colourSU(3)(A

11)

i/f 0 8 8 i0+T~ 27

0 3/4k 3/4V~ 0 —3~/8
8 3/2%I~ 0

8 3/2k —~ 0 —3V~/10~

10+111 3V5~/4 0 —3~/2~/5 0

27 9~i/8 —3V~/4v~ 9~/i/20I~ 0 —~
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factor 2 in front reflectsthe factthat the gluonexchangebetweenlines (a, b) and
(c, d) givesthe samecontributionas the exchangebetweenlines (a, d) and (b, c).

However the situation in [2,2] turns out much morecomplicatedand we will
discussit in sect.4. Sucha simple equationas eq.(26) we can obtain only for the
state[3,1] but also with somemodifications which we are going to considerin
subsect.3.5.

3.5. THE ANOMALOUS DIMENSION OF THE STATE [3,1]

In the caseof the state[3,1] all gluonsareemitted from onevertical line (a in
fig. 3d). This is the reasonwhy we can integrateover gluons in DLA in the
kinematicalregionwheregluonshavestrongorderingboth for transversemomenta

q~1and for the fraction of energiesx1 (see fig. 3d for notations):

Q
2>>q

11>>q2~>>q31>>q41>> ... >>Q0

Xb <<x1 <<x2 <<x3 <<x4 ~ ... <<1. (27)

The integration over x in the kinematical region eq. (27) leads to w in the
dominator of the kernel in the (0-representationas was written in eq. (26).

Thereforewe canuse for the [3,1] statean equationof the type of eq. (26) with
threeimportantnew ingredients:

(1) We should takeinto accountthe new momentumstructuree3 which is

e3 = (qtaqtc)(qtbqtd)- (28)

(2) The three gluons (p., v, and f3 in fig. 3d) are identical so we have to
symmetrizethe coefficient function C4 with respectto all permutationof these
threegluons.It meansthat

C~
3”1(p,j) = e

1C~
3’1l(l,j) + e

2C~
3’11(2,I) + e

3C~
3’1l(3,j). (29)

As a result of this symmetrizationthe matrix elementsbetweenthe stateswith
different symmetryin the colour SU(3),namely symmetric(0, 8, 27) andantisym-
metric (8, 10, T~i)arevanishing.So the new matrix j1~~ becomesquasi-diagonal.
It containsonly two subblocksj, i = 1, 3, 5 and j, i = 2, 4 of the matrix of table2.
Moreoverthe diagonalelementsof p~(b)do not containthe factor 2 in front since
only one s-channelgluoncontributesto eachcomponentin eq.(29).

(3) By now we havediscussedonly the emissionof the emissionof the hard
gluonswith the strong ordering in the transversemomenta.As was mentioned
before there are other sourcesof the double logs, the self-energy(reggeization)
diagrams(see fig. 3e)which give the doublelogs in the axial gaugeandthe “soft”
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gluon emissionwith k1~~ q~1 q2~.In the whole sum of the reggeizationsand
“soft” gluon emissionsthe doublelog contributionis cancelledas shownin sect.5.

It meansthatwe haveto include the additionalmatrix ~ into the r.h.s. of
the evolution equation:

dC~
3’~(p,j)= -~- ~ + M~

1}C~31l(a-,i), (30)

where C~
3’11was defined in eq.(26).

The eigenvaluesof this equationgive the anomalousdimensionsof the [3,1]
state.Wecomputedthesevaluesandthe answerfor anomalousdimensionslook as

follows:

aN
y~([3,l}) = 1~_s._± (31)

wherethe 1, are equal:

inSU(3): 11=2.12; 1+; 0.80; 0; —0.665; (32)

inSU(2): 1~=2~l~ —1. (33)

Thus the anomalousdimensionsof this statearesmaller than the contribution
of two pomeroncut (see fig. ib) which led to formula (1) for the value of the
anomalousdimension,or, in the otherwords,to I~= 4.

4. Anomalousdimensionsof the twist four gluon operator for the channel [2,2]

4.1. PROBLEMS AND STRATEGY

The mainproblemthat doesnot allow to usethe ordinaryevolutionequationin
theform of eq.(31) is thefollowing one.The momentaof gluonsin the diagramof
fig. 3c (for examplek’, k

0, k1 and i~)haveno suchstrongorderingasit wasin fig.
3d (see eq.(27)) in that part of it whereonly diagonaltransitionsoccur. In these
parts of the diagram the state could be considered as an exchangeof two
independentladders. Inside of each of them we see the strong ordering in
transversemomenta

k>>k01>>k11, x’<<x0<<x1.

An analogousorderingof themomentak holdsin theotherladder,but thereis no
correlationbetweenthe gluon momentafrom different ladders.The only correla-
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tion exists in the point of branching(gluon with momentumk2 in fig. 3c) where
both laddershavecommonboundary,namely

k1~>>k2~,x1 <<x2, k1>>k25, .i~<<x2.

To sumthesetwo-ladder-reducedpart of the diagramwe cannotuse only one
total moment N= 1 + w but haveto introducetwo different N1 and N2 (~ and

~2) for the description of each separateladder. Of course (0 = w~+ 2 Fortu-
natelywe know the amplitude of each ladder in DLA and are able to sum all
doublelogs in a direct way for the two-ladderreducedpart of the diagramin fig.
3c.

Our strategyin calculatingthe anomalousdimensionfor the [2,2] channellooks
as follows:

(1) First of all we sumthe diagramswhich cannotbe reducedto the exchange
of two ladders. For this purposewe solve eq. (26) with M~= 0 and find the
anomalousdimensions(y~)of such substates.The explicit solution gives us

a5N
= —~A1 (34)

iT (0

wherethe A, for SU(3)are equalto

A, = 0.597; 0; —0.316, (35)

andfor SU(2):

A,=0.677. (36)

(2) The next stepis to calculatethe amplitude for the exchangeof two ladders
at the samevalue of w and y. Of course each laddercan belong to different
representationsof colour SU(3) (0, 8, 8, 10, T~,27), and the two-ladderamplitude
will be different for eachof them.

Finally we mix the two-ladderamplitude andthe irreduciblestatethat we have
calculated.We find the new diagonalmatrix ~ built from two-ladderampli-
tudes,and solve the completeequationof the type of eq. (26). This procedureis
shown in fig. 3f where fat lines denotethe irreducible statesandwavy onesare

usedfor ladderamplitudes.
(3) As we explainedbelowwe do not needto takeinto accountthe emissionof

the “soft” gluonssincethis emissionis cancelledin the whole sum.

4.2. TWO-LADDER AMPLITUDE

To discussthe propertyof the two-ladderamplitude it is moreconvenientto
introducethe general(y, w) representationthan to usethe anomalousdimension
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as we havedoneso far. In this representationthe coefficient function C4(Q
2, w)

looks asfollows:

C
4(Q

2, ~o)= JC
4(7, w) exp(y ln(Q

2/Q~)), (37)

wherethe integrationcontouris situatedto the right of the singularitiesin y.
In the(y, w) representationtheexchangeof two gluonsor the Born approxima-

tion for the ladderamplitudehasthe form

1
AçB01~)(w,7) =

WY

andthe full answerfor the one ladderamplitudein DLA can bewritten as

1
A(DLA)( \ — _______________________

wy(1 — (a
5N~/ii-wy)A,)

wherethe A, are the sameasin eq. (24). It is easyto checkthat for colourlessstate
in the t-channelwe immediatelyget the anomalousdimensionyi(W) = a~N~/irw
substitutingA0 = 1 in eq.(39)andclosingthe contouron thepole in y(y = y~(w))~.

It should be stressedthat the valuesof A. in eq. (40) is differentfrom eq.(40),
sincewe took into accountthe soft gluon contributionto the ladderkernel.

In a direct way or usingthe rules of ReggeonDiagramTechnique[14]we can
calculatethe amplitude for two ladderexchangein the form

A~’~”~(w,~

— 1dw1 dw26(w1+ ~2 w) d71 d72 6(’ — Yi 72) 1
— (2iTi)

2 ~1Y1~2Y2 1 — a~N~- A, 1 — a~N~- A,
1TW

171 1TW272

(39)

Using 6-functionsfor the integrationover ~2 and 72’ andclosingthe integra-
tion contouravoiding the pole of YiiYi — A~a~N~/iT= 0 we reduceeq.(39) to the
form

dw1 1
A~’~’~=1—2 J 2iTi Wi(w—wi)Y—A1a~N~/iT

* For the running coupling constant a,=(4ir/b)ln(q
2/A2) we should go to the variable ~ =

in ln(q2/A2) in which the evolutionof operatorslooks as O(~) 0(f
0) exp(v(f— fe)). So in this case

all our formulas are valid if we replacethe variablesin the following way: ~y-~ v and a, fir —~4/b.
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The remainingintegral could be doneclosing the contouravoiding the pole

w / 4a,N~A,
~i=— l—v’l—2 iT7

As a result the amplitude for the exchangeof two laddersbelongingto the ith
multiplet of colour SU(3)is equal to *

1
A~(w,y) = _________________ . (40)

(07%/i — 4(a,N~/iTwy)A~

4.3. EQUATION FORTHE ANOMALOUS DIMENSION

As in the case of the [3,1] state we should take into accountthe identity of
gluons“a” and “c” in fig. 3b and introducethe symmetriccoefficientfunction

C~
2’2~(p,j) =e

1C~
2’21(l,j) + e

2C~
2’2~(2,1). (41)

For this coefficientfunction we canwrite the evolutionequationin the form

dC~’2~(p,j; (0,7)

d In Q2

= yC~’21(p,j; w, y) = -2~{~(~)..M(~) }c~22l(a-, i; w, y), (42)

where

1
~ . = 6 6..p~’) _________________ . (43)

(~~ ° ‘ ~/1— 4A~a,N~/iTwy

Eq. (44) is nonlinearin respectto y but wesolved it numerically.
The first eigenvalueof eq.(44) that we found is the pole at **

A = 4.0053.

* We are grateful to J. Bartelswho pointed out that AGK cutting rules [20] which we usedin our

previouspublication [18] doesnot work in this case.So theadditional signaturefactor(ii,) doesnot
appearin eq. (42) contrary to the sameequation in ref. [18].

** We would like to mentionthat J. Bartels(privatecommunication)wasthe first who got the valueof
anomalousdimensionlargerthan one correspondedto two pomeroncut (A > 4) using his reggeon

technique[15].
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The nextonesare

A = —0.032±i 0.062, A = —0.28±i 0.027,

for SU(3) and

A=4.029, A= —0.074±iO.14,

for SU(2).
It turns out that the rightmostsingularityis very closeto the position of the two

pomeroncut while the othersare sufficiently to the left. This fact allows us to
illustrate the result of numericalcalculationsusingthe simplified model.

Let usconsiderthe valuesof y which arevery closeto

4A0a,N~
7=

ITO)

In this casewe can reduce eq. (44) to the form

dC~’
2~(p,0; (0,7)

d ln Q2 = yC~’2~(p,0; w, y)

aN 1 1

= ~w ~/f~Aoa,N~/ITwy -C~’2~(p,0; (0,7). (44)

The solution of this equationcan bewritten in the form

(22] C(W)C
4’ Ca’ 0; (0, 7) = a,N~ 1 1 (45)

7————
ITOJ 8 — 4A0a,N~/ITw7

Herethe function C(w) shouldbe found from initial condition,but it doesnot
affect the value of the anomalousdimension.The valueof the anomalousdimen-
sion is determinedby the rightmostsingularityin y in eq.(45). It is easyto seethat
the singularitiesin eq.(45) are originatedeitherby the zeroof the dominatoror by
the squareroot singularity

4Aoa,N~ (W
=2721— -

ITW

It is easyto seethat we havethe zero of the dominatorwhich is very close to
y = 272(W/2)but correspondsto the largervalue of A in eq. (35), namely

A~4+th. (46)

This is just that eigenvaluewhich we found from numericalcalculation.
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5. Softgluon emission

In this sectionwe aregoingto discussthe cancellationof the infrareddivergen-
cies dueto the “soft” gluon emissionin the anomalousdimensionof the twist four
operator.The physical meaningof such a cancellation has been discussedin
subsect.3.1 so herewe concentrateon theproof how it occursin the calculationof
the value of the anomalousdimensionof the twist four operator.

5.1. THE LEADING TWIST OPERATOR

We startwith the samecancellationfor the leadingtwist, in order to illustrate
the physical origin of it. Weprefer to calculatethe momentsof the deepinelastic
structurefunction in the so-calledleading ln(1/x) approximationwhich leadsto
the FKL equation[131for the function ~ which is equal

F2(w, Q
2) = 4~IT~fQ2~(~q2) dq2, (47)

where F
2(w, Q

2) is the moment of the deepinelastic structurefunction (see eq.

(5)).
The FKI. equationlooks as follows:

~ q

1, q1 —q2) = ~fQ2K(q q2, q1, q2, q’)~w, q’, q1 —q2) d
2q’,
(48)

where the kernel K hasthe form

K(q
1 —q2,q1, q2, q’)~(W,q’, q1 —q2) d

2q’= 1 , 2
2(q

1—q)~

(q1 —q2)~(q1—q’)~ q~~q
2

X — , 2 2 + 1 + , 2 2 ~ q’, q
1 —q2)

(q1—q2—q )~q1~ (q1—q2—q )~q11

2 2
q2~

— ,2 , 2 + ,2 , 2 - 4~(W, q1, q1 — q2) ~ (49)
q~+(q1—q)~ q1 +(q2—q)~

wherethe first term in the kernel is responsiblefor the emissionof the gluon in
the ladderdiagramsof fig. 5a while the secondone describesthe reggeizationof

the gluon (seerefs. [1,13] for details).
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From the explicit form of thekernelonecanseethat thereare two kinematical
regionsfor log contributions:

(1) I — q2 I ~zq’ ~* q1 q2, which correspondsto hard gluon emissionfrom
the ladder.

(2) q’ — q1. Namely in this kinematicalregion we have the log contribution
from soft gluon emission, but we can see that the log contribution from the
emission in the ladder diagram (the first term in the kernel) reducesdue to

contributionof the gluon reggeizationfor any valuesof q1 and q2. Practicallythis
cancellationreflectsthe samecolour factor for gluon emissionandgluon reggeiza-
tion, namely N~for the first and N~/2for the reggeizationof eachgluon in the
t-channel(two in our case).

The resulting answerfor the scatteringamplitude (A(xB, q1 — q2, q~,q~,q~
2,

q~’))is very simple, namelyA is pureimaginaryandequalto

A(xB, q
1 —q2, q~,q~,q~

2,q~)= ~ q
1 —q2, q~,q~,q

2, q~). (50)

In the colour statefor two gluons in the t-channel(i = 8, 8, 10 + I~,27) the
situation looks quite different, since thereis no cancellationbetweenthe gluon
reggeizationand emission.In this casewe canrewritethe equationin the following
way:

We/~(W,q
1, q1—q2)

1 aC 2
= ~5(

2)(q
1 — Q0) + ._!_Lfh1K(q1 — q2, q1, q2, q’)4(W, q’, q1 — q2) d

2q’
q

1 iT Q~

+ {C, — Nj - (a(qfl + a(q~))~(w,q1, q1 — q2), (51)

wherewe use the notation(a(q~)+ a(q~))for the reggeizationpart of the kernel
K, including all a, and all numerical factors except N~.C, correspondsto the
colour coefficient of the diagramof fig. 5b. We included also the inhomogeneous
term (Born approximation)in eq. (51) which has the principal meaningfor our
discussion.

The solution of eq.(51) looks as follows:

q1, q1—q2)
4i(w, q1, q1 —q2) = 2 2 (52)

w— (C,—Nj -(a(q1)+a(q2))

where ~ is the solution of eq.(48) with the sameinhomogeneousterm as in eq.
(51).
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(a)
q

1

~~1q~q2.q)

(b)

Y
(c)

q2~~

Fig. 5. (a) The ladderdiagramfor the anomalousdimensionof the leading twist operator.(b) Colour
coefficient C in eq. (53). (c) Vertexfor gluon emission.(d) Interactionbetweengluon lines with the
samedirectionsof the arrows.(e) Colour coefficient C,’ in eq. (56). (f) Colour statesof eq. (19). (g)
Colour coefficient for a gluon interactionin state2. (h) Colour coefficient C/for thetransition 4 —* 4

(1), 7 —~7(2) and4 —* 7(3).
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1 2 3 4 7

+ _______

N,

N,~, 4~]N~)2 0=
2 2N, N/—L. I

= N,

* * *2 (~)29

~(~+2(N~)
2~L)

~-©~ ©÷~o

Fig. 5. (continued).

The main messagefrom eq.(52) is that the scatteringamplitude hasa realpart
even in the lowest order of a,. Indeed,eventhe Born term in 4’ generatesthe
amplitude which is equalto

AB0mfl(XB, q
1 — q2, q~,q~,q~

2,q~) = - ln— - {C

1 — Nj - (a(q?)+ a(q~)).

(53)
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5.2. POLARIZATION STRUCTURE

Here we are startingto considerthe soft gluon contributionto the anomalous
dimensionof the twist four operator.The first remark is that the polarization
structureof the soft emissionis verysimple, namelythevertexfor suchan emission
is equalto

- ~ (54)

where all notationsareclear from fig. Sc (see also ref. [1] for details).
From the aboveexpressionit is obvious that the soft gluon emissiondoesnot

changethe structureof the ladder, sinceq2 in the numeratorof eq.(52) reduces
the gluon propagator.Thus we havethe ladderwithout the emittedgluon andthe
extrafactor

C,(colour)a,f~—~fq2d2Pt

Our main problem is to calculatethe colour coefficientsto seethat they are the
sameas for the gluon reggeization.

5.3. INTEGRATION OVER LONGITUDINAL MOMENTA

However first of all we have to revise the integration over longitudinal mo-
menta.Namelythis integrationled us to the rule that the only interactionbetween

lines with different direction of the arrows gives rise to the large log(1/x)
contribution in DLA.

Our statementis that this is not the casefor soft gluon emission, and in this
casewe should take into accountthe interactionwith all gluonsin the t-channel
(with four of them in our problem).

The point is that zero of the dominator (q — q’)~in eq. (49) comesfrom the
emissionof the gluon in the initial state(not from t-channelgluonswith the define
directionof arrows[13]).

Two statementsfollow from thesesimple observation:
(1) We canneglectthe interactionbetweenlineswith different directionsof the

arrowsfor hardgluon emissionas we did in our previousconsideration.
(2) The interactionsbetweenall lines should be taken into account for soft

gluon emission.It shouldbe stressedthat the resulting formula for this contribu-
tion looksvery simply, namely

C~’21(q~,q~,q~,q~ p, i) = - {ln q~+ ln q~+ ln q~+ ln q~}

XM~,~

1-C~

2’2J(q~,q~,q~,q~ p, j). (55)
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5.4. COLOUR STRUCTURE

The structureof the colour matrix ~ is verysimple andit is equalto

M~
1~1= Cf — ~ (56)

where CI is the colour coefficientfor the transitionfrom the colourstate i to j due
to interactionbetweenonedefinite line and all others,as shownin fig. Se.

We usethe samecompleteset of colour states(seeeq.(19)) as before. As one
can seefrom the explicit formula for our completeset of colour statesof eq.(19)
we needto find the expressionfor the transitionbetweenthe colour states1, 2, 3,
4, 7 from eq.(14) to calculatethe coefficient Cf (seealso fig. 5f, wherepoints and

circles denotelfa~yand dapy~respectively).
There areseveralobservationsthat help usto calculateC/:
(1) The interactionbetweenall lines in the states1, 2, 3 in fig. 5f is diagonal

andgives a factor N~dueto the fact that in thesestatesonepairof gluonshasthe
oppositecolour charge. It follows directly from the antisymmetryof fa~in the
colour indices.Fig. 5g illustratesthis statement.

(2) It meansthat we needonly to calculatethe transitionbetweenthe states4,
7 as shownin fig. 5h. It is easyto seethat the interactionwith two gluons “a” and
“b” is equal to zero for the states“i” and “j” with the different symmetry with
respectto permutationof the indices “a” and “b”. Thus the transition 4 —* 7
vanishes.

(3) The explicit calculationof C,’ for the states4 and7 shows(seefig. 5h) that
they areequalto N,.

Thereforethe colour coefficientsCJ for the completeset of thecolour stateof

eq.(19) areequal to

CI=N~6~~. (57)

Substitutingthe abovevaluesof C] in eq. (53) onecanseethat thesoft emission
gives no contributionto the anomalousdimensionof the twist four operatorin

DLA.

6. Conclusions

The main resultsof the paperare the following:
(1) Operatorsof the leading twist and of twist four can mix at (0= o,r where

the full dimensionsof thesetwo operatorsbecomeequal, namely

1 +72(Wcr) = ~2+74(WCr).
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It happensdueto the fact that the anomalousdimensionof the twist four operator
increasesmore rapidly at small 0) than the leading twist one. However this
statementdoesnot contradictany general theoremsince namely at CO = ~~cr this
mixing could be interpretedas the contributionof the anomalousdimensionof the
leadingtwist operatorto the anomalousdimensionof the twist four operator.Such
a mixing illustratesonly that all generaltheoremsarenot well definedin the case
when the anomalousdimensionof the next twist operatorbecomesof the same
order as the leadingtwist.

(2) In DLA we found the value of the anomalousdimensionand wrote the
correspondingevolution equation.It turns out that the anomalousdimensionof
the twist four operatoris equalto

74(W)272(~)(1+6) (58)

where 6 i0~ is very small. The smallnessof 6 has very simple origin. As was
shownthe main contributioncomesfrom the pomeron—pomeroninteractionnear
the threshold (07 = 4a,N,/ir. The pomeron—pomeronvertex is non-planarone
and is suppressedby the colour factor 1/(N,2 — 1). The solution of eq. (45) gives
6 a 1/N,4.

The above result confirms the hypothesismadein ref. [1] that the rightmost
singularitycomesfrom the exchangeof many pomerons(ladders)in t-channel.

Strictly speakingthe pomeron—pomeroninteraction has not beentaken into
accountin GLR evolution equation.Now we can improve this equationusingeq.
(58). Howeverthe corrections(‘— 0(6)) are so small that they give the noticeable

contribution only at astronomically high energies (small x B) of the order of
ln(1/xB)> 100.

We arevery grateful to J. Bartelsfor numerousandfruitful discussionson the
subject. We thank all participantsof the low-x meetingat Lund for encouraging
optimism.Two of us (E.M.L. andM.G.R.)would like to acknowledgethe hospital-
ity extendedto usat DESY TheoryGroup wheremostof this work wasdone.
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