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The anomalous dimension of the twist four gluonic operator (y,) in deep inelastic scattering is
calculated in the double log approximation (DLA) of perturbative QCD. It turns out that at
N—-1vy{N-1)is close to 2y,((N —1)/2) where vy, is the anomalous dimension of the leading
twist operator. It means that at N — 1 the contribution of the twist four operator to the deep
inelastic structure function becomes very important and gives rise to the screening correction to
the deep inelastic structure function as was taken into account in the nonlinear GLR evolution
equation.

1. Introduction

It is well known that the deep inelastic structure function rapidly increases in
the low-x region. It is the reason why we have to take into account the absorption
(shadowing) correction (see ref. [1] for details). In refs. [1,2] it was shown that the
main contribution to the absorption corrections comes from the “fan” diagrams
(see fig. 1a) where two gluons annihilate in one. In the r-channel these diagrams
are those where two gluons transit into four (see fig. 1a).

On the other hand there is the widespread opinion that operators with different
dimensions cannot mix in the renormalization group equation (see ref. [3] where
this point of view has been advocated in the most direct and explicit way). The
above transition is nothing more than the specific example of such mixing. Thus
the question arises how to explain this conflict.

0550-3213 /92 /$05.00 © 1992 — Elsevier Science Publishers B.V. All rights reserved



590 EM. Levin et al. / Twist four gluon operator

Our answer to this question is given in sect. 2, where we consider as an example
the “fan” diagrams. It is shown in sect. 2 that for these Feynman diagrams the
anomalous dimension of the twist four gluonic operator (y,) becomes equal to

Ya(@) =272(w/2) 1)

where vy, is the anomalous dimension of the leading twist operator while w is
equal to N — 1 (N is energy—moment index). It means that y, increases at small w
(x = 0) more rapidly than y, and at o = w_(g?) the full (canonical plus anoma-
lous) dimensions of the leading twist operator and the twist four operator turn out
to be equal. Thus we cannot neglect the contribution of the next twist operator to
the deep inelastic structure function at w < w,.

In sects. 3 and 4 the anomalous dimensions of all twist four gluonic operator are
calculated in the double log approximation (DLA) of perturbative QCD. In other
words it means that only the terms of the order of (a, In(1/x) In g?)" are taken
into account in the perturbation expansion. In the general case not only two pairs
of gluons in t-channel can interact but also all gluons. The first case is related to
two pomeron-like exchange in #-channel in the old-fashioned reggeon language
while the second one is nothing more than the so-called many particle Regge poles
or the new bounded states in ¢-channel [4]. It is worthwhile mentioning that we try
to use here the reggeon language because we firmly believe that namely the
reggeon approach is very close technically to the usual energy—moments represen-
tation, has a clear space-time interpretation and is more adequate to Feynmann
diagrams which is our perturbative QCD than the formal approach based on
Wilson’s operator expansion and the renormalization group. We see our goal in
establishing a2 more transparent relation between the both languages.

It turns out that the anomalous dimension of the operator which corresponds to
two Pomeron exchange (see fig. 1c) is very close to the position of the two
pomeron cut (see fig. 1b). This result confirms the assumption that was made in
refs. [1,2,5] and allows us to neglect as a first step the contribution of all diagrams
except the diagrams of fig. 1b in the region of large g2 and small x. Namely this
approach has led to the nonlinear GLR-evolution equation [1], and this paper can
be considered as a first step in the improvement of it.

In sect. 5 the emission of the soft gluons is considered and it is shown that such
an emission does not lead to infrared singularities.

We would like also to mention from the beginning that the correct evolution
equation for the anomalous dimensions of higher twist operators have been written
in ref. [6]. Our goal was to solve these equations in the region of small x or w — 0.
However on the way we got the equations for the anomalous dimension of the
twist four operator in the simpler DLA form than the one used in ref. [6].

We would also like to note that we do not use the technique developed in ref.
[7] for DLA preferring the direct summation of the Feyman diagrams since it looks
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Fig. 1. (a) The simplest “fan” diagram. (b) The mixing of the operators in the simplest “fan” diagram.
(c) The anomalous dimension of the twist four operator in the two-ladder approximation.

more transparent from our point of view. However we checked that all our results
could be obtained in a such technique too.

2. The mixing of operators of different twists

In this section we would like to clarify what is meant by mixing of operators of
different twists. Let us start from an attempt to rewrite the ‘fan’ diagram of fig. 1
in terms of operators of different twists in the DLA of QCD. The easiest way to do
this is to go to the moment representation. In this representation the contribution
of the diagram of fig. 1 to the w moment of the deep inelastic structure function
looks as follows:

72
:372 CZ(Qza ,U~2)<gluon(Q’2) | 0(2) |gluon(Q’2))

XCy(Q2 @) (N1OP|NY, (2)

)= [,

where Q'? is the virtuality of the intermediate gluonic state (see fig. 1b) and ? is
an arbitrary scale of QCD. 1 /coQ’2 is the propagator of two gluons in the
t-channel in DLA.

F(w) as a physical quantity does not depend on the scale . We can choose this
scale u = Q’. In this case the matrix element (gluon(Q’%)| 0@ |gluon(Q’?)) is very
simple and is equal to 1 in our normalization. The coefficient function C,(Q?, Q’z)
is also well known, namely

’

Q2 —1+’)’2(m)
le )

ci0.07)-( 2
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where vy, is the anomalous dimension of the leading twist operator while 1 is the
canonical dimension of it.
The dependence of the matrix element of O™ on the large virtuality Q'? is

Q’2 —2+y4w)
(N|OW(Q?)IN) = |—= (N1O®(Q3)INY,
Q5
where Q2 is the typical virtuality inside of the nucleon (N) and 2 and 1y, are the
canonical and anomalous dimension of the twist four operator.
Thus we are able to calculate the integral (2) integrating over Q' in an explicit
way. Finally we have

—1l+yfw —2+vyw)
_ QZdQ,2 Q_2 e g’_z @ ()2
Fle) =)o w07 | 07 02 (NTOAQ3)IN
1 1 Q2 —1+yxw) Q2 —2+y4w)
=Z'1—y4(w)+y2(w){(Q_é) _(Q_g) }
X (N |O®(Q2)| N). (3)

Looking directly at the integral (2) we can conclude that the first term in eq. (3)
corresponds to the value of Q' of the order of Q,. It means that in this case we
cannot calculate in an explicit way the matrix element of the operator O®, so it is
better to rewrite the first term in the form

1 1

o 11—y, +7y,

QZ

1+ yAw)
—2) (N10®(Q2)I NY,
Qi

absorbing all the bottom part of the diagram in fig. 1b as some renormalization of
the matrix element (N |O®P(Q2)| N ).

In the second term of eq. (3) the typical value of Q' is of the order of Q, so for
it the form in eq. (3) is correct. Finally eq. (3) can be reduced to

Flo) = L. !
(w) = o 1-y(0)+7y(o)

QZ —1+7y)w) Q2 —2+y4w)
X {(?) (N1O®(Q5)IN) - (?) (NIO™(Q})IN)}.
0 0

(4)
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From eq. (4) we can easily see that for the small values of the anomalous
dimensions y, and vy, which are of the order of «, * the attempt to take into
account the mixing of operators of different twists leads us only to a renormaliza-
tion of their matrix elements. This statement is in an agreement with the general
theorems [3,8].

However the situation changes crucially if y, — vy, tends to 1. This is just the
case when the total dimensions of the leading twist operator and the next twist one
become equal and they both give contributions of the same order to the deep
inelastic structure function. The integral (3) gives an extra log(Q*/Q3), and the
final answer for F(w) can be written in the form

Q2 Qz —1+yyw)
F(w)=alog(_2)'(_2) (NTOD(QF)IN? (5)
05 Qs

in the region w — w_ where w_ can be found from the relation
1 +72(wcr) _Y4(wcr) =0. (6)

Eq. (4) can be interpreted as a mixing of two operators since the typical
virtuality in the diagram of fig. 1b was sufficiently large, namely Q’2~ QQ,.
However within the same accuracy we can consider the above result as the
contribution to the anomalous dimension of the twist four operator in mixing with
the leading twist operator because the leading and the next twist operators give the
same contribution at w = w,.

The above statement does not contradict any general theorems [8]. However it
should be stressed that we introduce the new mass scale (Q2) ((N|OW|N))
which we call the typical virtuality of the gluon inside the nucleon. Even more we
would like to note that Q7 was introduced in such a way that (N [O®|N) — 0 at
4Q§ — (. This scale is irrelevant to the initial virtuality of the photon from which
we start to solve the evolution equation (see ref. [7] for detail discussion of this
point). The physical origin of this new scale is, of course, confinement that breaks
the conformal symmetry of QCD. This is the reason why we can apply to the
operator expansion only general theorems of a massive theory but not for massless
ones **. The last remark is the real origin of some misunderstanding between the
standard approach advocated in ref. [3] and the one which we are discussing now.

To estimate the value of the anomalous dimension of the twist four operator let
us consider the diagram of fig. 1c in DLA of perturbative QCD. In DLA the

* For simplicity we neglect here the running of .
** We are very grateful to J. Bartels and J. Blumlein for discussion on this subject.



594 EM. Levin et al. / Twist four gluon operator

solution of GLAP evolution equation [9,10] for the deep inelastic structure
function of gluons in the leading twist approximation looks as follows:

In—In—
QO x

xG(x, Q%) o exp \/ N

4N.a, Q2 1)

In the moment representation the anomalous dimension related to the above
solution is equal to

NCaS
y2(w) = o

+O(«ay), (8)

where the correction of the order of « does not increase in the region of small w.
The diagram of fig. 1¢ can be written in the form

C,(Q7, 03, @){N10¥(Q}, w)IN)
dw, 2 ! ! ’ ' '

= [ 80M(Q,, Q)T explya(w = w)r' +yy(w)r =25}, (9)
where r'=In(Q"*/Q3%). In eq. (9) we took into account that the anomalous
dimension of the leading twist operator did not depend on the squared momentum
transfer Q2 in DLA (see ref. [1] for the detail discussion of this point). The
amplitude M(Q,, Q,) describes the emission of four gluons from the nucleon.
Thus it is obvious that we can interpret the integral over Q, as follows:

JEOM(Q,, Q) = (N10D(QF)IN.

We would like to draw attention to the fact that the above integral introduces the
new scale Q3 which has the physical meaning of the correlation radius between
two gluons inside the nucleon (see also ref. [7]). It is also very essential that we
assume that the above integral is convergent with respect to the integration over
Q.

For large r’ we can use the saddle-point approximation to calculate the integral
over w’ which gives the answer

Ci(Q, Q3. w){NI10¥(QZ, w)IN)

@ exp{'yz(g)r’ + 72(%)" - 2r’}(N | 0(4)(Q§) [N). (10)
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Fig. 2. The “fan” diagram.

Thus one can see directly from eq. (10) that the anomalous dimension of the
twist four operator for the diagrams of fig. 1c is equal to

5 W 4N, a 1
Ya(w) = 72(2)_ o (11)
We can find the value of w_ from eq. (6) which leads to
3N.a,
W, = .
™
The detail analysis of all ‘fan’ diagrams (see fig. 2) shows that
2N, a,
W=~ (12)
T

(see refs. [1,11,12]). It means that the contributions of the leading twist operator
and the next one become of the same order at x =x_ where

1 b g
In— = —lan—z,
xCl’

if we take N, =3 and a,=47/b In(Q?/A?).

However the principal dynamical assumption in ref. [1] was that the main
contribution to the anomalous dimension of the twist four gluon operator comes
from the diagrams of fig. 1c type. In the next three sections we would like to prove
this assumption and we are going to calculate the anomalous dimension of the
twist four gluon operator in DLA in a consistent way taking into account all
essential diagrams.
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3. Anomalous dimension of the twist four operator in DLA (general approach)
3.1. SELECTION OF DIAGRAMS

We restrict ourselves to the calculation of the anomalous dimension of the twist
four gluon operator in DLA of perturbative QCD since we are interested in the
kinematical region where the anomalous dimensions are large enough y = 1. This
is just the region of small x, where the smallness of the QCD coupling constant «,
is compensated by the large value of the In(1/x) (a, In(1/x) > 1). In DLA the
kernel of the GLAP [9,10] evolution equation (PS(w)) looks as follows:

Nea,

mw

P§(w) = (13)

and describes the exchange of a gluon in the s-channel between two ¢-channel
gluons as shown in fig. 3a. It is worthwhile mentioning that the kernel of the FKL
equation [13] has the same form despite the fact that FKL equation was the result
of the summation of contributions of the order of (a, In(1/x))" in each order of
the perturbation expansion but not (a, In 0?)" as it was done in the GLAP
equation.

Let us denote by arrows the direction of the longitudinal momenta or the
fraction of the hadron momentum x in the Breit frame of the t-channel (vertical)
gluons in fig. 3b. It was shown in the early seventies [4] that the only interaction
between lines with different direction of the arrows gives rise to the large In(1/x).
It means that only pairs of gluons with the colours indices “a” and “b”, “c” and
“b”, “a” and “d” or “c” and “d” but not “a” and “c” or “b” and “d” could
interact in fig. 3b. Thus there are only four type of s-channel gluons in fig. 3b that
are able to interact in arbitrary order. Each of them is ‘hard’ in the sense that it
carries the dominant fraction of the longitudinal component of the momentum x
transferred in the t-channel (x;, =x, > x, in fig. 3b).

Using the direction of lines in the diagrams we can classify them in the following
way:

[2,2): the state of four gluons in the t-channel in which two of them have the
same direction of the energy fraction x; (the same arrows) as shown in fig. 3b.

[3,1]: the state in which three gluons have the same direction of the arrows (see
fig. 3d).

These are two states which we have to discuss separately in the framework of
DLA. They cannot by mixed since otherwise two gluons with the same direction of
the arrows would have to interact in order to change the direction of one of the
arrows. However such an interaction does not give a log(1 /x) contribution as it has
been mentioned before [4].
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Fig. 3. (a) The interaction of gluons in the Born approximation. (b) The interaction of gluons in the

[2,2] state. (c) The diagram for the [2,2] state. (d) The diagram for the [3,1] state. (e) Self-energy
correction.

It turns out that the most important state is [2,2] which we are going to discuss
in a separate section (sect. 4). The contribution of [3,1] will be considered in
subsect. 3.5.

Generally speaking the double log contributions could also come from the
diagrams with emission of “soft” gluons for which x kDX =X, in fig. 3b.
However such gluons do not contribute to the anomalous dimension since four
gluons in the t-channel create the colourless state. So the double log contributions
from “soft” gluon emission are cancelled in the sum of the diagrams, including
both real and virtual “soft” gluons. The last ones are shown as dashed lines in fig.
3c. This property has been discussed many times (see for example ref. [17]) and has
very transparent physical meaning. Indeed, a “soft” longwave gluon could be only
emitted coherently by the state of four gluons as a whole. However such an
emission is very small (vanishes in DLA) due to the zero global charge of our four
gluon operator. In sect. 5 we illustrate this point in detail.
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There is another type of “soft” gluons (with small transverse momenta) that
corresponds to the interaction between the fs-channel lines. All these gluons
together with the self-energy (reggeization) corrections of t-channel gluons should
be summed up separately. However it is shown that this emission also does not
contribute to the value of anomalous dimension (see sect. 5).

3.2. COLOUR STRUCTURE

Before performing the calculation let us discuss the colour of the four gluon
state in f-channel. Four colour indices of SU(3) can be contracted in the following
way:

1.6,,8.4; 2. 6,.6,4: 3. 6,405
abedcde; 5. dacedbde; 6. dadedbce;

7. fapeSeaes 8. facefvaes 9. fadefoce- (14)
However in SU(3) we have four relations between these tensors, namely
favefeae + facefave + fadeSoce =0, (15)
which exists in any SU(N) group.
dopelege t docelape + duaedpce = 3(8upBea + 8acBpy + 82a0pc) 5 (16)
faveFeae t FeveSade + 0apdea + 8040 = 80c8pa = 3d ocelpges (17)
dapedcae = Aaaelpce = FaceFoae = 3(8aabsc — 8apdea)- (18)

The last three relations are valid only in SU(3) *. Thus in SU(3) there are only
three independent colour tensors. It is convenient to choose them as the projectors
on the SU(3) representation for the pair of gluons. For the pair (a, b) they look as
follows:
PO = %aabacd’
l'2

P = 5 L]
8 3fabe cde

Py=13d,,.d

abe“ cde>

P27 = %{5ac5bd + 6ad6bc - 18ab(6cd dabedcde}’
1 212
PlO +Pl(_) =2 6ad8bc - 5ac6bd - Tfabefcde . (19)

* We are grateful to A. Bukhvostov who point out these relations.



EM. Levin et al. / Twist four gluon operator 599

|

(@) sui3)

i
N =

1
2

X

pEED
< X

Fig. 4. The Firtz relation for the gluon interaction.

N|wW
N =

(b)SU(2)
d c

H -

a b

From eqgs. (17) and (18) we can derive a new identity which looks like Firtz’ one
and turns out to be very convenient in all practical calculations *.

l’2

iz adeJcbe = %{aabacd - Sadabc - 6ac‘sbd} + %dabedcde + Efabefcde
=3P, + 3Py + 3P; — P,,, (20)

which is pictured in fig. 4a using a circle for d-tensor and a point for if,, . It is
interesting to note that 10 and 10 do not contribute to eq. (20) so the transition
amplitudes to these states due to the exchange of one s-channel gluon are equal to
zero. The situation for SU(2) is much simpler since there is no d-tensor in this
group and only the first three colour structures from eq. (14) are enough to
describe the colour states of four gluons. The Firtz-like identity for SU(2) is shown
in fig. 4b.

3.3. POLARIZATION STRUCTURE

Let us discuss now the polarization structure of the twist four operator. It is well
known (see refs. [1,9,19]) that only longitudinal (nonsense) polarization of t-chan-
nel gluons with A =0 gives the main leading log(1/x) contribution. In this sense
the polarization structure of the amplitudes shown in figs. 3b and 3d is very simple,

* We are grateful to J. Bartels for discussions of this point with us. We would like also to mention that
he is using eq. (20) in his attempt to get the equation for anomalous dimension of high twist operator
[6] from his reggeon technique [15].
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namely A, However we have to work in the specific axial gauge where we have
for the gluonic field A, the following relation:

0,A4,=0, Q.=0,—xzp,, Q7=0,

since only in such a gauge [16] we were able to reduce the whole set of Feynman
diagrams to the ladder ones in DLA. In the axial gauge the polarization structure
of the gluon propagator looks as follows:

2,0.+0.4a,
d Ad) =8, Y o~ 21
wl ) =8, (¢Q") 1)
and transforms the vector p, into the vector —q,,/x, *. It could be seen directly
from eq. (21) since

and the second term does not contribute in the leading log(1/x) approximation
(see ref. [1] for details).

Thus the four gluon amplitude turns out to be proportional to the product of
four transverse momenta ¢.,,dc,9wpdaa > Which could be contracted into a
scalar in two ways:

€= (qtaqtd) ’ (qtbqtc) and e,= (qtaqtb) ) (qthtd)' (22)

We cannot add an additional power of the transverse momenta since it violates the
log integration over virtuality dg? or the condition to get In Q? contribution.

It is easily to see that the amplitude of the ‘“hard” gluon exchange in the
s-channel (see fig. 3a) has the form Slfa in DLA. Indeed, in DLA the product of
the triple gluon vertex I', ., with the polarization =4, Q. /% pQ’) is equal to
up'o

= 24,
Xq(pQ) 1t

- q;ty,’ Q;;,

in axial gauge (see eq. (21)) and the amplitude of the interaction works as &,
since

Aa 2q1tu.d,ua2q3ta .

* We use here the Sudakov variables, namely 4, =x.p,+a,0,+4ay,.

** The fact that the amplitude is proportional to g,; reflects the gauge invariance of QCD. In the limit
q,»2 -0 (q,»2 = qlzi in our case) the longitudinal polarization coincides with the scalar one (efP) = qu)
and an emission of such gluons should be negligible.
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TaBLE 1
The transition matrix for e, and e,

Initial\ Final & €,
€ 1 3
e, 1 1

Strictly speaking it is possible to write one more scalar, namely (g,,4,.X4,,9,,)-
However this scalar cannot enter the game in DLA for the state [2,2] (see fig. 3b)
since the exchange of gluons between lines with the same direction of the arrows
((a, ¢) or (b, d) in fig. 3b) cannot lead to a log(1 /x) contribution. We have to take
into account this structure for the state [3,1] which is shown in fig. 3d.

Now let us observe how the Lorentz structure &, acts if we add one additional
interaction, say between lines ¢ and b. It is obvious that the structure e, turns out
to be the same after the interaction if the previous one (k, in fig. 3c) gave us the
structure e, (see eq. (22)) as the result of the interaction between lines (¢, b) or
(a, d). The product of transverse momenta gq;, = q,, * reduced one gluon propaga-
tor and provided the log integration over g7, (factor dg3, /g7 in the integral). As a
result the product (g3,q,Xq1.q,,) goes to (g5,q,)Xq5.q5) which also has the form
of e,. The situation changes for the exchange of a gluon (k, in fig. 3c) between the
lines ¢ and 4. In this case we get the new structure of e, type from e, =
(939X g3 93, since

d¢
f(q;tqa)(Qétqat)(%qst)E = 385(94:94:) (93,93,

after trivial integration over the azimuthal angle ¢ of the momentum g5, = g,,.
Finally, the interaction between lines (a, d) or (b, ¢) transfers the structures e,

and e, to e, with additional factor 1 in front of the transition e, —e,. The

interaction between (a, b) and (c, d) works in the same way. So we get the

transition matrix of table 1.
3.4. THE FULL TRANSITION MATRIX

In this subsection we are going to discuss the full transition matrix including
both the transition between different momentum tensors and different colour
multiplets of SU(3). The transition matrix depends on what state [2,2] or [3,1] we
are discussing. Here we would like to continue mostly the discussion of the [2,2]

* In DLA it is always possible to numerate the s-channel gluons in such a way that their transverse
momenta are in the order of increase, namely ko, > k> ko> ... S0 qg, = q{, = ko; g}y = q, =k,
< Go; 9o = 43 = k, < g, and so on (see fig. 3b for notation).
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state but we are preparing all elements to calculate the anomalous dimension for
the [3,1] state, too, postponing the detailed consideration to subsect. 3.5.

The first remark is very simple. The point is that the transitions between e; and
e, or e, and e, are also diagonal for different multiplets of colour SU(3). It means
that their transition amplitude could be written in the form

M‘S,)pj = SGPS,-]-A,—NCP}"), (23)

where we label the colour SU(3) multiplets 0,8, 8, 10+ 10 and 27 by j, i,
respectively; o and p denote the momentum structure: o =1 or 2 means e, or e,.
P is the same as in eq. (19) while P® are the projectors on the colour state of
gluon pair (b, ¢) which can be obtained from P{" by the substitution a © ¢ in eq.
(19). Using eq. (20) it is easy to calculate the values of A; in eq. (23) which are
equal to

Ag=1, Ag=Ag=73, Ap=Ap=0, Ay = —73. (24)

[SIE

Nondiagonal transitions are described by a somewhat more complicated for-
mula, namely
Mtgli),)pj = ]5(1 - BUp)Aij[)i(U)Pj(A)' (25)
The factor 5 in eq. (24) is correlated with the transition matrix for the momentum
structures (see table 1) and A, ; are given in the table 2.
At this moment it seems that the problem has practically been solved since at

the first sight we are able to write the simple evolution equation for the coefficient
function C{*?), namely

dCP¥(p, j) a
dln Q? 1w

2 (M, + M), NCEN (o, i). (26)

pl,at

So the only problem is to find the eigenvalues of eq. (26). Let us note that the

TABLE 2
The transition matrix for the multiplets of colour SU(3) (4, ;)

i/ 0 8 8 10+T10 27

0 3 3/4/2 3/4/2 0 -3y3 /8

8 322 3 3 0 V3 /292

8 3/2¢2 3 -2 0 —3y3 /10y2
10+T0 35 /4 0 —-3v2 /25 0 V3 /45
27 9y/3 /8 -3y3 /4y2 9y3 /20v2 0 -
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factor 2 in front reflects the fact that the gluon exchange between lines (g, b) and
(¢, d) gives the same contribution as the exchange between lines (a, d) and (b, ¢).

However the situation in [2,2] turns out much more complicated and we will
discuss it in sect. 4. Such a simple equation as eq. (26) we can obtain only for the
state [3,1] but also with some modifications which we are going to consider in
subsect. 3.5.

3.5. THE ANOMALOUS DIMENSION OF THE STATE (3,1]

In the case of the state [3,1] all gluons are emitted from one vertical line (« in
fig. 3d). This is the recason why we can integrate over gluons in DLA in the
kinematical region where gluons have strong ordering both for transverse momenta
q,; and for the fraction of energies x; (see fig. 3d for notations):

2 .
Q >q,>q,>q,>q,> ... >0
Xy KX Xy Xy <Ly, ., <1 (27)

The integration over x in the kinematical region eq. (27) leads to w in the
dominator of the kernel in the w-representation as was written in eq. (26).
Therefore we can use for the [3,1] state an equation of the type of eq. (26) with
three important new ingredients:

(1) We should take into account the new momentum structure e, which is

€3 = (1) (21p91a) - (28)

(2) The three gluons (u, v, and B in fig. 3d) are identical so we have to
symmetrize the coefficient function C, with respect to all permutation of these
three gluons. It means that

CP(p, j) =e,CPN, j) +e,CRY(2, j) +e,CP(3, ). (29)

As a result of this symmetrization the matrix elements between the states with
different symmetry in the colour SU(3), namely symmetric (0, 8, 27) and antisym-
metric (8, 10, T0) are vanishing. So the new matrix M® becomes quasi-diagonal.
It contains only two subblocks j, i =1, 3, 5 and j, i = 2, 4 of the matrix of table 2.
Moreover the diagonal elements of M® do not contain the factor 2 in front since
only one s-channel gluon contributes to each component in eq. (29).

(3) By now we have discussed only the emission of the emission of the hard
gluons with the strong ordering in the transverse momenta. As was mentioned
before there are other sources of the double logs, the self-energy (reggeization)
diagrams (see fig. 3¢) which give the double logs in the axial gauge and the “soft”
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gluon emission with k,; < g,, =4, In the whole sum of the reggeizations and
“soft” gluon emissions the double log contribution is cancelled as shown in sect. 5.

It means that we have to include the additional matrix M‘f;?,)ai into the r.h.s. of
the evolution equation:

dcip, j) @, .
_ b 3, :
Am O’ 7e {2MQ), + M@, CF Yo, i), (30)
where CBY was defined in eq. (26).
The eigenvalues of this equation give the anomalous dimensions of the [3,1]

state. We computed these values and the answer for anomalous dimensions look as
follows:

a N

Y3 =1, (31)

where the /; are equal:
in SU(3): [,=2.12; 13; 0.80; 0; —0.665; (32)
in SU(2): [;=2%; 13; -—1. (33)

Thus the anomalous dimensions of this state are smaller than the contribution
of two pomeron cut (see fig. 1b) which led to formula (1) for the value of the
anomalous dimension, or, in the other words, to [, = 4.

4. Anomalous dimensions of the twist four gluon operator for the channel [2,2]
4.1. PROBLEMS AND STRATEGY

The main problem that does not allow to use the ordinary evolution equation in
the form of eq. (31) is the following one. The momenta of gluons in the diagram of
fig. 3¢ (for example k', k,, k, and k) have no such strong ordering as it was in fig.
3d (see eq. (27)) in that part of it where only diagonal transitions occur. In these
parts of the diagram the state could be considered as an exchange of two
independent ladders. Inside of each of them we see the strong ordering in
transverse momenta

ki ko> ky, X <xg<x.
An analogous ordering of the momenta k holds in the other ladder, but there is no

correlation between the gluon momenta from different ladders. The only correla-
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tion exists in the point of branching (gluon with momentum k, in fig. 3c) where
both ladders have common boundary, namely

ki >k, x,<x,, k;>k,, X <x,.

To sum these two-ladder-reduced part of the diagram we cannot use only one
total moment N =1+ w but have to introduce two different N, and N, (w, and
w,) for the description of each separate ladder. Of course w = w, + w,. Fortu-
nately we know the amplitude of each ladder in DLA and are able to sum all
double logs in a direct way for the two-ladder reduced part of the diagram in fig.
3c.

Our strategy in calculating the anomalous dimension for the [2,2] channel looks
as follows:

(1) First of all we sum the diagrams which cannot be reduced to the exchange
of two ladders. For this purpose we solve eq. (26) with M® =0 and find the
anomalous dimensions (vy,) of such substates. The explicit solution gives us

aSNC
Yi= A (34)
TW
where the A; for SU(3) are equal to
A, =0597; 0: —0.316, (35)
and for SU(2):
A, = 0.677. (36)

(2) The next step is to calculate the amplitude for the exchange of two ladders
at the same value of w and y. Of course each ladder can belong to different
representations of colour SUQ) (0, 8, 8, 10, 10, 27), and the two-ladder amplitude
will be different for each of them.

Finally we mix the two-ladder amplitude and the irreducible state that we have
calculated. We find the new diagonal matrix M®, built from two-ladder ampli-
tudes, and solve the complete equation of the type of eq. (26). This procedure is
shown in fig. 3f where fat lines denote the irreducible states and wavy ones are
used for ladder amplitudes.

(3) As we explained below we do not need to take into account the emission of
the “soft” gluons since this emission is cancelled in the whole sum.

4.2. TWO-LADDER AMPLITUDE

To discuss the property of the two-ladder amplitude it is more convenient to
introduce the general (v, w) representation than to use the anomalous dimension
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as we have done so far. In this representation the coefficient function C,(Q?, w)
looks as follows:

d
C(Q% 0) =f2—;;c4(y, o) exp(y In(Q?/03)), (37)

where the integration contour is situated to the right of the singularities in vy.
In the (y, w) representation the exchange of two gluons or the Born approxima-
tion for the ladder amplitude has the form

1
A(Bom) , — ,
1 (w,7) wy
and the full answer for the one ladder amplitude in DLA can be written as

1
w‘y(l - (ach/'”'w'Y))‘i) ,

AP (o, y) = (38)

where the A; are the same as in eq. (24). It is easy to check that for colourless state
in the f-channel we immediately get the anomalous dimension y,(w)=a N, /7w
substituting A, = 1 in eq. (39) and closing the contour on the pole in y(y = y,(w)) *.
It should be stressed that the values of A; in eq. (40) is different from eq. (40),
since we took into account the soft gluon contribution to the ladder kernel.
In a direct way or using the rules of Reggeon Diagram Technique [14] we can
calculate the amplitude for two ladder exchange in the form

AP (w, )

3 [.dwl dw,8(w; +w,—w) dy,dy, 8(y—v,—7v,) 1
! (2mi)* ©17192%2 (1—___a—SN° .A.) (1— o e -)\i)
TwY, TW,Y,

(39)

Using 8-functions for the integration over w, and v,, and closing the integra-
tion contour avoiding the pole of y,w,y, — A;a,N./m = 0 we reduce eq. (39) to the
form

N 1

d
A(ZDLA)=f )
27i w(w—w,)y —Aa N /T

* For the running coupling constant ag= (4 /b)In(q?/A%) we should go to the variable ¢=
In In(g2 /A?) in which the evolution of operators looks as O(¢) = 0(&,) exp(p(€ — £p)). So in this case
all our formulas are valid if we replace the variables in the following way: y » v and «, /7 —4/b.
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The remaining integral could be done closing the contour avoiding the pole

® 4a N A;
W = 1—y/1——— ).
my

As a result the amplitude for the exchange of two ladders belonging to the ith
multiplet of colour SU(3) is equal to *

1
w'yvl - 4(ach/7Tw7)Ai .

AD(w, ) = (40)

4.3. EQUATION FOR THE ANOMALOUS DIMENSION

As in the case of the [3,1] state we should take into account the identity of
gluons “a” and “c” in fig. 3b and introduce the symmetric coefficient function

CENp, j) =€, CPA(L, j) +e,C(2, j). (41)
For this coefficient function we can write the evolution equation in the form

dCP¥(p, j; 0, v)

dIn Q?
a N, A
=¥CENp, j; w,7) = —— 2 (M, M, }CPA(a, i5 0, v), (42)
mw
where
M@ =5 65, P ! 43
agi,pj ~ Yeplijti ( )

" 1-4raN/mroy

Eq. (44) is nonlinear in respect to y but we solved it numerically.
The first eigenvalue of eq. (44) that we found is the pole at **

A =4.0053.

* We are grateful to J. Bartels who pointed out that AGK cutting rules [20] which we used in our
previous publication [18] does not work in this case. So the additional signature factor (5,;) does not
appear in eq. (42) contrary to the same equation in ref. [18).

** We would like to mention that J. Bartels (private communication) was the first who got the value of
anomalous dimension larger than one corresponded to two pomeron cut (A > 4) using his reggeon
technique [15].
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The next ones are

A= —0.032+ 0.062, A=—-0.284i0.027,
for SU(3) and

A =4.029, A=-0.074 +i0.14,

for SU(2).

It turns out that the rightmost singularity is very close to the position of the two
pomeron cut while the others are sufficiently to the left. This fact allows us to
illustrate the result of numerical calculations using the simplified model.

Let us consider the values of y which are very close to

4ra, N,
Y= mTw )

In this case we can reduce eq. (44) to the form

dCPH(p, 0; w, v)
= (1221 0:
d ln Q2 Y 4 (P, , W, y)

“CPp,0; w,y). (44)

a N, ( 1 ) 1
8 ‘/1 —4rpa N /Ty

T W

The solution of this equation can be written in the form
C(w)
a N, ( 1 ) 1
8 \/l —4rpa N, /Twy

CP¥(p, 0; w, y) =

(45)

Yo Tw

Here the function C(w) should be found from initial condition, but it does not

affect the value of the anomalous dimension. The value of the anomalous dimen-

sion is determined by the rightmost singularity in vy in eq. (45). It is easy to see that

the singularities in eq. (45) are originated either by the zero of the dominator or by
the square root singularity

4ra N, w
YE T =4, 2

mTw

It is easy to see that we have the zero of the dominator which is very close to
v = 2y,{w/2) but corresponds to the larger value of A in eq. (35), namely

A=4+ 5. (46)

This is just that eigenvalue which we found from numerical calculation.
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5. Soft gluon emission

In this section we are going to discuss the cancellation of the infrared divergen-
cies due to the “soft” gluon emission in the anomalous dimension of the twist four
operator. The physical meaning of such a cancellation has been discussed in
subsect. 3.1 so here we concentrate on the proof how it occurs in the calculation of
the value of the anomalous dimension of the twist four operator.

5.1. THE LEADING TWIST OPERATOR

We start with the same cancellation for the leading twist, in order to illustrate
the physical origin of it. We prefer to calculate the moments of the deep inelastic
structure function in the so-called leading In(1/x) approximation which leads to
the FKL equation [13] for the function ¢ which is equal

1 2
Fy(w, Q%) = meQz d(w, g%) dg?, (47)

where F,(w, Q?) is the moment of the deep inelastic structure function (see eq.
).
The FKL equation looks as follows:

[43

SNC Q2 ’ ’ 2
wd(w, q,, 9, —q,) = — sz K(q,—aq,, 49y, 95, 9" )d(w, q’, q,—q,) dq’,
0

kra

(48)

where the kernel K has the form

K(a,— 45, 491, 9, 9" )d(w, q', g, —q,) d’q'=

T 2
2(q,—q');
2 "2 2 42
(4 —a) (a1 ~4q'); 454,
- N2 2 +1+ N2 o 'qb(waq,’q]_QZ)
(a1 —a>—a')ai (a,—a,—a')ax
2 2
5T PN
_( 2 "2 + 2 ' 2) ¢(Cl), qy> ql_q2) ’ (49)
d: +(ql_q)t q. +(q2_Q)t

where the first term in the kernel is responsible for the emission of the gluon in
the ladder diagrams of fig. 5a while the second one describes the reggeization of
the gluon (see refs. [1,13] for details).
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From the explicit form of the kernel one can see that there are two kinematical
regions for log contributions:

M lg,—q,!| <q' <gq,~q,, which corresponds to hard gluon emission from
the ladder.

(2) ¢’ — g,- Namely in this kinematical region we have the log contribution
from soft gluon emission, but we can see that the log contribution from the
emission in the ladder diagram (the first term in the kernel) reduces due to
contribution of the gluon reggeization for any values of g; and g,. Practically this
cancellation reflects the same colour factor for gluon emission and gluon reggeiza-
tion, namely N, for the first and N_/2 for the reggeization of each gluon in the
t-channel (two in our case).

The resulting answer for the scattering amplitude (A(xy, q, — q,, 47, 42, q}%
a;") is very simple, namely A is pure imaginary and equal to

i
12 1 2 '
A(xs, 1=z, 47> @3> a5 a3') = 7= (¥p, 01— @20 41> a3, 47> a3')- (50)
B

In the colour state for two gluons in the t-channel (i =8, 8 10 + 10, 27) the
situation looks quite different, since there is no cancellation between the gluon
reggeization and emission. In this case we can rewrite the equation in the following
way:

wd(w, g1, 9, —4;)

a C

i

1
= —8%(q, - Q) +

S { ! ! ’
= [1K (a1~ a2, a1, 42, ') b(w, @', 41— 42) g
4qi ™ ‘08

+{C,—N.} - (a(a?) +a(43))d(w, a1, 4, — 42), (51)

where we use the notation (a(q?) + a(g3)) for the reggeization part of the kernel
K, including all «, and all numerical factors except N.. C; corresponds to the
colour coefficient of the diagram of fig. 5b. We included also the inhomogeneous
term (Born approximation) in eq. (51) which has the principal meaning for our
discussion.

The solution of eq. (51) looks as follows:

b(w, 41, 4, — )
o= {C, =N} (a(a) +a(a3))’

o, q,,a,—q) = (52)

where ¢ is the solution of eq. (48) with the same inhomogeneous term as in eq.
(51).
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(a) Q?
Q
g
¢¥l(a,-9,.9)
Pigra,.q)

Qo

(b)
|
(c)
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q
a-a=p "
a
{d) 1 ‘
t
r*MWT—vw
4, g, ;r
. I
9, % |
\
[ et
p— L >3

(e) [1i

Fig. 5. (a) The ladder diagram for the anomalous dimension of the leading twist operator. (b) Colour

coefficient C; in eq. (53). (¢) Vertex for gluon emission. (d) Interaction between gluon lines with the

same directions of the arrows. (e) Colour coefficient C{ in eq. (56). (f) Colour states of eq. (19). (g)

Colour coefficient for a gluon interaction in state 2. (h) Colour coefficient C/ for the transition 4 — 4
(1), 7->7(2)and 4> 7 (3).
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Fig. 5. (continued).

The main message from eq. (52) is that the scattering amplitude has a real part
even in the lowest order of «,. Indeed, even the Born term in ¢ generates the
amplitude which is equal to

1 1
ABom(xB, g, — 4, qlz’ q22’ q{z, qal) = x_ : lnx_B : {Cl _Nc} . (a(qlz) +a(q22))
B

(53)
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5.2. POLARIZATION STRUCTURE

Here we are starting to consider the soft gluon contribution to the anomalous
dimension of the twist four operator. The first remark is that the polarization
structure of the soft emission is very simple, namely the vertex for such an emission
is equal to

91,405

2
___ttette p =

70 o ™ g A=) &
where all notations are clear from fig. 5c (see also ref. [1] for details).

From the above expression it is obvious that the soft gluon emission does not
change the structure of the ladder, since g2 in the numerator of eq. (52) reduces
the gluon propagator. Thus we have the ladder without the emitted gluon and the
extra factor

x, dx, fqz d*p,

> .
X, D;

C;(colour) asf

Our main problem is to calculate the colour coefficients to see that they are the
same as for the gluon reggeization.

5.3. INTEGRATION OVER LONGITUDINAL MOMENTA

However first of all we have to revise the integration over longitudinal mo-
menta. Namely this integration led us to the rule that the only interaction between
lines with different direction of the arrows gives rise to the large log(l/x)
contribution in DLA.

Our statement is that this is not the case for soft gluon emission, and in this
case we should take into account the interaction with all gluons in the t-channel
(with four of them in our problem).

The point is that zero of the dominator (g —q’)? in eq. (49) comes from the
emission of the gluon in the initial state (not from #-channel gluons with the define
direction of arrows [13]).

Two statements follow from these simple observation:

(1) We can neglect the interaction between lines with different directions of the
arrows for hard gluon emission as we did in our previous consideration.

(2) The interactions between all lines should be taken into account for soft
gluon emission. It should be stressed that the resulting formula for this contribu-
tion looks very simply, namely

a N,

C?qt, 43,43, a3 p, i) = 760— {In g7 +1n g3 +In g5 + In qZ}

XM, .- C¥Nai, 43, 43, 935 p, J).  (55)
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5.4. COLOUR STRUCTURE

The structure of the colour matrix M

hipj 18 very simple and it is equal to

M

pie; = Cl = N8y, (56)
where C/ is the colour coefficient for the transition from the colour state i to j due
to interaction between one definite line and all others, as shown in fig. Se.

We use the same complete set of colour states (see eq. (19)) as before. As one
can see from the explicit formula for our complete set of colour states of eq. (19)
we need to find the expression for the transition between the colour states 1, 2, 3,
4, 7 from eq. (14) to calculate the coefficient C/ (see also fig. 5f, where points and
circles denote if,;, and d,g,, respectively).

There are several observations that help us to calculate C/:

(1) The interaction between all lines in the states 1, 2, 3 in fig. 5f is diagonal
and gives a factor N, due to the fact that in these states one pair of gluons has the
opposite colour charge. It follows directly from the antisymmetry of f,, in the
colour indices. Fig. 5¢g illustrates this statement.

(2) It means that we need only to calculate the transition between the states 4,
7 as shown in fig. Sh. It is easy to see that the interaction with two gluons “a” and
“b” is equal to zero for the states “i” and “j” with the different symmetry with
respect to permutation of the indices “a” and “b”. Thus the transition 4 — 7
vanishes.

(3) The explicit calculation of C! for the states 4 and 7 shows (see fig. Sh) that
they are equal to N_.

Therefore the colour coefficients C/ for the complete set of the colour state of
eq. (19) are equal to

Ci=N,5,. (57)

Substituting the above values of C j in eq. (53) one can see that the soft emission
gives no contribution to the anomalous dimension of the twist four operator in
DLA.

6. Conclusions
The main results of the paper are the following:

(1) Operators of the leading twist and of twist four can mix at w = w_ where
the full dimensions of these two operators become equal, namely

-1+ VZ(wcr) =-2+ 74(wcr)'
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It happens due to the fact that the anomalous dimension of the twist four operator
increases more rapidly at small » than the leading twist one. However this
statement does not contradict any general theorem since namely at o = w,, this
mixing could be interpreted as the contribution of the anomalous dimension of the
leading twist operator to the anomalous dimension of the twist four operator. Such
a mixing illustrates only that all general theorems are not well defined in the case
when the anomalous dimension of the next twist operator becomes of the same
order as the leading twist.

(2) In DLA we found the value of the anomalous dimension and wrote the
corresponding evolution equation. It turns out that the anomalous dimension of
the twist four operator is equal to

n(@) =275 )(1+9) (58)

where 8§ ~ 107 is very small. The smallness of & has very simple origin. As was
shown the main contribution comes from the pomeron-pomeron interaction near
the threshold wy =4a,N_ /7. The pomeron-pomeron vertex is non-planar one
and is suppressed by the colour factor 1/(N2?— 1). The solution of eq. (45) gives
8 a1/NZ.

The above result confirms the hypothesis made in ref. [1] that the rightmost
singularity comes from the exchange of many pomerons (ladders) in 7-channel.

Strictly speaking the pomeron-pomeron interaction has not been taken into
account in GLR evolution equation. Now we can improve this equation using eq.
(58). However the corrections (~ O(8)) are so small that they give the noticeable
contribution only at astronomically high energies (small xg) of the order of
In(1/x ) > 100.

We are very grateful to J. Bartels for numerous and fruitful discussions on the
subject. We thank all participants of the low-x meeting at Lund for encouraging
optimism. Two of us (E.M.L. and M.G.R.) would like to acknowledge the hospital-
ity extended to us at DESY Theory Group where most of this work was done.
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