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The average potential describes the physics at a length scale k~! by averaging out the degrees
of freedom with characteristic momenta larger than k. The dependence on k can be described
by differential evolution equations. We solve these equations for the non-convex part of the
potential around the origin in ¢>4 theories, in the phase with spontaneous symmetry breaking.
The average potential is real and approaches the convex effective potential in the limit & — 0.
Our calculation is relevant for processes for which the shape of the potential at a given scale is
important, such as tunneling phenomena or inflation.

1. Introduction

Many properties of the quantum field theory for scalar fields can be investigated
with the help of the effective potential [1]. In particular, the amount of sponta-
neous symmetry breaking is given by the location of the minimum of this potential.
For practical applications the effective potential is usually calculated by the
standard loop expansion (to which we shall refer as “naive” perturbation theory)
[2]. For a four-dimensional theory with real scalar fields ¢“ the one-loop contribu-
tion to the effective potential at the origin (¢ = 0) takes the form:

U®~(V'(p))" In(V'(p)/M?), (1.1)

where V(p) is the classical potential, M an appropriate mass scale and
’ wv 1 ra
Vip)=2=  p=16%.. (12)
p

Obviously, this contribution is real only for V' > 0, whereas UV develops an
imaginary part if the curvature at the origin becomes negative. There have been
attempts to give an interpretation to this imaginary part [3]. In any case, it is clear
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that eq. (1.1) cannot be a valid approximation to the effective potential which is, by
its definition, real and convex. Indeed, the saddle-point approximation for the
functional integral, which is the basic ingredient of perturbation theory, is no
longer valid if unstable modes are present. For an expansion around the constant
configuration p = (0 the mass term of the fluctuations is given by V'. “Naive”
perturbation theory cannot be applied for negative V’. The same problem appears
for non-vanishing p if the mass term of some of the fluctuations becomes negative.
In spontaneously broken theories this occurs generically for a certain region in
field space around the origin. One concludes that the loop expansion breaks down
if p approaches the region where some of the fluctuations become unstable.

As long as all dimensionless couplings are small one may try to remedy this
situation by an appropriate partial resummation of the loop contributions. Let us
introduce in the functional integral some infrared cutoff characterized by a mass
scale k. Then only quantum fluctuations with squared momenta larger than k? are
included for the computation of the correspondingly modified effective potential
U,. One can treat U, perturbatively, even at the origin, as long as k%> —V'. We
will study what happens with U, as the infrared cutoff k decreases. The evolution
of U, with k& can be described by differential evolution equations which are
analogous to the renormalization group equations. The solution of these equations
corresponds to a partial resummation of the “naive” perturbative contributions.
There are various possible ways to implement an infrared cutoff. For example, one
could introduce an additional mass term such that V' — V' + k2 *. We use here a
different infrared cutoff which is particularly well suited for our purpose. We study
the average action as formulated in ref. [4]. For a detailed presentation and
discussion we refer the reader to refs. [4-6].

The average action is the effective action for averages of fields over a volume
~ k=% Tt describes the physics for processes which have a characteristic length
scale ~ k™! acting as an effective infrared cutoff. All degrees of freedom with
momenta larger than k& are integrated out by the averaging. The average potential
U, is real and does not have to be convex (as opposed to the effective potential). It
is the appropriate quantity for the study of processes, such as tunneling or
inflation, which depend on the full range of the potential and especially on its
non-convex part. It can be proven [4] that the average potential U, approaches the
effective potential U as k — 0. It must therefore become convex in this limit.
Nevertheless, for processes with a characteristic infrared cutoff the quantum
fluctuations with g2 < k2 should not be included, as they are in the effective
potential. It is therefore U, and not U which is relevant for such processes.

We concentrate in this paper on the N-component ¢* theory in arbitrary
dimensions. We neglect the wave function renormalization effects. The corre-
sponding anomalous dimensions are small [5] and do not change the qualitative

* This procedure gives similar qualitative results as the method employed in this paper.
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behaviour of U, in the region of interest. The one-loop contribution to the average
potential reads [4,6]

UP(p) =3(2m) ™" [da{In( P(q) + V'(p) +2V"(p)p)

+(N=1) In(P(q) +V'(p))}. (1.3)

This is the same formula as in the “naive” perturbation theory (1.1), except that
the inverse propagator g2 is now replaced by P(g)

2

q
P(Q)=Tk2(q)‘,

(1.4)

fi(a) = exp{ —a(a?/k%)"), (15)

where a and B are constants of order 1. This form of P provides for an effective
infrared cutoff for all modes with g2 < k2. In contrast, the contributions from the
modes with g2 > k? are not modified. We also note that for k — 0 one recovers
directly the standard one-loop contribution to the effective potential (1.1).

We now take the logarithmic derivative with respect to k£ and substitute U, for
V in the integral. This “renormalization group improvement” [4] gives the evolu-
tion equation (¢ = In(k /A), x = q?)

® apP 1 N-1
—Uk=vdf dx x4/271 — 4 , (1.6)
at 0 a\P+U/+2Up P+U/
with
vy =217 (d 2). (1.7)
Eq. (1.6) is the master equation for our investigation. It is valid as long as
k2+Ul(p)>0,
7.2 k/(p) " (18)
k=+ Ui(p) +2U¢ (p)p >0,
where
k*=min P(q) ~k>. (1.9)

If (1.8) is not fulfilled, the saddle-point approximation around a constant scalar
configuration breaks down. One has to expand around a spin-wave solution [4,6]
for N> 2, or around a vortex (N = 2), or a kink (N = 1).
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In the following, we solve eq. (1.6) for p ~ 0, where the “naive” perturbative
calculation of the effective potential breaks down. We derive analytic expressions
for the average potential U, at a given scale k. We obtain a simple picture for the
behaviour of the potential as a function of & and we describe how convexity is
approached in the limit £ — 0.

In sect. 2 we parametrize U, in terms of its p-derivatives at p = 0. We solve the
resulting infinite system of differential equations approximately, by truncating at
some finite number of equations, retaining only a finite number of derivatives of
U,. In sect. 3, we solve the full evolution equation for the first derivative of U,.
This solution is the most important result of our investigation. It corresponds to
the solution of the system of sect. 2 with an infinite number of equations. A
summary and our conclusions are presented in sect. 4. Several technical points of
the investigation are discussed in the appendices.

2. Solution of the evolution equation by truncation

We are interested in solving eq. (1.6) in the region around the origin (p ~ 0). As
a first attempt we parametrize U, in terms of its successive derivatives at p = 0 and
truncate the resulting infinite system of differential equations at some finite
number of equations. This is achieved by setting 8"U,(0)/dp" = 0 for all n bigger
than some maximal number. For simplicity of the presentation we keep here only
the first and second derivative of U,. The effect of the third and fourth derivative
will be discussed later. We define

—R*=U/(0), (2.1)
A=U¢(0), (2.2)
and obtain:
dﬁz d-2y7d =2
o = TN+ vk ALY ), (2.3)
da d—4327d( _ =2
47 =~ (N +8) vk WL 1), (2.4)
where
» P
d( _ 72— _pj2n—d d/2—-1-" (p_ =2y~ (r+D
Li(-F*) = —nk fo dx /27— (P=@) """ (2.5)

The integrals L‘f, are always negative and diverge for z? — k2. Their propertie_s for
| &?| < k? can be found in ref. [5] and their behaviour near the pole at @? = k? is
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discussed in appendix A. As a result, x> decreases for decreasing k. In the
symmetric phase z’> vanishes for some finite scale k, and becomes negative for
k <k,. The pole at > =k? is not relevant. In the spontaneously broken phase,
however, the mass term decreases slower than k2 and becomes of the order of k?
at some scale. The evolution equations are then dominated by the pole of L%. We
will see that the behaviour for k2 near u’ is quite different from the usual
one-loop renormalization group equations which correspond to a vanishing argu-
ment of L%. On the other hand, the “naive” perturbative results remain valid in
four dimensions for k2> % (One should include, however, the logarithmic k
dependence of the quartic coupling and the “quadratic renormalization” [4] of &2.)

The leading pole in the functions L% behaves like ~ (k2 —@?)~*1/2 In the
vicinity of the pole we find

L= —Ke,
L4= —3Ke™5, (2.6)

with

€= =k?-—. (2.7)
Here K is a dimensionless constant defined in appendix A and k? reads in our
parametrization (A.6)

A 1
k= ————. .
1 —exp(—2a) (2.8)

For a > 1, k? is effectively independent of a and k2 ~ 1. Since we are interested
in the behaviour of the evolution equations close to the pole it is convenient to
rewrite egs. (2.3), (2.4) in terms of e. We can also absorb the explicit dependence
on k and on various constants by defining the dimensionless quantity

A =v,K\=v,Kk? *x. (2.9)
Thus we obtain
de 2 Y ,.—3/2
i 2k*—¢€) —Are , (2.10)
di Y 2_-5/2
E= —(4—-d)A +BX¢e , (2.11)

A, =(N+2), B, =3(N+8). (2.12)
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For any non-zero value of A the right-hand side of (2.10) and (2.11) blows up as

e—0.
A new set of variables

x =Ae™2, (2.13)
dt

r=71(t), with dr=—, (2.14)
€

makes the behaviour of the system eqs. (2.10), (2.11) more transparent

d .

d_j = (2k2— 2¢ — A, x)e, (2.15)
dX 3 2 72

E:(BIJF;AI)X — 3k + (1-d)e)x. (2.16)

Depending on the number of dimensions, the last system of differential equations
has two or three fixed points. Only one is infrared stable, namely

3k2

0,—|. 2.17)
4,7 B, (

(€5 x¢) =

The other fixed points are discussed in appendix B and turn out to be neither
infrared nor ultraviolet stable. For €, y sufficiently close to the fixed point (2.17)
we can linearize eq. (2.15) in € and neglect the terms ~ ey in eq. (2.16). We also
write

x =xs+ (8x), (2.18)

and neglect terms ~ (8x)?. The equations simplify considerably

de C 2.19
d_’r_ €, ( )

5 .
%) _3i2(59), (2.20)

dr
with

C=2k-4 2B,k 2.21
= 1Xt Bl+%A1 ( . )

With the boundary conditions

T(t) =0, e(r=0)=¢, (8x)(7=0)=(x)o (2.22)
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one obtains from egs. (2.19), (2.14)
€o
t=t0+E(exp(C~r) -1). (2.23)

This indicates that ¢ approaches a finite value ¢, for 7 —» —x

€
= lim 1(r) =1y~ EO (2.24)

The behaviour of the system becomes now apparent: Both € and 8y vanish for
t—>t;

e=e€o+C(t—1)) =C(t—1p), (2.25)

C 3k2/c
(6x) = (8/\/)0{6_0(1 —tf)} . (2.26)

In terms of the original variables k, %, A our solution reads

- k

w?=k*- Ck? ln(k—f), (2.27)
30572 k 3/2 k 3k2/C
A=———k*?In|— 1+cy|ln| — 2.28
204KB, [n(kf)} { “ n(kf)] } (228
where, in an obvious notation
€p

ki=k, exp(—z). (2.29)

The integration constant c, is determined by the initial condition for A. The
behaviour indicated by our solution can be summarized as follows: As soon as &’
approaches the vicinity of the pole, the system becomes strongly attracted towards
the fixed point. The ratio m?/k? increases with decreasing k and reaches the
boundary value one for a finite value k,. The quartic coupling A evolves ~ /2
(plus small corrections) and reaches zero at the same value k,. For k =k, the
average potential is purely quadratic, namely

U (p) = —kip (2.30)

We cannot continue our solution for k < k;, since for &2 > k? the condition (1.8) is
violated. In this case the constant solution is not a minimum of the constrained
action [6], and the expansion should be performed around the true minimum (spin
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waves for N > 2, vortices for N =2, or kinks for N=1). For N > 2 the average
potential obtained from an expansion around the spin-wave solution, has, in the
tree approximation, the form [6]

U(p) = —K%p. (2.31)

This matches exactly (2.30) for k = k;. It is remarkable how the evolution of the
average potential, with an expansion around the constant solution, leads naturally
to the form implied by the expansion around the spin-wave configuration.

We next enlarge the truncated system of differential equations and include also
the third and fourth derivative of U, at the origin. The technical discussion of the
infrared fixed point behaviour is similar as above and is presented in appendix C.
The main conclusion is that the fixed point value for y; increases (see table C.1) as
the number of differential equations is enlarged. As a result the decrease of e
becomes slower and the ratio k;/k, decreases. The series for y; converges only
slowly as the number of derivatives is increased. There are two points which are
not yet settled and require further investigation:

(i) The fixed point at € =0 is infrared attractive as long as

2k?— A, x> 0. (2.32)

Since y; seems to increase with the number of equations of the truncated system,
one may wonder whether the asymptotic value of y;, without a truncation (i.e. an
infinite number of equations) still satisfies the above relation.

(ii) In the truncated system e = 0 is reached at a finite k;, which decreases with
the number of equations. It is an interesting possibility that k; reaches zero
without a truncation. In sect. 3 we address both the above questions. We show that
e =0 is a stable infrared fixed point of the full evolution equation for the first
derivative of the potential. Moreover, € = 0 is reached asymptotically only for
k—0.

3. The full evolution equation for the potential at the origin

In this section we treat eq. (1.6) as a partial differential equation depending on
two variables t and p. This corresponds to an infinite number of ordinary
differential equations for an infinite number of higher p-derivatives of U,, consid-
ered as functions of ¢ only. In particular, we are interested in the derivative with
respect to p of eq. (1.6)

3
57 Ui(p) = (N = Duak 20 (p) LU (p))

+0,k? 23U (p) + 20U (p)) LA(UL(p) + 20U (p)). (3.1)
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In analogy to (2.7) we introduce the function
e(k, p) =k2U{(p) + k2, (3.2)
and we use the dimensionless field variable
p=k*"4. (3.3)

In terms of these variables eq. (3.1) reads

de de A de
—=(d-2)p—+2(k*—€) + (N-1)v,—Li(¢)
at ap ap
32 12500\ paf e 252 3.4
+ —+2p— +2p—|. .
ba|355 T 255 |Lile T 205 (3.4)

Here the partial derivative d/dt is now taken at fixed g (not fixed p!). For small €
we can use the approximation (2.6) and write:

g 2k? - Qif—e—w +4, (3.5)
ot p
with
Q=(N+2)y,K. (3.6)
The contribution
A=(d- 2)/33—6. —2e+ 2udﬁi€2L‘f €+ Zﬁ?i_)
p ap op

de
+ 3Ud5: Ltf
9

Jde de
e+2p— |+ Ke_3/2} + (N - Do, —{Li(e) +Ke 2} (3.7)
ap ap
does not influence the leading behaviour for small ¢ and g, and will be neglected
in the following.
In terms of the variables

€ ~-1/2 k3
= -~ , == — ~’ 3.8
Y (kz) YT of (38)
eq. (3.5) reads
dy dy
—=—931+—= .
a7 3y (3:9)
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The most general solution of the above partial differential equation satisfies the
relation

1

v+y=F(2—y—2—t). (3.10)

The arbitrary function F is undetermined until boundary conditions for y(¢, y) are
imposed.

In order to implement the boundary conditions it is more convenient to return
to the variables p, e. Then at some scale k, we impose

€(0, p) =€o(p)- (3.11)

The function F is now completely determined through the equation:

calp) co(p) |
F(W_IO):TPJ’_(T) , (312)
where
Fze
r-=g—. (3.13)

The most notable property of the above equation is that it specifies the essential
features of F for the most general class of boundary conditions which are
physically relevant. We will only assume that, for a ¢* theory, Uk’o(p) is a
monotonically increasing function of p which diverges for p — «. Then eqgs. (3.2)
and (3.12) imply that, for a sufficiently large argument, F is a monotonically
increasing function, which approaches infinity for an infinite argument. This
property is independent of the precise form of the boundary conditions. The
asymptotic behaviour of € or U, for kK — 0 can now be presented in a concise
form. It is given by the relation

- _ e(k,0
Ul(p) = —k*+k%(k, p)= —k>+k*? ( ) 5, (3.14)

{1-e(k, 0)'7(k*/Q)k* %}

with
12 2

{F(In(A/k)))

e(k,0) = (3.15)

We conclude that e(k, 0) vanishes for k — 0. Its precise functional dependence on
k is determined by the initial conditions for U, (p). Eq. (3.14) is the most essential
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outcome of our investigation. The leading term for U/(p) is in exact agreement
with the result (2.31) which was obtained in ref. [6] from an expansion around the
spin-wave configuration. It is remarkable that eq. (3.14) has been obtained through
an expansion around the configuration of a constant scalar field, which remains
now valid for all values of k. The essential physics has been reproduced by the
“renormalization group improvement” without ever having to resort to the use of
the spin-wave configuration. Eq. (3.14) contains also the deviations from the
leading behaviour (2.31) for non-vanishing values of k. We believe that very close
to the origin these corrections are actually more reliably estimated by the present
method than by the loop expansion around the spin-wave configuration whose
shortcomings have been discussed in ref. [4].

At this point some remarks are due on the region of validity of the solution
(3.14). The contribution 4, given by (3.7), which was neglected in our discussion of
the differential equation (3.5), remains small as long as € < 1 and

Q — —-1/2
p < pkﬂ' 2e(k, 0)” 12 (3.16)
In particular, one could infer from eq. (3.14) that U, has a minimum at
= gkd"z{ié k,0)"'*—1) 3.17
p =k {ke(k, 0) - (317)

This point occurs, however, outside the range of validity (3.16) and should not be
trusted. We note that for d > 2 the region of validity for p shrinks to zero with a
power of k. In contrast, this region increases for k — 0 in two dimensions. We also
note that the determination (3.12) of F for very large arguments involves large
values of p where neglecting A is is not justified. This may be relevant in two
dimensions where no spontancous symmetry breaking is expected for N>2
(compare ref. [5]).

The higher derivatives of the potential near the origin can be computed from
eq. (3.14). One finds

]22

Uk”(p) — Ee(k, p)3/2k4~d’

L4
Ukm(p) — E_e(k’ p)4k6_2d,

4k

U (p) = ek, p)*2kE3, (3.18)
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Inserting the definitions (C.1), (C.3) and (C.6) one obtains for the fixed-point
values

2k?
XMT N2
’ 6k*
TN+
24k
We = m (3.19)

These values correspond to the fixed points without a truncation of the master
equation (1.6). In the language of sect. 2 we now retain an infinite number of
differential equations for the derivatives at the origin. We display the numerical
values (for g = 3, k%=1.175) in table C.1, where they can be compared with the
corresponding values for the truncated system discussed in sect. 2 and appendix C.

Before we conclude this section, it is instructive to discuss a specific class of
boundary conditions, in order to explicitly obtain the function F for that class. We
consider boundary conditions of the form:

UL(p) = ~ (ko) + M(ko)p. (3.20)

The function F can now be determined with the help of egs. (3.2) and (3.12). One
finds

F 2 R (3.21)
= x+t —, .
where
R—1-— M (Ao) ,
k22
Ok~ _
S= —;S_A(ko)' (3.22)

For large x the first term on the right-hand side of the last expression becomes
negligible, and F(x) is a monotonically increasing function which diverges linearly
for x — «. For k — 0 the average potential is given by (3.14) with

4k,m:=é?a{m(%ﬁ}‘a (3.23)
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4. Summary and conclusions

The average potential U, describes the physics at a scale k by averaging out the
degrees of freedom with momenta larger than k. It is a real quantity which does
not have to be convex. It is the appropriate tool for the study of physical processes
such as inflation or tunneling, where the non-convex part of the potential is
needed. Typically, such processes have an inherent length scale / which acts as an
infrared cutoff. By choosing k¥ ~I~! one accounts for all quantum fluctuations with
squared momentum g2 larger than /2. On the other hand, the contributions from
modes with g2 <I~? are not included, as appropriate for a physical infrared cutoff
given by [. (Of course the relevant length scale ! has to be determined by the
physics of the process under investigation.)

In this paper we have solved the evolution equations for the average potential
around the origin in spontaneously broken N-component ¢* theories. This is the
region where the potential is non-convex. We have used a saddle point approxima-
tion around a constant-field configuration. We have found that, for k — 0, the
potential displays a very simple behaviour

Uy~ = 3k%¢%$,. (4.1)

The exact outcome of our investigation, which contains the first corrections to the
above expression, is given by eq. (3.14). Our results are in agreement with a
previous one-loop calculation of the non-convex part of the average potential for
N > 2, which has been based on an expansion around a spin-wave configuration [6].
The remarkable aspect of our calculation is that we have never made use of the
spin-wave configuration. The essential physics has been reproduced through the
expansion around the constant configuration and the renormalization group evolu-
tion of the potential. In the limit k = 0 we recover the convex effective potential.

The non-convex part of the average potential is important for the calculation of
the tunneling rate between different minima, for example between the two minima
of the model with discrete symmetry (N = 1) if a small symmetry breaking term is
added. Usually calculations of the tunneling rate use the perturbative potential
(often even the classical potential) which has near the origin the form

Up= —supd’. (4.2)

The validity of these calculations depends on the question whether the physical
infrared cutoff /=2 relevant for the tunneling process is larger than 3. If not, one
has to replace (4.2) very near to the origin by

U~1-2¢2, (4.3)

with an appropriate modification for ¢ away from the origin. The true tunneling
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rate will disagree with the predictions of “naive” perturbation theory in this case.
Similar problems may arise in inflationary cosmology when the non-convex part of
the “naive” perturbative potential is used. It should be noted that our result (3.14)
is valid only for a certain region around the origin. The potential around the
minima has been calculated in ref. [5]. One has to perform a straightforward
(although technically involved) calculation in order to obtain the form of the
average potential for the remaining regions of the field space. We hope to report
on this soon.

We would like to thank M. Drees for his help with the numerical checks of the
results.

Appendix A
The integral
14 __p2n-d " d/2—1§ —(+1)
/(w) = —nk f dxx (P+w) , (A.1)
0 at
X X
P(x)=—5—= - (A.2)
1=f(x) 1—exp{—2a(x/k2) }
has a pole at w = —k?, where
k?=min P(x). (A3)

We are interested here in the behaviour of L? in the vicinity of the pole. (See ref.
[5] for w > 0.) By defining the dimensionless quantities

X s P W k2
y=p, P=F, W=P, k=k—, (A4)
we can rewrite the integral as
o d ﬁ y A —(n+1)
Li(w) =2n dyy4/2+! (£/ )(P+W) (A5)
0 dy
We work with the particular family of parametrizations [5]
exp(2a) — 1
p- = (A6)

2a ’
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for which P has its minimum at y = 1 with the value

. A 1

Since P is a monotonic function of y on either side of the minimum we can define
a new variable z, such that

P=k*+z% (A.8)

A A 1/
z=—(P-k?) for y <1. (A9)
We also define
e=w+k2, (A.10)

and substitute in (A.5). We find

Li(e) = =2f dzGi(2)(z+e) ", (A.11)
A, oA —1

aP
GH(z) =2nzy?/?| — -1 1 (A.12)

y

Due to the relation

Le L9 L? A.13
n+1 = n de n ( . )

we only have to evaluate L. Force € — 0 most of the contribution to the integral
comes from the region y ~ 1. Therefore, it is a good approximation to expand

P=k*+a,(y—1) +ay(y—1)+... (A.14)
with
1 d?p exp(2a) 1 1
- -— A.l5
= 2. dy?|, -, 2 (l—exp(—Za) 2a ( )
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The inversion is now straightforward and we obtain

a3
e=al (- ){1+ 52 (r- 1), (A16)
a;
y=1+a;'"%z—Ja;%a,z?, (A17)
dy =(a;'*~a;%a,z) dz. (A.18)

The function G(z) can now be expanded around z = 0. Near the pole of L‘f one
finds

Li(e) = =2GH(0) [ dz(22+e) " =2G(0) [ dzz(2+¢e)
= —Ke *?—Re™, (A.19)
with
K=ma;'%k?, (A.20)
d—2 2a,)\.
R= - kr-a. (A.21)
a, a;

The next correction is proportional to e~ !/2. In summary, the leading contribu-
tions to the first four integrals are given by the following expressions:

Lf(e) = —Ke 32, L‘é(e) = —%KEVS/Z,

Li(e)= —YKe 7%, Li(e) = —LKe 2 (A22)

Appendix B

We want to investigate the stability of the possible fixed points of the system of
differential equations

d A
d—j- = (2k2 —2e —Al,\/)e,

dy A
5, = ~(4—dxe+Bix’ — 3x(2k? —2¢ —A,x). (B.1)
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We are looking for values (e;, x;) which annihilate the right-hand side of these
equations. Two solutions are

0 3 B.2
(€1, x1) = T4, 4B, (B.2)
(€2, x2) = (0, 0). (B.3)
For d < 4, there is another solution
B E‘cz (4 _ i) !‘:2
(€3, x3) = Nl g 0 — N1 . (B.4)
B1+(4 d)ZAl Bl+(4 d)ZAl
For ¢, y sufficiently close to the fixed point we can write
e=¢e+(8€), x=x;+(0x), (B.5)
and, keeping terms only linear in (8¢), (8y), obtain
d ((s ~ [ (8
e g [ (o)), (B.6)
dr { (8x) (6x)
The last equation has the solution
8 N 1)
(0e) | _ exp(M,7) ( €)") (B.7)
(8x) (8x)o
For the 2 X 2 matrix M;r we have the identity
exp(M;7) = by(7) + by(7) M. (B.8)
Here the functions b,(7) are given by the relation
exp(A;7) =by(7) + b(7)4A,, (B.9)
where A; are the two (non-equal) eigenvalues of M,. This gives:
b A; exp(A,7) — A, exp( A7)
- Ay = A, ’
exp( A7) —exp(A,T
= (A7) p(A; ) (B.10)

)‘1_)‘2
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It is clear that a stable infrared (ultraviolet) fixed point requires both eigenvalues

of M; to be positive (negative). It is a straightforward exercise to calculate these
eigenvalues for the points given in (B.2)—-(B.4). For (e, x,) they are

2B k?

K B, +34, |, (B.11)
2 .
3k*
whereas for (e€,, x,) one has
A -3k '

Finally one finds for (€5, x;)

()\31) %{[3122_ (d+ 1)63] + {[3]22_ (d+ 1)63]2+ 8(4—d)]2263}1/2}

X ;{[3122 —(d+1)e] - {[3122 —(d+ 1)) +8(4 —d)12263}1/2}

(B.13)

It is clear that (e,, x;) is the only infrared stable fixed point, while (e,, x,) and
(e3, x3) are neither infrared nor ultraviolet stable. We identify (€5, x;) with the
fixed point corresponding to the phase transition between the symmetric and the
spontaneously broken phase. (It is infrared unstable for € and infrared stable for
A) Although we recover qualitatively the correct phase structure, our treatment of
(€5, x3) is not very precise quantitatively, since e is not small. For a better
treatment of this last fixed point one has to evaluate the integrals LY away from
the pole [5].

Appendix C

In this appendix we enlarge the truncated system of evolution equations by
taking into account the third and fourth derivative of the average potential at the
origin. We define

—B=U0),  A=U0),

p=Ur(0), &=U"(0), (C.1)
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and derive from (1.6) the following evolution equations:

dm? _
? = —(N+ 2)Udkd_2)\L‘f(—,l_,L2),

da - B
T — (N +8) vk *NLY(—E%) + (N + ) v,k TLA(— 1),

dv _ _

Tl 2(N +26)0,k?" RLY(—E*) — 3(N + 14) v,k *pALs(— 1)
+(N+6)u,k? 2L - &%),

T —6(N + 80) v kN LY —1?) + 12( N + 44) v, kDALY ( —12%)

— 3(N + 24) 0,k 7452 LE(—R2) — 4(N + 20) v,k AGLE(—R?). (C-2)

The integrals L¢ are discussed in the appendix A. In the vicinity of the pole at
1? = k2, it is convenient to define the dimensionless quantities

k2 _ :EZ
k2

=2
m
—,

_jro

€ —

e

X =uv,Kké X,
5= (v,K) k¥ 5p,
7= (v,K) k3%, (C.3)

(We work again with the parametrization (A.6), for which k2 and K are given by
(A.7) and (A.20) respectively.) Substituting in egs. (C.2) gives

de 72 y . —3/2

E=2(k —6) —‘AIAG

dA . .

E = —(4—d)/\ +Bl)\2€_5/2—Bzﬁe_3/2,

dv - -

3 = ~(6-2d)7 — C X2+ Crhie 2 = Cye 7,

do - - -
Pl (8 —3d)G + DA% 2 — D, Nie /2 + D352 /2 + D,AGe /2, (C.4)
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with
A =N+2,
B,=5(N+8), B,=N+4,
C,=32(N+26), C,=3(N+14), C,=N+6,
D, =1F(N+80), D,=%(N+44), D,=3(N+24), D,=6(N+20).
(C.5)
We rescale ):, v and & by appropriate powers of €
x=Ae 32, y=pe ¥  w=de 2, (C.6)

and use the variable 7 defined in eq. (2.14). In terms of the new variables egs.
(C.4) read

de A

a=(2k2—26—A1X)6,

X 2 3 L2

‘(;= _(4_d)X€+le —lell—EX(Zk —26‘—A1X),

dy 3 4 r2

3 = " (6-2d)ge-Cix +Coxth — Cy0 — 30(2k* = 2¢ — A, x),

de .
P —(8-3d)we+ D, x* —D,x*¢ + Dyyp* + D, yw — %w(Zk2 —2e -—Alx).

(C.7)

The last system of differential equations has a fixed point with ;=0 and y, ¢, w
taking values that set the right-hand side of the equations to zero. This fixed point
(&5, Xg» Wy, wy) is infrared stable as long as A,x, < 2k?, and therefore is ap-
proached for 7 — —c. In terms of the variable ¢ it is then reached at a finite value
t;. We have solved numerically the system (C.4), for k2 =1.175 which corresponds
to B =3, and for various initial conditions. We have verified that, as ;=0 is
reached for a finite value ¢;, (x, ¢, w) always approach (x;, ¥;, ;). The fixed
point (e, Xy, ¥, w;) is independent of d. The quantitative role of the higher
derivatives can be estimated by determining the fixed-point values for different
truncations of the evolution equation. This is presented in table C.1 for various
values of N. The first column lists the fixed points for the truncation which keeps
only the second derivative. The third and fourth derivatives are added for the next
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TaBLE ¢.1
Fixed points for different truncations of the evolution equation. EAis the number of the retained
differential equations. We display the values for various N and use &2 = 1.175, which corresponds to

B=3

Xt Xt ¥ Xt Y N Xt Ue o

0.196 0.365 0.223 0.475 0.476 0.507 0.783 0.921 1.442
0.312 0.157 0.403 0.331 0.281 0.588 0.518 0.608
0.131 0.239 0.088 0.303 0.176 0.101 0.392 0.230 0.180
0.137 0.026 0.165 0.046 0.011 0.196 0.058 0.023

22%2
B S
=4
2

]
_
1=
o
=3
2
o

two columns. Even though the values of the fixed points vary, it is clear that the
qualitative behaviour of the solutions is unaffected by the higher derivatives. As e
runs to zero at a finite ¢;, the couplings A B, & approach zero proportional to
increasing powers of €. In the last columns we list the asymptotic values of
(x¢> ¥y, @) in the limit that keeps an infinite number of higher derivatives. These
values were obtained in sect. 3 by solving the full evolution equation for the first
derivative of the potential and are given by egs. (3.19).
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