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Theaveragepotentialdescribesthe physicsata lengthscalek
1 by averagingout the degrees

of freedomwith characteristicmomentalargerthan k. Thedependenceon k can be described
by differential evolution equations.We solve these equationsfor the non-convexpart of the
potential around the origin in ~ theories,in the phasewith spontaneoussymmetry breaking.
The averagepotential is real and approachesthe convexeffectivepotential in the limit k —~0.
Our calculationis relevantfor processesfor which theshapeof the potential at a givenscaleis
important, such astunnelingphenomenaor inflation.

1. Introduction

Many propertiesof thequantumfield theory for scalarfields canbeinvestigated
with the help of the effective potential [1]. In particular, the amount of sponta-
neoussymmetrybreakingis givenby the location of the minimumof this potential.
For practical applications the effective potential is usually calculated by the
standardloop expansion(to which we shall refer as “naive” perturbationtheory)
[21.Fora four-dimensionaltheorywith realscalarfields 4~the one-loopcontribu-
tion to the effective potentialat the origin (4~= 0) takesthe form:

(l”(p))2 ln(V’(p)/M2), (1.1)

where V(p) is the classicalpotential, M an appropriatemassscaleand

V’(p) = = (1.2)

Obviously, this contribution is real only for V’ ~ 0, whereasU~1~developsan
imaginarypart if the curvatureat the origin becomesnegative.There havebeen
attemptsto give an interpretationto this imaginarypart [31.In any case,it is clear
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thateq.(1.1) cannotbe a valid approximationto the effectivepotentialwhich is, by
its definition, real and convex. Indeed, the saddle-pointapproximationfor the
functional integral, which is the basic ingredient of perturbationtheory, is no
longervalid if unstablemodesare present.For an expansionaroundthe constant
configuration p = 0 the mass term of the fluctuations is given by V’. “Naive”
perturbationtheorycannotbe appliedfor negativeV’. The sameproblemappears
for non-vanishingp if the masstermof someof the fluctuationsbecomesnegative.
In spontaneouslybroken theories this occursgenerically for a certain region in
field spacearoundthe origin. Oneconcludesthat the loop expansionbreaksdown
if p approachesthe regionwhere some of the fluctuationsbecomeunstable.

As long as all dimensionlesscouplingsare small one may try to remedythis
situation by an appropriatepartial resummationof the loop contributions.Let us
introducein the functional integral some infrared cutoff characterizedby a mass
scalek. Thenonly quantumfluctuationswith squaredmomentalarger than k2 are
included for the computationof the correspondinglymodified effective potential
Uk. Onecan treatUk perturbatively,evenat the origin, as long as k2 � — V’. We
will studywhat happenswith Uk as the infraredcutoff k decreases.The evolution
of Uk with k can be described by differential evolution equationswhich are
analogousto the renormalizationgroupequations.The solution of theseequations
correspondsto a partial resummationof the “naive” perturbativecontributions.
Thereare variouspossiblewaysto implementan infraredcutoff. For example,one
could introducean additionalmasstermsuchthat V’ —s V’ + k2 ~. We use herea
different infraredcutoff which is particularlywell suitedfor our purpose.We study
the averageaction as formulated in ref. [4]. For a detailed presentationand
discussionwe refer the readerto refs. [4—61.

The averageaction is the effective action for averagesof fields over a volume

k~’. It describesthe physics for processeswhich havea characteristiclength
scale k’ acting as an effective infrared cutoff. All degreesof freedom with
momentalarger than k are integratedout by the averaging.The averagepotential
Uk is realanddoesnot haveto be convex(asopposedto the effectivepotential).It
is the appropriatequantity for the study of processes,such as tunneling or
inflation, which dependon the full range of the potential and especiallyon its
non-convexpart. It canbe proven[4] that theaveragepotential Uk approachesthe
effective potential U as k —s 0. It must therefore becomeconvex in this limit.
Nevertheless,for processeswith a characteristicinfrared cutoff the quantum
fluctuationswith q2 <k2 should not be included, as they are in the effective

potential. It is thereforeUk andnot U which is relevantfor suchprocesses.
We concentratein this paper on the N-component 4/~theory in arbitrary

dimensions. We neglect the wave function renormalization effects. The corre-
spondinganomalousdimensionsare small [51and do not changethe qualitative

* This proceduregivessimilar qualitativeresultsas themethod employedin this paper.
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behaviourof Uk in theregionof interest.The one-loopcontributionto the average
potential reads[4,61

U~1~(p)= ~(2~)~fddq{ln(P(q) + V’(p) + 2V”(p)p)

+(N— 1) ln(P(q) + V’(p))}. (1.3)

This is the same formula as in the “naive” perturbationtheory (1.1), except that
the inversepropagatorq2 is now replacedby P(q)

(1.4)

f~(q)=exp{_a(q2/k2)~}, (1.5)
where a and f3 areconstantsof order 1. This form of P providesfor an effective
infraredcutoff for all modeswith q2 <<k2. In contrast,the contributionsfrom the
modeswith q2>> k2 arenot modified. We also note that for k —* 0 one recovers
directly the standardone-loopcontributionto the effectivepotential (1.1).

We now take the logarithmic derivativewith respectto k andsubstituteUk for
V in the integral.This “renormalizationgroup improvement”[4] gives the evolu-
tion equation(t = ln(k/A), x = q2)

a
19P 1 N—i

Uk_Vdf dxxd/
21_ + (1.6)

0t P+Uk’+2Uk”p P+Uk’

with

= 2”~r”2F(d/2). (1.7)

Eq. (1.6) is the masterequationfor our investigation.It is valid as long as

k2+U~(p)>0, (1.8)

k2 + U,~(p)+ 2U~’(p)p>0,

where

k2=min P(q) ‘~k2. (1.9)

If (1.8) is not fulfilled, the saddle-pointapproximationaround a constantscalar

configurationbreaks down. Onehas to expandarounda spin-wavesolution [4,6]
for N> 2, or arounda vortex (N = 2), or a kink (N = 1).
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In the following, we solve eq. (1.6) for p ‘~ 0, where the “naive” perturbative
calculationof the effectivepotential breaksdown. We derive analytic expressions
for the averagepotentialUk at a given scalek. We obtain a simplepicturefor the
behaviourof the potential as a function of k and we describehow convexity is
approachedin the limit k —s 0.

In sect.2 we parametrizeUk in terms of its p-derivativesat p = 0. We solve the
resulting infinite systemof differential equationsapproximately,by truncatingat
some finite numberof equations,retainingonly a finite numberof derivativesof
Uk. In sect. 3, we solve the full evolution equationfor the first derivativeof Uk.
This solution is the most importantresult of our investigation.It correspondsto
the solution of the systemof sect. 2 with an infinite number of equations.A
summaryand our conclusionsarepresentedin sect. 4. Severaltechnicalpointsof
the investigationarediscussedin the appendices.

2. Solutionof the evolutionequationby truncation

Weare interestedin solving eq.(1.6) in the regionaroundthe origin (p 0).As
a first attemptwe parametrizeUk in termsof its successivederivativesat p = 0 and
truncate the resulting infinite system of differential equationsat some finite
numberof equations.This is achievedby settinga’~Uk(O)/ap~= 0 for all n bigger
thansomemaximal number.For simplicity of the presentationwe keephere only
the first andsecondderivativeof Uk. The effectof thethird andfourth derivative
will be discussedlater. We define

(2.1)

(2.2)

andobtain:

d2

= -(N+2)vdk2~L~(-~2), (2.3)

~= ~ (2.4)

where

L~(_~2) = _nk2 dfdxxd/21~(P_ ~2)±1). (2.5)

The integralsL~arealwaysnegativeanddivergefor ~2 ....~~2 Theirpropertiesfor

I ~ k2 canbe found in ref. [5] andtheir behaviournearthepole at ~2 = k2 is
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discussed in appendix A. As a result, ~2 decreases for decreasing k. In the
symmetric phase~2 vanishes for some finite scale k~and becomesnegativefor
k <ks. The pole at ~2 = k2 is not relevant. In the spontaneouslybroken phase,
however,the massterm decreasesslowerthank2 andbecomesof theorder of k2
at somescale.The evolutionequationsare thendominatedby the pole of L~.We
will see that the behaviourfor k2 near ~2 is quite different from the usual
one-loop renormalizationgroup equationswhich correspondto a vanishingargu-
ment of L~.On the other hand, the “naive” perturbativeresults remainvalid in

four dimensionsfor k2 >> ~i2. (One should include, however, the logarithmic k
dependenceof the quarticcoupling andthe“quadraticrenormalization”[4] of j12.)

The leadingpole in the functions L~behaveslike (k2 — ~2)_(n+1/2)~ In the
vicinity of the polewe find

L~=—KE3~2,

L~=—~KE5~2, (2.6)

with

~ k~ =k2—~. (2.7)

Here K is a dimensionlessconstantdefined in appendixA and k2 readsin our

parametrization(A.6)

1
k2= (28)

1—exp(—2a)

For a~ ~ ~2 is effectively independentof a and ~2 ‘~ 1. Sincewe are interested

in the behaviourof the evolution equationsclose to the pole it is convenientto
rewrite eqs.(2.3), (2.4) in terms of ~. We canalso absorbthe explicit dependence
on k andon various constantsby definingthe dimensionlessquantity

A = VdKA = VdKkA. (2.9)

Thus we obtain

= 2(~ — E) —A
1Ae

3~2, (2.10)

= —(4 —d)A +B
1A

2�5~2, (2.11)

A
1=(N+2), B1=~(N-i-8). (2.12)
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For any non-zerovalue of A the right-handside of (2.10) and(2.11) blows up as
0.

A new set of variables

x = (2.13)

dt
T=T(t), with dr=—, (2.14)

makesthe behaviourof the systemeqs.(2.10), (2.11) more transparent

de
= (2k~— 2�—A1~)�, (2.15)

= (B~+ ~Ai)~
2 — (3~2 + (1 — d)E)X. (2.16)

Depending on the number of dimensions, the last system of differential equations
has two or three fixed points. Only one is infraredstable,namely

3k2
(f,Xf)= °‘~A

1+B, (2.17)

The other fixed points are discussedin appendixB and turn out to be neither
infrared nor ultraviolet stable. For �, x sufficiently close to the fixed point (2.17)
we canlinearize eq. (2.15) in c and neglectthe terms �~‘ in eq. (2.16). We also
write

(2.18)

andneglectterms (~x)
2.The equationssimplify considerably

de
— = Ce, (2.19)
d’r

d(~~)
=3k2(~~), (2.20)

dT

with

2B
1k

2

C = 2k2 —Alxf = B
1 + ~A1 (2.21)

With the boundaryconditions

T(to) = 0, E(T = 0) = �~, (~x)(r= 0) = (
3x)o~ (2.22)
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oneobtainsfrom eqs.(2.19), (2.14)

t=t0+-~(exp(Cr)—i). (2.23)

This indicatesthat t approachesa finite value t~,for i- —~ —

�0
~ lirnt(r) =t0— -~. (2.24)

The behaviourof the systembecomesnow apparent:Both E and ~ vanish for
t—stf

� = e~+ C(t — ~ = C(t — tf), (2.25)

C 3k

2/C
(öx)=(6x)o —(t—tf) . (2.26)

�0

In termsof the original variables k, ~2 ~ our solution reads

— k

~ii2=k2—Ck2 ln ~- , (2.27)

— 3C5~2 k 3/2 k 3f2/C
k4~ ln — i+c

0 ln — (2.28)
2VdKBI kf kf

where,in an obviousnotation

ki=koexp(_~). (2.29)

The integration constant c0 is determinedby the initial condition for A. The
behaviourindicatedby our solution canbe summarizedas follows: As soonas
approachesthe vicinity of the pole, the systembecomesstrongly attractedtowards
the fixed point. The ratio ~

2/k2 increaseswith decreasingk and reachesthe
boundaryvalue one for a finite value kf. The quartic coupling A evolves
(plus small corrections)and reacheszero at the samevalue k~.For k = kf the
averagepotential is purely quadratic,namely

Uk/p) = —k~p (2.30)

We cannotcontinueour solution for k <kf, sincefor ~2 > ~2 the condition (1.8) is
violated. In this casethe constantsolution is not a minimumof the constrained
action [6], andthe expansionshouldbe performedaroundthe true minimum(spin
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waves for N> 2, vortices for N = 2, or kinks for N = 1). For N> 2 the average
potential obtainedfrom an expansionaroundthe spin-wavesolution, has, in the

tree approximation, the form [6]

Uk(p) = —k2p. (2.31)

This matchesexactly(2.30) for k = kf. It is remarkablehow the evolution of the
averagepotential,with an expansionaroundthe constantsolution,leadsnaturally
to the form implied by the expansionaroundthe spin-waveconfiguration.

We nextenlargethe truncatedsystemof differential equationsand includealso
the third and fourth derivativeof Uk at the origin. The technicaldiscussionof the
infraredfixed pointbehaviouris similar as aboveandis presentedin appendixC.
The main conclusionis that the fixed pointvaluefor Xf increases(seetableC.1) as
the numberof differential equationsis enlarged.As a result the decreaseof �

becomesslower andthe ratio k
1/k0 decreases.The seriesfor Xf convergesonly

slowly as the numberof derivativesis increased.There are two points which are

not yet settledandrequire further investigation:
(i) The fixed point at � = 0 is infraredattractiveas long as

2~
2~A

1x~>0. (2.32)

SinceXr seemsto increasewith the number of equations of the truncated system,
one may wonder whether the asymptotic value of Xf’ without a truncation (i.e. an
infinite number of equations) still satisfies the above relation.

(ii) In the truncated system � = 0 is reachedat a finite kf, which decreaseswith
the number of equations. It is an interesting possibility that kf reaches zero
without a truncation. In sect. 3 we address both the above questions. Weshow that

= 0 is a stable infrared fixed point of the full evolution equation for the first
derivative of the potential. Moreover, e = 0 is reachedasymptoticallyonly for
k —~ 0.

3. The full evolution equation for the potential at the origin

In this sectionwe treateq.(1.6) as a partial differential equationdependingon
two variables t and p. This correspondsto an infinite number of ordinary
differential equationsfor an infinite numberof higherp-derivativesof Uk, consid-
ered as functionsof t only. In particular,we are interestedin the derivativewith
respectto p of eq.(1.6)

~U~(p) = (N- 1)vdk
2U~’(p)L~(U~(p))

+ vdk (3Uk(p) + 2pU~7’(p))L~(U,.~(p) + 2pU,~”(p)). (3.1)
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In analogyto (2.7) we introducethe function

e(k, p) = k2U,~(p)+ £2 (3.2)

andwe usethe dimensionlessfield variable

/5 = k~”p. (3.3)

In termsof thesevariables eq. (3.1) reads

— = (d — 2)p— + 2(k2— e) + (N—1)vd—~L~(e)
at ap ap

+Vd 3—~+2/5---~L~e+2/5— . (3.4)
ap ap ap

Here the partial derivative a/at is now takenat fixed ,5 (not fixed p!). For small e
we canusethe approximation(2.6) andwrite:

— = 2k2 — Q_~~3/2+ z~, (3.5)

at ap

with

Q=(N+2)vdK. (3.6)

The contribution

~=(d—2)/5——2e+2vd/5---~L’~ e+2/5—

ap ap ap

+3vd~{L~(e+2/54)+Ke3/2} + (N— 1)vd4 {L~(e) +Ke3”2} (3.7)

doesnot influencethe leadingbehaviourfor small e and /5, andwill beneglected
in the following.

In termsof thevariables

(�)_1/2 y= ~ (3.8)

eq. (3.5) reads

ay ay
-~-=—y 1+~— . (3.9)
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The most generalsolution of the abovepartial differential equationsatisfiesthe
relation

1
y+y=F —~—t . (3.10)

The arbitrary function F is undetermined until boundary conditions for y(t, y) are
imposed.

In order to implementthe boundaryconditionsit is more convenient to return
to the variablesp, e. Thenat somescalek0 we impose

c(0, p) = ~o(p). (3.11)

The function F is now completelydeterminedthroughthe equation:

�o(P) ~o(P) —1/2

F 2k
2 ~ ~ £2 (3.12)

where

T= . (3.13)

The mostnotablepropertyof the aboveequationis that it specifiesthe essential

features of F for the most general class of boundary conditions which are
physically relevant. We will only assumethat, for a 4~theory, U~(p)is a
monotonicallyincreasingfunction of p which divergesfor p — ~. Then eqs. (3.2)
and (3.12) imply that, for a sufficiently large argument, F is a monotonically
increasingfunction, which approachesinfinity for an infinite argument. This

property is independentof the precise form of the boundaryconditions. The
asymptoticbehaviourof � or Uk’ for k —s 0 can now be presentedin a concise
form. It is givenby the relation

U~(p)= —P+k2�(k, p) = —P+k2 e(k,0) 2’ (3.14)
(1 — e(k, 0)2(k2/Q)k2~p}

with

£2

e(k, 0) = . (3.15){ F(ln( A/k)) 2

We concludethat e(k, 0) vanishesfor k —* 0. Its precisefunctional dependenceon
k is determinedby the initial conditionsfor Uk

1(p). Eq. (3.14) is the mostessential
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outcomeof our investigation.The leadingterm for U~(p)is in exact agreement
with the result(2.31)which wasobtainedin ref. [6] from an expansionaroundthe
spin-waveconfiguration.It is remarkablethateq.(3.14)hasbeenobtainedthrough
an expansionaroundthe configurationof a constantscalar field, which remains
now valid for all valuesof k. The essentialphysics hasbeenreproducedby the

“renormalizationgroup improvement”without everhaving to resort to the useof
the spin-wave configuration. Eq. (3.14) contains also the deviations from the

leadingbehaviour(2.31) for non-vanishingvaluesof k. We believethat very close
to the origin thesecorrectionsare actuallymorereliably estimatedby the present
method than by the loop expansionaround the spin-wave configuration whose
shortcomingshavebeendiscussedin ref. [4].

At this point some remarks are due on the region of validity of the solution
(3.14). The contribution4, givenby (3.7), which was neglectedin our discussionof
the differential equation(3.5), remainssmall as long as e << 1 and

p ~ -~—k’~2e(k, 0)1~/’2. (3.16)
k2

In particular, one could infer from eq. (3.14) that Uk hasa minimumat

p = ~k~2{~E(k 0)1/2 — i}. (3.17)
k3

This pointoccurs,however,outsidethe rangeof validity (3.16) and shouldnot be
trusted.We note that for d> 2 the regionof validity for p shrinks to zerowith a

powerof k. In contrast,this regionincreasesfor k —s 0 in two dimensions. Wealso
note that the determination(3.12) of F for very large argumentsinvolves large
values of p where neglecting 4 is is not justified. This may be relevant in two
dimensionswhere no spontaneoussymmetry breaking is expected for N � 2
(compareref. [5]).

The higherderivativesof the potentialnearthe origin canbe computedfrom
eq.(3.14). Onefinds

U~’(p) = 2k2(k p)3~2k~~,

U~”(p) = ~c(k, p)4k62d,

6
U~”(p) = —~—e(k,p)5”2k83d. (3.18)
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Inserting the definitions (C.1), (C.3) and (C.6) one obtains for the fixed-point

values

2k2
Xi = N + 2’

6k4

~ (N+2)2’

24k6
Wf= 3~ (3.19)

(N +2)

These values correspond to the fixed points without a truncation of the master
equation (1.6). In the language of sect. 2 we now retain an infinite number of
differential equations for the derivatives at the origin. We display the numerical
values(for /3 = 3, k2 = 1.175)in table C.1, where they can be comparedwith the
correspondingvaluesfor the truncatedsystemdiscussedin sect.2 andappendixC.

Before we conclude this section,it is instructive to discussa specific classof
boundaryconditions, in order to explicitly obtain thefunction F for that class.We
considerboundaryconditionsof the form:

Uk’
0(p) = —~

2(k
0)+A(k0)p. (3.20)

The function F cannow bedeterminedwith the help of eqs.(3.2) and(3.12). One
finds

~2(x±t~) +~(x+t~)-~, (3.21)

where

R —1— ~i
2(k

0)
— k~2’

Qk~
S= A(k0). (3.22)

For large x the first term on the right-handside of the lastexpressionbecomes
negligible,and F(x) is a monotonicallyincreasingfunction which divergeslinearly
for x —~ ~. For k —* 0 the averagepotential is given by (3.14) with

e(k, 0) = ~-~~-{ln(~)}. (3.23)
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4. Summaryandconclusions

The averagepotential Uk describesthe physics at a scalek by averagingout the
degreesof freedomwith momentalarger than k. It is a realquantitywhich does
not haveto be convex. It is the appropriatetool for the studyof physicalprocesses
such as inflation or tunneling, where the non-convexpart of the potential is
needed.Typically, suchprocesseshaveaninherentlength scale1 whichactsasan

infraredcutoff. By choosingk 1~oneaccountsfor all quantumfluctuationswith
squaredmomentumq2 largerthan 1_2. On the otherhand,the contributionsfrom
modeswith q2 <12 are not included,asappropriatefor a physicalinfraredcutoff
given by 1. (Of coursethe relevant length scale 1 has to be determinedby the
physicsof the processunderinvestigation.)

In this paperwe havesolved the evolution equationsfor the averagepotential

aroundthe origin in spontaneouslybroken N-componentq~theories.This is the
regionwherethepotential is non-convex.We haveuseda saddlepoint approxima-
tion around a constant-fieldconfiguration. We have found that, for k —s 0, the
potential displaysa very simplebehaviour

Uk_* ~~k2it.”it~a. (4.1)

The exactoutcomeof our investigation,which containsthe first correctionsto the
above expression,is given by eq. (3.14). Our results are in agreementwith a
previousone-loopcalculationof the non-convexpart of the averagepotential for
N> 2, whichhasbeenbasedon an expansionarounda spin-waveconfiguration[6].
The remarkableaspectof our calculationis that we havenevermadeuse of the

spin-waveconfiguration.The essentialphysics has beenreproducedthrough the
expansionaroundtheconstantconfigurationandthe renormalizationgroupevolu-
tion of the potential. In the limit k = 0 we recoverthe convexeffective potential.

The non-convexpart of the averagepotential is importantfor the calculationof

the tunnelingratebetweendifferent minima, for examplebetweenthe two minima
of the model with discretesymmetry(N = 1) if a small symmetrybreakingterm is
added.Usually calculationsof the tunneling rate use the perturbativepotential
(often eventhe classicalpotential)which hasnearthe origin the form

U~= _L~2~2 (4.2)

The validity of thesecalculationsdependson the questionwhetherthe physical
infraredcutoff 12 relevantfor the tunnelingprocessis largerthan j.~,.If not, one
hasto replace(4.2) verynearto the origin by

U~12~2, (4.3)

with an appropriatemodification for 4, away from the origin. The true tunneling
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ratewill disagreewith the predictionsof “naive” perturbationtheoryin this case.
Similar problemsmay arise in inflationarycosmologywhenthe non-convexpart of
the “naive” perturbative potential is used. It should be noted that our result (3.14)
is valid only for a certain region around the origin. The potential around the
minima has been calculatedin ref. [5]. One has to perform a straightforward
(although technically involved) calculation in order to obtain the form of the
averagepotential for the remainingregionsof the field space.We hope to report
on this soon.

Wewould like to thankM. Dreesfor his helpwith the numericalchecksof the
results.

AppendixA

The integral

L~(w)= _nk2~f dxx~
21 —(P + w)~’~, (A.i)

x x
P(x)= = , (A.2)

1 —f~(x) 1 — exp{_2a(x/k2)~}

has a pole at w = _j~2, where

k2=minP(x). (A.3)

We are interestedherein thebehaviourof L~in thevicinity of the pole. (Seeref.
[5] for w � 0.)By defining the dimensionlessquantities

x P w
y=~, P=~, ~I’=~, k2=~, (A.4)

we canrewrite the integralas

a(13/y) -(n±1)
L~(~)=2nf dyy~2~ (P+~) . (A.5)

0 ay

We work with the particularfamily of parametrizations[5]

exp(2a) — 1
f3= , (A.6)

2a
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for which P has its minimum at y = 1 with the value

P(1) ..~2... . (A.7)
1— exp(—2a)

Since P is a monotonic function of y on either side of the minimumwe candefine

a new variablez, suchthat

P = £2 + z2. (A.8)

The variable z is relatedto P(y) through the equations

1/2

z=+(P—k2) fory>1,
1/2

z=—(P—k2) fory<1. (A.9)

We also define

E—W+k2, (A.i0)

andsubstitutein (A.5). We find

L~(e)= _2fdzG~(z)(z2+e)(”+l), (A.i1)

P aP
G(z) =2nzy~2 —1 . (A.12)

Due to the relation

ia
L~~

1=———L~ (A.13)
n a�

we only haveto evaluateL~. Force� —* 0 mostof the contributionto the integral
comes from the region y 1. Therefore, it is a good approximation to expand

P=i~2+a2(y_i)
2+a

3(y— 1)~+... (A.14)

with

1 d2P exp(2a) 1 1
a2=~~= 2 (1_exp(_2a) _~). (A.15)
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The inversionis now straightforwardandwe obtain

— 1){1 + ~(y — 1)}~ (A.i6)

y = 1 + a~’~2z— ~a~2a
3z

2, (A.17)

dy = (a~/2 — a~2a
3z)dz. (A.18)

The function G(z) cannow be expandedaroundz = 0. Near the pole of L~one
finds

L~(e) = _2Gf(0)f dz(z
2+ )_2 — 2G~”(0)f dzz(z2 + E)

= —K�3~2— R�1, (A.19)

with

K= ~a~hh/2~2, (A.20)

d—2 2a
R= — —p k2—4. (A.2i)

a
2 a2

The next correctionis proportionalto ~ 1/2 In summary, the leading contribu-
tions to the first four integralsare given by the following expressions:

L~(c)= —Ke
3~2, L’~(e) = —

L’~(e) = — ~K�7~2, L~(e)= — ~K�9~2. (A.22)

Appendix B

We wantto investigatethe stability of the possiblefixed points of the systemof
differential equations

= (2&~— 2� —Ai~)e,

= —(4— d)~c +B
1X

2 — ~x(2~2 —2�—A
1~). (B.1)
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We are looking for values (er, Xt) which annihilate the right-handside of these
equations. Two solutions are

3k2
(ri’ x~)= 0, ~ , (B.2)

~

(~2’ X2) = (0,0). (B.3)

For d <4, thereis anothersolution

B
1~2 (4_d)~2

(~3’X3)= B1+(4—d)~A1’B1+(4—d)~A1 . (B.4)

For e, x sufficiently close to the fixed point we can write

�_Ef+(i~C), X=Xf+(
6X), (B.5)

and,keepingterms only linear in (8�), (6x), obtain

d (6�) (8E)

— =Mf . (B.6)
dT (6x) (6x)

The lastequationhasthe solution

(8�)

(6x) =exp(Mf’l-) (6x)o (B.7)

Forthe 2 X 2 matrix M~rwe have the identity

exp(Ji3~T)= b
0(T) + b1(r)A~~. (B.8)

Herethe functions b,(’r) aregivenby the relation

exp(A1’r) =b0(r) +b1(i-)A,, (B.9)

where A, are the two (non-equal)eigenvaluesof A~.This gives:

— A1 exp(A2r) —A2 exp(A1r)

b0— A1—A2

= exp(A1’r) — exp(A2r) (B.lo)
A1 — A2



214 N Tetradis, C. Wetterich / Scaledependenceof averagepotential

It is clear that a stable infrared(ultraviolet) fixed point requiresbotheigenvalues
of Mf to be positive (negative).It is a straightforwardexerciseto calculatethese

eigenvaluesfor the points given in (B.2)—(B.4). For ~ x) they are

2B £2
A1 1

= B
1 +~A1 , (B.11)

3k
2

whereasfor (�2, X2) onehas

2~2
= . (B.12)

—3k2

Finally one finds for (�3, X3)

2 1/2

- (d + 1)�~]+ {[3~2 - (d + 1)�3] + 8(4 - d)~2e
3}

(B.13)

It is clear that (�1, Xi) is the only infrared stable fixed point, while (~2,X2) and
(�3, X3) are neither infrared nor ultraviolet stable. We identify (�3, X3) with the
fixed point correspondingto the phasetransitionbetweenthe symmetric andthe
spontaneouslybrokenphase.(It is infraredunstablefor � andinfrared stable for
A.) Althoughwe recoverqualitatively the correctphasestructure,our treatmentof
(�3, X3) is not very precise quantitatively, since � is not small. For a better
treatmentof this last fixed point one hasto evaluatethe integralsL~away from
the pole [5].

Appendix C

In this appendixwe enlarge the truncatedsystemof evolution equationsby
taking into accountthe third andfourth derivativeof the averagepotential at the
origin. We define

—~i
2=U,,’(0), A=U~’(0),

i=U~”(0), ff=U,~”(0), (C.1)
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andderive from (1.6) the following evolution equations:

d—2
~ (N+2)vdk2AL~(~2),

~= ~

= 2(N+ 26)vdkd_ô~3L~(_~2)— 3(N+ 14)vdk4~AL~(~~2)

+(N+ 6)vdk~2ffL~(~ii2),

~ ~

— 3(N+ 24)vdk 4~2L~(—~2)— 4(N+ 20)vdk 4A~L~(—~2).(C.2)

The integrals L~are discussed in the appendix A. In the vicinity of the pole at

= ~2 it is convenient to define the dimensionless quantities
_____ *2

~= k2 =k ~

A = VdKkA,

= (vaK)2k2~i_6i,

ê= (v~K)3k~~ó. (C.3)

(We work again with the parametrization (A.6), for which £2 and K are given by

(A.7) and (A.20) respectively.) Substituting in eqs. (C.2) gives

= 2(~— �) —A
1A�

3~2

dA - -

= —(4— d)A +B
1A

2e5~2—B
2i�

3~2,

di - -

= —(6 — 2d)1 — C
1A

3�7~2+ C
2Ai~�

5~2— C
3ö�

3~2,

= —(8 — 3d)ö + D
1A

4�9~2— D
2X

2~�7~2+ D
3~

2�5~2+ D
4Aê�

5~2,(C.4)
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with

A1 =N+2,

B1=~(N+8), B2=N+4,

C1=~(N+26), C2=~(N+14), C3=N+6,

D1=~(N+80), D2=~-(N+44), D3=~(N+24), D4=6(N+20).

(C.5)

We rescaleA, i and& by appropriatepowersof �

XA�
3”2, 4,=i:;�—4/2 ~~~�—5~2 (C.6)

and use the variable r defined in eq. (2.14). In terms of the new variables eqs.
(C.4)read

d�
= (2k2 —2�—Ai~)�,

= —(4— d)~�+ B
1X

2 — B
2~i— ~~(2k

2 —2�—Air),

= —(6— 2d)~i�— C
1~

3+ C
2X~J— C3~— ~(2~2 —2�—Air),

dw

= —(8— 3d)o�+Di~
4—D

2~
2~+D

31,11
2 +D

4XW — ~w(2k
2 —2�—AiX).

(C.7)

The last systemof differentialequationshasa fixed pointwith ~ = 0 andx, 4~,w
takingvaluesthat set theright-handside of the equationsto zero.This fixed point

(�~,Xf’ ,ji~,W~) is infrared stable as long as AIXf < 2k2, and therefore is ap-
proachedfor T —~ — ~. In termsof thevariable t it is then reachedat a finite value
tf. We havesolvednumericallythe system(C.4), for k2 = 1.175which corresponds
to /3 = 3, and for various initial conditions. We haveverified that, as = 0 is
reachedfor a finite value t~,(X, ~,, w) always approach(Xi, ~‘i, We). The fixed
point (�f, Xf’ ~ COT) is independentof d. The quantitative role of the higher
derivatives can be estimated by determining the fixed-point values for different
truncations of the evolution equation. This is presented in table C.i for various
values of N. The first column lists the fixed points for the truncation which keeps
only the second derivative. The third and fourth derivatives are added for the next
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TABLE c.1
Fixed pointsfor different truncationsof theevolutionequation.Eis the numberof the retained

differential equations.We displaythevaluesfor variousN andusek
2 = 1.175,which correspondsto

(3=3

E=’2 E=3 E=4 E=c~~

Xi Xi Xi Xi ~‘f

N= 1 0.196 0.365 0.223 0.475 0.476 0.507 0.783 0.921 1.442
N= 2 0.168 0.312 0.157 0.403 0.331 0.281 0.588 0.518 0.608
N= 4 0.131 0.239 0.088 0.303 0.176 0.101 0.392 0.230 0.180
N = 10 0.078 0.137 0.026 0.165 0.046 0.011 0.196 0.058 0.023

two columns.Even thoughthe valuesof the fixed points vary, it is clear that the
qualitativebehaviourof the solutions is unaffectedby the higherderivatives.As �

runs to zero at a finite ti,, the couplings A, i, ê approachzero proportionalto
increasingpowers of �. In the last columns we list the asymptoticvalues of

(Xi, i/it, Wi) in the limit that keepsaninfinite numberof higherderivatives.These
valueswereobtainedin sect. 3 by solving the full evolution equationfor the first
derivativeof the potentialand aregiven by eqs.(3.19).
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