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If g is a pth root of unity there exists a quasi-co-associative truncated quantum group algebra
UqT(slz) whose indecomposable representations are the physical representations of U,(sl,),
whose co-product yields the truncated tensor product of physical representations of Uq(slz), and
whose R-matrix satisfies quasi Yang—Baxter equations. These truncated quantum group algebras
are examples of weak quasi quantum group algebras [2]. For primitive pth roots ¢, g = e>™/?,
we consider a two-dimensional g-oscillator which admits U;r(slz) as a symmetry algebra. Its wave
function lie in a space .Z,T of “functions on the truncated quantum plane”, i.e. of polynomials in
noncommuting complex coordinate functions z,, on which multiplication operators Z, and the
elements of UqT(slz) can act. This illustrates the concept of quasi quantum planes [1]. Due to the
truncation, the Hilbert space of states is finite dimensional. The subspaces % T of monomials
in z, of nth degree vanish for n> p—1, and & T carries the (2J + 1)-dimensional irreducible
representation of U] (sl,) if n=2J, J=0, 3,...,5(p —2). Partial derivatives 3, are introduced.
We find a *-operation on the algebra of multiplication operators Z; and derivatives 4, such that
the adjoints Z* act as differentiation on the truncated quantum plane. Multiplication operators
Z, (“creation operators”) and their adjoints (*annihilation operators™) obey g~ 1/2_commutation
relations. The =-operation is used to determine a positive definite scalar product on the
truncated quantum plane .7qT. Some natural candidates of hamiltonians for the g-oscillators are
determined.

1. Introduction: Bargmann—Fock representation of harmonic oscillators

For pedagogical reasons let us first recall some well-known facts concerning
standard harmonic oscillators in quantum theory. We begin with the one-dimen-
sional harmonic oscillator. There are two operators, position X and momentum P,
which obey canonical commutation relations. The hamiltonian is H = 3[P? + X2].
In the position space Schrédinger representation, wave functions are functions of
x, and X acts as multiplication with x, while P is a differential operator. However,
one may also use the Bargmann—Fock or coherent state representation [4]. In this
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case, wave functions are holomorphic functions of a complex variable z, and the
nonhermitian (“creation”) operator

Z=%[P+iX]

acts by multiplication with z, whereas the adjoint operator (“annihilation
operator’)

Z*= %[P—iX]

acts as a differential operator 8 /dz. The scalar product of two physical states with
wave functions ¢, and ¢, may be written in two equivalent ways,

W, ;) = [z Gy exp(=22/2) =§1(3/32)9(2) . —o-

d?z is integration over real and imaginary part of z. The hamiltonianis H=ZZ* +
1. From the operators Z and Z * one can recover X and P as linear combinations.

Let us now turn to the two-dimensional harmonic oscillator. There will be two
operators Z, and Z, and their adjoints, and similarly for X and P.

1
Zl=ﬁ(Pl+iX1)’ (11)
1 -
Z2= W(Pz'i'LXZ), (12)
H=YZZ*+1. (1.3)
The canonical commutation relations read
(2., Z2,]=0=[Z}, Z}], (1.4)
[Z,. 23] =5, (1.5)

The two-dimensional harmonic oscillator admits the group U(2) of all unitary 2 X 2
matrices as a symmetry group. The Hilbert space of physical states carries a unitary
representation % of this symmetry group.

Y(E)Z,=Z,(€) with Z[=Z,t,, (1.6)
2(£)H = HY(§), (1.7)
2(£)10) =10 (1.8)
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for all ¢ =(£,,) € U(2). The SO(2) subgroup which consists of real matrices acts by
rotation of the two-dimensional coordinate plane. The other symmetry transforma-
tions are canonical transformations which are not coordinate transformations. The
ground state |0) of H is invariant under the symmetry group.

It is convenient for generalization to rewrite the covariance properties (1.6) in
another way. To this end let 7/ denote the fundamental two-dimensional
representation of U(2) so that elements &,, are given by §&,, =7l/%(¢). The
right-hand side of (1.6) becomes Z,7}/2(£)#(¢). Remember that the tensor prod-
uct 7 ® 7’ of representations 7, 7’ of groups is defined by (7 ® 7' )(¢) = (&) ® 7'(&).
With this notion of tensor products of representations, the covariance law assumes
the final form

Y(E)Z,=Z,(1p,®¥)(¢) forall £€U(2). (1.9)

The invariance of the ground state can be re-expressed with help of the trivial
one-dimensional representation e(¢) =1 € C of U(2).

Z(£)10) = 10)e(¢) for all £ €U(2). (1.10)

In the Bargmann-Fock representation, Z, act as multiplication operators,
whereas Z} =4, act as differential operators. A basis in the Hilbert space Z is
spanned by wave functions of the form

Z2Z™10).

They are eigenstates of H to eigenvalue n +m + 1.

In this paper we will consider a two-dimensional g-oscillator. It differs from the
standard oscillator as follows. The multiplication operators Z, and their adjoints
will obey braid relations in place of canonical commutation relations, and the U(2)
symmetry group will be replaced by the truncated quantum group algebra UqT (sl,)
which is canonically associated with the quantum group algebra Uq(slz) when g is
a primitive pth root of unity.

The main technical problem will be to determine the action of the annihilation
operators ( = adjoints of creation operators) on the Hilbert space of physical states.
As for the standard oscillator, the annihilation operators can be expressed in terms
of certain partial derivatives d,.

As hamiltonian we may choose

H, =

Z(sz)abgab
ab

+1 (1.11)

or

Hy= 1Y [(ZXZ) g™ + ((ZXZ)mpg™) | +1. (1.12)
ab
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Here the X denotes a “covariant product” that substitutes for the ordinary
product and the tensor g“® projects to the invariant part. This will be explained in
sect. 3. The modulus |.| in H, and the * in H, refer to a *-operation which is
defined in sect. 4. Z denotes some kind of “Dirac adjoint” of the multiplication
operators Z, i.e. a certain linear combination of operators Z* (with operator
valued coefficients). Z, will act as d,. We are not prepared to argue for (1.11) or
(1.12) on the basis of physical principles aside from invariance property (1.7) and
hermiticity.

2. Truncated quantum group algebras

The quantum group algebras U,(sl,) form a family of deformations of the
universal enveloping algebra U(sl,). They are indexed by a complex number gq. In
the present context we are interested in the cases, where g is a root of unity,
q? = 1. For these values of the deformation parameter q, Uq(slz) is not semisimple.
In this section we will shortly review how a semisimple truncated quantum group
algebra UqT (s1,) is canonically associated with the quantum group algebra U (sl,),
g’ =1 UqT (sl,) is not a Hopf algebra but a weak quasi Hopf algebra. For details cf.
ref. [2].

Before we describe the construction of UJ(sl,) let us fix some notations
concerning Uq(slz). The quantum group algebra Uq(slz) is generated by unit e and
g*H/2, S subject to the relations

qH/Zq—H/2= g H/2gH/2 = ¢, qH/ZSi___qil/ZSqu/Z’
H -H
q° —q
S.,8 ]=———5- (2.1)
[S, g2 —q 172

A co-product 4, co-unit € and antipode ¥ are defined, turning U,(sl,) into a
Hopf algebra. Explicitly they read

A(S,)=8,®g"+qH28S,, A qtH/?)=qtH2eq*H/2 (22)
€(S,)=0, e(qg*?/?) =1, (2.3)
F(8,)=—q*?S,, F(qEH/ M) =qTH2, (2.4)
Co-associativity of the co-product means that (4, ® id)4 (¢) = (id ® 4,)4 (&) for
all £€U](sly). If o:U,(sl,) ® U,(sl,) > Uysl,) ® U,(sl,) denotes the permuta-

tion automorphism o(n ® £)=¢® 7, we can define a second co-product by
A, =0 - A,. The universal R-matrix R, € U(sl,) ® U,(sl,) intertwines between
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4, and A in the sense that R, 4, (n) =A(nR, forall n € U,(sl,). Explicitly R,
is given by

—1
q"eH Y, ——=—— -y g~ DgrH/2gn @ g /2SN (2.5)
n=0 [n]q
Here [n],=(q""*—q7"/*)/(¢"/*~q~"/?) and [n],! is recursively defined by
[0],!= [l]q! =1and[n]!=[n][n— I]q!. It can easily be checked that the following
definition of $*, (g*#/?)* extends to a *-operation on U,(sl,) (it is consistent
with the defining relations (2.1) of the quantum group algebra U (sl,)):

*
St=Sy, (q*f7?) =qFH, (2.6)

This turns 4,, €, & into *-(anti-)homomorphisms provided that we define * on
U, (s1,) ® U (sl,) by

(ne&) =¢g*@n* forall £ neUysl,). (2.7)

Moreover it results from an explicit calculation that R, is unitary in the following
sense:

R¥=R;'=(#®id)(R,).

q

The “quantum dimension” d,. of a representation  of Uq(slz) is defined by
d,=tr 7(q"). (2.8)

As we mentioned earlier, if g is a (primitive pth) root of unity, then U_(sl,) is not
semisimple, and tensor products of its irreducible representations are in general
not fully reducible. Its irreducible representations 7’ with nonzero quantum
dimension are called “physical” representations. They are labelled by J=
0, 1,...,2(p —2). They have dimension 2J + 1.

We denote the tensor product of Uq(slz)-representations by ® . Given two
representations 7, 7’ it is defined with help of the co-product 4,,

(re)(&) = (r®7)4,(¢) forall £, (sl,).

The tensor product of 7/ ® q'TJ of two physical representations decomposes in
general into physical representations, plus unphysical representations with quan-
tum dimension 0. If we multiply (' ® _7/)}¢) with a projection operator P;; which
cuts away the contribution with zero quantum dimension, one obtains what is
known as the truncated tensor product of physical representations of Uq(slz).
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One introduces a new algebra U;F (sl,) by UqT (sl,) = U,(sl,) /.7, where .7 is the
ideal which is annihilated by all the physical representations v/, 21=0,...,p — 2,
of U,(sl,). UqT(slz) is semisimple, its representations are fully reducible, and the
irreducible ones are precisely the physical representations of Uq(slz). Let

w(I, J)=min{|I+J|, p—2—1—-1J) (2.9)

and let P,; be the projector on the physical subrepresentations K, | [ -J | <K <
u(l, J) of the tensor product 7/ X qT] of Uq(slz) representations. There exists
PeUJ(sl,) ® UTGsl,) such that P, = (77 ® 7/)(P). The co-product in U] (sl,) is
determined in terms of the co-product 4, in U (sl,) as

A(€) =PA(§), (2.10)
hence A(e) =P + e ® e. This co-product specifies a tensor product ® according to

(R 7)E) = (70 7")(A(E)). (2.11)

It is equal to the truncated tensor product of physical Uq(slz) representations.
Thus

TR = & K, (2.12)
[ I-J|<K<u(ll)

However, this co-product is not co-associative but there exists an element ¢ €
UT(sl,) ® U/ (sl,) ® UJ(sl,) such that ¢ has the following intertwining property:

#(A ®id)A(n) = (id® 4)A(n)¢ for all n € UT(sl,). (2.13)

dyx=(r'®7' ® X} ¢) implements the well-known unitary equivalence of the
truncated tensor products 7/ ® (+/ ® 7X) and (' ® /) ® rX. A truncated tensor
product ® is defined also for basis vectors é/ in the dual representation spaces \z
on which U]J(sl,) acts from the right, viz. &/ ® &/ = ¢/ ® /P;;. The map ¢, can
be specified by its action on triple truncated products of basis vectors, together
with the condition ¢ = (id ® A)A(e)¢, viz.

I P L J K P| , R R J 1iy|l1 J Q
ZL. l] [ X ] éloéloéip= ) FPQ[K L][i . ]
ijkp p alt Dlq 0.ijkq 4],

Q K L 21 57 sK
X[q P qe,-®ej®ek (2.14)
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with fusion matrices given by 6J-symbols,
F J Il _ (K J P
PRI LI \I L Q g

[:], are Clebsch-Gordan coefficients for U, (sl,) (and at the same time for
UJ(sl,)). ¢ has a quasi-inverse, denoted by ¢ ™', such that

$pd 1= (id®A)A(e), ¢ '6=(A®id)A(e). (2.15)

The universal R-element R € U] (sl,) ® U] (sl,) of UJ(sl,) has the intertwining
property

RA(7m) =4'(n)R, A=c o A. (2.16)
It is given in terms of the R-element R, for U (sl,) by
R=R,A(e) =4'(e)R,. (2.17)
R is not invertible, but has quasi-inverse R~' such that
RR™'=A4'(e), R7'R=A(e). (2.18)
Since A(e)* = A(e*) = A(e), the unitarity of R, implies that
R*=R™. (2.19)

Antipode, co-unit and *-operation are the same as in U,(sl,). It is shown in ref. [2]
that the defining properties of a weak quasi-triangular quasi Hopf algebra are
satisfied. Here we state only some of the defining features. Co-unit is related to
the co-product by

(e ®id)A =id = (id ® ) A. (2.20)
Moreover, ¢ and R satisfy Drinfeld’s relations [6],
(id®id ® A)($)(A ®id ®id)(4) = (e ® $)(id® A ®id)(d)(d ®¢), (2.21)
(id ® 4)(R) = ¢35 Rishars Rz, (222)
(4 ©id)(R) = oz Rsb sk s (2.23)
We used the standard notation. If R=YX r! ® r then
Rs=Yrlee®r?, R,=Yrler’wee, (2.24)

etc.
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If s is any permutation of 123 and ¢ = X ¢} ® ¢2 ® ¢ then

s s7h s7h
Doy = L b DVed Do ¢s D, (2.25)

Egs. (2.22) and (2.23) imply validity of quasi Yang—Baxter equations,

R12¢312R13¢1_3;R23¢ = ¢321R23¢5311R13¢213R12’ (226)

and this guarantees that R together with ¢ determines a representation of the
braid group [7]. Let us recall that the braid group B, on »n threads is generated by
elements o; and ;"' (i =1,...,n — 1) which obey the Artin relations

0,0, =0y0; if [k—i|>2, 0,0,110; = 0;,10;0; .1,
o0 ' =1=0g,. (2.27)

[l

The unit element of B, is written as 1. We introduce some notations. Write
e"=e®...®e¢ (n factors) (2.28)

and similarly for id". In addition we abbreviate U] (s1,)®” = UJ(sl,) ® ... ® U] (sl,)
(n factors), and

A= (id"'®4)...(ild®4)A for n>2, (2.29)
A=A, A=id, A '=e (2.30)

The permutation of factors in U, (sl,) ® UJ(sl,) can be implemented by the
multiplication operator # € U] (sl,) ® UJ(sl,) with the properties

() PE@n =0 ®EP for all £, m € UXGsLy),

(i) 7 ® /() =01if 7, 7’ are inequivalent irreducible representations of UqT (sl,).

Theorem 2.1. (Artin relations) [1] Let R*=<R and R~ = R ? andn=r+k
+1, r > 0. Define o * € U] (s1,)®" by

gl t =4 (e)(id" K @ AF ) (" e g(RE®e)$TY).  (2.31)

Then the o' * obey Artin relations (2.27) with 1 =A""!(e).

3. Truncated quantum planes

Quantum planes Z, are generalizations of the algebra & of polynomials in two
complex variables [8]. In analogy to the action of U(sl,) on %, the quantum group
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algebra U (sl,) acts on the quantum plane %, by generalized derivations [9].
Similar results exist for the truncated quantum groups U,;r (sl,), but they require
the concept of truncated quantum planes 9;;. Their construction will be reviewed
in this section. In addition we introduce the analog of partial derivatives é, for the
truncated quantum plane. For details of the general construction of quasi quantum
planes the reader is refered to ref. [1).

Definition 3.1. Let & be an associative algebra that contains the truncated
quantum group U;r(slz) as a subalgebra and let 7 denote some rn-dimensional
representation of U] (sl,). An n-tupel (F,),_, , of elements F, € is said to
transform covariantly according to  if

.....

¢F, = ZFB(TBa ® 1d)(A(§)) = ZFﬁTﬁa(§;)§3~ (3'1)
B B

Here A(£) =Y ¢L® £2 and a sum over o is understood throughout.

The tensor product for representations of the truncated quantum group was
defined in (2.11) with the help of the co-product A. It follows by comparison with
(1.9) that the notion of covariance introduced in definition 3.1 is an obvious
generalization of the notion we had for the group algebra U(sl,).

Definition 3.2. Let (F,), (Gy) be n, m-tupels that transform covariantly under
representations 7, 7. Then the covariant product of (F,) and (G,) is an nm-tupel
defined by

(FXG)ag= Y F,Gs(7,,® 755 ®id)( ). (3.2)

The fundamental importance of this definition derives from the following proposi-
tion.

Proposition 3.3. [1] In the notations of definition 3.2 the nm-tupel (F X G),z)
transforms covariantly according to the tensor product representation 7 X 7’.

It can be shown that the covariant product is not associative but only quasi-as-
sociative [1] in the sense that covariant products with different positions of
brackets are linear combinations of each other. Provided that e € U] (sl,) acts as
the identity of &/, covariant products can be converted into ordinary products of

n,m-tupels by

FaGBZ(FXG)‘/(s(Tya@TE’ﬂ®id)(¢‘l)' (33)

The ordinary product of n,m-tupels is not covariant in general, since A is not
co-associative.
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Definition 3.4. (Algebra &) Let v'/? denote the two-dimensional representa-
tion of UqT (sl,) and R the R-matrix given by (2.17). The associative algebra % is
generated by elements Z, (a =1, 2), and the elements of U;r (sl,). The unit
element e of U (sl,) acts as a unit element of & so that
M Ze=2Z,=eZ,
and the following further relations are imposed:

(2) (U] (s1,) covariance) £Z, = Z,(r},? ® idXA(£)) for £ € U] (sl,);
(3) (braid relations) (Z X Z),, = q~V*(Z X Z),(1/* ® T}{*XR).

Relation (2) states that (Z,) is a 2-tupel transforming covariantly according to the
representation 7'/, Covariance of (Z X Z) and the intertwining property (2.16) of
R ensures that the relation (3) is consistent with the transformation law (2) in the
sense that left- and right-hand side of (3) transform in the same way. If covariant
products are converted into ordinary products, (3) reads

Z,Z,= Zch(Tclz{z @1y’ ® id)(¢213R12¢_1)- (34)

Note that the right-hand side involves the generator o, of the braid group. This
explains why relations (3) are called “braid relations”. The algebra % generates
the truncated quantum plane (space of “noncommutative polynomials”) out of a
unique invariant ground state (“constant polynomial”).

Definition 3.5. (Truncated quantum plane). A truncated quantum plane ZIT is
the unique Z-left-module with cyclic and U] (sl,) invariant element [0). Here
U, (sl,)-invariance of |0) means that £]0) =10) e(¢) for all £ € UJ(sl,).

It is instructive to describe the structure of &7 in some detail. If A =Y ¢, ® £2
the relation (2) in definition 3.4 reads explicitly

EZ,= Y. Z,7pP(£L)€2.

This tells us how to shift elements £ € UJ(sl,) through factors Z, from left to
right. Together with the invariance of the ground state |0) it follows that the
truncated quantum plane is spanned by states of the form

zi=2,...Z, 10) (3.5)

1
with multi-index « = (a;,...,a,). We abbreviate
O (,,1/2 R(r'2®..(r'?® 71/2),..)), n factors.

The transformation law of states (3.5) can be calculated using covariance of Z, and
invariance of the ground state [0).

{Z710) =Z;10) 750(€). (3.6)
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Let &, denote the subspace of &," spanned by elements Z7|0) for fixed n.
Then &, carries a subrepresentation of 7. One can prove the following
theorem [1].

Theorem 3.6. (Structure of #,7). The truncated quantum plane .} decom-
poses into a direct sum of subspaces %",

T_ T(m)
% n?O'?q '
For g? =1, p > 4 we obtain
O FSW=0forall n>p-1;
(i) #,7™ carries the (n + 1)-dimensional irreducible representation of U] (sl,) if
n <p — 2. Moreover a basis of 7,7 is provided by states

lm, m'y=2Z7Z" 10y, m+m'=n, n<p-2.

Some details of the proof can be found in appendix C.

In ref. [1] the non-associative covariant product X is used to introduce a
product for elements of the truncated quantum plane. Due to the truncation (i) in
theorem 3.6 this product turns out to be associative in the special example under
consideration. Thus truncated quantum planes %T fit into the framework of
noncommutative geometry. We do not want to discuss this further, since in the
present context we are only concerned with the linear structure of the truncated
quantum plane.

Let us explain how to introduce differentiation operators in a consistent
manner. As discussed in sect. 1, they should transform according to the contragre-
dient representation 7'/2. 7172 is defined by

F2(g) =t £12( 77 1(€)). (3.7)

Here ' denotes the transpose of the matrix and %~ ! the inverse of the antipode.
Explicit formulas can be found in appendix A. The contragredient representation
71/2 is equivalent to the fundamental representation 7'/2. From the formula (2.12)
for the decomposition of tensor products we deduce that 71/ ® r'/2 contains the
one-dimensional representation 7°=e¢ as a subrepresentation. This implies that
there exists a metric tensor g,, such that

8ea( R 77 (€) =gape(£). (3.8)
It is given by
-1/2
_ |4 0
&= (0 ql/z)' (3.9)

The inverse tensor g = diag(q'/?, g~ 1/?) obeys (7112 & 7}{?)(¢)g® = g*®€(£).
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Definition 3.7. (Algebra &) The associative algebra % is generated by elements
£€U]J(sl,), Z, and 9, subject to the following relations:
(i) The unit element e € U, (sl,) is also unit element of &.
(i) Covariance: For ¢ € U (sl,)

£Z,=Zy(75, ®id)(A(£)), (3.10)
£3, = 3,(7h2 @ id)(A(£)). (3.11)

(iii) Braid relations
(ZXZ) oo =(ZXZ)4ea™ (7.4 ® 745)(R), (3.12)
(9X8)ap = (9 X9 geq™ V(7> ® T4 )(R), (3.13)
(IXZ)p=8upe + (ZX3)4eq (72> ® 75, )(R). (3.14)

The phase factors we wrote in the braid relations can be calculated from the
eigenvalues of the symmetric R-matrix. The general formulas are given in ref. [1].
A proper choice of the phase factors guarantees that % C €. This is a nontrivial
result which is proven in ref. [1]. It is possible to develop a full differential calculus
including differential forms of order n and an exterior derivative d, which enjoys
the usual properties. This differential calculus is not associative but only quasi-as-
sociative [1].

Again, we may write all the braid relations (3.12)-(3.14) in terms of ordinary
products in place of covariant products. Thus (3.14) shows how to shift operators
d, through multiplication operators Z, from left to right. As a consequence, a
general element in & is a linear combination of elements

Zy o ZyBy, -0 £, £€UJ(sy).

The truncated quantum plane Z]T was introduced as a #-left-module. Let us
denote the left action of X €% by 7(X). This action can be extended to #, if we
set

7(3,)10) = 0.

With the extended left action 7, the truncated quantum plane becomes a #-mod-
ule. In the following we will also write Z,, d,, ¢ instead of w(Z,), w(3,), m(&).

Definition 3.9. (Algebra &) The associative algebra & is defined by

Pl =% /ker(m).
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In other words, & is the algebra generated by 2, 6, and ¢€ U/ (sly). It is a
subalgebra of the algebra .@(Z]T) of linear transformations on 9’;.

In the last part of this section we deduce explicit formulas for the action of Z,,
3, and elements £ € U] (s1,) on #,". As explained earlier, the action of £ € U] (sl,)
involves the covariant transformation law of Z,. When evaluated on states this
simplifies due to the following calculation:
€2,2;10) = Z,(7; @ id)(4A(£)) 25 10)
=22510)(rh,” @ 75 ) (A(£))
=2Z;10)(r)2 @ 752)(A(e) 4,(£))
=eZZg|0y( 7> ® 752)(4,(£))
=Z,(rp/2 ®id)(4,(£))Z210).

So we found that £Z, = Z,(7}/> ® idX4 ££)) and 4, is formally defined by (2.2).
Explicitly we get

qtHg = 7,qt\ /g2, qtH2E, =7 qF /g EH,
S Z,=2,q7V*S_+Z,q"7, S_Z,=2,q"*S_,

S, Z,=Z,q7*s_, S.2,=2,g\*S ,+ 2,g"%. (3.15)

To derive formulas for the action of Z,, 4. on the truncated quantum plane one

a “a

makes use of the braid relations. By definition, braid relations for 2a, 3, are

obtained from (3.12)-(3.14) if we substitute Z, for Z, and 4, for d,. When
expressions of appendix A are inserted they read *

(2X2)12=(2X2)21q‘1/2, (3.16)

(X 8), = (X 8)54q"?, (3.17)

((xZ2)y=a""2+q (ZXxd) +a (Zxd)p(a ' =1),  (3.18)

(aAXZA)m:q_l/z(ZAxa‘)zl’ (3.19)

* To compare with the formulas in ref. [8], 8,, 4, have to be rescaled by factors gl/2, g~ 172,
respectively.
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(30X Z2)y=q Y Z X3, (3.20)
(0XZ)y=q"2+q N(Z x3)p. (3.21)

The relations involve covariant products X. By lemma B.1 in appendix B, these
covariant products are equal to ordinary products when acting on states FqT —
F,J®=2 (— is to be understood in the set theoretic sense). Only if covariant
products act on states in %,?~? they cannot be trivially converted into ordinary
products. Evaluating the action of Z_, 4, on Z]T, we apply at most one generator
(Z,, 8,) on states in F,' >F,"?~?, In conclusion, the calculations leading to
theorem 3.10 below are not effected by the distinction between ordinary and
covariant products.

Theorem 3.10. The action of Z,, d,, S, and g*/? on the truncated quantum
plane is given by

1—q™™
S_In,m)=q("+’"_1)/4—1———_—1|n+1,m—1), (322)
—-q
1—qg™™"
S+|n,m>=q(”+’”_1)/4ﬁ|n—l,m+1>, (3.23)
—4q
g% n, my=q*""""*\n, my, (3.24)
Zn,m)=q "* n,m+1) forn+m<p-2, (3.25)
Zyln,my=|n+1,m) forn+m<p-—2, (3.26)
Z,In,m)=0 forn+m=p-2, (3.27)
R el
61|n,m)=q_("+1)/2ﬁ|n,m—l>, (328)
-4
52|n,m>=q1/21—:q—_—l|n—l,m>, (3.29)

Proof. One should once see lemma B.1 in action to feel confident about its
implications. To this aim we study Z, | n, m). In the following P’ U;,r (sl,) should
denote the minimal central projection belonging to the (2J + 1)-dimensional repre-
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sentation of UJ(sl,). It acts as identity on the subspace FreD,

Zin,md=2,2,In—1, m)=Pm*"*D2Z .7 |n—1, m)

It

ZaZb (n—1, m>(1-;1/2 ® 7;2/2 ® T("+m_1)/2)(id ®A)A(P(n+m+l)/2)

Il
N

2 In _ 1 m>(TI/2 12/2 ® T(n+m~1)/2)((id ®A)A(P(n+m+1)/2)¢)

Z 2, (e ®id)(¢) In—1, m)=(ZxZ),ln~1, m).

Now we can apply the braid relation and write the resulting expression in terms of
ordinary products. Thus we obtain Z,Z,|n~1, m)=2,Z,|n—1, m)q~ /2 An
n-fold iteration gives the above result. Proofs of the other formulas are similar. O

4. The *-operation on % and scalar product on 7'

In sect. 3 we defined an algebra 9": of operators acting on the truncated
quantum plane #_". %[ contains U (sl,) as a subalgebra. From sect. 2 we know
that a =-operation (an involutive antiautomorphism) on UT(slz) is given by (2.6).
In this section we show how this *-operation can be extended to ?T Adjoints of
multlpllcatlon operators Z act as differentiation on the truncated quantum plane.
“Creators” Z, and “annihilators” Z* = Z* satisfy ¢~ '/2-commutation relations.
After having defined a suitable positive definite scalar product, we end up with a
Hilbert space interpretation of the truncated quantum plane. This last step works
only for the primitive pth roots g, g = €>™/?. In the limit p — o the harmonic
oscillator is recovered.

Let us start with some general considerations. Given an algebra & containing
UJ(sl,) as a subalgebra, the transformation law (3.1) for a covariant tupel (F,) tells
us how to shift elements ¢ € UqT (sl,) through the element F, from left to right. We
may ask how to do the reverse, that is how to shift £ from right to left of F,. In the
example of g’qT the covariance laws are explicitly given in (3.15). It is easy to see
that they fi)f completely how to move generators of U: (sl,) from right to left of the
elements Z,. The relations that can be obtained from (3.15) are only special
examples of

F = (7,5®id)(A(£))F, forall £€U]J(sl,), (4.0
which should hold for arbitrary n-tupels (F,) transforming covariantly according to

the representation 7. Consistency of (4.1) with the covariant transformation law
(3.1) is discussed in ref. [2].
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Assume next that the *-operation (2.6) on U, (sl,) can be extended to .«. Then
(4.1) furnishes a transformation law for the adjoint tupel (F;*),

EF) = F3* (5, ®id)A'(£). (4.2)

To derive (4.2) we used the definition (2.7) for the action of * on U] (sl,) ® U] (sl,)
and unitarity of 7, ie. 7,,(6*)=7,,(€) for all £€U](sl,). Observe that the
adjoint tupel (F*) is not covariant since in (4.2) A’ appears in place of 4. We
define the conjugate tupel (F,) by

F, = F3* (7, ®id)(R). (4.3)

Using the intertwining properties (2.16) of R we deduce that (F,) transform
covariantly according to representation 7. We may invert (4.3) to express the
adjoint tupel in terms of the conjugate,

F¥ = Fy(g, ®id)(R™1). (4.4)

In 97’qT, the pair (0;) transforms covariantly according to the contragredient
representation. Applying the linear transformation (4.4) we can construct a pair
ZH, Zy egz: , which obeys the transformation law (4.2),

ZF =3,(7pa ®id)(R™1)c (4.5)

a

Here c is an element in the center of U] (sl,), which does not alter the transforma-
tions properties.

The study of transformation properties suggests to regard 2; as a good
candidate for the adjoint of Za under the *-operation to be found. Given some
fixed central ¢, we would like to extend the map Za - Z;" =Z ~ to an involutive
antihomomorphism of 9”;. Aside from the choice of ¢ there remains no freedom
for this extension, since 9’: is generated by Z,, ZA[,+ and elements ¢ € UJ (sl,).
Consistency with the braid relations in 9?’: presents an important obstruction.
However, it turns out that for properly chosen central ¢, consistency is achieved.

The center of the truncated quantum group U;r (sl,) is spanned by the minimal
central projectors P’, J=0, %,...,3(p—2), corresponding to the irreducible
representations of UqT (sl,). The “number” operator N is a special element. In
terms of P’ it is given by

1/2p-2)
N= Y (2J+1)P.
J=0

Elements Z_, 9, change the eigenvalues of N by one,

a’ “a

NZ,=Z(N+1), Ni, =3 (N-1) (4.6)
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It will turn out that the pair Z} is the adjoint of Z, for some *-operation on ﬁqT
provided that we choose

c=g"N/* 1 (4.7)

Theorem 4.1. The operators Z = ,(71/% ® idX R~ 1)g™V/*~! are explicitly given
by

Zf — (a"lqﬂ/z +a’\2q—1/4(q1/2 _q—l/Z)S_)qN/4—1’ (4.8)
25 =d,q H/2gN/4 1, (4.9)

Let [A4, Bly=AB —q~'/?BA for all A, B€%]. Then the braid relations in %
can be rewritten in terms of the g~ 1/2 commutator [Llg? of Z, Z +

|2, 2,] _..-o, (4.10)
|Zt. 2], .0, (4.11)

|2+, 2,], .= 0, € U (1), (4.12)
where
0 gfg(T;a/2®’Tl/2®ld)(R121¢21§R131)q1/4 N/4— 1

Moreover, the following additional equations hold:

ZAIZA; = q g Nravig Z*2+Z"1 =q /g N/A+1g p, (4.13)

V4 Z‘1+ =g¥igh/i-1g ZAfLZAZ=q+5/4qN/4‘1S_P, (4.14)
Z,2} =[N,],, ZrZ,=[N,+1],. (4.15)

Here P denotes the projector on &7 — %, 1?~2 (set theoretic difference). The
operator N, €8(F7) is defined by the action N, |n;, n,) =n,|n;, n,> on the
states | n;, n,) and we used the abbreviation [x], = (¢*/> —q /%) /(¢"/* —q~'/?).

Proof. A procedure similar to the proof of (3.15) establishes the explicit
formulas for 2 *. One decomposes R !'= A(e)R and applies the transformation
properties of states to verify Z} = d,(7}/> ® 1d)(R e =d,(7Fl/*® idXR; De. (747
® idXR; ") is evaluated in appendix A.

All other equations in the theorem can be verified directly as an application of
theorem 3.10. Alternatively, one can use the braid relations of Za, 5,, to argue for
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the g~ !/?-commutation relations in the theorem. In a first step we write (3.13) and
(3.14) in terms of Z, and Z,' . The result is

2:2; = 2;2; (7i* © 74 @ id) (d3 Riatba )a /",
212,71 © 112 ®id)($3)) = 8, (7} © 7147 ® id) (R4 R eq
v 2,07,

Here the ' denotes permutation of the components of the R-matrix. The rest is
again a standard application of lemma B.1 and appendix A. This is left as an
exercise. O

Theorem 4.2. The map * defined on generators Z, by Z* =2+ =3,(fl/*®
idR; "c and on £ € U] (sl,) by (2.6) can be extended to a *-operation on .

Proof. In theorem 4.1, all the relations in 9’: are displayed in a form that is
well suited for a proof of theorem 4.1. For example, by (4.11)

2. 2,) =23, 2] .= 2. 22] e =00

At a first glance, one might be afraid of problems coming from (4.12). However,
taking into account egs. (4.13)-(4.15) relation (4.12) appears as an equation in
UqT (sl,), which is consistent with the *-operation. Consistency of (4.13)-(4.15) is
obvious. D

Corollary 4.3. On generators 3; the *-operation acts as

>

* = (Zlqs/qu/z +q5/4(q1/2 —q_l/z)ZZS+)qN/4_1, (4.16)
A;k =qu—1/2q—H/2qN/4‘ (4.17)

Proof. To derive the action of * on (9:, we solve (4.8) and (4.9) for 5,,, apply the
* -operation and use the involution property Z; * =(Z¥)* =Z,. O

The *-operation on %, can be used to define a bilinear form for L. Let 0|
denote the linear form on 97;; specified by

O0ln,m)=38,45,,.
Theorem 4.4. (scalar product) The bilinear form

(N:FtxFr-C, (4.18)

' A

A ' * A A
(In', m'y X|n, my) = (', m'|n, my = O\(Z5Z27) 232710y (4.19)
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is symmetric and positive definite and thus defines a scalar product on ZIT.
Explicitly,

<n,’ m’ | n, m> = an’,nam’,m[n]q![m]q! (420)

Proof. 1t is obvious that (n’, m'|n, m) =0if n#n’ or m # m’. It remains to
calculate {n, m|n, m).

(n,mln, m)={0|22*Zm*=222m|0)
=[n],![m],!>0.

We used (4.15) to get the last equality and [n]q!=[n]q[n - l]q...[llq. Thus we
derived the formula {n'm’, n, m) =§,, ,.8,, ,[nl [ml,! from which symmetry and
positivity follow using that [n],> 0 if n<p—1, g=e?""/7. Thus theorem 4.4 is
established. O

Corollary 4.5. An orthonormal basis of the truncated quantum plane is pro-
vided by

1
R P T s

It remains to discuss the properties of the hamiltonians proposed in sect.1. For the
“Dirac adjoint” Z, we substitute Z, = Z}*(71/2® id}(R)g'~V/*=4§,. Due to the
properties of g% (cf. text before definition 3.7), the expression (Z X Z),, g% is
seen to be invariant. Invariance (1.7) of the hamiltonians H,, H, is a direct
consequence of this observation. The spectrum can be calculated with help of
theorem 3.10.

(4.21)

Proposition 4.6. The hamiltonians H,, H, are both diagonal on the states
[n, m)o, ie. Hilm, m)o=X,, . In, mhy. For r<p—2, A,=[r],+1 and A’
= %[Zr]q + 1.

Let us conclude with a short remark on nonsingular values of the deformation
parameter g (i.e. |g|= 1, but g not a root of unity). In these cases, no truncation is
needed. With simple obvious changes, a *-operation on the quantum plane is still
given by the formulas above. Also the explicit expression for the bilinear form (,)
in the proof of theorem 4.5 applies. But without truncation we have no upper limit
for n, m and the product [n], ![m] ! will become negative for certain pairs (n, m).
Thus positivity is lost for generic values of q.

It is a pleasure to thank G. Mack for many discussions, constant interest and
critical remarks. I am also grateful to V. Dobrev and B. Durhuus for valuable
conversations and criticism.
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Appendix A
THE REPRESENTATION 71/?
In this appendix we collect some standard formulas concerning the two-dimen-

sional fundamental representation of the quantum group algebra Uq(slz).
7!/% is defined by the following action on the generators of U,(sl,):

s =(0 ) e 0).

T2 (g EH/2) = q*'* 0 (A1)
q 0 q¢1/4 : :

Acting with 7'/2 on the first component of R, we obtain

(qH/Z q~1/4(q1/2 —q‘l/z)S_ )

(r'2®id)(R,) = S

(A2)

The contragredient representation is given by

0 0 0 —qg?
F1/2 = 7172 = q
77(S.) (_q_m O), #7(5.) (0 ! )

5 A q3F1/4 0
F/2(qH/?) = 0 aii] (A3)

The action of 7'/? on the first component of R, gives

~1/2 id(R _ q_H/Z 0 A4
(777 @i )( q)— q—3/4(q—1/2_q1/2)s_ qh’? : (A4)

From (A.2), (A.4) and (A.1), (A.3) one can obtain the matrices (r'/? ® 7'/>XR),
(V%@ 71/2)(Rq) and (72 ® %1/2)(Rq).
Appendix B
LEMMA B.1
The lemma we prove in this appendix expresses that truncation does not effect

reassociation of (r1/2 ® 7'/2) ® 7X as long as K is not maximal. If K is maximal
one has to be more careful.
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Lemma B.1. Let K=0,%,1,....,(p—3)/2 and L=0,3,1,...,(p—2)/2 or
K=(p—2)/2 and L =(p—4)/2. Suppose , 7’ are two representations equiva-
lent to 7!/2. Then

(re7' ®1%)((e®A)A(P)p) = (01" ®7X)((e ® A)A(PY)). (B.1)
Especially this applies to 7, ' being 7'/% or 712,

Proof. For the values of K, L in lemma B.1 one can derive the following

identity:

§KP%PL=ZK§P 1 1 90|lle K L

ik plli p 1], gqlz L Qi i alla k 1],
(B.2)

This follows from the corresponding equation for Clebsch—Gordon coefficients
and 6;-symbols of U,_(sl,) at generic values of g’ (i.e. ¢ not a root of unity) [11].
The restrictions on the allowed combinations of K, L ensure that the limit g’ — g,
g” =1 is regular. Inserting the identity into the definition (2.14) of ¢ we obtain

1 1
1 p L|[ik P
2 } [2 eVreel? o ek

i p L||lJ k p

q

1o
> Qrie & b e/?ee)? ek
q q k l q

21/2 o 51/2 o 2K
€/ "®e;’"®e.
q

=2F P L

ikp|t P l

[%KP
Jd kP

This proves the lemma for 7, 7' = 71/2. To extend it to arbitrary representations
7, 7' equivalent to 71/2 is trivial. O
Appendix C

PROOF OF THEOREM 3.6

For convenience of the reader we give the details of the prof of theorem 3.6.
The main ingredients of the proof are in the following two lemmas: :
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Lemma C.1. dim ™ =n+1if n<p—-2.

Lemma C.2. Suppose that ZIT(’) carries the irreducible representation r and
F,'®) carries the irreducible representation 7. Then &,7¢*% is either zero or it
carries a subrepresentation of 7 X 7',

Proof of lemma C.1. We recall that the tensor product of representations of
UqT(slz) is the truncated tensor product of physical representations of Uq(slz), sec
sect. 2. No truncation appears in the tensor product 7/ &/ if I+J<p—-2—-1-1J,
fte.if I+J< %( p — 2), so that the braid relations reduce to [8]

A A

2,2,=q7"?Z,2,. (C.1)

More rigorously, these relations can be obtained as a simple consequence of
appendix B. This can be used to shift all factors 21 to the right of all factors 22.
There can be 0,...,n factors Z .- It follows that the number of linearly indepen-
dent vectors in F,"™ is n + 1. O

Proof of lemma C.2. The lemma follows from a discussion similar to the one
which precedes theorem 3.6 in sect. 3.

Proof of theorem 3.6. Validity of theorem 3.6 for 0 < n < (p — 2) follows from
the two lemmas and the tensor product decomposition (2.12) and (2.9) applied to
' erl/2

To prove the first part of theorem 3.6 it suffices to show that F_T”~D = 0 since
all higher-order polynomials contain factors of order p — 1. In the following
P’ e U] (sl,) should denote the minimal central element of U, (sl,) that is associ-
ated with the irreducible (27 + 1)-dimensional representation of UqT(slz). To prove
F,JP~D =0 we use that

(ZXZ) (722 ®1342)(A(P?)) = 0. (C2)

This expresses the fact that there are no homogeneous polynomials of degree two
which transform according to the trivial representation. Moreover we know that all
polynomials of degree p — 2 transform according to the ( p — 1)-dimensional repre-
sentation. In mathematical terms this means that

(ZP 73X Z) e = (ZP X Z) (727 @ 7)2)(A(PFP=2)).  (C2)
We wish to show that
(273X (ZXZ))ap = 0.

In order to establish this we will show that all these polynomials ((Z7 3 x Z) x
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Z)4.4 are linear combinations of the polynomials
(ZP 2 X(Z X Z)) (TP @ 712 @ 7117 ) (e ® A(PY))
which vanish due to (C.2). More precisely we show that

((ZP P XZ) X Z)geua
= (277 X(Z X X)) oY @ 712 © 72 )((e ® A(P?)) A), (C4)

where a # 0 is a real number and 4 € U,"(sl,)®’ is given by A = H(AP}P-D)@e).
It follows from eq. (C.3) by reassociation that the right-hand side of eq. (C.4)
equals

((ZP3XZ) X Z) (13572 @ 712 @ 12 ) ((A(PF*7?) @ €) ¢! ® A(P°)) A).
(C.5)
Using the explicit expression (2.14) for ¢ it is easy to see that
(A(PP~?) ®e)¢p (e ® A(P°)) A = (A(P*P~?) @ ¢€)a,

where a is some nonzero real number. So we get finally that the right-hand side of
eq. (C.4) equals

(27X Z) X Z) (riF P @ 712 @ 7112 (A(PYP D) @ €)a
=((Zp_3XZ) XZ)ﬂcda (C.6)

by (C.3). This completes the proof that all products of the type (Z? 3XZ)x Z
vanish. But since all other products of p — 1 generators Z can be obtained out of
these by reassociation, we established that #,7”~1 = 0. This concludes the proof
of theorem 3.6. O
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