PHYSICAL REVIEW D

VOLUME 47, NUMBER 5

1 MARCH 1993

Resonances in K;, decays

Markus Finkemeier*
II. Institut fiir Theoretische Physik, Universitdt Hamburg, D-2000 Hamburg 50, Germany
(Received 15 June 1992)

The axial form factors for the K, decay are calculated using models with hidden local symmetry to

describe JP=1"

resonances. The relation between this approach and low-energy expansion is clarified.

It is shown that the explicit breaking of chiral symmetry has no significant effect on the predictions. It
turns out that in order to achieve a satisfying description an additional S-wave contribution is needed,

which can be described by a J°=0" resonance.

PACS number(s): 13.20.Eb, 11.30.Rd

I. INTRODUCTION

K, decays are an interesting subject to study with phe-
nomenological meson theories, being simple enough to be
calculable, but having enough structure to give interest-
ing physical information. The construction of such phe-
nomenological models can be based on the observation
that QCD  possesses an approximate chiral
SU@3),®SU(3); flavor symmetry, which is both spon-
taneously broken with the J°=0" mesons of lowest mass
appearing as Goldstone bosons and directly by the quark
masses. In leading order O (P?) of an expansion in small
momenta, this leads to a unique chiral Lagrangian £®
for pseudoscalar mesons, the nonlinear 0 model based on
the manifold G/H with G =SU(3),®SU(3); and
H =SU(3),. It is now known [1] that any nonlinear o
model based on G /H is gauge equivalent to a linear mod-
el with a G5, ® H oo, Symmetry. If G is the chiral sym-
metry of QCD, the vector mesons (J*=17) appear as
dynamical gauge bosons of the hidden local symmetry
H local

In this paper I will calculate K,;, decays using chiral
Lagrangians, including vector mesons in this way as
gauge bosons of SU(3),,.,. Special attention will be ad-
dressed to the effect of the direct breaking of chiral sym-
metry by the masses. The main question shall be whether
or not the mass splitting has dynamical effects on K, de-
cays, i.e., effects which result from symmetry breaking in
the couplings, as opposed to the obvious kinematical
effects such as the shift of the poles of the propagators
and the change in the phase space factor. These dynami-
cal effects have not been included in papers such as [2,3],
which discuss resonance factor enhancements improving
the O (P?) predictions for K,, decays.

Another aim of this paper is to clarify the relation be-
tween the resonance approach to K, decays and low-
energy expansion, as developed by Gasser and Leutwyler
in [4] and applied to K, decays in [5,6].

The paper is organized as follows. In Sec. II, I define
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the form factors and review the experimental results. In
Sec. II1, I define the chiral models with hidden local sym-
metry which have been used to perform the calculations
in this paper. In Sec. IV, K, decays are calculated with
the Lagrangians defined before. In Sec. V, a scalar reso-
nance channel is discussed, and in Sec. VI, I draw the
conclusions.

II. EXPERIMENTAL RESULTS
ON K,, DECAYS

In this paper I will consider the K;4 decay mode
K (k)—mt(p))m (py)e T(p3)v.(py) . (1

The transition amplitude for this decay can be written as
a current-current coupling:

__ Gpsinf¢
V2
X(e+(p3 )Ve(p4)|']y leptonic|0> ’ @)

(7r+(p1 )Tr_(pl )|Jﬁadronic |K +(k)>

where the matrix element H* of the hadronic current can
only be calculated using phenomenological models. On
general grounds of covariance, it can be parametrized by
four form factors F, G, R, and H:

H*= (" (p)1™ (P21 fadronic [ K T (K))
= AF(p+p '+ Glpy —p; M+ R (k—py —p, )
K

1
mg

+ He”vaﬁkv(Pl +P2)odP1— P2 g | - (3)

The Lorentz-invariant form factors can only depend on
invariant products of the momenta (p,-p,, k-p;, and
k-p,). The contribution of the form factor R to the de-
cay probability is suppressed by a factor m?/4m2, and so
R cannot be measured.

The Watson-Fermi final-state theorem tells us that the
phases of the two pions in K, decays carry direct infor-
mation on low-energy 7 scattering. This fact was one of
the original motivations why the K, experiments were
performed. The partial-wave expansion of the measur-
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able form factors is given by [7]
i 0 ;a1
F=fe 8‘)-}-fjr,elslcosG,,-}-D wave ,
o1
G =e¢""'+D wave , (4)

1
H=he"'+D wave R

where 83 and 8] are phases for s wave I =0 and p wave
I =1 scattering, respectively, and 8, is the angle between
the line of flight of the positive pion and the direction op-
posite to the kaon line of flight, measured in the dipion
rest frame.

In the experiment described in [8], 30318 K, decays
were analyzed to extract the form factors F, G, and H.
As far as the dependence of the form factors on the
kinematical variables is concerned, only a little variation
with the invariant mass /s . of the dipion system

Ser=(p1 P2 (5)

was found; the dependence of the other invariants was
negligible. This dependence was expressed in a variable:
s

s

2

m

—1. (6)

x=
4m

The results for the form factors at threshold (x =0) are
(here I use sinf,=0.220 to transcribe the results)

F(x =0)=5.59%+0.14 ,
G(x =0)=4.77%+0.27 , (7
H(x =0)=—2.68+0.68 .

The energy dependence of |F(x)| was parametrized as
|F(x)|=|F0)[(1+Ax) , (8)
with the result

A=0.08%0.02 . 9

Under the assumptions that have been made in [8] in the
analysis of the data, |G| and |H| must have the same en-
ergy dependence as |F|. If one neglects the electron mass
m,, the invariant mass 1/s ., of the dipion system can in
principle take any value in the interval

2m, =280 MeV <1/s, <494 MeV=my , (10)
which corresponds to a maximum increase of the form
factors of 17%. Actually, however, 80% of all events in
[8] lie in the interval

280 MeV <V/s__<347 MeV , (11)

in which interval the energy dependence is below 4%. So
the energy dependence of the form factors is a small
effect, and therefore one often only computes the form
factors at threshold. In this paper I will also take this at-
titude at first, but come back to the energy dependence in
Sec. V.

III. CHIRAL MODELS
WITH HIDDEN LOCAL SYMMETRY

The matrix element of the hadronic current will be cal-
culated with the help of effective chiral Lagrangians, in-
cluding vector mesons as gauge bosons of a hidden local
symmetry. The direct breaking of chiral symmetry by
mass splitting will be taken into account in both the pseu-
doscalar and vector-meson sectors. To this aim I consid-
er the following four Lagrangians, which define the mod-
els (A)-(D):

(A) LP=L ,+L, ,

(B) LO=L ,+L,, ,

(C) Lypg=L +aLy+Ly

(D) .,th(CA,CV)=LA(CA)+a¢£V(cV)+,£m 5

(12)

where
f2
L ==Fu(D, UD*U")
2
= L7 10,606L Dl (13)
4 uSLSL USRSR ’
with
Ep=E =ex LS (14)
R L P ‘/E .

(this assumes unitary gauge in the sector of the hidden lo-
cal symmetry; see below) and

U=¢£% . (15)

f . is the pion decay constant, f ~93 MeV. & is the
pseudoscalar matrix,

7°/V2+m/V6 at K*
D= 7 —m°/V2+n/vV6  K°
K~ K° —2n/V'6
(16)
The covariant derivative of U is given by
D,=0,U—iL U+iUR,, 17

with external left- and right-handed gauge fields £, and
R, For the K, decays (weak charged currents), one can
put

0 W, cosbc W, sinfc
_ 8w _
’C"—T/Tz W, cosfc 0 0 ,
W.sin: 0 0
~ (18)
R,=0.

So L 4 is the most general chiral-symmetric Lagrangian
of order O (P?) which describes exactly massless pseudos-
calar mesons. Of course, the actual pions, kaons, and the
7 do have small masses m ., mg, and m,. One could try
to take this into account by wusing exactly chiral-
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symmetric couplings derived from .£ 4, but then consid-
ering the obvious kinematical implications of the mass
splitting, e.g., the shift of the poles of the propagators
[1/(p?—m?) instead of 1/p?] and the change of the
phase-space factors. In terms of the Lagrangian, this
amounts to adding the mass terms .£,, to the Lagrangian,
with

Ly=—mir " —miKTK — - . (19)

Note, however, that this approach is not consistent with
chiral symmetry. Rather, a term which transforms under
chiral symmetry such as the quark-mass matrix

M =diag(m,,m, ,m,) (20)
should be considered. This is achieved by
2
Ly =L v+ U
g
= ; tr(Eg MEL +E, MEL) , 21

which therefore should be added to .£ , instead of .L,,.
(The parameter combination uM is fixed by the physical
masses m, and mg.) L, includes .L,,, but also gives
contributions to interaction vertices and therefore in-
cludes dynamical effects of symmetry breaking.

The K, form-factor predictions resulting from the La-
grangians £'? and L} are well known, of course. I con-
sider them here in order to trace what happens to the
dynamical effects of symmetry breaking. It will turn out
that £,, and .£,, both give the same answer in the case of
K, decays, and so it does not matter which term adds to
the following hidden-gauge Lagrangians.

The Lagrangian .L , is based on the field U, which be-
longs to the differentiable manifold G /H and has a chiral
symmetry G, where

and
H=SU(3),={(U,1)}CG . (23)

It is now known that such a nonlinear model is gauge
equivalent to a model with a linear symmetry
G gioba1® Hiocap» based on the manifold G, parametrized by
(€1,Eg )EG [1]. This model is defined by the Lagrangian

L +aly,, (24)
with
fa
L,= —Ttr(Dﬂé‘Lé‘I +D,ERER ). (25)

Here a is a free parameter. a =2 gives complete vector-
meson dominance of the electromagnetic form factors,
but experimental data on the p-meson parameters favor a
slightly higher value of a.,, =~2.2. The covariant deriva-
tive D, is covariant both with respect to H),,, the asso-
ciated composite gauge bosons ¥V, being the vector
mesons, and with respect to the external gauge group
I CGyjopar» the associated gauge fields £, and 7 describ-
ing the photon ¥, and the bosons W and Z°;

D81 r=D,Er/r — 8V EL/R » (26)

1935

where 2, is only covariant with respect to I:
$u§L =ap§L +1§L°£y ’
D,Er=0,Eg TiEr R, -

The vector-meson field ¥, is given by

(27)

0 + K*+
1 g P

- *
= 0 K
K* K* 0

1

+p°diag 772,0 + .- (28)

v’

(suppressing the index u for simplicity). As the Lagrang-
ian stands, the fields Vu are redundant variables, but in
the usual manner I assume that the kinetic term for the
¥V, is generated dynamically (see [1]).

The Lagrangian £ ,+a.l, includes SU(3)-symmetric

mass terms for the vector mesons, given by

ml=ml.=---=mp=aflg’. (29)
For the special parameter choice a =2, the last equation
becomes the Kawarabayashi-Suzuki-Riazuddin-
Fayyazuddin (KSRF) relation [9] m2=2f2g?.

Model (D) also includes the symmetry breaking
mfﬁﬁm;* in the vector-meson sector. This is described
by changing L 4 and .L, to [10]

L 4 )——~f—’2’t (D, €} +D B

a\Ca) =77y r{(D, &6 uSL€ 48R

—(D,Epéh+D, Ere E0))7,

s (30)
Liyley)=—"Ftr{(D,ELE] +D, EreyéR)
+(D,ErER + D, EreyEl))?,
where
€ 4,y =diag(0,0,c 4,1 ) . (31)

The pseudoscalar fields must be renormalized according
to

(V' 1+e,) 'OV 1+e, ). (32)
The Lagrangian .L 4(c ,)+a.L ,(cy ) then gives

2,2 — 2

m,=m,=ag f7r 1+CV (33)
and a symmetry breaking in the decay constants

f _

f—"=\/ 1+c, . (34)

IV. RESULTS FOR THE K;, FORM FACTORS
A. Models (A) and (B)

In models (A) and (B), there are two Feynman dia-
grams contributing to the K, decay [see Figs. 1(a) and
1(b)]. The decay is then described by the form factors
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q*—4q-p,—2q-p,—2p,-p,+2mg—mi—E(mg+m?2)

=G=_5", R=777 , (35)
Vaf, 3V2f, q°—mg
[
and e rz K
‘/ ’
H=0, llzfvz . s cmzamy Y
where R = my {11m3 i SUS L S Elmg+m7)) ’
12V2m (m_ —my)
0 model (A), o ' ‘
&= 1 model (B) (36) which in model (A) gives the numerical values
In the hadronic matrix element, the form factor H gets F=3.74, G=3.74, R=2.79, (39)
multiplied by €***. Therefore it can only get a contribu- and, in model (B),
tion from a suitable anomalous Lagrangian [ anomalous
F=374, G=3.74, R=1.13. (40)

which should be added to the Lagrangians of models

(A)—(D). Using Witten’s reformulation [11] of the Wess-

Zumino effective Lagrangian [12], one can easily calcu-
late [13] H at threshold:
3

H=——L _"K__ 566,

"N2r? f3

(37)

in very good agreement with the experimental value. So
the form factor H is understood quite well and I am not
going to consider it any more.

At threshold (x =0) the other form factors are then
given by

ﬂ:+
K "
K' H—%ﬁﬂ;'
\'\/-P

K *
(a) Diagram 1 ot wW*
+
r (e) Diagram 5
Kt - ¢ -
k‘i
+
w* ke X
+
TC
(b) Diagram 2 W +
K Tt
& (f) Diagram 6
wt "
K’ r*

(c) Diagram 3

K+ o -——>--

fo
H TC-
¥
Kkt ? Y
-
(g) Diagram 7
()

W&

d) Diagram 4

FIG. 1. Feynman diagrams for K* a7~ W™,

So the results for models (A) and (B) only differ in the
form factor R, which is unmeasurable in electronic K,
decays. One can understand easily how this comes about.
The chiral-symmetric term

I
4

tr(D, UD*U")

contains strong interaction vertices
~P27", n=4,6,8,...

and weak interaction values
~PWa", n=1,2,3,...

(here P generically denotes momenta of the pseudoscalars
7). The symmetry-breaking term
T

— (MU + u'm) ,

however, contains strong vertices

M+7", n=4,6,8,...

only. So symmetry breaking does not affect diagram 1
[Fig. 1(a)], which only contains a W 7° vertex, but only
diagram 2 [Fig. 1(b)] via the strong 7* vertex. But it is
obvious that diagram 2 is proportional to the lepton
mass, because in the limit of vanishing m, the V-4 weak
decay of the virtual Kt into e *v, is forbidden by angu-
lar momentum conservation.

It should be stressed again that the suppression of the
dynamical effects of symmetry breaking relies on the
smallness of the lepton mass, and so in muonic K, decays
(or even more so in strange semihadronic 7 decays)
dynamical effects are feasible.

B. Model (C)

In model (C) there are four additional diagrams which
include vector mesons [see Figs. 1(c)-1(f)]. The diagrams
with a kaon pole (diagrams 4 and 6), however, are again
proportional to m, and can be neglected. In order to
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compare my results with certain models in the literature
(see below), I take
—i(g®P—¢tpopP/m})

2_ 2
p-—my

(41)

as the vector-meson propagator. Obviously, {=1 gives
the correct propagator for a massive spin-1 field. £=0
neglects the factor for the correct spin projection, which
will only induce a small error if the momentum transfer
P? is small compared with m2. I call the model with this
approximation model (Ca):

B {1 model (C) ,

0 model (Ca) . 42)

The result for the measurable axial form factors is then
given by

2 2
F 3 mg—mz,
— =14+ 1—-{———— |F — 4
FO 4(1 g 3m12/ V(tKﬂ) IJ (3)
and

mi— Fy(tg )
G=1+—a 1+§K21T vk
Gy v 3

+%Fy(s#ﬂ)—ll ,

where F, and G, denote the order O(P?) results for F
and G as in models (A) and (B). The resonance factors
are defined by

(44)

and
S7r17=(p1+p2)2) tKn:(k_Pl)z . (45)

Note that the spin projection factor (the one multiplied
by &) does only contribute if there is pseudoscalar mass
splitting m2#m?2.

In order to take the vector-meson mass splitting into
account, one could use the following approach. The reso-
nance factor F) () results from K * exchange [Fig. 1(e)]
and Fy(s,,) from p exchange [Fig. 1(c)]. Corresponding-
ly, one could write

2 2
F 3 mg—mg,
—=1+=a| |1-C——— |F_«(tg.)—1 (46)
Fo 4 g 3m12(* K*¥\'K~m
and
mz—m? | Fealtx,)
A R | e K
GO 4 mK* 3
2
+§Fp(s7m)—l , 47)

taking for m p and m .« their different physical values.
This defines the models with tildes (C) and (Ca), which,
however, have not been derived from a Lagrangian
without additional assumptions.

Diagrams 1 and 2 [Figs. 1(a) and 1(b)] are proportional
to (1—3/4a). So, for the special parameter choice a =4,
the form factors F and G do not get any contribution
from the contact diagrams 1 and 2, but only from dia-
grams 3-6 with vector mesons. So a =% gives a com-
plete vector-meson dominance of the weak form factors.
The experimental data for a (@, ~2.2) and the KSRF
relation, however, do not support such a complete
vector-meson dominance.

How do the models considered in this paper compare
with approaches in the literature, which start from the
chiral current and enhance it by resonance factors?
Neglecting the vector part and the part proportional to
g, (assuming m2=0), the result for the hadronic matrix
element H* from L% (the chiral current) is given by

iV
Hﬂz%(zpl—pﬁk)# . (48)
If one considers this as a threshold theorem for the pole-
enhanced diagrams with p and K * resonances, one finds

H:{= [‘/5
Y-

((py =P MF,(py T py) +(k +p)F «(k —py)] .

(49)

This was the ansatz in [2] and is equivalent to my model
(Ca) with @ =4%. In [3] it is discussed that this ansatz is
in disagreement with KSRF and the p meson parameters,

and so in this paper the more general ansatz

HH{= i‘/a
3+

[((1—=2a)2p, —p,+ k)

+3a(p, _Pz)"Fp(Pl +p,)
+3alk +p MF sk —py)]

is made, in which the parameter a describes the ratio of
contact and resonance diagrams. This is equivalent to
my model (Ca ) with arbitrary parameter a.

Now for the numerical results. In Table I the predic-
tions of the different models for the form factors at

TABLE I. Form factors of model (C) and its variations.

F G
Experiment [8] 5.59+0.14 4.77+0.27
Model

(@) 4.29 5.54

(©) 4.20 5.43

(Ca) 5.11 4.72

(Ca) 4.89 4.75
(Ca),a=% 4.44 4.36
[3] 491 4.77

[2] 5.30 4.67
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threshold are compared. Obviously, in models (C) and
(Ca) it is not quite clear which value one should take for
the vector-meson mass m . But as the p and the K * con-
tribute,

my=3(m,+m,«)=833 MeV (50)
seems to be a plausible choice, which was used in Table 1.
The parameter a was always taken as

a=22, (51)

except for the line where a =% (complete vector-meson
dominance) has been indicated.

It was said before that model (Ca) is equivalent to [2].
The better agreement with the experimental data of the
numerical results in [2] as compared with my results can

be traced to the approximation (my —m_)>~m2, which
has been made in [2] and is therefore not significant.

It is striking that the ““a models,” which are character-
ized by the approximation {=0 in the propagator (and
therefore also [3]), give results which are in better agree-
ment with the experimental data and predict correctly
F > G, whereas models (C) and (C) incorrectly predict
F <G. But as {=0 is only an approximation and {=1 is
the correct value giving the complete propagator with the
correct spin projector, this must be considered as ac-
cidental.

C. Model (D)

Calculating the diagrams with the Lagrangian of mod-
el (D), one gets

F ) a 2cp(qgpy+p,py)+(1+ey)(m2—mE) 1
S=—e 2| 34cp+ Fosltg)—3—cy |+—c,+1
Fo vVitc, |4 cvte m,i* e llier) v 24 ’
G _ 1 ally_, §2CV(‘1'P1+P1'P2)+(1+CV)(”'%r_’7112<) Foulte) (52)
- = | = —Cy— * P
Go Vli+c, |4 g mgs e
Ca
+2 |14+ = | Fy(s,,)=3+ey | +1

The parameters ¢, and ¢, can be determined from the
ratios of the vector-meson masses and decay constants:

mK*

- =1'14c,=c,=0.354 (53)
P
and
fx _ — _
f——\/1+cA=cA =0.488 . (54)

In Table II the numerical predictions for the form factors
at threshold are displayed. I also include model (C),
which corresponds to

Cy==Cy =0 ’

and model (Ca), which only considers the kinematical
effects of the vector-meson mass splitting. One finds that

TABLE II. Models with and without symmetry breaking in
the vector masses.

F G
Experiment [8] 5.59+0.14 4.77+0.27
Model
(9) 4.29 5.54
(C) 4.20 5.43
(D) 4.20 5.32

[
the predictions are changed only a little by the mass split-
ting (F is changed into the wrong direction, G in the right
direction). The additional inclusion of the dynamical
effects of symmetry breaking in model (D) as compared
with (C) changes F not at all and G only by a tiny (0.1)
amount.

D. Comparison with the low-energy expansion

Lately, Bijnens [5] and Riggenbach et al. [6] indepen-
dently calculated K, decay with the same model, viz., at
order O(P* in the expansion in terms of low momenta
and small quark masses. In this approach one considers
the most general chiral Lagrangian .L‘* of order O (P*):

10
LYW= 3 L.P;, (55)
j=1

where L, ..., L, are ten additional free constants, to be
fitted to experimental data, and P,...,P,, list all
different possible terms in U and M which have all the
necessary symmetries [4]. The tree diagrams from .£?
are then corrected by tree diagrams with one vertex from
L™ and by diagrams with one loop and vertices from
L, which are also of the order O (P*). The low-energy
constants L, ...,L;, have been determined by compar-
ison with experimental data in [4], and so one gets a pre-
diction for the K, form factors if one uses these values
for the low-energy constants. On the other hand, one can
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make a fine-tuning of the constants to get a best fit to the
experimental values for the K, form factors in order to
get a better estimate for the constants L, ..., L.

In Table III Bijnens’ results are compared with those
of models (C) and (D). Both Bijnens’ prediction using the
parameters of [4] and his best fit are displayed. It is obvi-
ous that it is easy to get very good agreement between
theory and experiment with ten free parameters, and so
in comparing his results with those of models (C) and (D)
one should consider his prediction and not his best fit.
For this reason the main difference between the models
considered in this paper and Bijnens’ results must be seen
in the fact that he gets a form factor F which is about 1
bigger (about 5.2 rather than 4.2, which the hidden-
symmetry Lagrangian yields) and therefore in much
better agreement with experiment. So where does the
significantly better agreement of the low-energy expan-
sion with experiment come from? As explained in detail
in [6], the consideration of chiral loops (especially those
which describe a 77 final-state interaction) enhances F by
a sufficient amount, whereas G is left almost unchanged.
So the difference between my results and those of [5,6]
stems from the inclusion of loop diagrams. One might,
however, ask the question whether or not the simultane-
ous consideration of resonances and loops amounts to a
double counting, as it is not clear whether loops describe
resonances or a nonresonant contribution. As explained
in [6], the loop diagrams mainly give a J*=0% contribu-
tion. The better agreement of the “@ models” with exper-
iment, which are defined by the neglect of the spin projec-
tion for a spin-1 field, also hints at the importance of an
additional s-wave contribution. In the next section I will
discuss if this s-wave contribution could be described by a
JP=07 resonance channel rather than by chiral loops.

Before I proceed to this, I would like to comment on
another point. In Refs. [14,15] the role of resonances in
chiral perturbation theory has also been discussed. The
authors integrate over the vector-meson degrees of free-
dom and determine the contribution of the hidden-gauge
Lagrangian £ ,+a./, to the O(P* low-energy con-
stants L, ...,L;,. These values might then be inserted
into the results for the K, form factors in [5,6]. Several
comments, however, are in order.

(i) In this paper I am not working in a fixed order in
P2. Breit-Wigner resonances sum up all orders in P?:

TABLE III. Comparison with low-energy expansion.

F G
Experiment [8] 5.59+0.14 4.77+0.27

Model

(&) 4.29 5.54

(D) 4.20 5.32
Bijnens [5]

Prediction 5.22 5.42

Best fit 5.60 4.76

2

mX o0

D>
n

my—s =0

Fy(s)=

s n
. (56)
=1
The above-described approach amounts to approximating
this series by

1 n

Fy(s)= 3,

n=0

(57)

my

(i) In [14,15] an SU(3)-symmetric octet of vector
mesons is assumed. The low-energy couplings derived
from the hidden-gauge Lagrangian are proportional to
the inverse vector-meson mass squared:

Limy)~—> . (58)
my
For simplicity, m,=m,, is assumed in [14], but I could
equally well take m,=m K* which induces a consider-
able uncertainty on the couplings L;,

Li(m,)=1.35XL;(m.) (59)

and a corresponding uncertainty on the predictions for F
and G.

In the approach taken in this paper, retaining the
vector-meson fields as dynamical degrees of freedom in
the Lagrangian, I do not have these ambiguities. I can
determine from the Feynman diagrams the mesons con-
tributing to the resonance factors and then use the ap-
propriate physical masses. This is what I did in model
(C). Or I can start from an improved Lagrangian which
includes the vector-meson mass splitting (and dynamical
effects thereof) from the very beginning. This is done in
model (D).

(iii) If I insert the L; derived from the completely
SU(3)-symmetric hidden-gauge Lagrangian into the re-
sults of [5,6], I get F=4.13-4.27 and G =5.04-5.50,
but in any case F <G in contradiction with experiment.
The vector-meson dominance models [2,3], on the other
hand, give results with F > G, which are in good agree-
ment with experiment. But if I expect these two ap-
proaches to give similar results, this is an apparent con-
tradiction. The source of this contradiction can only be
found if one does not integrate out the vector mesons. As
shown above, the sign of F-G depends on the detailed
form of the vector-meson propagator and the explicit
chiral-symmetry breaking. When using vector-meson
dominance, usually the S-wave projection is not subtract-
ed. This is only justified by assuming complete chiral
symmetry, in which case there is no S-wave part in the
chiral current anyway.

V. SCALAR RESONANCE CHANNEL

In this section I will discuss the effect of a scalar reso-
nance S in the 77 channel [see Fig. 1(g)]. The S particle
could be the f;(975), which decays predominantly into
7. The partial-wave expansion of the form factors
shows that such a scalar resonance can only contribute to
fs, i.e., only to the form factor F, and so I consider the
S-wave resonance by starting from model (C) and chang-
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ing F in the following way [7,16]:

2 2

F 3 mg—m:

FO — 1+ 4a 1 3m12<* FK*(IK”) 1

+e[Fg(s,,)—11], (60)
where
mg
Fg(spp)=——. (61)
mg=—Sqr

I call this ansatz model (Cg). € is an unknown free pa-
rameter, describing the strength of the S-wave resonance
coupling as compared to the vector-meson resonances.

In order to get a handle on the parameter €, I will now
also consider the slope parameters Ar and Ag of the form
factors, which have been neglected until now. They are
given by

1 |Fx)
F x| Fo) ’
(62)
_1 |Gk
=3 1G0)

where x has been defined in Eq. (6).

In the extraction of Ay from the data in [8], a linear
dependence F(x) on x was assumed. If this was repro-
duced exactly by the theory, I could choose any s,
above threshold, calculate the corresponding F(x), and
get the slope by use of the above formula. The linear
dependence, however, is not reproduced exactly by model
(Cs). Therefore, I will calculate the slope parameters
considering F(x) at Vv s+ =347 MeV, so that the brack-
ets 0,...,x cover 80% of all events [8]. (The precise
value used for s, here has only a very small effect on the
final results.) Fixing a value for s, does not determine
the value of tx_, and so one should integrate over all pos-
sible values. But if the experimental finding that the form
factors only depend significantly on s, is reproduced by
the model, one can use a simpler approach [S]. I express
txn in terms of s, cosf,, and s;, where 5, =(p; +p,)? is
the invariant mass of the leptonic system. Then I take
average values for cosf,=0.1 and V/s; =100 MeV, giv-
ing tx,=0.085 GeV2 Varying cos@,, from 0.0 and 0.9 or
Vs, from 0 to 147 MeV leaves tx,, in the interval 0.072
to 0.092 GeV2. So I use the value

tx»=0.082+0.010 GeV? at Vs, =0.347 GeV .  (63)

I have found that the theoretical uncertainty in tg  in-
duces errors in Ay and A; which are always below 0.01
and therefore may be neglected.

This way A for models (C) and (Cy) is found to be

Ag=0.04 . (64)

The values for F and Ay in model (Cg) are displayed in

TABLE IV. Predictions of model (Cs) in variation with €.

€ F )\'F

0 4.20 —0.18

1 4.76 —0.02
1.2 4.87 0.00
1.4 4.98 0.02
1.6 5.10 0.05
1.8 5.21 0.07
2.0 5.32 0.09
2.2 5.43 0.11
24 5.54 0.13
2.6 5.67 0.15
2.8 5.77 0.17
3.0 5.88 0.19

Table IV in variation with €. The value e=0 corresponds
to model (C), and it is seen that in this model not only is
F too small, but also Ay is in disagreement with the ex-
perimental finding. Allowing for one standard deviation,
one can use the experimental value for F to get
€=2.2-2.7 or the experimental value for Ap to get
€=1.7-2.1. The two results for € are compatible and
can be summarized by

€=2.2%0.5. (65)

In Table V the results for model (Cg) with €=2.2 are
summarized and compared with the results of the low-
energy expansion results given by Riggenbach et al. [6]
(Bijnens does not give results for the slope parameters)
and with experiment. One can see that this model with
JP=1"7 and 0™ resonances (and without loops) gives re-
sults which are of a quality comparable with those of the
low-energy expansion, but with only one unknown pa-
rameter (viz., €), the others (a and f ) being fixed by the
parameters of the p and 7 mesons.

VI. CONCLUSIONS

The axial form factors and slope parameters for K, de-
cays have been calculated including virtual J*=1" and
0% resonances. It has been shown that the inclusion of
JP=1" resonances only is not fully sufficient. The results
from the Lagrangian with hidden local symmetries are in
significantly worse agreement with experiment compared
with the results of the low-energy expansion [5,6]. This
can be explained by the importance of an additional S-
wave contribution, which in the O (P*) calculation stems
from 7 loops. It can alternatively be described by a sca-
lar resonance in the 7 channel.

As far as the mass splitting is concerned, it has been

TABLE V. Model (Cg) (with €=2.2) compared with the
literature.

F G Ap rg
Experimgnt [8] 5.59+0.14 4.77+0.27 0.08+0.02 0.08+0.02
Model (Cy) 5.43 5.43 0.11 0.04
Prediction in [6] 5.03 5.14 0.06 0.12
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shown that the direct breaking of chiral symmetry has no
significant effects on K, decays except for the importance
of the spin projection factor in the vector-meson propa-
gator (and the obvious changes in the phase space). The
dynamical effect of the mass splitting in the pseudoscalar
sector is suppressed by the smallness of the lepton mass,
and the effect of the splitting in the vector-meson sector
is very small because it is suppressed by the product of
two small factors, viz.,

2
My —1 four-momentum transfers
mf, vector-meson masses
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