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We have evaluated the one loop correction to the bound on the lightest Higgs mass valid in the minimal, E 6 based, 
supersymmetric q model. Under the assumption that the theory remains perturbative up to the 1016 GeV scale, we 
derive a conservative bound that decreases with the top mass for Mt <~ 2Mw and varies from ~ 160 GeV to ~ 145 
GeV when 90 ~ Mt <~ 200 GeV. 

One of  the most exciting (and courageous) predic- 
tions of  a large class of  supersymmetric  models is the 
existence of  (at least) one light Higgs scalar #1 , that 
would be certainly discovered at the next colliders 
(alternatively, the non-observation of  such a particle 
would be rather difficult to explain for the previous 
models) .  

An extremely impor tant  theoretical task becomes 
therefore the accurate determinat ion of  a rigorous up- 
per bound for this light Higgs mass. For  renormal-  
izable models, this means that a calculation that in- 
cludes radiat ive corrections e.g. at the one loop level 
would be relevant and welcome. 

A well known and particularly il lustrative example 
of  the previous s tatement  is provided by the so called 
minimal  low energy supergravity models [2]. Here, as 
a consequence of  supersymmetry,  one has the famous 
tree level bound 

Mum <~ Mz, (1) 

where by Mn~ we denote, from now on, the mass 
of  the lightest CP even Higgs scalar.This bound, as 
has recently been stressed in several publications [3 ], 
is common to a class of  "minimal"  SUSY models, 
that includes S U G R A  models  where e.g. all the SUSY 
breaking scalar masses are supposed to be equal at the 
G U T  scale [4], but  also models where such a con- 

#1 See e.g. ref. [ 1 ] for a discussion of this point. 

straint is not imposed and where soft breaking terms 
can be varied independently.  

When radiat ive corrections to the bound of  eq. ( 1 ) 
are computed [5], two important  effects are gener- 
ated. The first one is a substantial increase of  the up- 
per  bound, essentially due to the top-s top  contribu- 
tion to the Coleman-Weinberg  [6] effective poten- 
tial, that contains a quartic top mass dependence. The 
most dramatic  consequence of  this is that, for Mt ~- 
150 GeV, M--_~ 1 TeV, the new bound becomes now 

t 

~- 120 GeV, which is out of  the reach of  LEP2 with in- 
tegrated luminosity of  500 p b - I  and v~ = 190 GeV 
[ 7 ]. The second remarkable effect is the fact that both 
the numerical value of  the improved bound and other 
important  phenomenological features (like the possi- 
bil i ty that the CP odd "pseudoscalar" becomes lighter 
than Ha ) become now different within the previous 
large class of  "minimal"  models [8], that would be 
of  paramount  importance in case of  future Higgs (es) 
discovery. 

A few years ago it was shown [ 9 ] that another class 
of  models exists for which, at least over an interest- 
ing region of  the parameter  space, a bound for the 
lightest scalar Higgs mass can be simply and elegantly 
computed.  Such are those models where an extended 
gauge symmetry generated by the exceptional group 
E6, embedded into a supersymmetric  minimal  spec- 
t rum of  27-plets with fermions of  the conventional  
(quarks and leptons) type, is broken down by Hosa- 
tani type mechanisms [ 10 ] to either a rank 6 or a rank 
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5 low energy residual gauge group (for an exhaustive 
discussion of  the various theoretical details we defer 
to the existing literature [ 11 ] ). 

In both cases, Haber and Sher [9] derived bounds 
at tree level for the lightest scalar that are only slightly 
higher than the corresponding bound for minimal 
SUSY models, eq. ( I ). In particular, for the simplest 
rank 5 case with a minimal content of  particles (two 
Higgs doublets and one Higgs singlet in the third gen- 
eration acquiring VEVs Vl, v2, v3), which is usually 
called (minimal) q model, the result 

Mnl <~ 108 GeV (2) 

was found (similar values obtaining for the rank 6 
case). 

To see how one can possibly obtain a bound like 
that of  eq. (2) and also for better understanding the 
philosophy of  our paper, a quick review of  its deriva- 
tion and of  the role of  the parameters of  the scalar 
sector of  the models is requested. The latter ones are 
the coupling constant 2, that multiplies the trilinear 
term of  the original supersymmetric superpotential 
(E6 invariance forbidding any other possible e.g. bi- 
linear supersymmetric term), and the parameters of  
the SUSY breaking sector, i.e. the scalar mass terms 
/~1,/~2,/~3 and another soft breaking mass term 2A. 

After imposing the three conditions of  minimum 
and replacing the scalar mass terms by the related 
VEVs one is left with four free parameters, since it is 
still possible to relate v~ + v22 to M 2 ~2. 

M 2 = ½(g2 + g 2 ) ( v ~  + v ~ )  = 2gzvl-2 2. (3) 

A possible choice of  the four parameters is given, for 
instance, by the set 

v 2 -  tan fl, v3, 2, 2A. 
vl 

Alternatively, one can use the Z '  mass: 

g 2, = ~g~l 2(v ~+ 16v 2+25v32) (4) 

(g~ is the extra U( 1 ) coupling, and in practice gn = 
gr ) and the mass of  the single (CP odd) pseudoscalar 
of  the model: 

V2V3 ) Mgs = 2A (v iv2 + vlv3 + (5) 
\ V3 V2 Vl 

#2 We identify the physical Z ,  Z '  states with the math- 
ematical Z 0, Z6 gauge eigenstates. Given the existing 
bound on Mz, ,  this makes no practical difference 

to replace v3 and 2A, which is often done when numer- 
ical analyses are presented. The neutral CP even sector 
of  the model contains three physical states Ha, H2,//3. 
To obtain the expression of  the physical masses one 
has to diagonalize a 3 x 3 mass matrix M 2 whose six 
independent elements [m 2 ]ij = aij = aji can be cast 
in the form 

aij = c~ijv3 + flij for ( i , j )  # (3,3),  

a33 = ~33 W2 + -2AVlV2 , (6) 
V3 

where (~, fl)ij and Y33 do not depend on v3, and their 
explicit expression is given for instance in ref. [9]. 
As it was pointed out by Drees [12], the determina- 
tion of  a bound for the lightest Higgs mass is strongly 
affected by the value of  the ratio 2A/v3. The values 
2A << v3 correspond to a certain region in the pa- 
rameters space, that we shall refer to for simplicity as 
the "Haber-Sher region", where the bound of  eq. (2) 
can be derived without enforcing extra assumptions 
on the non-purely gauge couplings of  the model. Con- 
versely in the "Drees region", where 2A is not << v3, 
the derivation of  a bound needs extra assumptions 
on the 2 parameter. Invoking reasonable renormaliza- 
tion group equations (RGE) arguments (and assum- 
ing Mt "-" 40 GeV), Drees was able to fix a somehow 
higher value for the bound in this region, qualitatively 
equal to M/4~ ~ 170 GeV, and, strictly speaking, this 
should be considered as the true bound of  the model 
(at least, for the assumed Mt value). 

The origin of  the difference between the bounds in 
the two regions can be easily understood if one uses a 
simplified procedure based on the assumption v3 >> 
Vl, '02 (no statements about 2A/v3). The latter choice 
is phenomenologically motivated by the most recent 
bounds on the mass of  the extra Z of  the model, that 
can be derived either via direct CDF limits [ 13 ] or via 
indirect analyses of  LEP 1 data [ 14,15 ], both leading 
to the result 

Mz, ~> 300 GeV ~_ 0.4v3, 

from which v3 >> 1)1,/32 already emerges (note that 
future negative searches of  the extra Z at CDF and 
LEP2 would soon improve the previous bound by a 
factor 2 [16]). In this configuration, one can show 
that one "light" Higgs exists, i.e., one whose mass, 
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which does not become of  O(v3 ), is given by the fol- 
lowing expression: 

= [ ~flllCOS2fl q- f122sin2fl + /~,2sin2/~ 

(mh sinB + 
- ~33%-~ / (7 )  

In the Haber -Sher  region, v3 >> 2A, the negative 
contr ibut ion coming from the (1,3) and (2,3) non- 
diagonal matr ix elements of  eq. (7) does never van- 
ish. This brings a (negative) term of  O (24) that, when 
combined with the posit ive O (22) contr ibut ion of  the 
remaining matr ix elements, produces a maximum be- 
coming, in the l imit  tan fl --, ~ ,  the bound ofeq.  (2). 

In the Drees region for 2A -~ O (v3) it is conversely 
possible for the previous negative contr ibut ion to van- 
ish. This leaves a new bound that contains a positive 
quadrat ical  0 (22)  term and has also a tan fl depen- 
dence. 

For  22 < g~/2 + g2/3 the maximum is the same as 
in the Haber -Sher  case and corresponds to tan fl = 
0(3. 

But for22 > g}/2 + g~/3, the max imum is obtained 
for 

22 1 2 

t a n  2 f l  = - 7 g z  + ~ g ~  ( 8 )  
22 1 2  1 2  

- ~ g z  - ~g~ 

and a numerical  evaluat ion of  this expression requires 
a RGE approach to fix a max imum value of  2. This 
led to a bound on MH l of  quali tat ively 170 GeV at 
the t ime of  the original Drees der ivat ion in which, 
we insist, the top mass was assumed to be of  approx- 
imately 40 GeV and the hypothesis 22/4~z ~< 1 at the 
scale 1016 GeV was used. 

As one can see, the role of  the ratio 2A/v3 is thus 
rather crucial in this game, since the difference be- 
tween the two bounds is (from an experimental  point  
of  view) indeed dramatic.  The aim of  this paper  is 
that of  reconsidering the whole problem of  the deter- 
minat ion  of  a bound for Mnl, in the most general con- 
figuration in the parameter  space for the q model, at 
the next one loop order of  per turbat ion theory, par- 
t icularly taking into account the fact that the top is 
now known to be heavier  than ~ 90 GeV from the 
last CDF limits [17]. For  sake of  comparison with 
the previous tree level estimates, we shall still divide 
the parameter  space into two regions, corresponding 

to whether the condit ion ).A/v3 << 1 is satisfied or 
not, although in fact the "true" bound should always 
be derived in the Drees region #3 . 

In practice, the expected modificat ion of  the bound 
at one loop in the Haber -Sher  region is rather obvious 
if  one believes that, in the large v3 limit, the exotic 
sector should simply decouple from the conventional  
one. In this case, the radiative corrections to the bound 
should simply come from the top-s top  sector. The 
actual proof  of  this statement requires a number  of  
technicalities, which have been given in a previous 
note [ 18 ]. The result is that, as expected, the one loop 
bound in the Haber -Sher  region becomes 

( 1 6 g ~  M. l + 3 U  ] 
M~ 

3a M4 In t (9) 
2 2 2 4 2nCwSw M~ M 2 

showing that the full one loop correction is just  the 
large tan fl l imit  of  the corresponding correction in 
the case of  the minimal  SUSY models #4 . 

To evaluate the modification to the bound in the 
Drees region, one has to start from the expression of  
the modif ied eq. (7) at one loop. This requires the 
explicit expression of  the relevant matr ix elements at 
that order. To perform the calculation, we have fol- 
lowed the effective potential  approach [20] and we 
have first evaluated the contr ibution to the M 2 ma- 
trix that is obtained by considering all the fermion 
and sfermion content of  the model  (including the 
eleven exotic states).  We have used the expressions of  
the masses of  ref. [21 ]; whenever this was possible, 
we have systematically neglected the various D-terms 
and /o r  terms of  O(v/v3). Within these approxima- 

#3 Assuming v 3 ~>~ 't;l,/)2 as from the previous discussion, 
the two different regions can be classified from the ap- 
proximate expression, valid under this assumption, of 
the ratio 

*¢4 

2A 25 2 tan fl M2 s 
v 3 -- T8 gq 1 + t an f l  2 M 2 

2 ! 

showing that the Drees region does correspond to a sub- 
stantially heavy (Mes /> Mz, ) pseudoscalar. 
The fact that the bound remains finite, i.e. the radiative 
correction is not of O(av3), is not occasional but is the 
consequence of a general "screening" property valid for 
a large class of SUSY models [19]. 
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tions, the starting expressions of  the various masses 
become: 

- For the top-stop system: 

M t  = 2 2 h, v2, (10) 

5 ~2~2 
m~t2R = ~ R  "3Lh21)2"3LT'~lSrI'U3 

+ htAv2 + htv, v3, (11 ) 

5 ~ 2 ~ 2  
M~t2 L = m~t2 L + h ? ~  2 + T~e~r/~3 

- h t A v 2  - h tVlV3,  (12) 

with ht the top Yukawa coupling and M--the corre- 
t 

sponding soft mass SUSY breaking (we shall assume, 
as is usually done, that M 7 = O (TeV)).  Analogous ex- 

pressions can be given for the b, b system, whose con- 
tribution turns out to be negligible at realistic tan fl 
values and will therefore be omitted in this first eval- 
ua t ion .  

- The quark exotic sector contributes with 

M •  = 2 2 hhv3, (13) 

2 2 5- -  2 2 M 2 m2 + hhv 3 (14) = -- ~-6Kg~V3, 
h R h 

hhv 3 - ~r~,~t/u3, (15) M~L __ m~. . i  - 2 2 S , .~2~2  

where hh is the exotic Yukawa coupling which in prin- 
ciple can be large and ~ the soft mass; in eqs. (14), 
(15), k is a finite number that does not contribute 
appreciably to the result in any case. 

The contribution of  the other scalar mass sparticles 
for which the mixing is negligible i.e. f = (b', ~ ,  g, ~ )  
is 

m 2 + m 2 5 2y/v~ ' (16) M~, = f~ ~ + g gn 

with 111/the extra U(1 ) hypercharges [22]. 
Starting from eqs. ( 10 ) -  ( 16 ), inserting them in the 

effective potential written as usually in the form [6] 

AV(Q 2) = 6-~n2StrM41n - (17) 

and reevaluating the minimum conditions, one arrives 
at the one loop expressions of  the M 2 matrix elements. 

The results of  our procedure are shown in the next 
formulae.  One sees that the formal v3 dependence of  
the tree level expressions is retained, and one can still 
write 

a~) ) = 0:~))v3 + fl~;) ( i , j ) •  (3,3), (18) 

(1) (1)_ 2 r~(l) 
a33 = Y33 '/;3 + v33 , ( 1 9 )  

where (0:,fl, Y)ij do not depend on v3 (and 833 
1//)3). In particular, we find (the upper 1-index de- 
notes the complete quantity at one loop; the same 
quantity without upper index is meant to be the tree 
level expression, with renormalized couplings): 

 I'1' 0:','2' 4'2' 
0:,, 0:12 0:22 ' 

M ) 
= 1 - 1-~n2htZln Qt2, (20) 

M~ 
"" ( ' )  3. h222v, in t (21) 
trl3 = 0:'3 "[- 87~2 Q 2 '  

___L (22) 0:23 = 0:23 + h~ge~v21n Q2, 

M 2 
"(') ~ 

733 --  ~)33 + h 4 I n  M2, 

+ (D-terms > 0), (23) 

~ ( ' )  R(1) ,,~ ( ' )  
11 --  ~ ,2  -- v33 --  1, (24) 

fi l l  f l '2  ~33 

M2 
fl(')=22 fig2 + 4-~v2h 41n M~ 2, (25) 

M~ 
fl(~) = ill3 q- l~-~k2tkAv2 In Qt2, (26) 

fl(') I__~h 2t2Av,1 n M2 = fl23 + (~  (27) 23 

and in all the logarithms M 2 = M~ = M 2 is used. 
t L l R I 

In eq. (23) we have called "D-terms" the sum of  all 
the contributions of  this kind coming from the cor- 
responding terms in the sfermion masses. They will 
have little role in the numerical results, and we do not 
write down their explicit form. 

From the previous expression of  the relevant ma- 
trix elements it would be possible to compute numer- 
ically the value of  the light Higgs mass for any given 
choice of  the parameters. For what concerns the de- 
termination of  a bound, though, the approach is rela- 
tively simpler since one immediately realizes that the 
contribution to eq. (7) coming from the (1,3) and 
(2,3) non-diagonal elements is still definitely nega- 
tive and as such it can be neglected for this specific 
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purpose. Since the exotic contr ibut ion is essentially 
contained in these terms, this means that for the spe- 
cific determinat ion of  the bound it will still be possi- 
ble to ignore it. This remarkable simplif icat ion allows 
us to concentrate our analysis on the reduced matr ix 
M2j, i, j = 1, 2, and to look for its max imum in the 

considered region. 
To derive a max imum for the "reduced" component  

of  eq. (7) we have proceeded as follows. First,  we 
have computed  the modif ied  relevant quant i ty  at one 
loop, i.e. including the (largely dominan t )  t op - s top  
contribution,  that coincides with the one appearing 
in eq. (9). The modif ied  one loop bound becomes 
therefore the following: 

[( M2' ~< (1 + t a n 2 f l )  2 ( t a n 2 f l -  1)2 

g2 1)2) 822 tan2fl]  + a-~2 (4tan2 fl + + - -  
vg z g2 

M 2 
3a Mr4 In t 

+ 2~C2wS2 w M2z M 2" 
(28) 

The maximizat ion  of  eq. (28) follows from the same 
assumptions that  were used at tree level, with one cru- 
cial difference coming from the extra positive term 
that always increases with Mt as ~ M~. On the con- 
trary, the contr ibut ion to the maximum coming from 
the first two terms on the RHS of  eq. (28) decreases 
with Mt for not too large Mt values. This is due to 
the fact that, in order  to maximize 2, we shall follow 
the convention of  imposing "per turbat ive saturat ion" 
i.e. 22/4g ~< 1 at the A = 1016 GeV scale. From the 
relevant RGE for 2 and ht: 

d~ 2 3 2  l 2 7 2  
- ~gr  gg~ dt 8a 2 (--~gL - -  - -  -F 3h] + 222), 

dht h, s 2 3 2 13 
- -  - -  ~ g L  T'~ ~ g ~  dt 87g 2 ( -  ggstrong _ g2 _ 2 2 

+3h~ + ½22), 

(29) 

(30) 

where t = log Q/A,  it follows then immediate ly  that 
the value of  2 (Q)  decreases with ht in a way which 
is shown in fig. 1 #5. Since tan fl at the maximum is 

#5 To derive this conclusion we have neglected in the RGE 
the effect coming from the exotic coupling hE, since the 
latter would give in any case negative contributions. 

I aSrda [M: ] 

0 . 9 -  

C . 7  

O . ~ -  

C. 0.7 O. 0.9 1 1 1.2 
>~ [ t , ! :  3 

Fig. 1. Values of )~(Mz ) for variable ht (Mz)  calculated 
with the RGE of eq. (29 ), ( 30 ) with the saturation condition 
22(A)/4~r = l and A = 1016 GeV. 

Mt 

n o 
Ge~ 

1 8 ¢  

1 6 0  

1 4 C  I 
1 2 e  

i00 .- 

L a r ~ L d a  [t.:z ] i 
¢ . 6 5  0 . 7  0 c c ~ c 7 5  . ~  ' .  5 , _ \ 

Fig. 2. Dependence of Mt on 2(Mz) calculated after im- 
posing the condition of eq. (9) on tanfl and the relation 
between 2 and ht fixed by by the RGE shown in fig. 1. 

related to 2 from eq. (8), and ht is related to mt and 
tan fl by the equation 

M 2 = h2v 2 tan 2fl 
1 + t a n  2fl" (31) 

This means that at the maximum all the various pa- 
rameters i.e., 2, tan fl and ht will be expressed in terms 
of  Mr. In particular,  the 2 dependence on Mt, which 
will crucial for our conclusions, is shown in fig. 2. 

One can now proceed in the following way. Of  the 
three terms that appear  in eq. (28), the third one is 
clearly increasing with Mr. The second O(22) terms 
decreases with Mr; this term would reproduce essen- 
tially the Drees bound at tree level, and is numerically 
dominant  for relatively small Mt values. The first term 
increases with Mr, but  remains relatively depressed 
compared to the second one for small Mt values. This 
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G e V  1 6 0  

2 5 0  .' 

1 4 0  .- 

),,/" 
120.- ~ / %~ • 

lolc. 120. 140. 161. 1810. ~ M :  
GeV 

Fig. 3. Values of the light Higgs mass bound at variable 
Mt for M--- = 1 TeV. The full upper line represents the 

t 

bound of eq. (28) with the constraint of eq. (8). The dot- 
ted line represents the same equation without the last con- 
tribution (x Mr4. The point-dotted line shows the bound in 
the Haber-Sher region, eq. (9). 

would exactly reproduce the Haber-Sher bound for 

large Mt values (corresponding to tan fl -+ oo) when 
it becomes conversely dominant  over the second one. 

The overall picture is represented in fig. 3, where 
we show the mass bound as a function of the top mass 
in the full line, which is the representation of eq. (28) 
with the constraint on tan fl of eq. (8) #6. The dotted 
line represents the upper bound of eq. (28) without 
the explicit contribution of the radiative correction cx 
M 4 and shows the importance of the latter especially 
for large values of Mr. Finally, the point-dotted line 
represents the radiative corrected upper bound in the 
Haber-Sher  region, eq. (9), showing that for large Mt 
values the bounds, in the two regions, merge into one 
identical result. 

One sees that for Mt ~< 2Mw GeV there exists a 
bound for the model that would correspond to the 
modification of the Drees bound and decreases with 
Mr, remaining always smaller than ,-~ ( 160 GeV) for 
Mt >/ 90 GeV. This would be in qualitative agreement 
with a general statement recently made by Kane et 
al. [24]. For larger Mt values, the bound begins to 
increase with Mr. Assuming the limit on Mt derivable 
from the last LEP1 data ]14, ~< 200 GeV, we obtain for 

# 6  It is interesting to note that the Mt dependence of our 
bound is very similar to the corresponding one in the 
"minimal-non-minimal" SUSY model recently exam- 
ined in ref. [23]. 

this model the corresponding perturbatively saturated 
bound 

MH~ ~< 160 GeV. (32) 

Thus, if the next LEP2 analyses failed to find a light 
scalar and set a qualitative limit M/4~ >/ Mz, the 
model would predict a light scalar in a region that 
might be thoroughly (and particularly well) inves- 
tigated by future higher energy e+e - linear collid- 
ers [25]. 
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