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Statistical properties of highly excited quantal eigenstates are studied for the free motion (geodesic flow) on a compact 
surface of constant negative curvature (hyperbolic octagon) which represents a strongly chaotic system (K-system). The 
eigenstates are expanded in a circular-wave basis, and it turns out that the expansion coefficients behave as Gaussian 
pseudo-random numbers. It is shown that this property leads to a Gaussian amplitude distribution P(~) in the 
semiclassical limit, i.e. the wave-functions behave as Gaussian random functions. This behaviour, which should hold for 
chaotic systems in general, is nicely confirmed for eigenstates lying 10 000 states above the ground state thus probing the 
semiclassical limit. In addition, the autocorrelation function and the path-correlation function are calculated and compared 
with a crude semiclassical Bessel-function approximation. Agreement with the semiclassical prediction is only found, if a 
local averaging is performed over roughly 1000 de Broglie wavelengths. On smaller scales, the eigenstates show much more 
structure than predicted by the first semiclassical approximation. 

1. Introduction 

Unt i l  r ecen t ly ,  the  s tudies  of  the  q u a n t u m  

m echan i ca l  c o u n t e r p a r t s  of  classical ly s t rongly  

chao t ic  sys tems have  main ly  c o n c e n t r a t e d  on the 

p r o p e r t i e s  of  the  quan ta l  ene rgy  spec t ra  leading  

to the  i m p o r t a n t  resul t  tha t  the  shor t - r ange  cor-  

r e l a t ions  o b s e r v e d  in the  quan ta l  ene rgy  se- 

quences  are  in acco rdance  with the  universa l  

p r ed i c t i ons  of  r a n d o m - m a t r i x  t heo ry  ( R M T )  [1]. 

( F o r  r ecen t  rev iews,  see refs. [2-5] ,  and  for  the  

pa r t i cu l a r  m o d e l  s tud ied  in this p a p e r ,  see ref. 

[6]). W h i l e  these  inves t iga t ions  were  the re fo re  

d e v o t e d  to the  col lec t ive  b e h a v i o u r  of  many  

s ta tes ,  one  can search ,  on the  o the r  hand ,  for  the 

f ingerpr in ts  of  classical  chaos  in a single q u a n t u m  

e igens t a t e  l ead ing  to the  s tudy  of  wavefunc t ions  

qr(q)  as well  as of  the  co r r e spond ing  W i g n e r  
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func t ions  W(q ,  p)  [7] descr ib ing  the  e igens ta tes  

in phase  space .  

O n e  i m p o r t a n t  ques t ion  is w he the r  the  e igen-  

s ta tes  of  classical ly chaot ic  sys tems are  local ized 

o r  not .  H e r e  a s ta te  is cal led local ized if the 

expans ion  coeff icients  with respec t  to a 

" g e n e r i c "  basis  are  large only  for  a small  n u m b e r  

of  a d j a c e n t  basis  funct ions  and dec rease  ex- 

p o n e n t i a l l y  with increas ing  d is tance  f rom the 

d o m i n a n t  reg ion .  The  unsa t i s fac tory  po in t  is the  

b a s i s - d e p e n d e n t  desc r ip t ion  and the fact tha t  it is 

no t  obv ious  if a cons ide red  basis  is actual ly  a 

gene r i c  one .  The  absence  of  loca l iza t ion  in 

e igens ta t e s  leads  to wavefunc t ions  whose  stat ist i-  

cal p r o p e r t i e s  can be desc r ibed  by R M T  [8], as 

numer i ca l  s tudies  show in the  case of  k icked  tops  

[9]. D i f f e r en t  local ized e igens ta tes  having no 

o v e r l a p  with  respec t  to such a gener ic  basis have 

no r ea son  to gene ra t e  cor re la t ions  among  the i r  

quan ta l  energ ies  and thus  do  not  obey  the pre-  
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dictions of RMT. The dependence of the statisti- 
cal properties of the quantal energy spectra on 
the localization is well studied for the kicked 
rotator and for the kicked top (for a review, see 
refs. [10] and [5], respectively). 

Another  important question is whether the 
wavefunctions qr(q) possess so-called "scars" 
[11], i.e. regions in the neighbourhood of the 
classical periodic orbits where the intensity 
]q,(q)[2 differs significantly from the statistically 
expected mean. The discussion of scars has been 
preceded by the "semiclassical eigenfunction hy- 
pothesis" [12-14] which states that the Wigner 
function semiclassically condenses like a ~-func- 
tion on the energy surface in analogy to the 
classical Liouville density 

W(q, p) ~ 6(H(q, p ) -  E).  (1) 

This is the expected classical limit for h = 0  
which differs, however, from the semiclassical 
behaviour,  where h is small but not zero. It is 
worthwhile to note that a similar result has been 
obtained in the semiclassical limit by Zelditch 
[15] and Colin de Verdi~re [16] for the free 
motion on compact Riemann surfaces, i.e. exact- 
ly the systems to be studied in this paper. After 
Heller 's discovery of scars in the stadium billiard 
[11], the semiclassical eigenfunction hypothesis 
has been modified to incorporate the contribu- 
tions from the classical orbits which add oscilla- 
tory contributions to the smooth background (1) 

W(q,p) 6(H(q,p) E ) + ~  J - -  W . . . .  (q, P) .  
i 

(2) 

Here  j labels all periodic orbits (including repeti- 
tions) with energy E. The semiclassical scar- 
contribution was worked out by Bogomolny [17] 
and by Berry [18]. For the systems which we 
shall discuss in this paper, we have derived an 
exact orbit theory in [19], where it is shown how 
the exact theory can be approximated to yield 
Bogomolny's  semiclassical theory. (Note that the 
original version of the scar theory refers not to 

single eigenstates, but to averages over groups of 
states. If, however, a suitable smoothing is con- 
sidered as in ref. [19], it is possible to single out 
a given eigenstate). Indeed, this theory seems to 
predict an increased intensity of the wavefunc- 
tion and the Wigner function in the neighbour- 
hood of periodic orbits. However,  in the semi- 
classical limit h-->0, each periodic-orbit contri- 
bution, being of higher order in h, shrinks to 
zero, and only their collective behaviour de- 
scribes the eigenstate. Up to now it is unclear 
how the contributions of a single short periodic 
orbit can survive in the semiclassical limit and 
whether all scars are in a genuine connection 
with a single periodic orbit, or if they are merely 
a product of a random process. The question of 
scars in the strongly chaotic systems, which we 
study in this paper, will be discussed in a forth- 
coming paper. Here we are mainly interested in 
the statistical properties of the wavefunctions. 

In this paper we study a conservative Hamil- 
tonian system which classically consists of a point 
particle sliding freely on a closed surface of 
constant negative curvature. One is led to study 
such a system because it can be viewed as a 
simple case of a large class of general potential 
problems. In general, the motion of a particle 
which is solely determined by a given potential 
V(q) can be considered in Jacobian coordinates 
as the geodesic motion on a curved manifold, 
where the curvature is determined by the poten- 
tial V(q). Since Gelfand and Fomin showed that 
negative curvature is necessary for a system to be 
chaotic [20], it is natural to study the simplest 
case, i.e. the case of constant negative Gaussian 
curvature K = - I .  For more details on the phys- 
ical significance of this model which is one of the 
main testing grounds of our ideas about quantum 
chaos, we refer to our earlier paper [6]. 

The surfaces to be considered are compact 
Riemann surfaces ~ of constant negative curva- 
ture K = - 1  with genus g = 2, i.e. they have the 
topology of a sphere with two handles. Due to 
the Gauss -Bonne t  theorem, A r e a ( ~ ) =  4w(g 
1), the area of such a surface is A r e a ( ~ ) -  4v. 
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The sphere with two handles can be cut so that 
one obtains an octagon with geodesic edges, 
where opposite sides must be identified which 
leads to periodic boundary conditions. A given 
octagon is mapped  into the Poincard disc 9 ,  
which consists of the interior of the unit circle in 
the complex z-plane (z = x~ + ix:) endowed with 
the hyperbolic metric 

4 
ga= (1-x2, -x2 '22)  6ii' i , j : l , 2 ,  (3) 

corresponding to constant negative Gaussian cur- 
vature K = - 1 .  (This fixes the length scale.) The 
classical motion is determined by the Hamil- 
tonian H = (1 ij /2m)pig Pj, Pi = mgij dxJ/dt, and 
the geodesics are circles intersecting the bound- 
ary of the Poincard disc @ perpendicularly. 

The quantum mechanical system is governed 
by the Schrddinger equation 

- 6 q , , , ( z )  = E, ,  ~ , ( z ) ,  

with A =  ~ ( 1 - x -  l - x ~ ) -  Ox~ + Ox~ (4) 

where we used h = 2m = 1. The periodic bound- 
ary conditions are realized by identifying the 
points z and z ' =  b(z), 

a z + / 3  
b(z) : -  f~*z + ~* ' 

1~12- 1/312= 1, (5) 
where the "boos ts"  

b = /3* G S U ( 1 , 1 ) / { - +  1} 

are chosen such that they map a given edge onto 
the opposite edge. Four boosts are sufficient for 
the description of a given octagon. These four 
boosts and their inverses are the generators of 
the Fuchsian group F which tessellates the Poin- 
card disc 9 .  The solutions of the Schr6dinger 
equation (4) have to obey the periodic boundary 
conditions 

qt(z) = qt(b(z)) for all b E F ,  (6) 

and are normalized according to 

f f dxl dx, 4 
- (1 - x ;  - x21- q;,,*(z) q(,,(z) 

= 6 ..... . (7) 

For more details of this model,  see the well- 
written introductions in refs. [4,21] and our ear- 

lier papers [6,19,22]. 

2. C o m p u t a t i o n  of  h igh ly  exci ted states 

In our earlier studies on the wavefunctions 
[19] and quantal energies [6,22] of hyperbolic 
octagons,  the computat ions have been based on 
the finite-element method.  This method relies on 
a variational principle and thus yields upper 
bounds for the quantal energies. By using an 
algorithm with a high order of convergence, we 
were able to compute the first 200 eigenvalues of 
a given asymmetric hyperbolic octagon with 
sufficient accuracy. But to proceed to much high- 
er excited levels, the finite-element method is 
not suited. The method outlined below uses 
instead the "direct boundary-element  method" ,  
which requires the computat ion of a determinant  
of an energy-dependent  matrix whose zeros, or 
in practical applications, whose minima yield the 
desired quantal energies. Whereas the finite- 
e lement  method yields all the first n quantal 
energies after solving the eigenvalue problem at 
once, the boundary-element  method forces one 

to compute  many determinants  to locate a single 
eigenvalue. The advantage of the latter is that, 
on the one hand, it does not rely on a variational 
principle, and, on the other hand, it reduces the 
dimension of the problem by one, because the 
unknown wavefunction has only to be computed 
on the boundary of the octagon instead on the 
whole fundamental  domain ,~. It turns out that 
these facts enable us to compute even the 
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20000th excited level of a general asymmetric 
octagon. 

To derive the basic integral equation for our 
problem,  we rewrite the Schr6dinger equation 
(4) as 

4 EJ~(z)  = 0 IV -W + (1 - I z l~ )  2 

(0 0) 
with V : :  ' Ox " (8) 

(Jxl 2 

f (gt(z, aGo(z, z', E) 
0/ l ,  

a~,(z') ] 
- Go(z, z', E) ~ - / d y : ,  

= f dz' qt(z') 6(z - z ')  

[ ~ ( z ) ,  z C ,~ but z ~ a ~  

i), otherwise . 
(11) 

Let u(z) and v(z) be normalizable functions on 
the fundamental  domain ~,  then the following 
integral can be cast by Green ' s  theorem into an 
integral over the boundary O~ of the fundamen- 
tal domain ~ :  

4 E)u(z ' )  f dz '[v(z ' )@"'lT'  + (l_]z,12)2 

- u ( z ' ) ( V ' .  ~ '  4 Elv z,l 
+ (1 - I z ' 1 2 )  2 

f (  Ou(Z') u(z') Ov(z') ] 
= dy:, v(z') On:, On., /"  (9) 

Here  the integration is with respect to the Eucli- 
dean measure,  and it is worthwhile to remark 
that the terms due to the hyperbolic metric 

cancel in the first line (dz ' =  dx '  ldx2). O/On z, is 
the normal  derivative with respect to the bound- 
ary O,~ at the boundary point z', and dy  z, is the 
l ine-element on O~. Now we set v(z') equal to a 
solution ~ ( z ' )  of the Schr6dinger equation (4) 
and u(z') equal to the free Green ' s  function 
Go(z, z', E) on the Poincar6 disc defined by 

4 E)Go(z, z' E) (I7. I7+ ( 1 -  Iz12) ~ 

= 6 ( z  - z ' ) .  (10) 

Then one obtains from (9) the basic integral 
equation 

The Green ' s  function of eq. (10) is known to be 
proport ional  to the Legendre function of the 
second kind Q,,(x) with x > l  (see, e.g. refs. 

[21 231): 

G,,(z, z', E) 

1 
2"rr Q } ip (cosh d(z, z ' ) ) ,  (12) 

1 p2 where E a + , and 

cosh d( z, z' ) 

2 1 z -  z,I ~- 
:= 1 + (1 -Izl~-)(l - Iz ' l  e) (13) 

defines the hyperbolic distance r = d(z, z') bc- 
tween z and z'. 

The efficiency of a numerical application of 
eq. (11) depends heavily on an effective algo- 
rithm for the accurate computat ion of Q,,(x). 
Fast converging series can be obtained from thc 
following relation of Q,(x) to the hypergcomet-  
ric function (see p. 153 in ref. [24]) 

Q,(x) - - -  
x/-q F( v + 1) 

(2xy ~' r ( , ,  + ~) 

x :F ,  + 1 , ~ + 5 ; ~ , + ~ ;  , 

I~1 > 1. (14) 

From (14) one gets for cosh T > 1 
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Q ~_ip(COsh z )  

= x / ~ ( 2 c o s h  r ) -~÷ iP~(  ak 
c o s h  2k T 

(15) 

where the coefficients a k are determined by the 

recursion formula 

1 - E + 2ip(1 - 2k) + 4 k ( k  - 1) 
ak = 4 k ( k  - ip) ak 1 

F( 1 _ ip) 
with a 0 - r(1 - ip) " (16) 

This yields a fast converging series for z > 0. In 
the opposite limit r--+0, the Green 's  function 
has a logarithmic divergence, being analogous to 
the short-distance singularity of the Green's  
function for Euclidean billiards. It is thus desir- 
able to use an expression which gives the correc- 
tions to the logarithmic divergence for r--+0. 
Starting from (see p. 175 in ref. [24]) 

x + l  

sinzrv k C ( k -  v ) F ( k  + v +  l )  
'/T k = l  (k!) 2 

x y + ~ - ( k + l )  2 / ' 

[ 1 - x 1 < 2  

r, ) 
- 2---ff (u + 1) 

(17) 

one obtains with (see p. 153 in ref. [24]) 

1 1 P ~_ip(X) = 2Fl(~ + ip, ~ - ip; 1; 21(1 - x)) 

= 1 +  P 
coshaxp ~ I t (  1 + i p + g ) l  2 

~r k = ,  ( k ! )  2 

X 

I i - x l < 2  (18) 

the expression (x := cosh z, 1 ~ cosh r < 3) 

Q -  21 ip (cosh 7) 

= -  o t a n h  r + y +  _ 

c o s h T r p  ~ I F ( ½ + i p + k ) l  2 
+ - -  

zr k = l  ( k ! )  2 

1 -cosh z ] k [ r  ' r '  
x 2 / l - f f  ( k + l ) -  F - (1 - i p )  

- ½log (tanh 2 ) ]  , (19) 

where y is Euler 's constant. In (19) the logarith- 
mic singularity is explicitly separated in the first 
term. In Euclidean billiards the singularity is 
proportional to In r which corresponds exactly to 
the singularity in the hyperbolic plane because of 
r = tanh(7/2).  By means of the two equations 
(15) and (19) the Green's  function and its nor- 
mal derivative can be effectively computed. The 
coefficients in the series are independent of 7 and 
thus can be computed for a fixed energy E or 
momentum p before the boundary integrals are 
evaluated, in which only the z-dependence of 
G0(z, z', E )  enters. For very highly excited 
states it suffices to use the asymptotic behaviour 

/ T~ e i p r  +~r/4 
Q_l/2_ip(cosh z) ~ ~4 2 p sinh r 

for p - + ~  and r >> "trip. (20) 

However ,  in general (20) is by far less accurate 
than the other two expressions. 

For the numerical solution of eq. (11), the 
boundary 0.~ is discretized into intervals of 
length A r = ~ / 2 p ,  i.e. one de Broglie wave- 
length is divided into four intervals. On each 
interval the wavefunction ~(z )  as well as its 
normal derivative O~(z ) /On  are approximated 
by a polynomial u(s  c) of order 3 

4 

u(~) = ~ ukNk(~), 
k = l  

m,(~:) = (1 - ¢)2(1 + 2¢) 

= X3(1 - ~:), 

X2(~) = ~c(1 - ~c) 2 = -X4(1  - ~ ) ,  (21) 
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Fig. 1. The intensity ]~,(z)] 2 for the eigenstate at energy E = 2000.695. 
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Fig. 2. The  intensity Iq, (z)l  ~ for the eigenstate at energy E = 2003.117. 
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Fig. 3. The intensity ]~,(z)] 2 for the eigenstate at energy E :  10001.092. 
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Fig. 4. The  intensity ]~n(z)] 2 for the eigenstate at energy E = 10003.405. 
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where ~: E [0, 1] is the parametrization of a given 
interval. With these approximations the integral 
equation (11) turns into a system of linear equa- 
tions for the expansion coefficients u k. However,  
not all uk's are independent because of the per- 
iodic boundary condition (6). After expressing 
the system of linear equations only in terms of 
the independent  coefficients u k, the system will 
become singular if the energy E in (11) is equal 
to an eigenvalue E~ of the Schr6dinger equation 
(4). In this way, the eigenvalues can be found 
and, in addition, using the singular-value decom- 
position method,  also the eigenvectors, i.e. the 
value of the wavefunction and its normal deriva- 
tive along the boundary 0~.  Knowing the 
wavefunction and its normal derivative on the 
boundary,  qt(z) can be computed via eq. (11) for 
all z E ~.  Because of the employment of polyno- 
mials of order  3, a high convergence is assured 
enabling us to compute extremely high excited 
states up to n = 20 000. In the energy range from 
E =  ¼ up to roughly E = 2 0 0  where the 
boundary-element  method as well as the finite- 
element  method can be applied, we have com- 
pared the quantal energies and the wavefunc- 
tions obtained from the two methods and found 
that both yield the same results within the nu- 
merical accuracy. 

In this paper all computations are carried out 
for an asymmetric hyperbolic octagon which is 
uniquely defined by the following 4 corner-points 
Z k = r k e i~k • r I = 0.9405185836, ~t~ 1 = 0 ,  r e = 

0.8701653, ¢2 = 0.8023654, r 3 = 0.7609273, ¢3 = 
2.1175027, r 4 = 0.8575482, q~4 -- 2.5846103, 
where the other 4 corner-points are obtained 
from these by the parity transformation z ~ -  z. 
The construction of the complete hyperbolic oc- 
tagon can then be carried out according to the 
method outlined in ref. [6]. The eigenstates can 
be classified by their parity which is the only 
symmetry an asymmetric octagon can possess. 
We have computed all eigenstates of positive 
parity in the energy intervals [2000,2050], 
[10 000, 10 020] and [20 000, 20 010]. In figs. 1-4 
the intensity structures of four eigenstates with 

positive parity are shown in the Poincar6 disc 
whose boundary ]z] = 1 is presented by the red 
circle. The intensity increases from red hues over 
yellow towards blue. One observes that the red- 
dish hues are prevailing in contrast to blue hues 
which is due to the fact that qt(z) itself is Gaus- 

j ~  

/ 

Fig. 5. T h e  nodal  lines for  the e igens ta te  at ene rgy  E -  

2000.695. 

f 

J 

Fig. 6. T h e  nodal  lines for the e igens ta te  at ene rgy  E -  

2003.117. 
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sian distributed with zero mean (see section 4). 
Thus high intensities occur relatively seldom. In 
addition, we present in figs. 5-8 the nodal lines 
of the same four eigenstates as shown in figs. 
1-4. The four examples represent typical mem- 
bers of the set of wavefunctions we have studied. 

\ 
\ / 

Fig. 7. The nodal lines for the eigenstate at energy E = 
10 001.092. 

f ~  

/ \ 

Fig. 8. The nodal lines for the eigenstate at energy E = 
10 003.405. 

Figs. 1-8 demonstrate clearly the high degree of 
complexity of chaotic wavefunctions. 

3. Statistical properties of eigenstates 

As discussed in the last section, the boundary- 
element method yields primarily the values of 
the wavefunction and its normal derivative along 
the boundary. For the following analysis it would 
be most desirable to have a representation in 
which the eigenstates are expanded in an ortho- 
normal basis on the fundamental domain o%. 
However, it is practically impossible to construct 
such a basis because the hyperbolic octagons 
have no integrable limit from which one could 
start. To circumvent this problem, we notice that 
the wavefunctions can be continued to the whole 
Poincar6 disc @ because of the periodic bound- 
ary condition (6). Without the condition (6), the 
motion on the whole disc is integrable and thus 
allows to express the quantum states in terms of 
some special functions. In ref. [21] the circular- 
wave expansion and the plane-wave expansion 
are discussed and the transformation theory be- 
tween these two is studied. Here we choose the 
circular-wave expansion which naturally emerges 
by considering the Schr6dinger equation (4) in 
hyperbolic polar coordinates (7, ~b) with 
z = tanh(r /2)  e i+, 0 -< r < ~, 0 <- ~b -< 2"rr. This ex- 
pansion reads 

'I~(z) = ~ amF,.(s, 7) e ~m~ 
m = 

with Fm(S,"r ) '=  ( - 1 )  m 

F(s) pm (cosh 
× F(s + m) - .c), (22) 

where P~(x) is the associated Legendre function 
defined in the complex x-plane cut along the 
interval [ -1 .  +1], and s is determined by the 
energy E via s = ½ - i p .  Notice that the eigen- 
values E n of the Schr6dinger equation (4) are 
given by E,, = s .(a - s . )  =p~ + ~, s. = ½ - i p . .  
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The functions Fm(s , r) are real for s = 1 _  ip, 
p E R, 0 -< r < oo. In contrast to P_ms(cosh 7), the 
function Fm(s , 7) is scaled in such a way that the 
normalization integral over the Poincar6 disc @ 
is independent  of the index m 

f Fm(s, 7) F.,(s', 7) sinh r dr  
0 

_ p tanh "rrp 
4.rr 2 6 (p  - p ' ) ,  (23) 

f o r s = ~ - i p ,  s ' = l - i p ' , p , p ' E N ,  as can be 
read off from 

f P~_.(cosh 7) Pm_s,(cosh r) sinh r d r  
0 

_ p tanh "rrp F(s + m) 26(p 
471.2 i f ( S )  --  p')  ' 

(24) 

where sinh'r dz is due to the invariant volume 
element  of the hyperbolic metric (3). To address 
the question of localization with respect to some 
generic basis, it is important that the normaliza- 
tion is independent  of the expansion index. In 
RM T this is achieved by the normalization of 
each basis vector to unity, which is impossible in 
our case, because our basis does not refer to the 
hyperbolic octagon ~,  but rather is defined on 
the whole Poincar6 disc @, which is infinitely 
extended and permits only a 6-function normali- 
zation. In the case of non-localized eigenstates 
with respect to the circular-wave expansion, one 
expects expansion coefficients tim of the same 
magnitude. 

For a given hyperbolic octagon, the circular- 
wave expansion seems to provide a generic basis 
since the periodic boundary condition (6) is not 
reflected by this basis. This is a crucial point 
because the considered hyperbolic octagon is 
defined by an arbitrarily chosen periodic bound- 
ary condition from a set of infinitely many pos- 
sibilities, and all these possibilities would be 
described by the same basis which thus cannot 

have a special connection to a given hyperbolic 
octagon. 

The eigenfunctions of hyperbolic octagons are 
always real and possess parity symmetry. In this 
paper we consider only eigenstates with positive 
parity, i.e. ~ ( z ) = q t ( - z ) ,  in which case the 
expansion (22) can be simplified to 

1/~(Z) ~ l L ~aoFo(s, z) + [a2n_ l sin(2n~b) + 
n ~ l  

azn cos(2nch)]F2n(s, "c). (25) 

The (new) real expansion coefficients a n can be 
computed from a given wavefunction with posi- 
tive parity and energy E =  s ( 1 -  s ) = p 2 +  1 by 
Fourier  analysis (z = r e i*, r = tanh(r /2))  

27r f dO qt(r ei'~)cos(2n~b) 
0 

= F 2 n ( S  , r ) a 2 n ,  

2--,rr ; d 6  qr(r e i~) s in(2n6) 
0 

= F 2 n ( s  , r ) a2n__ l  • 

(26) 

(27) 

In principle, these equations allow the determi- 
nation of the coefficients a n independently of an 
arbitrary value of r. However,  the maximal index 
n . . . .  for which the an's can be computed with 
sufficient numerical stability, is determined by a 
property of the functions Fn(s , r) which carries 
over from the Legendre functions. The function 
F, (s, r) vanishes rapidly in the classically forbid- 
den region sinh z <  n/p [21]. For values of n 
which are bigger than n . . . .  the small values of 
F n (s, r) cause numerical instabilities in the com- 
putation of the an's. We therefore restrict our- 
selves to the an's with n -< //max which belong to 
circular waves in the classically allowed region. 
With r = tanh ( r /2)  we obtain 

n .... := p sinh r -  2pr 
1 - r 2 ' ( 2 8 )  
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In our computat ions we use r E [0.94, 0.95], and 
with r = 0.9475 one obtains from (28) the limits 

nma X = 829, n ..... = 1853 and nma x = 2621 for E = 
2000, 10 000 and 20 000, respectively. For safety 
reasons, the following statistics concerning the 
an's are based on 800, 1750 and 2400 coefficients 
for E = 2000, 10 000 and 20 000, respectively. 

To get an idea about what could be expected 
for the statistical propert ies of the coefficients a,,, 
consider the predictions of random-matr ix  
theory. Because the hyperbolic octagons possess 
t ime-reversal  symmetry,  one expects that the 
statistical propert ies are described by matrices of 
the Gaussian orthogonal ensemble (GOE) .  In 
ref. [6] we have shown that the short-range 
correlations in the quantal energy spectra are 
indeed in good agreement  with the G O E  predic- 
tions, but that the long-range correlations have 
to be modified by the periodic-orbit theory, see 
also ref. [25]. It is thus a priori not clear whether 
the G O E  predictions are valid for a single eigen- 
state of a hyperbolic octagon. 

The main prediction of R M T  for the eigen- 
functions is that their expansion coefficients with 
respect to a generic basis are Gaussian distribut- 
ed [8]. For the Gaussian unitary ensemble the 

complex coefficients are considered to be de- 
scribed independently for the real and imaginary 
parts by a Gaussian distribution. It is convenient 
to consider the distribution of ]a,,] 2 instead of a,,, 
whose distribution is then given by the so-called 

)¢~ distribution 

(V/2) "/2 ,,,2 1 vX/2 (29) 
p a x )  - r ( ~ / 2 ~ x  e , 

where 

1 2 (Xi a)  2 X - -  2 
/20" i 1 

is the sum of v independent  Gaussian random 
variables X i with mean d and variance 0-2. In 
refs. [26,9] agreement  with the R M T  prediction 
has been shown in the case of the kicked top for 
the three universality classes of the orthogonal 

( G O E ,  v = 1), unitary ( G U E ,  v = 2) and sym- 
plectic (GSE,  v = 4 )  ensemble.  The transition 
towards the integrable case is suspected to corre- 
spond to the limit v---, 0. But this is still a matter  
of discussion because this behaviour is not re- 
flected in the case of the kicked top [9]. On the 
other  hand, in the case of the coupled-rotators 
model the transition from chaotic to integrable 
behaviour  can be described by the transition 
f rom v = 1 towards v = 0 [27]. 

In the following we want to check whether the 
coefficients a,, are distributed according to the 
R M T  distribution (29). Note,  however,  that 
R M T  is not applicable to our case because every 
wavefunction is expanded in another  basis which 
depends on the momentum p. In the f ramework 

of R M T  one supposes instead that all eigenstates 
are expanded in a common basis; but, as men- 

tioned above,  this is practically impossible in our 
case. Thus our hypothesis that the a,,'s are dis- 

tr ibuted according to (29), is based only on an 
analogy argument.  

Let  us now turn to the statistical properties of 
the coefficients a,,. The mean d of the coefficients 
is within the statistical significance in agreement  
with a zero mean. Before the statistical analysis 
is carried out, the coefficients are rescaled such 
that their variance obeys o-x= 1. In fig. 9 we 

show the obtained cumulative distributions 
which are, in contrast to histograms, free of the 
arbitrariness of choosing some bins. Another  
advantage of the cumulative distributions is that 
statistical fluctuations are smoothed out, which 
would be more pronounced in the case of histo- 
grams. The cumulative R M T  predictions 

I(x) = i dx'  p,  (x')  
o 

= y( ~ v, ½ vx) /F(  ½ v) (30) 

following from (29) are also shown in fig. 9 for 
the three universality classes. (y(x,  y) is the 
incomplete  gamma function). To these distribu- 
tions we have applied the Kolmogorov-Smirnov  
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test (see e.g. ref. [28]) which yields the approxi- 
mate significance level ~ of  the maximal distance 
D between the cumulative distribution and the 
theoretical prediction, i.e. ~ is the probability to 
obtain a maximal distance D greater than the 
observed one.  These significance levels ~ with 
respect to the G O E  prediction are listed in table 
1 for the four eigenstates shown in fig. 9 and, in 
addition, for some other eigenstates which have 
been studied. In all cases one observes high 
significance levels ~ >> 1% which demonstrates a 
remarkably good agreement with the prediction 
(30) for v = 1. Even the worst significance level 
with ~ -  4.9% in the case of  the eigenstate at 
E = 10 015.617 lies well in the acceptable range. 

Next we want to discuss the question whether 

the circular waves are uniformly distributed. For 
that purpose we rewrite eq. (25) as follows: 

ao G(s, ~) 
~(~) = T 

+ 2 A,, sin(2no5 + O,,) F=,,(s, r ) ,  (31) 
i / = l  

with 

A , , : =  a2,,-t +a~,,  

and tan O,, : =  a2n/a2n i • 

From the assumption that the a , 's  of  the cxpan- 
sion (25) behave as independent Gaussian vari- 
ables, one can calculate the prediction for the 
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Table 1 
The  significance levels ~ of the cumulative distributions l(x), 1(0) and I(A) with respect to the theoretical predictions discussed 
in the text are listed according to the Kolmogorov-Smirnov  test. 

E,, ~ for l(x) ?~ for I(~9) with 0 @ [-'rr,  w] ~ for 1(0) with 19 ~ [ -  ' -n,  ~'rr] ~ for I(A) 

2,000.695 28.5% 50.0% 30.6% 93.7% 
2,003.117 93.8% 94.9% 94.3% 85.3% 
2,005.1 I0 69.4% 79.2% 33.6% 40.7% 
2,007.536 82.9% 96.2% 92.7% 96.7% 
2,009.1/41 99.9% 77.4% 17.9% 86.6% 

10,001.092 86.0% 7.8% 62.1% 49.8% 
10,003.405 99.11% 18.1% 63.2% 53.4% 
10,005.463 52.3 % 15.1% 30.7 % 97.4 % 
10,006.061 58.1% 34.6% 29.2% 28.3% 
10,008.095 41.4% 5.3% 2.3% 67.2% 
10,011.254 51.8% 63.3% 82.3% 98.7% 
11/,013.18(I 44.5% 57.8% 3.9% 22.9% 
10,013.697 34.5% 16.2% 34.8% 611.8% 
10,015.617 4.9% 70.2% 51.2% 60.7% 
10,016.972 81.6% 74.0% 97.6% 80.3% 
10,019.897 93.2% 94.3% 56.4% 42.0% 

20,1101.171/ 62.0% 28.2% 33.1% 28.3% 
21],1104.057 94.5 % 65.9 % 77.2 % 91.1% 
20,004.915 69.4% 43.4% 82.3% 69. ! % 
20,007.327 77.2% 47.8% 84.1% 83.2% 
20,008.391 35.4% 99.2% 85.8% 29.2% 
20,009.745 66.1% 91.1% 9.0% 56.7% 

ampli tudes A n and the phases O n of the expan- 
sion (31). The numerical test of these predictions 

allows to check the independence of a2n l from 
a2n which is an important  ingredient in the fol- 
lowing computat ion of the probabili ty distribu- 
tions P( O ) and P( A ). 

Because a2n 1 and a2n are assumed to be in- 
dependent ,  the probabili ty distribution of their 

quotient  q = az,,/a2n i is determined by 

Pt2(q) = dx Ixl P,(qx) P2(x) , (32) 

being valid for the quotient of two independent  
variables drawn from the distributions P~ and P 2 ,  

respectively. For a Gaussian distribution with 
2 

o- = 1 one arrives with (32) at the Cauchy dis- 
tribution 

1 1 
P(q)  - 2 • (33) 

,n" l + q  

If one considers the distribution of O n in the 
restricted interval [ -  ½~r, ½"r r], one can convert 
the probabili ty P (q )  via q : = tan O whereby one 

ends up with P(O) = ] predicting the isotropy of 
the circular waves in this restricted interval. This 
result agrees with the intuitive picture of a 

strongly chaotic system having eigenstates sto- 
chastically composed of generic basis states. Nu- 
merically we find isotropy in the full interval 
[-~r, 'rr] as demonstra ted in fig. 10 for the same 
eigenstates as in fig. 9. The cumulative dis- 
tribution I(0)  = f o  d O '  P(O') is shown in com- 
parison with the straight line corresponding to an 
isotropic distribution. The significance levels 
of the Ko lmogorov-Smi rnov  test are again given 
in table 1. The largest deviation from the iso- 
tropic distribution occurs in the case of the 
eigenstate at E = 10 001.092 (fig. 10c) and it has 
a somewhat  low significance level ~ in turn. A 
look at table 1 shows, however,  that the other 
eigenstates studied have, with the exception of 
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Fig. 10. The cumulative distribution of the phases O, E [-w, w] is shown in comparison with the isotropic expectation (straight 
line). 

the one  at E = 100008.095, higher significance 
levels ~ .  In addition we list in table 1 also the 
significance levels ~ obtained from the cumula- 
tive distribution over the interval [ - 1 ~ ,  ½ w] dis- 
playing also acceptable significance levels. 

The distribution of the coefficients A ,  in the 
expansion (31),  which will play a crucial role in 
the description of  the correlation properties of  
the eigenstates (see section 5), can be obtained 
in a similar way. Assuming x := a22,-1 and y "= 
a~,, to be independent random variables with 
variance t~ 2 = 1, the distribution P(s)  of the sum 
s = x + y is obtained by the convolut ion of  the 
distributions P1 and P2 from which x and y are 
drawn 

--S, '2 P i s )  = dx  P , ( x )  Pz(s  - x)  = ½ e 

s>--O, 

where we have assumed that P1 and P2 are equal 
to the distribution (29) with ~ = 1. Converting 
this probability distribution to the variable A = 
x/~ leads to the result 

P ( A )  = A e x p ( - A 2 / 2 )  

and thus I ( A ) =  1 -  e x p ( - A 2 / 2 ) .  (34) 

In fig. 11 we show the cumulative distribution 
I ( A )  = fA d A '  P ( A ' )  in comparison with the pre- 
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diction (34). For all four eigenstates one ob- 
serves good agreement with (34) together with 
high significance levels ~,  which are again listed 
in table 1 together with the significance levels for 
the other  eigenstates studied. The expansion 
(31) exemplifies clearly that the statistic of the 
expansion coefficients has not always to obey a 
Gaussian behaviour but rather depends on the 
specific basis which has been chosen. 

It is clear that the observed Gaussian dis- 
tribution of the coefficients a n rules out a locali- 
zation in the circular-wave basis. As already 
pointed out above, the considered circular-wave 
expansion is correctly normalized to address this 
question. In fig. 12a the expansion coefficients a n 
are shown in the range nE[0 ,2000 ]  for the 

eigenstate at E = 10 003.405, and the absence of 
localization is again well demonstrated. Up to 
now we have only studied the distribution itself 
and possible correlations between a2,_ 1 and a2n. 
However ,  to consider the coefficients as pseudo- 
random numbers, it is important that there are 
no correlations over longer ranges. 

That  such correlations could occur in princi- 
ple, is shown by the following consideration. 
Assume that one has calculated all the co- 
efficients a n by evaluating eqs. (26) and (27) on a 
circle with radius r I which encloses the fun- 
damental domain• As described above in con- 
nection with eq. (28), for very large n the co- 
efficients a n cannot be computed since the func- 
tions /7,(s, r) are numerically too close to zero. 
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Fig. 12. In (a) the first 2000 coefficients are shown for the eigenstate at £ =  10,003.405. In (b),  (c) and (d) we present the 
correlations for the coefficients a,,, the phases 0,, and the amplitudes A,,, respectively. 

N o w  consider a second circle with radius r 2 > r~. 
The  wavefunct ion on the circle with radius r 2 can 
be expressed by the coefficients obtained from 
the circle with radius r I, since all points on the 
circle with radius r 2 can be transformed by the 
periodic boundary condit ion (6) to points lying 
inside the circle with radius r,,  where the co- 
efficients obtained from the circle with radius r, 
suffice to describe the wavefunction.  Thus one 
obtains infinitely many equations which express 
the n ..... (r2) coefficients by the nm,x(rl) co- 
efficients, and because of  nmax(r2) > nm,x(rl) one 
can in principle compute  additional coefficients 
a ,  from the coefficients known from the circle at 
radius r 1. Thus one  cannot exclude a priori that 
some  correlations among the a,,'s arise as a 
consequence  of  these equations.  It may be that 
these "recursion" relations possess properties 

analogous  to the wel l -known recursion relation 
a ,  + i = x a , , ( m o d  y) with x and y fixed, which are 
used by computers  in generating pseudo-random 

numbers.  Such recursion relations are well 
studied in the case of  some maps in connection 
with chaotic systems, e.g. the Bernoulli  shift in 
one  dimension or Baker's map in two dimen- 
sions. They  depend extremely sensitively on the 
"initial" condit ion % and no correlations arise. 

To  be more rigorous, we study the fol lowing 
measure for the correlations among the co- 
efficients 

C ( j )  = ~ a i a i +  / . 
i = 1  

(351 

For random numbers with zero mean one ex- 
pects C((I) = al, and C ( j )  = 0 for j > O. Again for 
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the eigenstate at E = 10003.405, the correlation 
of the first 2000 coefficients a ,  of the circular- 
wave expansion (25) is shown in fig. 12b. One 
observes C ( 0 ) = I  and C ( j ) = 0  for all other 
values of j thus demonstrating the character of 
the an's as pseudo-random numbers. In figs. 12c 
and 12d the correlations of the phases O, and the 
amplitudes An, respectively, of the expansion 
(31) are displayed showing again no correlations. 

Thus the coefficients a n as well as the phases 
O n and the amplitudes A n fit well into the RMT 
scheme. Because they are uncorrelated, they 
behave as pseudo-random numbers. We prefer 
the term "pseudo-random" to " random" be- 
cause they are not exactly random in the mathe- 
matical sense, since they are constrained by the 
Schr6dinger equation in an analogous way as the 
formulae are which are used by computers in 
generating pseudo-random numbers. 

4. The amplitude distribution P(q~) 

Up to now we have only discussed the statisti- 
cal properties of the expansion coefficients of the 
eigenstates with respect to the circular-wave ex- 
pansion. Let  us now turn to the statistical prop- 
erties of the eigenstates themselves. In this sec- 
tion we want to discuss one of the simplest 
statistics, the amplitude distribution P(g ' ) ,  which 
describes the distribution of the wavefunction x/, 

itself. 
To contrast the properties of chaotic systems 

with the ones of integrable systems, let us first 
recall some facts about integrable systems. The 
classical motion of integrable systems with N 
degrees of freedom takes place on N-tori embed- 
ded in the 2N-dimensional phase space due to 
the N classical constants of motion. The semi- 
classical approximation for the wavefunctions 
can be obtained from the WKB approximation 
by applying this method separately on each of 
the N irreducible circuits on the N-tori. Then the 
complete semiclassical approximation of the 
wavefunction is composed of primitive WKB 

approximations. Semiclassically, the wavefunc- 
tion thus consists of N oscillatory contributions 
from the N-tori. (This simple view must, how- 
ever, be modified by the singularities of the Van 
Vleck determinant occurring on the caustics of 
the system). This contrasts to the case of chaotic 
systems, where due to the lack of enough con- 
stants of motion no such N-tori exist and one 
thus expects that infinitely many uncorrelated 
oscillatory contributions determine the 
wavefunction. This argument led Berry [14] to 
suggest that the wavefunctions of chaotic systems 
behave statistically as Gaussian random func- 
tions. This random character is absent in the case 
of integrable systems where the finite number of 
oscillatory contributions cause an anisotropy in 
the wavefunction and thus correlations incom- 
patible with the picture of a random function. In 
addition, a further non-Gaussian contribution 
arises by the caustics in the integrable case. 

The simplest property of a Gaussian random 
function is that its values q' should be distributed 
a s  

P(~F) - 1 _ ( ~ - 2 / 2 ¢ 2  ) 
X/2~0. e , (36) 

where 0 .2  is the variance of the distribution being 
determined by the normalization of the 
wavefunctions. This distribution was numerically 
found to be valid for most wavefunctions in the 
case of the stadium billiard [29,30], which is also 
strongly chaotic. An exception is played by the 
so-called bouncing ball modes which are more 
regular due to the straight line boundaries of the 
stadium billiard. To contrast this behaviour, the 
circular billiard being classically integrable was 
also studied in [30] and the wavefunctions were 
found to be highly non-Gaussian. 

In the last section it was demonstrated that the 
coefficients a n of the circular-wave expansion 
(25) behave as uncorrelated Gaussian random 
variables. Now we want to show that this fact 
already implies a Gaussian amplitude distribu- 
tion p(qt )  in the semiclassical limit p--* ~. In the 
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following we restrict ourselves to an annulus with 
radius r and width Az > 2.n/p. The latter condi- 
tion is necessary to guarantee that the width Ar 
is large in comparison with the de Broglie wave- 
length A B = 2~r/p. Then it will be shown that on 
such an annulus P ( ~ )  is Gaussian distributed in 
the semiclassical limit p--~ ~, and that all annuli 
contribute with the same variance to the am- 
plitude distribution p(qs) of the whole domain. 

In the first step one has to compute the am- 
plitude distribution Pew of a single circular wave 
of the expansion (25), i.e. of a function of the 
form 

f .(z ,  40 = aN sin(x.) Fn(s, z).  (37) 

Again one has a sine function, which can be 
treated like the preceding sine function, because 
the argument y~ = p r  + ~'rrn + ] ~r(mod 2~) can 
be considered as a random phase. The crucial 
point is that the amplitudes 

; 2 
b ~=  ~/~rpsinh - b  (41) T 

are independent of n for n ~ p ,  which is a con- 
sequence of the normalization (23) where the 
factor sinh z arising from the hyperbolic metric is 
cancelled by b n. The amplitude distribution 
PF,,(f) of the Fn(s, z) is thus with n ~ p  and 
p---~ zc 

Here  we restrict ourselves to the sine because 
the cosine also occurring in (25) has the same 
statistical properties. The distribution Po(a) of 
the an's is a Gaussian with unit variance as 
already stated 

1 1 
P F , , ( f ) -  Tl T V b  2 _ f2 

for Ifl<b and 0 otherwise.  (42) 

1 _a2/2 (38) Po(a) = ~ e 

The argument of the sine can be considered as a 
random phase for n ~ ~, because the sine func- 
tion acts as mod2~ for n~b (see eq. (25)). The 
special cases of q~ = rr /m with m integer are of 
measure zero in [0, 2rr] and do not influence the 
total distribution. The amplitude distribution 
Psi,(x) of the sine can be shown to be 

1 1 
P s i n ( X )  = - -  

V I  - -  X 2 

for Ix I < 1 and 0 otherwise.  (39) 

Since we are dealing with the semiclassical limit, 
we employ for F~ (s, z) the semiclassical approxi- 
mation 

•/ 2 s in(pz  
F, (s, ~-) = ~rp sinh z 

for n "~ p .  

4) + --~- n + 

(40) 

Now one can compute the amplitude distribution 
Pew for the product (37) from the three dis- 
tributions (38), (39) and (42). Since all of these 
are symmetric, one can use 

P , 2 ( z )  = 2 f d x P,(x) P2(z/x) 
x 

0 

(43) 

for the distribution of the product of two in- 
dependent  variables drawn from the distributions 
P1 and P2" Applying (43) to the distributions 
(38) and (39), one arrives at 

PGsin(Z) - e z2/4~ K°( Z4) (44) 

where K 0 is the modified Bessel function of order 
0. It is worthwhile to note that the distribution 
(44) is highly non-Gaussian because of Ko(x ) 
- ln(½x)  for x---~ 0. Inserting (44) and (42) in eq. 
(43), one finally ends up with 
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pew(Z) = 1 dx exp - - ~  x 

1 30 1 

2b~--~-3~3 G23 2-~ 0 0 0 
(45) 

m n  where Gpq is Meijer's G-function (see e.g. ref. 
[31]). Because the argument is z 2, the distribu- 
tion has zero mean E = 0 as it should be, since 
this is also valid for the original distributions 
(38), (39) and (42). Despite the complicated 
Meijer 's G-function, the variance 

6.2 = f dz(z- 5) 2 P(z) 
- e o  

(46) 

can be computed leading to the simple result 

b 2 1 
~2 (47) 0 -  - -  __ 

4 2"rrp sinh r 

Thus we get the result that for p - ~  oo infinitely 
many (n ~ p) distributions with finite variance 6 .2 
contribute to the desired amplitude distribution 
/5(~)  on an annulus. In the framework of the 
central limit theorem one can prove with the aid 
of the so-called continuity theorem that the sum 
of n random variables drawn from a common 
cumulative distribution I(x) = j-x = dx'  P(x ' )  with 
finite variance 0-2 is in the limit n--->~ normal 
(Gaussian) distributed with variance nor 2 (see 
e . g . p .  293 in ref. [28]). (One can also check the 
validity of the Lindeberg condition for the dis- 
tribution (45), which is a necessary and sufficient 
condition for the applicability of the central limit 
theorem (see p. 294 ff in ref. [28]).) T h u s / 3 ( ~ )  is 
Gaussian distributed for p--* oo on an annulus. 
The variance 0-2 is thus given by the sum of the 
variances of the contributing N circular waves 

N 

2 _ (48) Or = E 6. 2 N 
,, = 1 2~p sinh r 

Since the functions F, (s, r)  vanish rapidly in the 
classically forbidden region sinh r < n/p, the 
number  N can be approximated by N = p  sinh r 
and thus 0 . 2  1/2"rr. This variance is indepen- 
dent  of z and each annulus contributes in the 
same way to the whole amplitude distribution 
p (q t ) ,  which is thus Gaussian distributed with 
variance 0 -2  = 1/2"tr. 

It must be noted that the above variance ap- 
plies in the case where the expansion coefficients 
a.  are scaled in such a way that they possess unit 
variance as was always assumed up to now. 
However ,  if one considers wavefunctions nor- 
malized on a hyperbolic octagon according to 
(7), one obtains O r 2  = 1/4"rr by assuming a Gaus- 
sian p(qt) .  In fig. 13 the cumulative amplitude 
distribution is shown for the normalized 
wavefunctions belonging to the same states as in 
the previous figures. The agreement with the 
theoretical prediction is so excellent that no de- 
viation is visible within the graphical resolution. 
As is expected from this agreement,  the Kol- 
mogorov-Smirnov test also yields high prob- 
abilities ~ for a Gaussian distribution with 
0-2 = 1/4,rr, as listed in table 2. 

Table 2 also contains the skewness 

Skewness- (4"rr)3/2 ~ 3 
N /=~ ~ j  

and the kurtosis 

 u tosis=(16 : 3 
N - j =  1 

(0 -2= 1/4~r is assumed) of these distributions, 
measuring the third and the fourth moment  of 
the distributions. For  a Gaussian distribution 
both should be zero in the limit N---> ~. For an 
underlying normal distribution, statistical fluc- 
tuations cause for large but finite N non-vanish- 
ing values with a standard deviation of approxi- 
mately X/-6/N for the skewness and V 2 4 / N  for 
the kurtosis. In table 2 the quotients of the 
skewness and kurtosis to their respective stan- 
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Fig. 13. The cumulative amplitude distribution 10F ) is shown in comparison with the theoretical expectation I ( ~ ) =  ~ + 
½erf(X/2-~qt) for the same eigenstates as in the preceding figures. The statistics consist of 20 000 values for each eigenstate. 

dard deviations are also listed, where one ob- 
serves in no case deviations of more than four 
standard deviations. Thus even these sensitive 
measures  clearly show the Gaussian behaviour of  
the amplitude distribution p(qt) .  

We have also studied the higher moments  of  
the intensity ]~F{ 2 which are again determined by 
the hypothesis  of  qt being Gaussian distributed. 
One  obtains as a theoretical expectation 

f r(n + 1/.r 2 n  = a/tZ"p(~/t) dg  r - ~ 

(49) 

We have compared the moments  of  intensity of  

the eigenstates with this theoretical prediction 
and found rough agreement,  being aware of  the 
fact that with increasing moment  n ever finer 
details of  the shape of the distribution are mea- 
sured. 

This Gaussian behaviour, which was expected 
in the limit p ~  ~,  shows clearly up already at 
energies E = 2 0 0 0  corresponding to p = 4 5 ,  
which seems to be a somewhat  low value. (Al- 
ready at E = 200 our earlier results [6] indicated 
a Gaussian behaviour.)  However ,  the central 
limit theorem gives no clue about how fast the 
convergence  towards the Gaussian distribution 
takes place, but our numerical results indicate a 
very fast convergence.  
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Table 2 
The significance levels ~ of the cumulative amplitude distribution I (~)  according to the Kolmogorov-Smirnov test with respect 
to the suggested Gaussian distribution are listed together with the skewness and the kurtosis. 

E,, ~ for l(q t) Skewness Skewness in standard Kurtosis Kurtosis in standard 
deviations deviations 

2,000.695 93.8% -0.0043 -0.249 -0.0747 -2.156 
2,003.117 87.7% 0.0369 2.131 -0.1261 -3.639 
2,005.110 35.6% -0.0215 - 1.241 -0.0968 -2.794 
2,007.536 43.2% -0.0154 -0.889 -0.1051 -3.034 
2,009.041 72.4% -0.0588 -3.392 0.0692 1.999 

10,001.092 27.9% -0.0192 - 1.107 -0.0081 -0.235 
10,003.405 70.0% 0.0143 0.826 0.0489 1.413 
10,005.463 27.1% -0.0154 -0.889 -0.0165 -0.477 
10,006.061 72.7% 0.0207 1.195 -0.0139 -0.402 
10,008.095 80.1% -0.0084 -0.482 0.0028 0.081 
10,011.254 25.8% -0.0296 - 1.706 -0.0769 -2.220 
I0,013.180 31.9% 0.0286 1.651 -0.0555 - 1.603 
10,013.697 90.6% 0.0399 2.302 -0.0449 - 1.297 
10,015.617 84.3% -0.0089 -0.512 -0.0387 - 1.119 
10,016.972 29.6% -0.0205 - 1.183 -0.0505 - 1.457 
10,019.897 65.1% -0.0088 -0.511 -0.0283 -0.817 

20,001.170 42.1% 0. 0083 0. 477 - 0. 0099 - 0.287 
20,004. 057 41.7 % - 0. 0046 - 0. 264 0. 0905 2.611 
20,004.915 99.9% -0.0022 -0.132 0.0333 0.961 
20,007.327 79.7% 0.0008 0.044 -0.0553 - 1.596 
20,008.391 68.8% -0.0430 -2.485 0.0502 1.449 
20,009. 745 31.5 % 0. 0021 0.126 0.1059 3.058 

5. Correlations in the wavefunctions 

T h e  a u t o c o r r e l a t i o n  f u n c t i o n  C ( q ,  ~r) is de -  

f ined  as 

1 
C ( q ,  "r) - l I ( q )  ( q t ( q  _ 1 , r ) ~ * ( q  + ½~.)) , (50)  

w h e r e  -r de f ines  t h e  d i s t a n c e  and  d i r e c t i o n  f r o m  

t h e  p o i n t  q fo r  w h i c h  t h e  a u t o c o r r e l a t i o n  is c o m -  

p u t e d .  T h e  b r a c k e t  ( )  d e n o t e s  a loca l  a v e r a g e  

o v e r  suf f ic ien t ly  m a n y  de  B r o g l i e  w a v e l e n g t h s  

A B, a n d  H ( q )  d e n o t e s  t h e  loca l  a v e r a g e  o f  t h e  

i n t e n s i t y  

Fl(q) = (Iq~(q)[2) .  (51) 

T h i s  a u t o c o r r e l a t i o n  f u n c t i o n  C ( q ,  ,r) s t ands  on  a 

s o m e w h a t  f i r m e r  t h e o r e t i c a l  g r o u n d  t h a n  the  

p r e d i c t i o n  a b o u t  t h e  a m p l i t u d e  d i s t r ibu t ion .  In  

[14] B e r r y  d e r i v e d  C ( q ,  ~') fo r  e r g o d i c  and  in- 

t e g r a b l e  sy s t ems  f r o m  the  a s s u m p t i o n  tha t  t he  

W i g n e r  f u n c t i o n  is semic las s i ca l ly  c o n c e n t r a t e d  

l ike  a 6 - f u n c t i o n  o n  the  c lass ica l ly  a l l o w e d  p h a s e  

s p a c e .  F o r  e r g o d i c  sy s t ems  wi th  N d e g r e e s  o f  

f r e e d o m ,  t h e  semic la s s i ca l  e i g e n f u n c t i o n  h y p o t h -  

esis  (1)  is i n s e r t e d  in t he  i nve r se  W i g n e r  

t r a n s f o r m  

~ ( q -  ½7) ~ * ( q  + ½z) 

= f d~p W(q, p) eiP~-/h. (52)  

T h i s  a p p r o x i m a t i o n  y ie lds  t o g e t h e r  w i th  t he  defi-  

n i t i o n  (50)  

C ( q ,  'r) = J o ( p ' r ) ,  

P : =  [Pl and  r : =  I~'1 (53) 

fo r  N =  2 d e g r e e s  o f  f r e e d o m  w h e r e  J0 is t he  
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Bessel function. (The general result is given in 
ref. [14].) For ergodic billiard systems (V(q)= 0 
inside the domain) one expects thus an isotropic 
autocorrelat ion function if the contributions of 
the orbits in eq. (2) can be semiclassically 
neglected. In the integrable case the Wigner 
function is concentrated on the N-tori leading 
to an anisotropic system-dependent  autocorrela- 
tion function. 

The numerical studies carried out in the case 
of the stadium billiard in the range of the 600th 
eigenstate seem to indicate that the prediction 
(53) is not fulfilled, and the expected isotropy 
could not be found [30]. It thus seems that the 
orbit  contributions in (2) cannot be neglected 

even at such highly excited states. 
We have studied the autocorrelation function 

in the case of the wavefunctions of the hy- 
perbolic octagon. There  arises a small technical 
difficulty caused by the fact that it is not possible 
to single out a parallel to a given geodesic with 
respect to the hyperbolic metric (3). However ,  
this is necessary for the local averaging required 
by the definition (50). To carry out the averaging 

one must obtain pairs of random points zl ,  z 2 in 
the neighbourhood of " z - ~ z ~  . . . .  and z + ~rl ,, 
which have the same hyperbolic distance z = 

d(z l, z2). This can be achieved by the following 
procedure.  At first one chooses a boost b which 
transforms the origin z = 0 to some point b(0) at 
which the autocorrelat ion function should be 
evaluated (see eq. (5)). Then one generates by a 
random number  generator  a set of matrices b r 

which shift the origin to points 2 such that the 2's 
are uniformly distributed in a disc of hyperbolic 
radius 6 centred at the origin z = 0 .  This 6 
determines the averaging range which should 
cover  several de Broglie wavelengths h B. For a 
given hyperbolic distance • the two points at 
z+ := -+ tanh(~r )  o b e y d ( z  , z+)=~- .Wi th these  
two points one can obtain the desired set of pairs 
of random points by the prescription 
Z 1 : =  b(br(z_)) and z 2 := b(br(z+)) because the 
t ransformations are conformal.  In this way we 
generated 500 pairs of points whose connecting 

geodesics are parallel and have a common dis- 
tance ~-. 

In figs. 14-17 we present the results which are 
obtained for the eigenstates at E = 10001.092 
and E = 10 003.405. To emphasize the role of the 
size of the averaging disc, we display the results 
in dependence of the radius 6 in units of the de 
Broglie wavelength A B. The computations cover 
the range from A B to 26A B. In figs. 15 and 17 we 
have subtracted the theoretical prediction (53) 
and it is seen that the prediction is not fulfilled 
very well even at the largest averaging radius 

6 = 26A B. Fur thermore,  the error does not seem 
to decline appreciably with increasing radius 6 in 
both cases. Thus one must conclude that the 
wavefunctions display on such scales much more 
structure than is compatible with the semiclassi- 
cal eigenfunction hypothesis (1) from which the 
prediction (53) derives. This is consistent with 
the observed structure of the wavefunctions al- 
ready displayed in figs. 1-4,  which clearly show a 
non-isotropic behaviour up to scales of roughly 
20 de Broglie wavelengths. This non-universal 
This non-universal behaviour is also reflected in 
a z-dependence of the correlation function. 

However  this negative result does not exclude 
the possibility that the prediction (53) describes 
the autocorrelat ion correctly on much larger av- 
eraging domains. To scrutinize that possibility, 
we turn now to another  version of a correlation 
measure,  i.e. to the path-correlation function as 
it was proposed by Shapiro and Goelman [29]. 
The path-correlation function 

if C~(r)  = ~ dq ~ * ( q )  gt(q + r) (54) 

averages the correlation over a given path ~ of 
length L which is "self-avoiding space filling" 
[29]. Consider as the path ~g' a semicircle with 
radius p centred at the origin of the Poincar6 disc 
@, i.e. 

1 f d O ~ * ( p , O ) ~ ( p , O + O ) ,  c ( 4 ) )  = 

0 

(55) 



R. Aurich, F. Steiner / Statistical properties of a strongly chaotic system 209 

! - 

o.8 4 
o . e  - 

o , .  --: 

02 -- 
04 

- 0 2  

- 0 4  

- 0 6  

0 8  

O 0 4  

E = 10001 092 

24 
. 8 

o.~ %.... p j ~ ' ,  ,2 No 
0.2 ~ 8 '~B 

0 . 2 4  ~ 
0 

Fig. 14. The autocorrelation C(q, 7) is shown for the eigen- 
state at E = 10 001.092 in dependence of z and of the number 
N B of de Broglie wavelengths -~B over which the averaging 
has been carried out. 
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Fig. 15. The theoretical prediction Jo(P':) has been sub- 
tracted from the autocorrelation C(q, "r) which is shown in 
fig. 14. 
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Fig. 16. The autocorrelation C(q, 7) is shown for the eigen- 
state at E = 10 003.405 in dependence of r and of the number 
N B of de Broglie wavelengths A B over which the averaging 
has been carried out. 
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Fig. 17. The theoretical prediction Jo(pz) has been sub- 
tracted from the autocorrelation C(q, ~') which is shown in 
fig. 16. 
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where the angle ~b determines the hyperbolic 

distance r = d(z~, z2) of the two points 
z~ = t a n h ( p / 2 )  e i° and z2 = t a n h ( p / 2 )  e ~{°++1, 

which yields with (13) 

where r is given by eq. (56). Thus one arrives at 
the simple expression 

C(4}) = ~ A"P ,(cosh r) (61) 

cosh r = c o s h ~ -  sinh 2 p cos 6 .  (56) 

Inserting the circular-wave expansion (25) in eq. 
(55), one obtains 

, 2 F~(s, p)  C(49) = ~ Ao 

1 ~ 2 
, ~  F2n(s , p ) ,  (57)  + ~ ~, A n cos(2n~b) 2 

with A~ = a22n_1 + a22~ and A 0 = a 0 being the co- 
efficients of the expansion (31). Here  the sum 
runs only over  the even indices of Fro(s, p) which 
is due to the positive parity which was assumed. 
In the case of negative parity, only the odd 
indices would appear.  Let us assume for a mo- 
ment  that the indices are not restricted, i.e. 

consider 

1 (A{~F~(s, p) 

2 F n ( s  ' p)) .  + 2 A. COS(F/(~) 2 
n=l  

(58) 

The coefficients A n are random numbers (see 
section 3), but one can app rox ima te the  series by 

2, A 2 replacing the A n s by their mean > 0: 

= 3--i 
4-  ( F~(s, p)+ 

+ 2 ~2 cos(n{b) FZ(s, p)). (59) 
n = l  

From the addition theorem of the Legendre 
functions (see Appendix G in ref. [2l]) one 

derives the relation 

F~(s, p) + 2 ~ cos(n4~) F](s, p) 
n = I  

= Fo(s , r) = P ~(cosh 7) ,  (60) 

In the semiclassicallimit one recovers the  predic- 
tion (53) because of 

!ira P~(cosh(z/v)) : lo(z ) , (62) 

with z = i W and I0(ipr) = J0(Pr) .  Thus one ends 
up with 

d ( 6 ) - - 1  2 3A J0(pr )  . (63) 

This corresponds exactly to the prediction (53) 
since (53) holds with respect to the definition 
(50) where the local average of the intensity 
II(q)  = C(0) = A2/4 has been divided out. 

The above derivation has been carried out 
under  the assumption that all indices in the sum 
over  F 2 contribute. If that does not happen as in 

n 

the expansions (25) and (57), one can eliminate 
the wrong terms by the recursion formula of the 
Legendre functions of the type F = aF,, ~+ 
bFn+ ~. Because of the square one has mixed 
terms F n ~F,,+~ in addition. These additional 
terms only vanish if one averages in the 7- 
direction, i.e. evaluates C(4~) on an annulus of 

finite width. Thus we have recovered the predic- 
tion (53) from the fact that the eigenstates are 
not localized with respect to the circular-wave 
basis. This justifies the replacement  of the A~'s 
by their m e a n  A 2, since there are infinitely many 

coefficients A n of the same order with a common 
variance (see section 3). In addition, the accura- 
cy of this replacement  depends on the momen-  
tum p and the hyperbolic radius p of the semi- 
circle, because the effective contribution of the 
A n's is governed by the magnitude of the func- 
tion Fn(s, p). As already stated, there are ap- 
proximately N = p  sinh p contributing circular 
waves. The above replacement  thus requires 
N---~ 0% i.e. the semiclassical limit p---~ oo. 
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In fig. 18 the path-correlation function (54) is 
shown in comparison with the theoretical expec- 
tations (53) and (61),  where in the latter case the 
local average of the intensity has been divided 
out. The Legendre function occurring in eq. (61) 
is already at E = 2000 so well approximated by 
the Bessel function J0 that no difference is visible 
in this figure. It is seen that the path-correlation 
matches the prediction quite well. However,  
there are nevertheless deviations showing clearly 
the error which is introduced by replacing the 

true coefficients A~ by their mean A 2. To empha- 
size the role played by the size of the averaging 
domain, note that the averaging takes place over 

a large number of de Broglie wavelengths A B 
given by 

L _ p s i n h p _  p r  

A B 2 1 - -  r 2 ' 

r := tanh ½ p .  (64) 

In figs. 18a and 18b, which correspond to eigen- 
states at E -~ 2000, the averaging takes place over 
--414A B, and in figs. 18c and 18d, i.e. at E -  
10 000, one gets -927An,  where r = 0.9475 has 
been used in all cases. 

At last we would like to turn briefly to the 
cross-correlation function which measures the 
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Fig. 18. The path-correlation function (54) is displayed as a dotted curve for the same four eigenstates as in the preceding figures. 
The chosen path is a semicircle with Euclidean radius r = 0.9475 in the Poincar6 disc. The theoretical predictions (53) as well  as 
(61) are shown as full curves where in the latter the local average of  the intensity H(q) = C(0) = A5/4 has been divided out. Both 
curves are lying so closely together that they are not resolved in this figure. 
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correlations between different eigenstates. This 

is an important measure in the study of the 
characteristic properties of the time evolution of 
a given initial state of a chaotic system (see e.g. 
[32]). The general assumption is that the eigen- 
states are not correlated among each other and 
ihus the cross-correlation should vanish for cha- 
otic systems. We have checked this for the eigen- 
states at E-~ 10 000 and have found indeed very 
small cross-correlations compatible with this as- 
sumption. This result can also be derived from 
the path-correlation function. If one inserts in 
(54) the circular-wave expansions (25) corre- 
sponding to two different states, one ends up 

t 

with coefficients of the form A n "= a2n_la2n_ 1 + 
! 

azna2n instead of A] ,  where a and a' belong to 
the two different states. If one assumes that the 
coefficients of different states are not correlated, 
then it follows that the mean of A n is zero. From 
eq. (61) one thus obtains a vanishing cross- 
correlation function. 

6. Summary 

In this paper we have studied the statistical 
properties of highly excited eigenstates of a 
strongly chaotic system (K-system). The system 
considered consists classically of a point particle 
sliding freely on a compact Riemann surface of 
constant negative curvature of genus g = 2, i.e. 
on a hyperbolic octagon. The quantum mech- 
anics is governed by the Schr6dinger equation 
(4) subject to periodic boundary conditions. All 
eigenstates up to E = 2050 and in the energy 
intervals [10000, 10020] and [20000,20010] 
with positive parity have been computed by the 
boundary-element  method for a generic asym- 
metric hyperbolic octagon. Within this parity 
class, the eigenstates at E = 2 0 0 0 0  are lying 
10 000 states above the ground state and are thus 
probing the semiclassical limit. 

The eigenstates have been expanded in the 
circular-wave basis (25), and the expansion co- 

efficients a n have been studied with respect to 
their statistical properties. It has been numerical- 
ly shown that the eigenstates are not localized 
with respect to this basis and that the coefficients 
a,, are Gaussian distributed. The correlation 
function C(j ) ,  defined in (35), shows no correla- 
tions among the an'S which can thus be consid- 
ered as Gaussian pseudo-random numbers. In 
addition, the isotropy of the circular waves has 
been studied by the expansion (31) revealing 
indeed isotropy and thus, as expected for a 
strongly chaotic system, that no direction is sin- 
gled out. Hence,  these eigenstates are as random 
as it is conceivable. 

The amplitude distribution P ( ~ )  has been in- 
vestigated and compared with the hypothesis 
that it should reveal a Gaussian distribution of 
the amplitudes qz in the case of chaotic systems. 
For the integrable case it is expected that the 
invariant tori in phase space lead to distinct 
system-dependent amplitude distributions being 
non-Gaussian. By computing the amplitude dis- 
tributions of the circular waves combined with 
the numerical fact that the coefficients a n are 
Gaussian random variables, it could be shown 

using the central limit theorem that the am- 
plitude distribution P ( ~ )  indeed converges to- 
wards a Gaussian in the semiclassical limit. This 
prediction, which is in agreement with the com- 
mon expectations, could be numerically con- 
firmed in the case of all eigenstates studied by 
us. Fur thermore,  higher moments of the dis- 
tribution p(gz) have been considered, while the 
skewness and the kurtosis have been discussed in 
more detail. Even these very sensitive measures 
testing the tails and the shape of p(gz) are in 
agreement with a Gaussian distribution. 

Finally, the autocorrelation function C(q, •) 
was studied in comparison with the theoretical 
expectation (53) based on the crudest possible 
approximation of the Wigner function, i.e. a 
6-function concentrated on the energy surface in 
phase space. The expectation (53) presupposes 
that structures in the eigenstates occur only on 
small scales which are averaged out within the 
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local average ( ) .  Our numerical comparisons 
show, however, that the eigenstates display 
much more structure even if the averaging is 
carried out over domains containing as many as 
50 de Broglie wavelengths A B. Even worse, as 
seen in figs. 14-17, the error does not seem to 
decline appreciably with a growing averaging 
domain. A similar result was obtained in the case 
of the stadium billiard [30] where also too much 
structure was observed. Thus we were led to 
study the behavior in the limit of much larger 
averaging domains, where the path-correlation 
function (54) is more appropriate. Furthermore 
it allows a simple analytical computation of the 
correlation function in terms of the circular-wave 
expansion coefficients. It is shown that in the 
semiclassical limit p - - - ~  the non-localization 
within this basis leads to the prediction (53). 
Despite the averaging over nearly 1000 de Brog- 
lie wavelengths A B, small deviations from (53) 
are observed (see fig. 18), and one might wonder 
whether such domains should still be called 
"local".  We thus conclude that the expectation 
(53) describes the statistical properties of our 
eigenstates only on exceedingly large averaging 
domains. The needed domains are so extended 
that the "decorations" on the energy surface in 
the Wigner function are completely washed out 
which is mimicked by our replacement of the 
true coefficients A~ by their mean. Thus a better 
theory is required for the description of the 
correlations of the eigenstates incorporating in- 
dividual properties of the eigenstates as it is 
provided by the orbit theory developed in ref. 
[19]. Unfortunately, the computational problems 
due to the summation over an exponentially 
increasing number of orbit contributions is a 
serious obstacle. 
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