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The high temperature phase transition for ¢* theories
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We investigate the temperature dependent effective potential for N-component ¢* theories
with a new method based on averages of fields. The effective three-dimensional running
of couplings at scales much below the temperature is described. We obtain a detailed
quantitative picture of the second order phase transition, including the critical exponents
for the behaviour in the vicinity of the critical temperature.

1. Introduction

Spontaneous symmetry breaking is one of the most prominent features of the
standard model of electroweak interactions. The masses of the gauge bosons and
fermions are proportional to the vacuum expectation value p(;/ 2 — 174 GeV of

the Higgs doublet ¢. The Fermi scale p(l)/ ? is a constant only in the vacuum, while
in a thermal equilibrium state it depends on the temperature. At temperature
much higher than p(l)/ 2 the symmetry is restored and po(7) vanishes [1-3].
Such high temperatures were presumably realized in the very early universe
immediately after the big bang. As the universe cooled there must have been a
phase transition from the symmetric to the spontaneously broken phase of the
standard model. This phase transition may have many important consequences
for our present universe. One example is the possible creation of the excess
of matter compared to antimatter (baryon asymmetry) during this transition
[4,5].

The physical implications of the high temperature electroweak phase transi-
tion are quite different if it is second order or first order. This question has not
yet been settled in the context of the high temperature perturbation theory [2]
since these calculations are affected by severe infrared problems [1,3,6]. For
a very small Higgs mass or, equivalently, for a small ratio between the quartic
scalar coupling A and the gauge coupling squared g2, one expects the transition to
be first order. This follows from continuity arguments if the Coleman—-Weinberg
symmetry breaking [ 7] gives a qualitatively correct picture at vanishing temper-
ature. For realistic values of 1/g? of order one or larger the issue becomes more
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involved. It has been argued [8] that the fluctuations of the gauge bosons induce
a non-analytic term ~ T (¢'¢)3/? in the effective potential for the scalar field
¢ at non-vanishing temperature. The existence of such a term for ¢ — 0 would
necessarily imply a first order phase transition. In high temperature perturbation
theory the one loop contribution to the quartic scalar coupling induces a term
in the temperature dependent effective potential

~g4%<¢T¢)2, (1.1)

where k is an appropriate infrared cutoff. In the symmetric phase (¢ = 0) the
gauge bosons are massless and (1.1) is infrared divergent for k — 0 (unless
regulated by an effective “magnetic mass™). In the spontaneously broken phase
the gauge bosons acquire a mass ~ g¢. This acts as an infrared regulator, i.e.
k? ~ g2(¢'¢). Inserting this expression into (1.1) induces the non-analytic
behaviour alluded to above. Nevertheless, the existence of this “cubic term” for
¢ — 0 remains highly questionable since the same sort of infrared divergences
also appear in the computation of the effective temperature dependent gauge
coupling g. This effect is not accounted for in the usual treatment, where g is
taken independent of k in (1.1). A proper renormalization of g may alter the
reasoning leading to the “cubic term” for ¢ — O.

The inclusion of scalar fluctuations in the high temperature expansion is even
more problematic, since infrared divergences from the massless scalar fluctua-
tions appear also for non-vanishing ¢ (at the turning point between the minimum
of the potential at ¢¢ # 0 and the maximum). The scalar one loop contribution
to the potential contains a term analogous to (1.1), i.e.

~ Rt (1.2)

If one identifies k2 with the effective temperature dependent mass term for
the radial mode for ¢ # 0, i.e. m*(T) + 3A(¢'¢), one may again conclude
that there is a non-analytic “cubic term” for the temperature at which m?(T)
vanishes. This has led some authors to speculate [9] that the high temperature
phase transition may be first order even in a pure scalar theory. Most evidence
indicates, however, that N-component ¢* theories exhibit a second order phase
transition. Again, the problem comes from the use of a constant 4 in (1.2). This
neglects the running of A as a function of k. Shortly speaking, it is not consistent
to include for T > k the strong renormalization effects of the quartic coupling
in the effective potential (1.2), but to neglect the same effect for the running of
A itself.

The strong infrared effects discussed above result from the three-dimensional
character of the effective theory for the modes with momenta much smaller
than 7. The effective three-dimensional quartic coupling is A7 and has the
dimension of mass. In consequence, the running as a function of the infrared
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cutoff k is very different from the logarithmic four-dimensional running. At
the phase transition one expects for k — 0 an infrared stable fixed point for
the ratio A(k, T)T/k. Then A(k, T') vanishes ~ k and the infrared divergence
in the quartic term (1.2) disappears. For a correct description of the phase
transition one needs suitable infrared evolution equations which describe the
dependence of A on an appropriate infrared cutoff k. These equations should
reproduce the logarithmic four-dimensional running for k > T and exhibit the
three-dimensional behaviour for k <« T.

In this paper we perform this program for a pure scalar theory (the N- compo-
nent ¢* theory) as a first step towards the treatment of the standard model. We
propose in the next section the average action [10,11] as an appropriate imple-
mentation of an infrared cutoff k. The average action I, is the effective action for
averages of fields over volumes k¢ (in 4 dimensions). It obtains after integrat-
ing out the modes with momenta larger than k. For k¥ > 0 no infrared divergence
appears in the calculation of I, since k acts as an infrared regulator. We study
the evolution of the temperature dependent average potential as function of k
and take the limit & — 0. The couplings effectively run as a function of k only
as long as some relevant mass m is smaller than k. For & <« m the running stops
and the mass m replaces k as an effective infrared cutoff. For massive theories
the limit & — 0 can then be taken easily. Furthermore, our procedure remains
valid even for vanishing mass. The three-dimensional fixed point structure in
the running of the couplings cures the infrared divergences. This allows us to
explore directly the behaviour at the critical temperature 7. Here the running
with k is characterized by the fixed point of the three-dimensional theory.

Our method correctly describes the transition from the four-dimensional to the
three-dimensional behaviour for £ > T and k <« T respectively. In addition, it
provides the initial values of the couplings for their three-dimensional running
and therefore allows for a quantitative treatment of the phase transition. For
a small quartic coupling our results agree with high temperature perturbation
theory for the behaviour of the potential at 7 >> T, and for the determination of
Tr. On the other hand we find that high temperature perturbation theory breaks
down for T near 7. In the vicinity of 7, the true potential reflects the three-
dimensional critical exponents. The phase transition is clearly second order and
no “cubic term” ~ T (¢1¢)3/? appears for ¢ — 0.

Compared to the diagrammatic methods of high temperature perturbation
theory our method effectively includes additional contributions. The “daisy” or
“ring” diagrams in high temperature perturbation theory lead to a replacement
of the mass terms in the propagators by appropriate temperature and field de-
pendent physical masses. These diagrams are taken into account in our method
by the use of k, T and field dependent masses in the propagators which appear
in the evolution equations. The standard “daisy” diagrams would be reproduced
by taking &k = 0 in the one loop expression (2.2) at T # 0 with U (p, T') replac-
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ing ¥ on the right hand side. The evolution of U, (p, T') as function of & with
running masses and couplings sums up even more complicated diagrams which
go beyond “daisy” graphs. (This is very similar to the usual renormalization
group improvement.) The most important new contributions, however, come
from an effective inclusion of higher order corrections to the four point vertex
as expressed by the running of A. They are not accounted for in previous treat-
ments. These corrections are responsible for the vanishing of the cubic term at
the critical temperature. Our “renormalization group improved” treatment leads
to a correct description of the second order phase transition characterized by the
critical exponents of the three-dimensional theory.

In sect. 2 we summarize the formalism of the average potential at zero temper-
ature, concentrating on the techniques for its evaluation around the minimum. In
sect. 3 we extend this formalism in order to take into account the non-zero tem-
perature effects. In sect. 4 we study the evolution equations for the the non-zero
temperature average potential of the four-dimensional N-component ¢* theory.
In sect. 5 we solve numerically the evolution equations and we obtain the full
detailed picture of the phase transition. This section contains our main results:
nature of the transition, critical temperature, very high temperature theory, crit-
ical exponents. In sect. 6 we obtain approximate analytic results which provide
a deeper understanding and a check of the results of sect. 5. Our conclusions are
presented in sect. 7.

2. The average potential

We present here a brief summary of the formalism of the average potential,
concentrating on the techniques for its evaluation around the minimum. For a
detailed presentation and discussion we refer the reader to refs. [10-13].

The average action in ¢ dimensions is the effective action for averages of
fields over a volume ~ k~9. It describes the physics for systems which have
a characteristic length scale k! by averaging out the degrees of freedom with
momenta larger than k. The average potential U, is real and does not have to
be convex (as opposed to the effective potential). It can be shown [10] that Uy
approaches the effective potential U as k — 0. We concentrate in this paper on
the N-component ¢* theory in four dimensions and non-zero temperature. We
neglect the wave function renormalization effects since the relevant anomalous
dimensions are small [11]. A more detailed investigation, which includes the
effects of the wave function renormalization, is under way [14].

The average potential around the minimum in ¢ dimensions reads in the one
loop approximation:

Ue(p) = V(p) + UM (), (2.1)

where V (p) is the classical potential and the one loop contribution is given by
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[10,12]
v (p) = %(2n>-d/ da{In(P(q) + V' (p) +2V"(p)p)

+ (N=-1DIn(P(g) + V' (p))}, (2.2)
with

14 1
Vi(p) = FrE p= §¢“¢a- (2.3)

This is the same formula as in the standard loop expansion for the effective po-
tential [7,2] (to which we refer as “naive” perturbation theory in the following),
except that the inverse propagator g2 is now replaced by P(q), with (a and b
are constants of order 1):

q2
1— f2(q)’
b

2
Ji(g) = exp{—a (%) } (2.5)

This form of P provides for an effective infrared cutoff for all the modes with
g? < k2. In contrast, the contributions from the modes with g2 > k? are not
modified. Only these modes are effectively integrated out in the computation
of U,. We note that for k — 0 one recovers directly the standard one loop
contribution to the effective potential. The constants a and » determine the
details of the averaging procedure. Since a can be absorbed in a redefinition of
k we choose to work with a particular family of parametrizations [11,13]

P(q) = (2.4)

b= %—E (2.6)

We want to derive evolution equations for the change of U with the scale k
and follow these equations to k — 0. This allows for an appropriate treatment
of the infrared problems and, therefore, leads to an improved calculation of the
effective potential U. For this purpose we take the logarithmic derivative with
respect to k and substitute Uy for V' in the integral (2.2). This “renormaliza-
tion group improvement” [11] provides a partial resummation of higher loop
contributions and results in the evolution equation (¢ = In (k/A4), x = ¢?):

, 1 P . N1
— U, ==(2 _d/dd —< - )
- Ue(p) =5 (21) T \Pr U 207 (0 TP UL

= /Oodxxd/z_lﬁ( ! + N-l )
z Jo ot \P+ Ul (p) +2U07(p)p P+ U(p))"

(2.7)
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with

vl = 24+1gd/2 (%) . (2.8)

Eq. (2.7) is the master equation for our investigation. It connects the physics
at the short distance cutoff (k = A) with the long distance physics (k — 0).
Its solution gives the effective potential U = Uy, (and therefore the ground state
of the theory) in terms of the classical potential V' = U,. We are interested in
solving (2.7) around the minimum of the average potential. (For the calculation
of the non-convex part see ref. [13].) In order to do so we parametrize Uy in
terms of the location of its minimum and its successive derivatives with respect
to p at the minimum. This results in an infinite system of coupled differential
equations, which we solve approximately by truncation, keeping here only the
second derivative.

In the spontaneously broken regime the average potential Uy, has its minimum
at pg (k) # 0, determined by

Ul (po) = 0. (2.9)

We are interested in the scale dependence of pg (k) , which is obtained by taking
the z-derivative of (2.9)

UL (po (k) d”"dﬁk) _

Here the partial derivative 9 U, /0t should be taken at fixed po(k). We also
define

au,
T (po(K)). (2.10)

A(k) = U (po(k)). (2.11)

The evolution equations for the scale dependence of pg(k) and A(k) are easily
derived by differentiation of (2.7) with respect to p. They read [10,11]:

dszO = —vgk“"2{3L{ (2Apo) + (N — 1) L{(0)}, (2.12)
% = — ugk?*2*{9L§ (2Apo) + (N — 1)L (0)}, (2.13)
with the dimensionless integrals L¢ (w) given by
Lf(w) = — pk*—dg—di2p (512—) / ddq%g(P + )~ D
= - nkz"_d/ dxxd/%l%(z) +w) "D (2.14)
0

In the symmetric regime (po(k) = 0) we define:
m2 (k) =U}(0), (2.15)
A(k) =U}(0), (2.16)
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and obtain the following evolution equations [13]:

dm?

= (V+ 2)ugk?=2 LY (m?), (2.17)
dz d-4327rd 2
5 =~ (N + 8)vuakd 2L  (m?) . (2.18)

The systems of equations (2.12),(2.13) and (2.17),(2.18) can be solved for
given “short distance values” po(k = A) and A(k = A). We start at the cutoff
A and follow the renormalization group flow towards the infrared (k — 0). In
this way we obtain the ground state of the theory py = po(k = 0), as well as
the renormalized couplings, mass terms etc. It should be noted that, even when
one starts in the broken regime at k = A, it is possible that the evolution, as
given by the first set of differential equations, may drive pg (k) to zero at some
non-zero ks. From that point on the theory is in the symmetric regime and one
has to continue the evolution using the second set of equations, with boundary
conditions m? (ks) = 0 and A (k) given by its value obtained from the running
in the broken regime.

3. The non-zero temperature formalism

The discussion in the previous section has been carried in the zero temperature
limit. In order to extend it to the non-zero temperature case we only need to
recall that, in euclidean formalism, non-zero temperature 7" results in periodic
boundary conditions in the time direction (for bosonic fields), with periodicity
1/T [15]. This leads to a discrete spectrum for the zero component of the
momentum ¢

go— 2imT, m=0,+1,+2,.... (3.1)

As a consequence the integration over gg is replaced by summation over the

discrete spectrum
/ Qn)d Z:/(2%)”’1 (3:2)

With the above remarks in mind we can easily generalize our master equation
(2.7) in order to take into account the temperature effects. For the temperature
dependent average potential U, (p, T') we obtain:

2 Uetp, ) = Lam)-t- ”TZ/dd g 28

at -

1 N -1
* (P TG + 200 (. Thp T P U,;(p,T)> ’
(3.3)
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with the implicit replacement
g* > ¢* + 4n’m*T? (3.4)

in P. Again, the usual temperature dependent effective potential [2] obtains
from U, (p,T) in the limit & — 0. As before, we can parametrize Uy (p, T)
in terms of its minimum and its derivatives at the minimum. The evolution
equations are given by (2.12),(2.13) and (2.17),(2.18), with the obvious gen-
eralizations

polk) —po(k,T),
Alk) —A(k,T),
m2(k) —m?*(k,T). (3.5)
The momentum integrals for non-vanishing temperature read:

d _ 2n—d~..—d/2 dl (n+1)
Li(w,T) = —nk*"~*2n /+1r( )TZ/d at(P+w) +E36)

where the implicit replacement (3.4) is again assumed in P. These are crucial
for the solution of the evolution equations and we next discuss them in detail.
The zero temperature integrals L2 (w), given by (2.14), have been evaluated
in references [11,13] *. For completeness we summarize the main results. LZ (w)
has a pole at
N k2
=-k=-—" g
w 1 —exp(—2a)’ (3.7)
for the family of parametrizations (2.6). The leading pole behaviour is ~ (w +
k2)=(n+1/2) For w > —k?, L? is a monotonically decreasing function of w. Its
value at w = 0 can be calculated in closed form. Following [11] we define:

L4(0) = —21¢ (3.8)

and give the expressions for /¢, /¢, which will be useful in the following:

¢ =(2q)~ -2 <1 42 2) ,

2b
{ = (2a)" @9 (2 2mW=IRY (] 4 d—4 (3.9)
2 5 )
In this work we concentrate on w > 0. It is convenient to define the functions
w Ld(w)
59 (F) = (3.10)

* Since in this work we neglect wave function renormalization our expressions correspond to those
of ref. [11] with the simplification Z = 1.
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Fig. 1. The integrals L‘I‘(w),L‘z‘(w) for an average parameter b = 3. The points indicate the
results of the numerical integration, while the continuous curves correspond to the approximate
expression (3.11).

Their behaviour for moderate values of w/k? is determined by the pole of
L4 (w). The approximation

si(g)=(1+ %)"“/2 (3.11)

agrees well with a numerical evaluation of the integrals. In fig. 1 we plot L}, L} as
a function of w/k?2, for an average parameter b = 3. The results of the numerical
integration are indicated by points, while the continuous lines correspond to the
approximation of eq. (3.11). Similar results for L3, L3 are presented in fig. 2.
Since Li{ (w) does not have a simple analytic form we have performed numerical
fits of the points shown in figs. 1 and 2 which we use for the numerical solution
of the differential evolution equations.

We turn now to the evaluation of the non-zero temperature integrals Lf’, (w,T),
which are given by the expression (3.6). Their basic properties can be established
analytically. For 7 « k the summation over discrete values of m in expression
(3.6) is equal to the integration over a continuous range of gy up to exponentially
small corrections. Therefore

Li(w,T) = L (w) for T<k. (3.12)

In the opposite limit 7 > k the summation over m is dominated by the
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| I U ’ 11 P4 | i1 1 1 | [l 1 1 L L4

o

Fig. 2. The integrals L}(w), L3 (w) for an average parameter b = 3. The points indicate the
results of the numerical integration, while the continuous curves correspond to the approximate
expression (3.11).

m = 0 contribution. Terms with non-zero values of m are suppressed by
~exp (—(mT/ k)2 ) . The leading contribution gives the simple expression

Vg1 T
k

with v, defined in (2.8). The two regions of 7'/k in which L4 (w, T) is given by
eqs. (3.12), (3.13) are connected by a small interval in which the exponential
corrections result in complicated dependence on w and 7.

The above conclusions are verified by a numerical calculation of L{ (w, T') and
Li(w,T). In fig. 3 we plot L} (w, T)/L}(w) as a function of T/k, for various
values of w/k? and for b = 3. The behaviour of L] (w, T') is presented in fig. 4.
We distinguish three regions:

(a) T/k < 6y: This is the low temperature region where L‘l"z(w, T) are very
well approximated by their zero temperature value. We take 8, = 0.05 and use
L} (w,0) in the evolution equations for k > 7/6;.

(b) 8, < T/k < 6,: In the threshold region we perform a numerical fit of
the curve corresponding to w = 0 which we use for all values of w. This is a
very good approximation since the relevant w/k? turns out to be small in this
region (see next sections). We determine 6, by the value of T/k at which the

Li(w,T) = LY (w) for T >k, (3.13)
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Fig. 3. L¥(w, T)/L}(w) as a function of T/k, for various values of w/k* (b = 3).
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high temperature expression for L}(0, T') becomes equal to L}(0). This gives
(for b = 3):

/4
8, = L. ~0.216. .14
(c) T/k = 0,: For the high temperature region we use for the numerical
solution of the evolution equations

Liz(w,T) = 47 Ly (w). (3.15)

The three dimensional character of the effective theory for modes with g2 <« T2
manifests itself in the appearance of the three dimensional momentum integrals.
It acquires here a precise quantitative meaning,

4, Running in four and three dimensions

We can now apply the formalism developed in the previous sections to the
study of the evolution equations for the four-dimensional ¢* theory at non-
vanishing temperature. We consider the models with spontaneous symmetry
breaking at zero temperature, and investigate the restoration of symmetry as the
temperature is raised. We specify the action together with some high momentum
cutoff 4 > T such that the theory is properly regulated. We then solve the
evolution equation (3.3) for k — 0 for different values of the temperature. This
provides all relevant features of the temperature dependent effective potential.

In order to solve the evolution equations we have to specify appropriate
boundary conditions. These can be determined by the “short distance values”
polk = A) and A (k = A) * which correspond to the minimum and the quartic
coupling of the classical potential. We then have to compute the evolution of
the quantities (3.5), starting at k = A and following the renormalization flow
towards k = 0. This procedure has to be followed for T = 0 and then to be
repeated for T # 0 in order to relate the zero and non-zero temperature effective
potential of the same theory (as specified by the parameters at the cutoff). Since
the running of the parameters is the same in the zero and non-zero temperature
case for k > T/68, = 20 T we actually do not need to compute the evolution in
this range of k. Our strategy is equivalent to the following procedure: We start
with the zero temperature theory at k = 0 taking the renormalized parameters
(see below) as input. We subsequently integrate the zero temperature evolu-
tion equations “up” to k = T/6,. We can now use the values of the running
parameters at k = 7°/0, as initial conditions for the non-zero temperature evo-
lution equations and integrate them “down” to k& = 0. In this way we obtain the
* When neglecting wave function renormalization, the definitions (2.11), (2.16) coincide, in four

dimensions, with the renormalized quartic coupling. For this reason we omit the bar on A from
here on.
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renormalized parameters at non-zero temperature in terms of the renormalized
parameters at zero temperature. More specifically, we integrate first the evolu-
tion equations from k = T7/6, to k = T /6, using the numerical fit of the L
integrals in this threshold region. This gives the initial conditions for the running
between k = T/0, and k = 0 where we use the high temperature approxima-
tion (3.15) for the L integrals. In this range of k the running is determined
by the evolution equations of the three-dimensional theory. By neglecting the
difference between Ly (w) and L} (w, T) for T/, < k < T /0, our procedure
simplifies even further. It may be summarized as “run up in four dimensions,
run down in three dimensions”, with a matching of the k-dependent couplings
at the scale 7'/60,. In practice we shall take the “threshold correction” from the
different running for 7/6, < k < T/, into account. We find that this gives only
a small modification. In the case that py(k, T) becomes zero at some non-zero
ks we continue with the equations for the symmetric regime with boundary con-
ditions m?(ks, T) = 0 and A(ks, T) given by its value at the end of the running
in the spontaneously broken regime.

One last remark concerns the definition of the renormalized couplings for the
zero temperature theory. Due to the presence of Goldstone modes for N > 1
the four-dimensional theory is infrared free (limg_o A(k) = 0) in the spon-
taneously broken phase. This holds even for a finite momentum cutoff 4. In
contrast, the running of A(k) is stopped by the scalar mass for N = 1 or in the
symmetric phase. Even though the logarithmic running A(k) — 0 is very slow
we cannot define the renormalized quartic coupling by the appropriate deriva-
tive of the effective potential for & — 0. Instead, we could define the quartic
coupling at non-zero external momentum. In our context, it is more convenient
to use A(k) at some non-vanishing scale k = kg, which we choose equal to the
mass of the radial scalar mode i.c. kg = 24(kg) po (0). This definition is clearly
related to a definition by the four-point function with momenta p? ~ k3. For
reasons of uniformity we preserve the same definition of the renormalized A in
the case N = 1. (For N = 1 the residual running of A (k) (from kq to zero)
is negligible for the range of parameters of interest.) We also use the following
notation for the renormalized quantities:

Po =po(0),
)-R =/1(k0) = /1(\/2/1}1,00) . (4.1)

Here py corresponds to the minimum of the average potential in the limit k — 0,
such that pé/ 2 is the vacuum expectation value of the zero temperature theory.
We also remind that “triviality” of the ¢* theory implies the necessity of some
physical ultraviolet cutoff if A(ky) > 0. Following the four-dimensional evolu-
tion equations implies that A (k) diverges for some critical scale k.. Our inves-
tigation makes sense as long as the temperature is small compared to k., so that
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we can choose 4 < k.

Having set up our strategy, we next cast the evolution equations in a form
which is suitable for the numerical or analytical solution.

(a) For the four-dimensional zero temperature running (or low temperature
running 7/k < 6)) the evolution equations are given by (2.12), (2.13). It is
convenient to define the dimensionless quantity

po (k)
k2 -

Recalling the definitions (3.8) and (3.10) one can eliminate any explicit k&
dependence on the right-hand-side

dx _ 1 4 _ 4
di 1
T = Teaz PPN = 1+ 953(24) ). (4.4)

(b) In the threshold region 8, < T/k < 6, we define

1400, T
(k) =)
K (k,T) =-”i(:T’T—). (4.5)

For small enough Ag one finds in this region (see next sections) k(k,T)
A(k,T) < 1. It is, therefore, a good approximation to assume that ri (7 /k)
gives the non-zero temperature corrections to L (w) for all relevant values of
w. With this assumption we obtain for the intermediate range the following
equations:

dk 1
o =+ Wz;‘ AN =1 4 3sf (2K)}, (4.6)
& o 2N - 149530} (4.7)

For the numerical solution of the above equations we use a numerical fit of the
functions r} (T /k), r3(T/k).

(c) In the high temperature region 7/k > 6,, use of the expression (3.15)
results in the following equations:

o — ik {3L] Q20 + (N - DLI(O)}, (4.8)
k= )HOLI 2Py + (N = L)), (4.9)

ds
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with
/ _pO(k: T)
polk,T) =7
Nk, TY =4k, T)T. (4.10)

Comparison with (2.12), (2.13) shows that the above equations are exactly the
ones of the three-dimensional theory for the effective three-dimensional cou-
plings py(k,T),A'(k,T). We recover the fact that the behaviour of the high
temperature four-dimensional theory is determined by the zero temperature
three-dimensional theory. Moreover, we have developed a formalism which con-
nects the four-dimensional regime with the effective three-dimensional one in
a quantitative way. This is crucial since the precise initial values of the three-
dimensional running are needed for the determination of the critical temperature
etc.
It is convenient again to define the dimensionless quantities

Rk T) = P (/;(,T) _ Po(l(k}T)’
ik = 2% g n T (4.11)
In terms of these quantities the evolution equations read:
%’f =—fc+z%ll3{N—l + 353 (24k)}, (4.12)
;ﬂ = -1+ %lﬁiz{N— 1 +9s3(27k)}. (4.13)
t 4n

The main qualitative difference of the last equations compared to equations
(4.3), (4.4) arises from the term —A4 on the right-hand side of (4.13), which is
due to the dimensions of . In consequence, the dimensionless quartic coupling
7 is not infrared free. Its behaviour with k — 0 is characterized by an approxi-
mate fixed point for the region where k varies only slowly. Taken together, the
pair of differential equations for (4, %) has an exact fixed point (Kg, ifp) cor-
responding to the phase transition [11]. This can be demonstrated explicitly by
the numerical solution of (4.12), (4.13). The phase diagrams for N = 1 and
N = 4 are plotted in figs. 5 and 6, respectively. There is a critical line separating
the spontaneously broken from the symmetric phase. We also have indicated
the flow of the couplings for decreasing k. In table 1 we list the fixed points of
(4.12), (4.13) for various values of N and b = 3.

We also need the evolution equations in the symmetric regime at non-zero
temperature. Their derivation is straightforward by means of (2.17), (2.18),
(3.15). By defining the dimensionless quantity

m2(k,T)

r’hZ(k’ T) = k2 5

(4.14)
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Fig. 6. The phase diagram of the three-dimensional theory for N = 4 (b = 3).
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TABLE |
Fixed points of the zero temperature three-dimensional evolution equations for various N (b = 3)

N 1 3 4 10
fcfp 0.027 0.062 0.082 0.208
g, 16.56 10.89 8.48 3.53
we obtain:
dm? . | - .
TR =—2m2—4—nzll3/l(N+2)s13(m2), (4.15)
di 3 1 5m 3052
Dt — N . .16
o A+ 47[212,1 (N + 8)s3(m?) (4.16)

Before presenting the results of the numerical solution of the evolution equa-
tions (4.3), (4.4), (4.6), (4.7), (4.12), (4.13), (4.15), (4.16), we consider a
simplified approach which will be useful in sect. 6 where approximate analytic
results will be derived. As we have explained in the beginning of this section, the
threshold region interpolates between the regions of four-dimensional and three-
dimensional running. A more simplified approach would neglect this region and
consider only the “running up in four dimensions” and “running down in three
dimensions”, with a matching of k,1 at the scale kt = 7/6,. For sufficiently
small Ag we can take into account the effect of the threshold region by consid-
ering a “threshold correction” to the matching of x,4 at kt. More specifically,
for the interval 7/0, < k < T/8,, we calculate the difference between the zero
temperature evolution of k, A as given by (4.3), (4.4), and the evolution given
by (4.6), (4.7). For small Ax we can neglect the difference in the running of A
and use the approximation s{ = 1. As a result the difference in running for
can be cast in the form

N+2, (4.17)

oK = K(T/Hz,T) —K(T/GZ’O) = ——-

The parameter 4 is independent of T and A in leading order and can be calculated
numerically. For » = 3 we find:

4 =6.59x%x 1074, (4.18)

We can therefore use the simplified picture in order to derive approximate re-
sults. It involves “running up in four dimensions” from k& = 0 to kr = T/6,
and “running down in three dimensions” from kt = 7/6, to k = 0. The values
of x, A are matched at kr, with a “threshold correction” for k given by (4.17),
(4.18).
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Fig. 7. The evolution of pg at various temperatures. For T > T the evolution of the mass term
in the symmetric regime is also displayed. N = 1,ig = 0.1, = 3.

5. The phase transition

The results of the numerical integration of the evolution equations (4.3),

(4.4), (4.6), (4.7), (4.12), (4.13), (4.15), (4.16) are presented in figs. 7,8 and
0.1). The solid line in figs. 7,

9,10 for N = 1 and N = 4, respectively (Ar =
9 displays the “quadratic renormalization” [10,11] of the minimum of the zero

temperature average potential. At non-zero temperature (dashed lines) we notice
the deviation from the zero temperature behaviour. It startsat k = 7/6, and we
first observe the complicated running in the threshold region 77/6, < k < T/6,.
For low temperatures, in the limit £k — 0, po(k, T') reaches an asymptotic value
po(0,T) < po. This value corresponds to the vacuum expectation value of the

non-zero temperature theory and we denote it by
po(T) = po(0,T).

At a specific temperature Ty, po (T) becomes zero and this signals the restoration
of symmetry for T > T,. The running of A(k), A(k, T) is shown in figs. 8 and 10
for N = 1 and N = 4. We observe the logarithmic running of 1(k) (solid line)
which is stopped by the mass term in the N = 1 case. For non-zero temperatures

A(k, T') deviates from the zero temperature running. For N = 1 it reaches a non-
zero value in the limit £ — 0, while in the N = 4 case it approaches zero ~ k.

(5.1)
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Fig. 8. The evolution of A at various temperatures. N = 1,Ar = 0.1,6 = 3.
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Fig. 9. The evolution of py at various temperatures. For T > T the evolution of the mass term
in the symmetric regime is also displayed. N = 4,Ag = 0.1,6 = 3.
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The latter effect is due to the fluctuations of the massless Goldstone bosons. In
both cases A(k,T) runs to zero for T — T. We see that the problem of the
definition of the renormalized coupling reappears for the non-zero temperature
theory in the spontaneously broken phase. In analogy to (4.1) we define Ag (T')
at a non-zero scale

IR(T) = A(v/22(T)po(T), T) (5.2)

in the spontaneously broken phase for all values of N. For T' > T, the running
in the spontaneously broken regime ends at a non-zero ks, at which pg (kg, T')
equals zero. From this point on we continue the evolution in the symmetric
regime. The running of m?(k, T) is depicted in figs. 7, 9 while the evolution of
A(k, T') proceeds continuously in the new regime as shown in figs. 8, 10. In the
symmetric phase the theory is not infrared free and we define:

mg(T) =m*(0,T),
AR(T) =A(0,T). (5.3)

The procedure of “running up in four dimensions” and “running down in three
dimensions” provides the connection between the renormalized quantities at
zero and non-zero temperature. We define the zero temperature theory in terms
of the location of the minimum py and the renormalized quartic coupling Ag.
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Through the solution of the evolution equations we obtain po(7T) and AR (T)
for non-zero temperatures 7 < T¢. For T > 7T the symmetry is restored
(po(T) = 0) and the non-zero temperature theory is described in terms of
m% (T) and Ag(T'). In figs. 11, 12 we plot po(T)/po, Ar (T') and mi (T)/T? as
a function of temperature, for N = 1 and N = 4 respectively and Ag = 0.1.
As the temperature increases towards 7., we observe a continuous transition
from the spontaneously broken to the symmetric phase. This clearly indicates a
second order phase transition. The renormalized quartic coupling Ar (7°) remains
close to its zero temperature value Ag for a large range of temperatures and drops
quicklytozeroat T = T¢. Recalling our parametrization of the average potential
in terms of its successive p derivatives at the minimum, we conclude that, at
T.:, the first non-zero term in the expression for the effective potential is the
¢® term (which we have neglected in our truncated solution). For T > T, the
coupling Ar (T} quickly grows to approximately its zero temperature value Ag,
while m} (T') asymptotically becomes proportional to 72 as T — oo. In the
symmetric phase the quartic coupling is finite for all temperatures and vanishes
for T — T,.. No “cubic term” ~ T'¢> appears. (Its presence would have resulted
in the divergence of Ax (T') for T — T;.)

Having presented the general features of the non-zero temperature theory, we
now turn to a more detailed quantitative discussion. The value of the critical
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TABLE 2

= 3. “Naive” perturbation theory gives

TZ(N + 2)/p, for various values of igx and N. b
TZ(N +2)/py = 24

N ir = 0.01 Jr = 0.1 Ir =1
1 24.05 24.50 26.82
3 24.03 24.48 26.70
4 24.03 24.48 26.61
10 24.02 24.42 26.10

temperature 7., in terms of the zero temperature quantities has been calculated
in the context of “naive” perturbation theory [1-3]. It was found that 7, is given
by T2 = [24/(N + 2)]po, independent of Ag in lowest order. In table 2 we list
the quantity 7.2/ (N + 2) po for various values of N and 1g. We observe excellent
agreement with “naive” perturbation theory for Ag — 0, and significant devia-
tions for larger Ag. This is not surprising if one recalls that T, is calculated as the
temperature at which the mass term m} (T) becomes zero. For the calculation
of mi(T) Dolan and Jackiw [2] summed the dominant class of higher order
“daisy” graphs in the large N limit and showed that they do not modify the one
loop expression for T;. This procedure correctly reproduces the main effect of
the evolution of py(k, T') in our scheme. The higher loop corrections to Ag (T)
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TABLE 3
[mﬁ(T)/AR(T) (N + 2)T2] ~! for T2/py = 10¢ and various values of Ag and N. b = 3. “Naive”
perturbation theory gives [m2 (T)/4r (T)(N + 2)T2] ' = 24 for T2/pg — oo
N ig = 104 I = 0.01 ig = 0.1
1 23.92 23.62 23.19
3 23.94 23.91 24.02
4 23.95 24.01 24.32
10 23.99 24.40 25.53

were not considered. In our scheme this is equivalent to neglecting the evolu-
tion of A(k, T'). This effect is responsible for the deviations from the “naive”
perturbative prediction for large Agr. In particular, in our scheme, the critical
temperature is obtained through the initial values of ¥,1 (defined in (4.11))
at the scale kt = T/0,, which determine the nature of the effective three di-
mensional running in the high temperature region. (For a detailed discussion
see sect. 6). Whether the theory will evolve to the spontaneously broken or the
symmetric phase is determined by the location of the point (¥ (kr, T'), A (kr, T))
above or below the critical line (see figs. 5 and 6). In the limit A — 0, A(kT, T)
is simply equal to AR, since the running in the zero temperature and threshold
regions is negligible. Also the value of k (A1, T') becomes independent of A and
is given by the ultraviolet fixed point of eq. (4.12) with 53 = 1. In this limit the
“naive” perturbative result should be reliable.

Another quantity which can be compared with the “naive” perturbative pre-
dictions is m}(T) in the limit 7 — oc. In table 3 we list the results of our
calculation for the expression [mi (T)/Ar (T) (N + 2)T2]_l for T%/py = 106.
The “naive” perturbative result for this quantity is 24, independent of N and Ag.
We find again excellent agreement for Ag — 0, which can be traced to the absence
of significant evolution for A(k, T'). (More details on the analytic calculation of
mi (T') are given in sect. 6.)

The most important aspect of our calculation is related to the infrared be-
haviour of the theory for T — T¢. The temperature dependence of po(T),
AR(T), mﬁ(T) near 7, is presented in figs. 13 and 14 for N = 1 and N = 4,
respectively (Ar = 0.1). We have already mentioned the fact that all the above
quantities become zero at 7 = T.,. What becomes apparent in figs. 13, 14 is a
critical behaviour which can be characterized by critical exponents. Following
the notation of statistical mechanics, we parametrize the critical behaviour of
po(T) and mg (T) as follows:

po(T) (T3 — T?)*,
mE(T) < (T?* ~ T2)*. (5.4)
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We also define a critical exponent { for Ag(7T') in the symmetric regime:
AR(T) x (T? = T2)¢. (5.5)

These exponents are plotted as function of the logarithm of |72 — T2| in figs. 15
and 16 for N = 1 and N = 4, respectively. (We should note at this point that,
in the limit T — T, the above definition coincides with the more conventional
one, which is given in terms of |T — T|. We have used this parametrization
for uniformity since everything in this section has been expressed in terms of
T2/ po. The temperature dependent exponent 2 is defined as the derivative of
In po with respect to In|7? — T2|, and similarly for the other exponents.) We
notice that in the limit 77 — T, the critical exponents approach asymptotic
values. These are independent of Ag and therefore fall into universality classes
determined only by N. They are equal to the critical exponents of the zero
temperature three-dimensional theory. This fact can be understood by recalling
that the evolution in the high temperature region is determined by an effective
three dimensional theory (see the discussion in sect. 4), whose phase diagram
(figs. 5 and 6) has a fixed point corresponding to the phase transition. For
T — T the evolution of py(k,T),A(k,T) in the high temperature region is
given by a line in the phase diagram very close to the critical line. In this case
po(k,T),A(k, T) spend an arbitrarily long “time” ¢ close to the fixed point and,
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as a result, lose memory of their “initial values” po(7/6,,T),.(T/6,, T). The
critical behaviour is determined solely by the fixed point, without any memory
of the evolution in the zero temperature or threshold region.

We have now established the connection between the critical behaviour of the
non zero temperature four-dimensional theory and the zero temperature three
dimensional one. As a result we have a large amount of information, coming from
detailed investigations in statistical field theory, which can serve as a check of our
calculation. In table 4 we list the results of our calculation of 8, v, { for various N.
The critical exponents S, v for the three-dimensional theory have been calculated
by several methods: € expansion, summed perturbation theory in the symmetric
phase in three dimensions, 1/N expansion, lattice calculations. For comparison
with our results we list in table 4 the most accurate values of # and v obtained by
the previously mentioned methods. The agreement is good, even though we have
neglected the wave function renormalization in this work. Preliminary results
of a calculation which includes the wave function renormalization effects show
even better agreement [ 14]. Another consistency check is provided by the scaling
laws which give

v =28, (5.6)

in the limit of zero wave function renormalization. The above relation is satisfied
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TABLE 4

Critical exponents for various N (b = 3). For comparison we have listed the results of various
calculations of the exponents of the zero temperature three-dimensional theory as summarized in
ref. [16]. (We have not included the errors quoted in ref. [16]})

N B v ¢

1 0.25 0.339 0.31% 0.50 0.63%) 0.50 = v
3 0.37 0.379) 0.38%) 0.75 0.714:0) 0.75 = v4)
4 0.40 0.81 0.81 =v9
10 0.46 17 =0439 0.92 17 = 0.86°) 0.92 = v
0 0.5¢) 1¢) = vd)

@) From e-expansion or summed perturbation theory in three dimensions.

%) From lattice calculations for the N-vector model.

¢) From 1/N expansion to order 1/N2 [16]. The scaling laws give: 1y = (1 —1n)/(1+7), by =
v (1 - %n) , where 7 is the wave function renormalization, which we have set to zero in this work.

4) From the finite value of 13/m at the critical point as given by summed perturbation theory,
where 13 is the renormalized three-dimensional coupling and m the renormalized mass [17,16].

by our numerical results to very good accuracy.

The critical behaviour of Agr (7") is related to the resolution of the problem of
the infrared divergences which cause the breakdown of the “naive” perturbative
expansion in the limit T — T¢; [1,3]. The infrared problem is manifest in the
presence of higher order contributions to the effective potential which contain
increasing powers of AR (T) T /k, where k is the effective infrared cutoff of the
theory. If the evolution of A(k, T') is omitted and Ar (T) is approximated by its
zero temperature value Ag, these contributions diverge and the perturbative ex-
pansion breaks down. A similar situation appears for the zero temperature three-
dimensional theory in the critical region [17]. In this case the problem results
from an effective expansion in terms of the quantity u/[M? — MZ]'/2, where u
is the bare three-dimensional quartic coupling and [M?— MZ2]'/? is a measure of
the distance from the point where the phase transition occurs as it is approached
from the symmetric phase. The two situations can be seen to be of identical
nature by simply remembering that the non-zero temperature four-dimensional
coupling A corresponds to an effective three-dimensional coupling A7 and that
the effective infrared cutoff in the symmetric phase is equal to mg (7). In the
three-dimensional case the problem has been resolved [17] by a reformulation
of the calculation in terms of an effective parameter A3/m, where 13 is the renor-
malized 1-PI four point function in three dimensions (the renormalized quartic
coupling) and m the renormalized mass (equal to the inverse correlation length).
It has been found [17,16] that the above quantity has an infrared stable fixed
point in the critical region m — 0. No infrared divergences arise within this ap-
proach. Their only residual effect is detected in the strong renormalization of 3.
In our scheme the problem is formulated in terms of the effective dimensionless
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TABLE 5

The asymptotic value of Ag(T)T/mgr(T) in the limit T — T¢ for various N (b = 3). For
comparison we have listed the values of 13/m at the critical point as given by summed perturbation
theory, where A3 is the renormalized three-dimensional coupling and 1 the renormalized mass

[17,16]
N 1 3 4 10
AR(T)T /mg(T) 6.8 5.5 4.8 3.7

parameters K (k, T) = pg(k, T)/kT,Z(k, TYy = Ak, T)YT/k (sce eq. (4.11)),
for which a fixed point corresponding to the phase transition is found. The crit-
ical behaviour is determined by this fixed point in the limit & — 0. Everything
remains finite in the vicinity of the critical temperature, and the only memory of
the infrared divergences is reflected in the strong renormalization of Ag (7)) near
T... We conclude that the infrared problem disappears if formulated in terms
of the appropriate renormalized quantities. When expressed in the correct lan-
guage, it becomes simply a manifestation of the strong renormalization effects
in the critical region. In order to compare with the three-dimensional results
we have calculated the quantity Ag (7 )7 /mg(T) in the limit 7" — T;. We find
that it reaches an asymptotic value depending on N, which we list in table 5 for
various N. For comparison we quote the results for the infrared fixed point of
%nl (for N = 1,3) as summarized in ref. [17,16]. Good agreement is observed.
Moreover, the existence of the asymptotic value for AR (7T)T/mr(T) explains
the equality of the critical exponents » and { which is apparent in table 4.
Before concluding this section we would like to discuss an issue inherent in the
formalism of the average potential. It concerns the dependence of the physical
guantities on the scheme chosen in order to perform the averaging of fields over a
volume k~4. The averaging procedure results in an effective infrared cutoff ~ k.
This is reflected in the modified propagator given by (2.4), (2.5). It is clear that
the average potential U, depends on the average parameters @ and b appearing in
(2.5). In the limit k — O the average potential approaches the effective potential
[10] and, therefore, becomes independent of a and 5. But the whole evolution
of Uy starting from the “short distance values” pg(k = A),A(k = A) depends
on the averaging scheme. The results of the present work concern the connection
between the zero temperature ground state of the theory and the one for non-
zero temperature. These are given by the effective potential (U in the limit
k — 0) and should be independent of ¢ and b. Even though the evolution carries
some scheme dependence this should disappear when one calculates physical
quantities such as the critical temperature or the critical exponents. Despite the
above general arguments some scheme dependence is expected in our results. It
comes from the approximations which are unavoidable in a practical calculation,
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TABLE 6

TZ(N + 2)/pg for various Ag and N. Average parameter b
which has been generated with b

4. To be compared to table 2,
3

N Jr = 0.01 ir = 0.1 Ag =1

1 23.80 24.26 26.58

3 23.80 24.24 26.45

4 23.80 24.24 26.36

10 23.79 24.18 25.83
TABLE 7

[m%((T)/lR(T)(N + 2)T2:|_1 for T2/py = 10% and various Ag, N. Average parameter b = 4.
To be compared to table 3, which has been generated with b = 3

N ir = 1074 ig = 0.01 ir = 0.1
1 23.68 23.39 22.97
3 23.71 23.67 23.79
4 23.72 23.77 24.08
10 23.76 24.16 25.27

i.e. the consideration of the one loop average potential, the omission of the
wave function renormalization, the truncation of the evolution equations, the
uncertainties coming from the numerical solution. This is not a problem though.
The b dependence of the results (in the family of parametrizations (2.6)) is a
measure of the importance of the neglected terms and, therefore, of the accuracy
of the calculation. We have performed the numerical solution of the evolution
equations also for an average parameter » = 4, in order to compare with the
results presented up till now, which were obtained for » = 3. In tables 6 and 7 we
list the values of T2 (N +2)/po and [m& (T) /Ar (T} (N + 2)T?] - respectively,
for various N and Ag and for & = 4. These tables can be directly compared to
tables 2 and 3, respectively. The numerical solution of the evolution equations
involves larger uncertainties for » = 4. The oscillatory behaviour of the integrals
L} (w, T) in the threshold region is more pronounced and harder to reproduce
by a numerical fit. As a result the 1% shift observed between tables 2, 3 and 6, 7
can be considered as a measure of the total uncertainties induced by the various
analytic approximations as well as the limitations of the numerical solution. We
postpone the discussion of the scheme dependence of the critical exponents for
another publication which will include the wave function renormalization effects
[14].
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6. Approximate analytic results

In this section we derive analytic results for the critical temperature, the high
and low temperature behaviour as well as for the critical exponents for T near 7.,
from approximate solutions of the evolution equations. We assume a sufficiently
small value of the quartic coupling Ar. As described at the end of sect. 4 we start
from the physical zero temperature couplings at £ = 0, use the four-dimensional
evolution equations to solve for the relevant quantities k and A at the scale
kr =T/0, = 4113 /lf T, apply the threshold correction for x in order to obtain
the initial values for the three-dimensional running at k = kr, and finally follow
the three-dimensional evolution equations for & — 0. This procedure gives the
effective physical couplings at non-vanishing temperature.

For small Ag we approximate for the four-dimensional running

dr
N = -2k + (N + 2)aqy,
[y
a4—167{2' (6.1)
This gives:
N+2 Po
K(kr) = as + 5. (6.2)
The threshold correction
sk =N + 2, (6.3)

results in an effective shift a4 — a4 + 4 in (6.2). In consequence, the initial
values for the three-dimensional running read:

(& _ 5 1 4 I} po
K(kr,T) =2(N + 2)/; e tel Y (6.4)
1 1

. /2
Alkt, T) =4—}13/1(kr). (6.5)

Here A (k1) accounts for the logarithmic four-dimensional running of A(k). We
observe that 1 (kr, T)k (kr, T) = A(kr, T)x (kr, T) < 1 for small Ag and 7% >
f=Arpo. For N > 1 one can use analogous formulae also for 72 < Arpo by
replacing everywhere the factor N + 2 by N — 1. Only the N— 1 Goldstone bosons
contribute effectively to the running for Ax > 1. For the three-dimensional
running we consider first the region where A% remains much smaller than one.



N. Tetradis, C. Wetterich / Phase transition for ¢* theories 689

Then we can approximate

dic .
E:—K+(N+2)a3,
g (6.6)
3T 4n2 '
and find the solution
. kr -~
k(k,T) = (N + 2)as +%{x(kT,T)— (N + 2)a3}. (6.7)

Critical temperature. The critical temperature is determined by the require-
ment that the pair (x (kt, T), Ak, T)) as given by (6.4), (6.5) corresponds
to a point on the critical line in the phase diagram of figs. 5 and 6. For small A
this is equivalent to the ultraviolet stable fixed point for x following from (6.6),
namely:

12' = (N + 2)613. (68)
Inserting (6.8) into (6.4) for T = T, yields:
T2(N +2) I VAN
R=2% = — = — = 23.94. 6.9
5 0 <2n2 7 ) )

Here the numerical value is given for an average parameter b = 3, lf = 0.7205,
I3 = 0.8333,4 = 6.59 x 107*. It is remarkable how close this value comes to
the “naive” perturbative result 72 = 24po/(N + 2) [2]. Without the threshold
correction (4 = 0) R would be 20.48, which is still in good qualitative agreement
with the perturbative result. Both with and without the threshold correction
the analytic result agrees well with the corresponding numerical values (R =
24.05-24.02and R = 20.56—20.54forJg = 0.01,6 = 3and N = 1-10). We
infer from the phase diagrams (figs. 5,6) that for increasing A(kr, T) the critical
value of ¥ (kt, T') decreases. The critical temperature therefore increases.

High temperature behaviour. For T larger than T, the global O (N ) symmetry
remains unbroken (symmetric phase). The product Ax remains small for small
Ar. The minimum of U, runs to the origin at some scale ks > 0

Kk, T) =0. (6.10)
We write

ks=K(%)T (6.11)

and determine K from (6.7)

poy _ B, 32724 AR} po 0
K(72) = 9 (2 = T RN+ T (6.12)
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For large T the function K approaches a constant and ks ~ 1kt. For small Ag
there is therefore only very little running of A (k, T') between kr and k. Thus

Alky, T) = AlkT, T). (6.13)

At scales k < kg we have to continue the evolution equations in the symmetric
regime. In particular, the mass term m?(k,T) = U, (0, T) obeys

dm? N 42,55 (m?
with m?(ks) = 0. The physical mass obtains as mj (T) = m?(k — 0,T). By
pure dimensional arguments one finds m (7') ~ T2, since in the high tempera-
ture limit ks ~ (213 /1}) T, A(kt, T') ~ Ag. For an approximate solution of (6.14)
we neglect the running of 2 and approximate s} = 1. In this way we obtain:

m?(k,T) = [(N + 2)/4n*13ART (ks — k). (6.15)

This approximation is justified for k 3> Az T/4n* where the three-dimensional
running of A(k,T) can be neglected and k? > [(N + 2)/2n?]ArT? where
m?(k, T)/k?* remains small. Since the modifications of the running for very
small k give only corrections which vanish for Ag — 0 we obtain the leading
order result for mﬁ(T) by extrapolating (6.15) to &k — 0:

2 3
mg (1) _ A Po 1

(N + 2)Ar(T)T? — 47(2K(Tz) R (6.16)
The last result indicates the high temperature limit where corrections ~ pg/ 7?2

are neglected. In lowest order in Ag we recover the perturbative relation with the

critical temperature
lim md(T) = Ao (6.17)
T—o0 Tczr
Again, our numerical results coincide well with the analytic relation (6.16).
The good agreement between our method and high temperature perturbation
theory for T >» T¢; should be of no surprise, since this is the temperature regime
where the latter is expected to be valid. It may be more puzzling that high temper-
ature perturbation theory leads to a good estimate for the critical temperature,
although we have seen that physics near T, is quite different from the naive
perturbative results and, in particular, not characterized by a small parameter A.
The reason is that 7, can be determined from the behaviour of the critical line
in the phase diagram (figs. 5, 6) near 4 = 0. It does not need the understanding
of the more complicated physics near the fixed point which characterizes the
behaviour at T = T, In turn, the critical line near 4 = 0 can be obtained in
perturbation theory if the quartic coupling (for 7 = 0) is small.
Low temperature behaviour. Let us first consider the region

Eirpo < T2 < TE (6.18)
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where we can use (6.4) as initial value and (6.7) for the three-dimensional
running. Inserting the definition of x (k, T) in terms of pg(k,T) (4.11) one
finds:

T2, (6.19)

This linear behaviour agrees qualitatively with figs. 11 and 12, but we note that
the true values lie actually somewhat above the straight line (6.19). Indeed, there
is always a region of the running for small k where A% > 1 such that py(k, T")
decreases slower than implied by (6.7). This explains the small difference. Fur-
thermore, the slope —dpg(T)/dT? is smaller than (N + 2)/R at the origin. In
fact, for N > l and T2 « %}Lgpo the above formulae should be used with N — 1
replacing NV + 2. This gives the correct slope in the immediate vicinity of 7 = 0.
We emphasize, however, that the region in 72/ p, where the behaviour is purely
dominated by the N — 1 Goldstone bosons is very small, especially for small
Ar. Denoting the mass of the radial excitation (“o-field”) in the spontaneously
broken phase by M? = 2igpg we find that the radial mode becomes important
for T2 > %M 2. This remark may be relevant for the treatment of the non-zero
temperature behaviour of QCD by means of chiral perturbation theory.

Critical exponents. For the discussion of the behaviour near the critical tem-
perature we cannot use the approximation (6.6), since 1k is not small near
the fixed point characterizing the phase transition (;prfcfp =045for N = 1,
;lfpz%fp = 0.70 for N = 4). We therefore start with the full high temperature
evolution equation for pg(k, T) (4.12)

dny
dz
For T = T, there is a critical trajectory p§ (k,T') which corresponds to the

critical line separating the two phases of the diagrams 5 and 6. Its behaviour for
k — 0 is characterized by the fixed point k¥ = Ky,

P&k, T) = iy Tuck. (6.21)

We are interested in temperatures in the vicinity of Ty, i.e. |T — To| <€ Ters
where the relevant trajectories are near the critical line. We parametrize

potk,T) = p§ (k,T) + 3po(k, T) (6.22)

and linearize the evolution equations as long as [dpo (k, T')| < pff (k, T'), using
(4.12) and (d/dy)s3(y) = —(3/13)s3(y)

3 ~
= %{N— 1+ 353 (21K%)}. (6.20)

d(8po) _
TR T9dpg, (6.23)
where
3~ 0 d 8 dx 33 . _
AK) = ———— = B B ' )
T(AK) FIer) dl(él)o) 1 + P 2n2/1s2(2/11c) (6.24)
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As long as 1 and ¥ are running near the critical line the quantity 7 depends on
k. We can define an average value

1nk'r
(k) = [/11( T(t) d ]/[lnljc—T] (6.25)

such that
(k)
800k, T) = 60 ke, T) (E) . (6.26)

Very near the critical temperature, however, the relevant trajectory remains in
the immediate vicinity of the fixed point (kg,, Ag,) for most of the running. In
the limit T — T, the average reaches the asymptotic limit

313

5 zlfpsz(Zzlfprp) (6.27)
The asymptotic evolution of J py is characterized by a constant anomalous di-
mension 7g. With b = 3 we find 15, = —0.667 for N = | and 1g, = —0.193
for N = 4. The initial value d pg (k1 )can be expressed in terms of T, — T from
(6.4)

Ill_rgr(k) =Tfp = —

ap}
Spo ke, T) =t TadR (ke )
4

14 °’8T (kT7 Tcr) (T e Tcr)

=2%(Tcr— T). (6.28)

Since T < 0, |6 po (k, T')| increases for decreasing k. For any non-zero & pg (kr,
T') there will be some scale kg where |6 pg(kg, T)| = cpff (kg, T') with ¢ some
constant of order unity which we take smaller than one. For k < kg the linear
approximation (6.24) for the running of J p; breaks down and the trajectory
goes away from the fixed point. Depending on é pg being positive or negative
one ends in the spontaneously broken or symmetric phase. In the spontaneously
broken phase pg essentially stops running somewhat below the scale kg so that
its value for k — 0 is proportional to d pg (kg, T')

po(T) = alc)dpolkes, T). (6.29)

For ¢ = 0.1 we find numerically a(c) = 0.2 for N = 1, and a(c) = 0.5 for
N = 4. The scale kf is determined by (6.21), (6.26) and (6.28) (where 7 stands
for 7(kg)). From

ke\© .
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TABLE 8

Critical exponents for various NV as calculated from the approximate analytic expressions of sect.
6 (b = 3). To be compared to table 4

N B v {
1 0.30 0.60 0.60
3 0.40 0.80 0.80
4 0.42 0.84 0.84
10 0.47 0.93 0.93
we find
k i
k—j =f(Tox— TV, (6.31)
1/(1-17)
It po
Y . (6.32)
2Bcke, T3

This yields finally
po(T) =B* (T, — TH)VU-D,

B? — 2a(c) fTpo

—_—
where T may now be considered as a func‘gion of Te — T by using (6.31),
(6.32). We note again that the asymptotic value of the critical exponent g =
1/2(1 — g,) 1s universal for all three-dimensional O (N )-symmetric scalar the-
ories with given N. The values of # obtained by using eq. (6.27) are listed in
table 8 and are in good agreement with the numerical results (compare table 4).
The proportionality factor B? is not universal for all three-dimensional theories.
It reflects the particular embedding of the effective three-dimensional theory for
momenta g < 772 in the full relativistic four-dimensional scalar model. In this
sense it is a property of the four-dimensional theory. Numerically we find in
units of po: B> = 0.037 for N = 1, and B2 = 0.45 for N = 4. These values are
very sensitive to the precise value of the critical exponents. Therefore, they are
afflicted with rather large numerical uncertainties. The above numerical results
are consistent with the analytic expressions (6.32), (6.33).

In the symmetric phase the linear approximation for the running of é py breaks
again down for |0 po (kp, T')| = cpf (kr, T'). The minimum of the potential runs
to the origin at k& ~ kg and from there on one continues the running in the
symmetric regime. Since 1 (kg, T) ~ pr the scale kg (or similar for k) is the
only scale present for the running with k£ < kg. One concludes from dimensional
arguments that

(6.33)

mi(T) = a(c)ki. (6.34)
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This leads again to a behaviour with a critical exponent

mi(T) =N2 (T — T, Y19

2
ar\ .
N? = (1_41> a(c) fPT2. (6.35)
1

The critical exponent v = 1/(1 — 14,) is universal and we recover the relation
v = 28, as appropriate when neglecting the wave function renormalization. It
also follows from dimensional arguments that Ag (7') T must be proportional to
k. This gives the scaling relation

LA

i AT

e = const. (6.36)

which leads to the relation { = v.

7. Conclusions

We have employed a new method in order to compute the temperature depen-
dent effective potential for the N-component ¢* theory. This method describes
properly the four-dimensional running of couplings at scales k large compared
to T and the effective three-dimensional running for k <« 7. The infrared be-
haviour of the theory is fully understood and no divergences appear even at the
critical temperature. The high temperature phase transition is second order. No
“cubic term” appears in the potential. At the critical temperature the quartic
coupling vanishes and the lowest interaction is a (universal) ¢ coupling (up
to small corrections coming from the wave function renormalization). Near the
critical temperature the mass and the quartic coupling behave ~ (T — T )?,
where v is the critical exponent of the three dimensional theory. Nevertheless,
high temperature “naive” perturbation theory gives reliable estimates for the
range T > T, and for the determination of T, (if A is sufficiently small).

Our results are based on a one loop calculation which goes beyond the lowest
order perturbation theory (even with the inclusion of “daisy” diagrams). In high
temperature “naive” perturbation theory the expansion parameter is A7 /m(T)
and diverges for m(7') — 0. In our case it is replaced by a running coupling
A(k,T)T/k. This ratio remains finite for k — 0 at the critical temperature.
For T = T it actually runs to a fixed point ;lfp. There are no infrared diver-
gences and the relevant parameter does not grow as the critical temperature is
approached. On the other hand pr is not particularly small and an expansion
in powers of A = A(k, T)T /k does not converge rapidly. It may therefore seem
surprising that our one loop results give such a good description of the phase
transition, including correct values for the critical exponents. We should em-
phasize at this place that the loop expansion in our case is not a power series
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in 1. Already the one loop calculation leads to non-trivial functions of . This
results from the threshold effects which take the relevant mass terms at a given
scale k properly into account. In addition, we can deal with the fact that the
average potential is not purely quartic and include, for example, the effective
¢® term [14]. Our picture of an effective action for averages of fields, where we
always work around the minimum of the k-dependent potential with appropri-
ate masses for all fluctuations, seems to include all relevant physics. We believe
that it actually takes into account in one loop order many of the effects which
would only appear in higher loop order in more standard formulations of per-
turbation theory. More formally the quadratic term in the functional integration
is enhanced by the constraint, thus improving the validity of the saddle point
expansion. Only modes with momenta between k and the ultraviolet cutoff A
are effectively integrated. Our calculation can be reformulated [10] as a “block
spin” approach [18,19]. At every step the ultraviolet cutoff can then be taken as
a function of k, i.e. 4 = ck [10], with ¢ some constant larger than one. (Since
the ultraviolet cutoff is exponential in our case we actually work effectively with
moderate values of ¢, say ¢ around three.) It has been proven rigorously [10]
that the one loop approximation becomes exact in the limit ¢ — 1. In this limit
the evolution equations are of the type of those discussed in reference [18,20]
and coincide with them in special limits. This gives additional motivation to be-
lieve that out one loop result is much more reliable than an expansion in powers
of 4.

We finally should comment on the possible extension of our results to the
standard model. The inclusion of chiral fermions does not pose any particular
problems in our formulation [21]. The average action has also been formulated
for gauge theories [22] but detailed calculations are available so far only for
the abelian case. Near the phase transition one expects strong effects from the
three-dimensional running of the gauge coupling. Before they are properly taken
into account a statement on the order and the details of the high temperature
phase transition in the standard model seems premature.

We would like to thank S. Bornholdt, F. Borzumati and M. Drees for their
help with the numerics. After this work was completed we became aware of
the preprint [23] in which the importance of the evolution of A is pointed
out. For some recent studies of higher order perturbative contributions to the
effective potential near the phase transition see ref. [24]. The four-dimensional
¢* theory at non-zero temperature has been studied on the lattice [25]. The phase
transition was found to be of the second order and the scaling behaviour was in
good agreement with that of the three-dimensional theory at zero temperature.
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