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We investigatethe temperaturedependenteffectivepotential for N-component~ theories
with a new method basedon averagesof fields. The effective three-dimensionalrunning
of couplings at scalesmuch below the temperatureis described.We obtain a detailed
quantitativepictureof the secondorder phasetransition, including the critical exponents
for the behaviourin the vicinity of thecritical temperature.

1. Introduction

Spontaneoussymmetrybreakingis oneof the mostprominentfeaturesof the
standardmodelof electroweakinteractions.The massesof thegaugebosonsand
fermionsareproportionalto the vacuumexpectationvaluep~”2= 174 GeV of
theHiggsdoublet~. The Fermiscalep~/2is aconstantonly in thevacuum,while
in a thermalequilibrium stateit dependson the temperature.At temperature
much higher than p~/2the symmetry is restoredand po(T) vanishes[1—31.
Such high temperatureswere presumablyrealized in the very early universe
immediatelyafter thebig bang.As the universecooledtheremusthavebeena
phasetransitionfrom the symmetricto the spontaneouslybrokenphaseof the
standardmodel. Thisphasetransitionmayhavemanyimportantconsequences
for our presentuniverse.One exampleis the possible creationof the excess
of matter comparedto antimatter(baryon asymmetry)during this transition
[4,51.

The physicalimplicationsof the high temperatureelectroweakphasetransi-
tion arequite differentif it is secondorderor first order.This questionhasnot
yet beensettledin the contextof the hightemperatureperturbationtheory [21
since thesecalculationsare affectedby severe infraredproblems [1,3,61.For
a very small Higgs massor, equivalently,for a small ratio betweenthe quartic
scalarcoupling)~andthegaugecouplingsquaredg2, oneexpectsthetransitionto
befirstorder.This follows from continuity argumentsif theColeman—Weinberg
symmetrybreaking[7] givesa qualitativelycorrectpictureatvanishingtemper-
ature.For realisticvaluesofA/g2 of orderoneor largerthe issuebecomesmore
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involved. It hasbeenargued[81that thefluctuationsof thegaugebosonsinduce
a non-analyticterm T(~t~)JI2in the effectivepotential for the scalarfield
~ at non-vanishingtemperature.The existenceof sucha term for ~ —~ 0 would
necessarilyimply afirst orderphasetransition.In hightemperatureperturbation
theorythe one loop contributionto the quarticscalarcouplinginducesa term
in the temperaturedependenteffectivepotential

~g4T(~f~)2 (1.1)

wherek is an appropriateinfrared cutoff. In the symmetricphase(~= 0) the
gaugebosonsare masslessand (1.1) is infrared divergentfor k —~ 0 (unless
regulatedby an effective“magnetic mass”).In the spontaneouslybrokenphase
the gaugebosonsacquirea mass gç~.This acts as an infrared regulator,i.e.
k2 g2(q~tq~).Inserting this expressioninto (1.1) inducesthe non-analytic
behaviouralludedto above.Nevertheless,the existenceof this“cubic term” for

0 remainshighly questionablesincethe samesort of infrareddivergences
also appearin the computationof the effective temperaturedependentgauge
coupling g. This effect is not accountedfor in the usualtreatment,whereg is
takenindependentof k in (1.1). A properrenormalizationof g may alterthe
reasoningleadingto the “cubic term” for ~ —* 0.

Theinclusionof scalarfluctuationsin thehigh temperatureexpansionis even
moreproblematic,since infrareddivergencesfrom the masslessscalarfluctua-
tionsappearalsofor non-vanishing~ (attheturningpointbetweentheminimum
of the potentialat ~ ~ 0 andthe maximum).The scalaroneloopcontribution
to the potentialcontainsa term analogousto (1. 1), i.e.

(1.2)

If one identifies k2 with the effective temperaturedependentmass term for
the radial modefor ~ ~ 0, i.e. m2(T) + 3~(~t~),one may againconclude
that thereis a non-analytic“cubic term” for the temperatureat which m2(T)
vanishes.Thishasled someauthorsto speculate[9] thatthe high temperature
phasetransitionmaybe first orderevenin a purescalartheory.Most evidence
indicates,however,thatN-component~ theoriesexhibit a secondorderphase
transition.Again, the problemcomesfrom the useof a constant)L in (1.2).This
neglectstherunningof)~as afunctionof k. Shortly speaking,it is not consistent
to includefor T >> k the strongrenormalizationeffectsof the quarticcoupling
in the effectivepotential (1.2),but to neglectthe sameeffect for therunningof
,~ itself.

The stronginfraredeffectsdiscussedaboveresultfrom the three-dimensional
characterof the effective theory for the modeswith momentamuch smaller
than T. The effective three-dimensionalquartic coupling is )LT and hasthe
dimensionof mass.In consequence,the runningas a function of the infrared
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cutoff k is very different from the logarithmic four-dimensionalrunning.At
the phasetransitiononeexpectsfor k —* 0 an infrared stablefixed point for
the ratio ..%(k, T)T/k. Then)L(k, T) vanishes k andthe infrared divergence
in the quartic term (1.2) disappears.For a correct descriptionof the phase
transitionone needssuitableinfrared evolution equationswhich describethe
dependenceof ,~on an appropriateinfrared cutoff k. Theseequationsshould
reproducethe logarithmicfour-dimensionalrunningfor k>> T andexhibit the
three-dimensionalbehaviourfor k << T.

In thispaperweperformthisprogramfor apurescalartheory (theN- compo-
nent~ theory)as a first steptowardsthe treatmentof the standardmodel.We
proposein the next sectionthe averageaction [10,111as an appropriateimple-
mentationofan infraredcutoffk. TheaverageactionTk is theeffectiveactionfor
averagesof fieldsovervolumesk” (in d dimensions).It obtainsafterintegrat-
ingout themodeswith momentalargerthank.For k > 0 no infrareddivergence
appearsin the calculationof 1,, sincek acts as an infraredregulator.We study
the evolutionof the temperaturedependentaveragepotentialas functionof k
andtakethe limit k —~ 0. The couplingseffectively runas a functionof k only
as longas somerelevantmassm is smallerthank. Fork <<m therunningstops
andthe massm replacesk as an effectiveinfrared cutoff. Formassivetheories
the limit k —~ 0 canthenbe takeneasily.Furthermore,our procedureremains
valid evenfor vanishingmass.The three-dimensionalfixed point structurein
the runningof the couplingscuresthe infrareddivergences.This allows us to
exploredirectly the behaviourat the critical temperatureTcr. Herethe running
with k is characterizedby the fixed pointof the three-dimensionaltheory.

Ourmethodcorrectlydescribesthetransitionfrom thefour-dimensionalto the
three-dimensionalbehaviourfor k>> T andk << T respectively.In addition, it
providesthe initial valuesof the couplingsfor their three-dimensionalrunning
andthereforeallows for a quantitativetreatmentof the phasetransition.For
a small quartic couplingour resultsagreewith high temperatureperturbation
theoryfor the behaviourofthepotentialatT>> Tcr andfor thedeterminationof
Tcr. Ontheotherhandwefind thathightemperatureperturbationtheorybreaks
down for T nearTcr. In the vicinity of Tcr the true potential reflectsthe three-
dimensionalcritical exponents.The phasetransitionis clearlysecondorderand
no “cubic term” -.~ T(~5tq~i)3/2appearsfor ~ —* 0.

Comparedto the diagrammaticmethodsof high temperatureperturbation
theoryourmethodeffectively includesadditionalcontributions.The“daisy” or
“ring” diagramsin high temperatureperturbationtheoryleadto a replacement
of the masstermsin the propagatorsby appropriatetemperatureand field de-
pendentphysicalmasses.Thesediagramsaretakeninto accountin our method
by the useof k, T andfield dependentmassesin the propagatorswhich appear
in the evolutionequations.Thestandard“daisy” diagramswouldbereproduced
bytakingk = Ointheoneloopexpression(2.2) atT� Owith U(p,T) replac-
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ing V on the right handside. The evolutionof Uk (p, T) as functionof k with
runningmassesandcouplingssumsup evenmorecomplicateddiagramswhich
go beyond “daisy” graphs. (This is very similar to the usual renormalization
group improvement.)The most importantnew contributions,however,come
from an effective inclusionof higher ordercorrectionsto the four pointvertex
as expressedby the runningof A. They arenot accountedfor in previoustreat-
ments.Thesecorrectionsareresponsiblefor the vanishingof the cubic term at
thecritical temperature.Our “renormalizationgroupimproved” treatmentleads
to a correctdescriptionof thesecondorderphasetransitioncharacterizedby the
critical exponentsof the three-dimensionaltheory.

In sect.2 we summarizetheformalismof theaveragepotentialat zerotemper-
ature,concentratingonthetechniquesfor its evaluationaroundtheminimum.In
sect.3 we extendthis formalismin orderto takeinto accountthenon-zerotem-
peratureeffects.In sect.4 we studythe evolutionequationsfor thethe non-zero
temperatureaveragepotentialof the four-dimensionalN-componentç5~theory.
In sect. 5 we solvenumericallythe evolutionequationsandwe obtainthe full
detailedpictureof the phasetransition.Thissectioncontainsour mainresults:
natureof the transition,critical temperature,very hightemperaturetheory,crit-
ical exponents.In sect.6 we obtainapproximateanalyticresultswhich provide
a deeperunderstandinganda checkof the resultsof sect.5. Our conclusionsare
presentedin sect. 7.

2. The averagepotential

We presenthereabriefsummaryof the formalismof the averagepotential,
concentratingon the techniquesfor its evaluationaroundthe minimum.For a
detailedpresentationanddiscussionwe refer the readerto refs. [10—131.

The averageaction in d dimensionsis the effective actionfor averagesof
fields over a volume ~ kd. It describesthe physicsfor systemswhich have
a characteristiclength scalek’ by averagingout the degreesof freedomwith
momentalargerthank. The averagepotentialUk is real anddoesnot haveto
be convex(asopposedto theeffectivepotential).It canbe shown [10] that Uk
approachesthe effectivepotentialU as k —p 0. We concentratein this paperon
the N-componentç5’~theoryin four dimensionsandnon-zerotemperature.We
neglectthe wave functionrenormalizationeffectssincethe relevantanomalous
dimensionsare small [11]. A more detailedinvestigation,which includesthe
effects of the wavefunctionrenormalization,is underway [14].

Theaveragepotentialaroundtheminimumin d dimensionsreadsin the one
loop approximation:

Uk(p) = V(p) + U~’~(p), (2.1)

whereV (p) is the classicalpotentialandthe oneloop contributionis given by
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[10,12]

U~(p) = !(
2~)-df ddq{ln(P(q) + V’(p) + 2V”(p)p)

+ (N— l)ln(P(q) + V’(p))}, (2.2)

with

V’(p)=~, p~~~~aç/~ (2.3)

This is the sameformulaas in the standardloop expansionfor theeffectivepo-
tential [7,2] (to whichwe referas “naive” perturbationtheoryin thefollowing),
exceptthat the inversepropagatorq

2 is now replacedby P(q), with (a andb
areconstantsof order 1):

2
P(q) = q

2 , (2.4)
l-fk (q)

( /

fj~(q) = ex~j,_a~ J.. (2.5)

This form of P providesfor an effective infraredcutoff for all the modeswith
~ k

2. In contrast,the contributionsfrom the modeswith q2 >> k2 arenot
modified. Only thesemodesare effectively integratedout in the computation
of Uk. We note that for k —* 0 one recoversdirectly the standardone loop
contributionto the effective potential. The constantsa and b determinethe
detailsofthe averagingprocedure.Sinceacanbeabsorbedin a redefinitionof
k we chooseto work with a particularfamily of parametrizations[11,13]

b = exp(2a)— 1 (2.6)
2a

We want to deriveevolutionequationsfor the changeof Uk with the scalek
andfollow theseequationsto k —~ 0. This allows for an appropriatetreatment
of theinfraredproblemsand, therefore,leadsto an improvedcalculationof the
effective potentialU. For thispurposewe take the logarithmicderivativewith
respectto k andsubstituteUk for V in the integral (2.2). This “renormaliza-
tion group improvement” [11] providesapartial resummationof higher loop
contributionsandresultsin the evolutionequation(t = ln (k/A), x =

8 1 —dt d81~( 1 N—l

~Uk(p) =~(2~) j d ~ ~P + U~(p)+ 2U~’(p)p+ P + U~(p)

1 d2—181~1 1
VdJ

0 dxx / ~ U~(p)+2U~’(p)p+ P+UL(p)

(2.7)
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with

v~1=

2d+1~d/2p(~). (2.8)

Eq. (2.7) is the masterequationfor our investigation.It connectsthe physics
atthe short distancecutoff (k = A) with the long distancephysics (k —~0).
Its solutiongivestheeffectivepotentialU U0 (andthereforethe groundstate
of the theory) in termsof the classicalpotential V (

1A. We areinterestedin
solving (2.7) aroundtheminimumof the averagepotential. (Forthecalculation
of the non-convexpart see ref. [13].) In order to do so we parametrizeUk in
termsof the locationof its minimumandits successivederivativeswith respect
to p at the minimum.This resultsin an infinite systemof coupleddifferential
equations,which we solveapproximateFyby truncation,keepinghereonly the
secondderivative.

In the spontaneouslybrokenregimetheaveragepotentialUk hasits minimum
at po(k) ~ 0, determinedby

U~(po)= 0. (2.9)

We areinterestedin the scaledependenceof Po(k) , which is obtainedby taking
the t-derivativeof (2.9)

U~’(po(k))dpo(k) = -~1~(po(k)). (2.10)

Here the partial derivative 0U~/0tshould be takenat fixed p
0(k). We also

define

= U~’(po(k)). (2.11)

The evolutionequationsfor the scaledependenceof P0(k) and~(k) areeasily
derivedby differentiationof (2.7) with respectto p. They read [10,11]:

= _Vdkd
2{3Lf(2Apo) + (N— l)L~(0)}, (2.12)

= _Vdkd 4~2{9L~(2Apo)+ (N— l)L~(0)}, (2.13)

with the dimensionlessintegralsL~(w) given by

L~(w)= — nk2n_dm_~2F(~)f ddq~(P +

= _nk2n_df dxxd/21~(P+w)_+1). (2.14)

0 Ot

In the symmetricregime(p
0(k) = 0) we define:

m
2(k) =U~(0), (2.15)

A(k) =U~’(0), (2.16)
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andobtainthe following evolutionequations[131:

dm2 = (N+2)vdkd_2AL~(m2), (2.17)

= — (N + 8)vdkd4A2L~(m2). (2.18)

The systemsof equations(2.12),(2.13)and (2.17),(2.18)can besolvedfor
given “short distancevalues”P0(k = A) andA(k = A). We startat the cutoff
A andfollow the renormalizationgroupflow towardsthe infrared (k —~0). In
this way we obtainthe groundstateof the theory Po Po(k = 0), as well as
the renormalizedcouplings,masstermsetc. It shouldbe notedthat, evenwhen
onestartsin the brokenregimeatk = A, it is possiblethat the evolution, as
given by the first set of differentialequations,maydrive P0(k) to zeroatsome
non-zerok

5. Fromthatpoint on the theoryis in the symmetricregimeandone
hasto continuethe evolutionusingthe secondsetof equations,with boundary
conditionsm

2(k
5) = 0 andA (ks) givenby its valueobtainedfrom the running

in thebrokenregime.

3. The non-zero temperature formalism

Thediscussionin theprevioussectionhasbeencarriedin thezerotemperature
limit. In order to extendit to the non-zerotemperaturecasewe only needto
recall that, in euclideanformalism,non-zerotemperatureT resultsin periodic
boundaryconditionsin the time direction (for bosonicfields), with periodicity
1/T [15]. This leads to a discretespectrumfor the zero componentof the
momentumq0

q0—~2mmT,m=0,±l,+2 (3.1)

As aconsequencethe integration over q0 is replacedby summationover the
discretespectrum

I ddq ~ dd_lq

J (2~ T~j (2m)d_1~ (3.2)
With theaboveremarksin mindwecan easilygeneralizeourmasterequation

(2.7) in order to takeinto accountthe temperatureeffects.For thetemperature
dependentaveragepotentialUk (p, T) we obtain:

~-Uk(p,T) = -~(27r)_(~~_1)T~fd’~
1q N—1

X (~+ U~(p,T)+2U~’(p,T)p+ p~U~(p,T))

(3.3)
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with the implicit replacement

q2 —~ q2 + 4ir2m2T2 (3.4)

in P. Again, the usual temperaturedependenteffective potential [2] obtains
from Uk (p, T) in the limit k —* 0. As before, we can parametrizeUk (p, T)
in termsof its minimum and its derivativesat the minimum. The evolution
equationsaregiven by (2.12),(2.l3)and (2.17),(2.18),with the obviousgen-
eralizations

po(k) —~po(k,T),

A(k) —~A(k,T),

m2(k) —*m2(k,T). (3.5)

The momentumintegralsfor non-vanishingtemperatureread:

L~(w,T)= _nk2n_d2m_~2+~F(~)T~f dd_tq ~(P +
m (3.6)

wherethe implicit replacement(3.4) is againassumedin P. Thesearecrucial
for the solutionof the evolutionequationsandwe next discussthem in detail.

The zerotemperatureintegralsL~(w), given by (2.14), havebeenevaluated
in references[11,13] *~ Forcompletenesswesummarizethemainresults.L~(w)
hasa poleat

k2
(3.7)1 — exp(—2a)

for the family of parametrizations(2.6).The leadingpolebehaviouris (w +
k2)(~’/2~For w > —k2,L~is a monotonicallydecreasingfunctionof w. Its
valueatw = 0 can be calculatedin closedform. Following [11] we define:

L~(0)= —2l~ (3.8)

andgive the expressionsfor lf~,l~,which will be usefulin the following:

l~= (2a) _2)/ThF (1 + d_2)

l~= (2a) d-4)/2b (2 —

2_(d~4)/2b)F (1 + d_4) . (3.9)

In this work we concentrateon w ~ 0. It is convenientto definethe functions

5d(~ L~(w) (310)
nt~]~j 2l~

* Sincein this work we neglectwavefunction renormalizationour expressionscorrespondto those

of ref. [11] with the simplification Z = 1.
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11111 1111111

w/k2

Fig. 1. The integralsL~(w),L~(w)for an averageparameterb = 3. The points indicate the
resultsof the numericalintegration,while the continuouscurvescorrespondto the approximate

expression(3.11).

Their behaviourfor moderatevalues of w/k2 is determinedby the pole of
L~(w). The approximation

w w n+1/2

~ (3.11)
agreeswell with anumericalevaluationof theintegrals.In fig. 1 weplot L~,L~as
afunctionofw/k2, for anaverageparameterb = 3. Theresultsof thenumerical
integrationareindicatedby points, while the continuouslinescorrespondto the
approximationof eq. (3.11). Similar resultsfor L~,L~arepresentedin fig. 2.
SinceL~(w) doesnot haveasimpleanalyticform wehaveperformednumerical
fits of thepointsshownin figs. 1 and2 which we use for the numerical solution
of the differentialevolutionequations.

Weturnnowto theevaluationofthenon-zerotemperatureintegralsL~(w, T),
whicharegivenby theexpression(3.6).Theirbasicpropertiescanbeestablished
analytically. For T << k the summationover discretevaluesof m in expression
(3.6) isequalto theintegrationoveracontinuousrangeof q

0 up to exponentially
smallcorrections.Therefore

L~(w,T) = L~(w) for T<<k. (3.12)

In the opposite limit T >> k the summationover m is dominatedby the
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i -‘ IL3s(w)~ -
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0 i 2 3 4 5

w/k2

Fig. 2. The integrals L?(w), L~(w) for an averageparameterb = 3. The points indicate the
resultsof the numericalintegration,while the continuouscurves correspondto the approximate

expression(3.11).

m = 0 contribution. Terms with non-zero values of m are suppressedby
exp(_(mT/k)2b). The leadingcontributiongivesthe simpleexpression

L~(w,T)= ~~!iL~’(w) for T>>k, (3.13)
Vd k

with vd definedin (2.8).Thetwo regionsof T/k in whichL~(w,T) is givenby
eqs. (3.12), (3.13) areconnectedby a small interval in which the exponential
corrections result in complicated dependence on w and T.

Theaboveconclusionsareverified by anumericalcalculationofL~(w, T) and
L~(w,T). In fig. 3 we plot L~(w,T)/L~(w)as a functionof T/k, for various
values of w/k2 andfor b = 3. The behaviourofL~(w, T) is presented in fig. 4.
Wedistinguish threeregions:

(a) T/k i~O~:This is the low temperatureregion whereL~
2(w,T) arevery

well approximatedby their zerotemperaturevalue. We take 01 = 0.05 anduse
L~(w, 0) in the evolutionequationsfork ~ T/01.

(b) 01 < T/k < 0~:In the thresholdregion we perform a numericalfit of
the curvecorrespondingto w = 0 which we usefor all valuesof w. This is a
very good approximationsincethe relevantw/k

2 turns out to be small in this
region (seenextsections).We determine02 by the value of T/k at which the
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Fig. 3. L~(w,T)/L~(w)as a function of T/k, for variousvaluesof w/k
2 (b = 3).
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Fig. 4. L~(w,T)/I4(w)asa function of T/k, for variousvaluesof w/k
2 (b = 3).
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high temperature expression for L~(0,T) becomes equal to L~(0).This gives
(forb = 3):

02 = 0.216. (3.14)

(c) T/k ~ 02: For the high temperatureregion we usefor the numerical
solutionof theevolution equations

L~
2(w,T)= 4~L~2(w). (3.15)

Thethreedimensionalcharacterof the effective theoryfor modeswith q
2 << T2

manifests itself in the appearance of the three dimensional momentumintegrals.
It acquires herea precisequantitativemeaning.

4. Running in four and three dimensions

We can now apply the formalism developedin the previoussectionsto the
study of the evolution equations for the four-dimensional çY’ theory at non-
vanishingtemperature.We consider the modelswith spontaneoussymmetry
breakingat zerotemperature,andinvestigatethe restorationof symmetryasthe
temperatureis raised.We specifytheactiontogetherwith somehigh momentum
cutoff A >> T such that the theory is properly regulated. Wethen solve the
evolution equation (3.3) for k —* 0 for different values of the temperature. This
provides all relevant features of the temperature dependent effective potential.

In order to solve the evolution equationswe have to specify appropriate
boundaryconditions.Thesecan be determinedby the “short distancevalues”
Po (k = A) and A(k = A) * which correspond to the minimum and the quartic
coupling of the classical potential. We then have to compute the evolution of
the quantities(3.5), starting at k = A and following the renormalization flow
towards k = 0. This procedure has to be followed for T = 0 and then to be
repeatedfor T ~ 0 in order to relate the zeroandnon-zerotemperatureeffective
potential of the same theory (as specified by the parameters at the cutoff). Since
the runningof the parametersis the samein the zeroandnon-zerotemperature
case for k ~ T/0

1 = 20 T we actually do not need to compute the evolution in
this range of k. Our strategyis equivalentto the following procedure:We start
with the zerotemperaturetheoryat k = 0 taking the renormalizedparameters
(seebelow) as input. We subsequentlyintegratethe zero temperatureevolu-
tion equations“up” to k = T/01. We can now use the valuesof the running
parametersatk = T/01 as initial conditionsfor the non-zerotemperatureevo-
lution equationsandintegratethem “down” to k = 0. In this waywe obtain the
* When neglectingwavefunction renormalization,the definitions (2.11), (2.16) coincide, in four

dimensions,with the renormalizedquarticcoupling. For this reasonwe omit the bar on A from
hereon.
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renormalizedparametersatnon-zerotemperaturein termsof the renormalized
parametersat zerotemperature.More specifically, we integrate first the evolu-
tion equationsfrom k = T/0

1 to k = T/02 usingthe numericalfit of the L
integralsin thisthresholdregion.Thisgivestheinitial conditionsfor the running
betweenk = T/02 and k = 0 where we use the high temperature approxima-
tion (3.15) for the L integrals.In this range of k the running is determined
by the evolution equationsof the three-dimensionaltheory. By neglectingthe
differencebetweenL~(w) andL~(w, T) for Tb2 < k < Tie1 ourprocedure
simplifies evenfurther.It maybe summarizedas “run up in four dimensions,
run down in threedimensions”,with amatchingof the k-dependentcouplings
at the scaleT/02. In practicewe shalltakethe “thresholdcorrection”from the
different running for T/02 < k < Tie1 into account. Wefind that this gives only
a small modification. In the case that P0 (k, T) becomes zero at some non-zero

we continuewith the equationsfor the symmetricregimewith boundarycon-
ditionsm

2(k
5,T) = 0 andA(k~,T) given by its valueat the endof the running

in the spontaneously broken regime.
Onelast remarkconcernsthedefinitionof the renormalizedcouplingsfor the

zero temperaturetheory. Due to the presenceof Goldstonemodesfor N > 1
the four-dimensionaltheory is infrared free (limk,o A (k) = 0) in the spon-
taneouslybrokenphase.This holds evenfor a finite momentumcutoff A. In
contrast,the runningof A(k) is stopped by the scalar mass for N = 1 or in the
symmetric phase. Even though the logarithmic running A (k) —i 0 is very slow
we cannot define the renormalized quartic coupling by the appropriate deriva-
tive of the effectivepotential for k —+ 0. Instead,we could definethe quartic
couplingat non-zeroexternalmomentum.In ourcontext,it is moreconvenient
to use A(k) at somenon-vanishingscalek = k0, whichwe chooseequalto the
mass of the radial scalar mode i.e. k~= 2A (k0 ) P0(O). This definition is clearly
related to a definition by the four-point function with momenta p

2 k~.For
reasonsof uniformity we preservethe samedefinition of the renormalizedA in
the caseN = 1. (For N = 1 the residual running of A(k) (from k

0 to zero)
is negligible for therangeof parametersof interest.)We alsousethe following
notationfor the renormalizedquantities:

P0 =po(O),

AR =A(k0) = A(~/2ARpo). (4.1)

Herepo correspondsto theminimumoftheaveragepotentialin thelimit k _~ 0,
such that p~/

2is the vacuum expectation value of the zero temperature theory.
We alsoremindthat “triviality” of the cui” theory impliesthe necessityof some
physicalultraviolet cutoff if A(k

0) > 0. Following the four-dimensionalevolu-
tion equationsimpliesthat A(k) diverges for some critical scale kcr. Our inves-
tigation makes sense as long as the temperature is smallcomparedto kcr so that
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we can choose A ~ kcr.
Having set up our strategy, we next cast the evolution equationsin a form

which is suitable for the numericalor analyticalsolution.
(a) For the four-dimensional zero temperature running (or low temperature

running T/k ~ 01) the evolution equationsaregiven by (2.12), (2.13). It is
convenient to define the dimensionless quantity

K(k) = Po) (4.2)

Recalling the definitions (3.8) and (3.10) one can eliminate any explicit k
dependence on the right-hand-side

-~ = —2K + —~l~{N—1 + 3s~(2AK)}, (4.3)

-~ = -
1~~l~A2{N_1 + 9s~(2AK)}. (4.4)

(b) In the thresholdregion 01 < T/k < 0~we define

r~(T/k) L~(O,T)

K(k,T) po(k,T) (4.5)

For small enough AR one finds in this region (see next sections) K (k, T)
A(k, T) << 1. It is, therefore, a good approximation to assume that r~(T/k)
gives the non-zerotemperaturecorrectionsto L~(w) for all relevant values of
w. With this assumption we obtain for the intermediate range the following
equations:

-~ = —2K + ~2’1 r~{N—1 + 3s~(2AK)}, (4.6)

-~ = l~r~A
2{N_l+9s~(2AK)}. (4.7)

For the numerical solution of the aboveequationswe usea numericalfit of the
functionsr’(T/k), r~(T/k).

(c) In the high temperature region T/k ?~02, useof the expression (3.15)
resultsin the following equations:

-~ = -v
3k{3L~(22’p~)+ (N- l)L?(O)}, (4.8)

= —v3k’(A’)
2{9L~(2A’p~)+ (N— l)L~(O)}, (4.9)
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with

p~(k,T) po(kj)

A’(k,T) =A(k,T)T. (4.10)

Comparison with (2.12), (2. 13) shows that the above equations are exactly the
onesof the three-dimensional theory for the effective three-dimensionalcou-
plings p~,(k,T),A’(k, T). We recoverthe fact that the behaviourof the high
temperaturefour-dimensionaltheory is determinedby the zero temperature
three-dimensionaltheory.Moreover,wehavedevelopedaformalismwhichcon-
nectsthe four-dimensionalregimewith the effective three-dimensionalonein
a quantitativeway. This is crucial sincethe preciseinitial valuesof the three-
dimensional running are needed for the determination of the critical temperature
etc.

It is convenient again to define the dimensionless quantities

(k T) — p’(k,T) — po(k,T)

~(k,T) = A’(kj) =A(k,T)~. (4.11)

In terms of these quantities the evolution equations read:

~ =-k+~1~l?{N—l +3s?(2~k)}, (4.12)

= —A + ~—~l
2A{N— 1 + 9s2(22K)}. (4.13)

The main qualitative difference of the last equationscomparedto equations
(4.3), (4.4) arises from the term —A on the right-hand side of (4.13), which is
due to the dimensions of A’. In consequence, the dimensionless quartic coupling
A is not infraredfree. Its behaviourwith k —* 0 is characterized by an approxi-
matefixed point for the region wherek variesonly slowly. Takentogether,the
pairof differentialequationsfor (2, i~)hasan exact fixed point (k~p, Afp) cor-
respondingto the phasetransition [11]. This can be demonstratedexplicitly by
the numericalsolution of (4.12), (4.13). The phasediagramsfor N = 1 and
N = 4 are plotted in figs. 5 and 6, respectively. There is a critical line separating
the spontaneously broken from the symmetric phase. We also have indicated
the flow of thecouplingsfor decreasingk. In table 1 we list the fixed points of
(4.12), (4.13) for various values ofNandb = 3.

We also need the evolution equations in the symmetric regime at non-zero
temperature. Their derivation is straightforward by means of (2.17), (2.18),
(3.15). By defining the dimensionless quantity

th
2(k,T) = m2(k,T) (4.14)
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Fig. 6. The phasediagramof the three-dimensionaltheory for N = 4 (b = 3).
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TABLE I

Fixedpointsof thezero temperaturethree-dimensionalevolutionequationsfor variousN (b = 3)

N 1 3 4 10

krp 0.027 0.062 0.082 0.208
Afp 16.56 10.89 8.48 3.53

we obtain:

urn -2 ‘ 3 2
= — 2m — —1

1A(N+ 2)s1(m ), (4.15)
dt 4m

2

dA 32 3 -2
-~—=—A-l-~—-~l22(N+8)s

2(m ). (4.16)

Before presenting the results of the numerical solution of the evolution equa-
tions (4.3), (4.4), (4.6), (4.7), (4.12), (4.13), (4.15), (4.16), we consider a
simplified approach which will be useful in sect. 6 where approximate analytic
resultswill bederived.Aswehaveexplainedin thebeginningof thissection,the
thresholdregion interpolatesbetweenthe regionsof four-dimensionalandthree-
dimensionalrunning.A moresimplified approachwouldneglectthisregion and
consideronly the “running up in four dimensions”and“running down in three
dimensions”,with amatchingof K,A at the scale kT = T/02. For sufficiently
small AR we cantakeinto accountthe effect of the thresholdregion by consid-
ering a “thresholdcorrection” to the matchingof K, A at kT. More specifically,
for the interval T/ 02 < k < T/01, we calculate the difference between the zero
temperatureevolutionof K,A as given by (4.3), (4.4),andthe evolutiongiven
by (4.6), (4.7). For smallAR we can neglect the differencein the runningof A
and use the approximation s~= 1. As a result the difference in running for K

can be cast in the form

öK =K(T/02,T)—K(T/02,O) = N+24 (4.17)

TheparameterA isindependentofT andA in leading order and can be calculated
numerically.For b = 3 we find:

A = 6.59x lOg. (4.18)

We canthereforeusethe simplified picturein orderto deriveapproximatere-
sults.It involves“running up in four dimensions”from k = 0 to kT = Tie2
and“running down in threedimensions”from kT = T/02 to k = 0. The values
of K,A arematchedat kT, with a “thresholdcorrection”for K given by (4.17),
(4.18).
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Fig. 7. The evolution of Po at varioustemperatures.For T> Tcr the evolution of the massterm
in the symmetricregimeis also displayed.N = = 0.1,b = 3.

5. Thephasetransition

The results of the numerical integrationof the evolution equations(4.3),
(4.4), (4.6), (4.7), (4.12), (4.13), (4.15), (4.16)arepresentedinfigs.7,8and
9,10 for N = 1 andN = 4, respectively(AR = 0.1). The solid line in figs. 7,
9 displaysthe “quadraticrenormalization”[10,111of the minimumof the zero
temperatureaveragepotential.At non-zerotemperature(dashedlines) wenotice
thedeviationfrom thezerotemperaturebehaviour.It startsatk = Tie1 andwe
first observethe complicatedrunningin thethresholdregion Tie2 ~ k ~ T/01.
For low temperatures,in the limit k —+ 0, P0(k, T) reachesanasymptoticvalue
p~,(O,T) < P0. Thisvaluecorrespondsto the vacuumexpectationvalueof the
non-zerotemperaturetheoryandwe denoteit by

p0(T) = p0(0,T). (5.1)

At aspecifictemperatureTcr, Po(T) becomeszeroandthissignalstherestoration
of symmetryfor T ?~Tcr. TherunningofA(k),A(k, T) isshownin figs. 8 and10
for N = 1 andN = 4. We observethe logarithmicrunningof A (k) (solid line)
whichisstoppedby the massterm in theN = 1 case.Fornon-zerotemperatures
A(k, T) deviatesfrom the zerotemperaturerunning.ForN = lit reachesanon-
zerovaluein the limit k —~ 0, while in the N = 4 caseit approacheszero k.
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The lattereffect is dueto the fluctuationsof the masslessGoldstonebosons.In
bothcasesA(k,T) runsto zero for T —~ Tcr. We see that the problemof the
definition of the renormalizedcouplingreappearsfor the non-zerotemperature
theoryin the spontaneouslybrokenphase.In analogyto (4.1) wedefineAR (T)
at a non-zeroscale

A~(T)= A(’~/2AR(T)po(T),T) (5.2)

in the spontaneouslybrokenphasefor all valuesof N. For T> Tcr the running
in the spontaneouslybrokenregimeendsat a non-zero k~,at which P0 (k2,T)
equalszero. From this point on we continuethe evolution in the symmetric
regime.The runningof m

2(k,T) is depictedin figs. 7, 9 while the evolutionof
A(k, T) proceedscontinuouslyin the new regimeas shownin figs. 8, 10. In the
symmetricphasethetheory is not infraredfree andwe define:

m~jT) =m2(O,T),

AR(T) =A(O,T). (5.3)

The procedure of “running up in four dimensions” and “running down in three
dimensions” providesthe connectionbetweenthe renormalizedquantitiesat
zeroandnon-zerotemperature.We definethezerotemperaturetheoryin terms
of the location of the minimum P0 and the renormalized quartic coupling AR.
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Fig. 11. po(T),AR(T),m~/T) for a wide rangeof temperatures. N = l,Ap. = 0.l,b = 3.

Throughthe solution of the evolution equationswe obtain po(T) and AR (T)
for non-zero temperatures T < Tcr. For T ~ Tcr the symmetry is restored
(p

0(T) = 0) and the non-zero temperature theory is described in terms of
m~(T)andAR(T). In figs. 11, 12 we plot po(T)/po,AR(T) and rn~(T)/T

2as
a function of temperature,for N = 1 andN = 4 respectively and AR = 0.1.
As the temperature increases towards Tcr we observe a continuous transition
from the spontaneouslybrokento the symmetricphase.This clearly indicatesa
secondorderphasetransition. TherenormalizedquarticcouplingAR (T) remains
closeto its zerotemperaturevalueAR for alargerangeof temperaturesanddrops
quickly to zeroatT = Tcr. Recallingourparametrizationoftheaveragepotential
in termsof its successivep derivatives at the minimum, we conclude that, at
Tcr, the first non-zeroterm in the expressionfor the effectivepotential is the

term (which wehaveneglectedin ourtruncatedsolution).For T>> Tcr the
couplingAR (T) quickly growsto approximatelyits zerotemperaturevalueAR,
while m~(T) asymptoticallybecomesproportionalto T2 as T —~ oc. In the
symmetricphasethe quarticcoupling is finite for all temperaturesandvanishes
for T Tcr. No “cubic term” Tq53 appears.(Its presencewouldhaveresulted
in the divergenceof AR(T) for T Tcr.)

Having presentedthe generalfeaturesof the non-zerotemperaturetheory,we
now turn to a more detailedquantitativediscussion.The value of the critical
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TABLE 2

T~(N+
2)/po for various values of AR and N. b = 3. “Naive” perturbationtheory givesT~(N+ 2)/Po = 24

N AR = 0.01 AR = 0.1 AR = 1

24.05 24.50 26.82

3 24.03 24.48 26.70

4 24.03 24.48 26.61
10 24.02 24.42 26.10

temperatureTcr in terms of the zero temperature quantities has been calculated
in thecontextof“naive” perturbationtheory [1—3].It wasfoundthat Tcr is given
by T~= [24/(N + 2)lpo, independentof AR in lowest order. In table 2 we list
thequantityT~/(N+ 2)pofor variousvaluesof Nand AR. Weobserve excellent
agreementwith “naive” perturbationtheory for AR —~ 0, and significant devia-
tionsfor larger2R. This is not surprisingif onerecallsthatTcr is calculatedas the
temperatureatwhich the massterm m~( T) becomes zero. For the calculation
of m~(T)Dolan andJackiw [2] summedthe dominantclassof higher order
“daisy” graphsin the largeN limit andshowedthat theydo not modify the one
loop expressionfor Tcr. This procedurecorrectly reproducesthe main effect of
the evolutionof Po(k, T) in ourscheme.Thehigher loop correctionsto AR(T)
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TABLE 3

[m~(T)/AR(T)(N + 2)T2]—i for T2/p
0 = 106 and various valuesofAR and N. b = 3. “Naive”

perturbation theory gives [m~(T)/AR(T)(N + 2)T2]’ = 24 for T
2/p

0 —~ --

N AR = l0~ AR = 0.01 AR = 0.1

23.92 23.62 23.19

3 23.94 23.91 24.02
4 23.95 24.01 24.32

10 23.99 24.40 25.53

were not considered.In our schemethis is equivalentto neglectingthe evolu-
tion of A(k, T). This effect is responsiblefor the deviationsfrom the “naive”
perturbativepredictionfor large AR. In particular,in our scheme,the critical
temperature is obtained through the initial values of k, A (defined in (4.11))
at the scalekT = Tie2, which determine the nature of the effective three di-
mensionalrunningin the high temperatureregion. (For a detaileddiscussion
seesect.6). Whetherthe theorywill evolveto the spontaneouslybrokenor the
symmetricphaseis determinedby thelocationof thepoint (Ic (k1-, T),A (kT, T))

aboveor belowthe critical line (seefigs. 5 and6). In the limit AR —+ 0, A(kT, T)
is simply equal to AR, since the running in the zero temperatureandthreshold
regions is negligible. Also the value of k(kT, T) becomes independent of AR and
is given by the ultraviolet fixed point of eq. (4.12) with ~?= 1. In this limit the
“naive” perturbative result should be reliable.

Anotherquantitywhich canbe comparedwith the “naive” perturbativepre-
dictions is m~(T) in the limit T —* oc. In table 3 we list the results of our
calculation for the expression [m~(T)iAR(T)(N + 2)T2]’ for T

2/p
0 = 106.

The “naive” perturbative result for this quantity is 24, independent of Nand AR.
Wefind again excellent agreement for AR —~ 0, which can be traced to theabsence
of significantevolutionforA(k, T). (More details on the analyticcalculationof
m~(T)are given in sect. 6.)

The most important aspectof our calculationis relatedto the infraredbe-
haviour of the theory for T Tcr. The temperaturedependenceof P0(T),
AR(T), m~(T)nearTcr is presented in figs. 13 and 14 for N = I and N = 4,
respectively (AR = 0.1). Wehave already mentioned the fact that all the above
quantitiesbecomezeroat T = Tcr. Whatbecomesapparentin figs. 13, 14 is a
critical behaviour which can be characterized by critical exponents. Following
the notation of statisticalmechanics,we parametrizethe critical behaviourof
p0(T) and m~(T)as follows:

p0(T) cx(T~— T
2)2~,

m~jT)cx(T2—I~2r)2~’. (5.4)
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N. Tetradis, C. Wetterich/ Phasetransition for cl4 theories 683

.7 I I I I j~l~ I I I I I~l I I I I I I I I I I I I

.6 - —

.5
/

011 I I I I I I I I I I I I I I I I I I I I I
5 0 —5 —10 —15 —20

2 2
log[IT —T cr~/Po]

Fig. 15. Thecritical exponentsas Tcr is approached.For T —~ Tcr they becomeequalto thecritical
exponentsof the zero temperature three-dimensional theory. N = l,b = 3.

We alsodefinea critical exponent~ for AR(T) in the symmetric regime:

AR(T) x (Ti— Tc2r)~. (5.5)

Theseexponentsareplottedasfunctionof the logarithmof jT2 — 1~in figs. 1 5

and 16 for N = 1 and N = 4, respectively. (We should note at thispoint that,
in the limit T Tcr, the abovedefinition coincideswith the moreconventional
one, which is given in terms of IT — Tcr I. Wehave used this parametrization
for uniformity since everything in this sectionhasbeenexpressedin termsof
T2

1/p0.The temperature dependent exponent 2/3 is definedas the derivativeof
lnp0 with respect to In IT

2 — I~rI,and similarly for the other exponents.) We
notice that in the limit T —p Tcr the critical exponents approach asymptotic
values. These are independent of AR and therefore fall into universalityclasses
determinedonly by N. They are equal to the critical exponentsof the zero
temperature three-dimensional theory. This fact can be understood by recalling
that the evolutionin the high temperatureregion is determinedby aneffective
threedimensionaltheory (seethe discussionin sect.4), whosephasediagram
(figs. 5 and 6) has a fixed point corresponding to the phase transition. For
T Tcr the evolution of po(k,T),A(k,T) in the high temperature region is
given by a line in the phasediagramvery closeto the critical line. In this case
po(k, T),A(k, T) spendan arbitrarilylong“time” t close to the fixed point and,
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as a result, losememoryof their “initial values”po(T/0
2,T),A(T/e2,T). The

critical behaviour is determined solely by the fixed point, without any memory
of the evolution in the zerotemperatureor thresholdregion.

We havenowestablishedtheconnectionbetweenthe critical behaviourof the
non zerotemperaturefour-dimensionaltheoryandthe zerotemperaturethree
dimensional one. As a result wehave a large amount of information, coming from
detailed investigations in statistical field theory, whichcanserveasacheckofour
calculation.In table4 welist the resultsofourcalculationof /1, v,~for various N.
Thecritical exponents/i,v for the three-dimensional theory have been calculated
by severalmethods:� expansion, summedperturbation theory in the symmetric
phasein threedimensions,1/N expansion,latticecalculations.Forcomparison
with ourresultswelist in table4 themostaccuratevaluesof/i andv obtainedby
thepreviouslymentionedmethods.Theagreementis good,eventhoughwehave
neglectedthe wave functionrenormalizationin this work. Preliminaryresults
of acalculationwhich includesthe wave functionrenormalizationeffectsshow
evenbetteragreement[14]. Anotherconsistencycheckis providedby thescaling
lawswhich give

v = 2/3, (5.6)

in the limit of zerowavefunctionrenormalization.Theaboverelationis satisfied
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TABLE 4

Critical exponentsfor variousN (b = 3). For comparisonwe havelistedthe resultsof various
calculationsof the exponentsof the zerotemperaturethree-dimensionaltheoryassummarizedin

ref. [16]. (We have not included the errors quoted in ref. [16])

N /3 v

1 0.25 0.33a)
031b) 0.50 063a,b) 0.50 =

3 0.37 0.37a) 038b) 075 071a,b) 0.75 = ~d)
4 0.40 0.81 0.81 =

10 0.46 ~y = 043d) 0.92 = 0.86~ 0.92 = ~d)
- 05c) 1c) = ~d)

a) From c-expansionor summedperturbationtheoryin threedimensions.
b) From latticecalculationsfor the N-vectormodel.
C) From I/N expansionto order1/N

2 [161.Thescalinglawsgive: ~y = /3(1 — ~i~)/(l + o). ~‘ =

v (1 — ~ where~ is the wavefunctionrenormalization,whichwe havesetto zeroin this work.
d) From the finite value of A

3/mat the critical point as given by summedperturbationtheory,
whereA3 is therenormalizedthree-dimensionalcouplingand ,iz the renormalizedmass [17,16].

by our numericalresultsto verygood accuracy.
Thecritical behaviourof AR ( T) is related to the resolution of the problem of

the infrared divergences which cause the breakdown of the “naive” perturbative
expansion in the limit T —* ~ [1,3]. The infrared problem is manifest in the
presenceof higherordercontributionsto the effectivepotentialwhich contain
increasing powers of AR ( T)T/k, where k is the effective infrared cutoff of the
theory.If the evolution of A(k, T) is omittedandAR ( T) is approximated by its
zero temperaturevalueAR, thesecontributionsdivergeandthe perturbativeex-
pansionbreaksdown. A similarsituationappearsfor thezerotemperaturethree-
dimensionaltheory in the critical region [17]. In this casethe problemresults
from an effective expansion in termsof the quantityu/[M

2 — M~~]”2,whereu

is the bare three-dimensionalquarticcouplingand [M2 — Mc2r] 1/2 is a measure of
the distance from the point where the phase transition occurs as it is approached
from the symmetricphase.The two situations canbe seento be of identical
nature by simply remembering that the non-zero temperature four-dimensional
coupling A corresponds to an effective three-dimensionalcouplingAT andthat
the effective infrared cutoff in the symmetric phase is equal to mR(T). In the
three-dimensionalcasethe problemhasbeenresolved[17] by a reformulation
ofthe calculationin termsofan effectiveparameterA

3/m,whereA3 is therenor-
malized1-PI four point functionin threedimensions(therenormalizedquartic
coupling)andrn the renormalized mass (equal to the inverse correlation length).
It hasbeenfound [17,16] that the abovequantityhasan infraredstablefixed
point in the critical region m —~ 0. No infrareddivergencesarise within this ap-
proach.Theironly residualeffect is detectedin the strongrenormalizationof A3.
In ourschemetheproblemis formulatedin termsof theeffectivedimensionless



686 N. Tetradis, C. Wetterich/ Phasetransitionfor cl4 theories

TABLE 5

The asymptotic value of AR(T)T/mR(T)in the limit T —* Tcr for various N (b = 3). For
comparison we have listed the valuesofA

3/in at the critical point asgiven by summedperturbation
theory, where A3 is the renormalized three-dimensional coupling and m the renormalizedmass

[17,16]

N 1 3 4 10

A~(T)T/mpjT) 6.8 5.5 4.8 3.7

A3/m 7.9 6.4

parametersIc(k,T) = po(k,T)/kT,A(k,T) = A(k,T)T/k (see eq. (4.11)),
for which a fixed point correspondingto thephasetransitionis found.The crit-
ical behaviouris determinedby this fixed point in the limit k —* 0. Everything
remainsfinite in the vicinity of the critical temperature,andthe only memoryof
theinfrareddivergencesis reflectedin thestrongrenormalizationof AR ( T) near
Tcr. Weconclude that the infraredproblemdisappearsif formulatedin terms
of the appropriaterenormalizedquantities.Whenexpressedin the correct lan-
guage,it becomessimply a manifestationof the strongrenormalizationeffects
in the critical region. In order to comparewith the three-dimensionalresults
we havecalculatedthe quantityAR(T)T/mR(T) in the limit T —~ Tcr. Wefind
thatit reachesan asymptoticvaluedependingon N, whichwe list in table5 for
variousN. For comparisonwequotethe resultsfor the infraredfixed point of
~ (for N = 1, 3) as summarized in ref. [17,16]. Good agreement is observed.
Moreover, the existence of the asymptotic value for AR ( T)T/mR(T) explains
the equalityof the critical exponentsv and~ which is apparentin table4.

Beforeconcludingthissectionwewould like to discussanissueinherentin the
formalism of the average potential. It concerns the dependence of the physical
quantities on the scheme chosen in order to perform the averaging of fields over a
volumekd. The averaging procedure results in an effectiveinfraredcutoff’--~k.
This is reflectedin themodifiedpropagatorgivenby (2.4), (2.5). It is clearthat
theaveragepotentialUk dependson theaverageparametersa and b appearing in
(2.5). In the limit k —~ 0 theaveragepotentialapproachestheeffectivepotential
[10] and,therefore,becomesindependentof a and b. But the wholeevolution
of Uk starting from the “short distancevalues”P0(k = A), A(k = A) depends
on the averaging scheme.Theresultsof thepresentwork concerntheconnection
betweenthe zero temperatureground stateof the theoryandthe onefor non-
zero temperature.Theseare given by the effective potential (Uk in the limit
k —* 0) and should beindependentof aandb. Eventhoughtheevolutioncarries
someschemedependencethis should disappearwhen one calculatesphysical
quantitiessuchasthe critical temperatureor the critical exponents.Despitethe
abovegeneralargumentssomeschemedependenceis expectedin ourresults.It
comesfrom theapproximationswhich areunavoidablein apracticalcalculation,



N. Tetradis, C. Wetterich/ Phasetransitionfor cl4 theories 687

TABLE 6

+ 2)/po for various AR and N. Average parameter b = 4. To be comparedto table 2,
which hasbeengeneratedwith b = 3

N AR = 0.01 AR = 0.1 AR = 1

23.80 24.26 26.58
3 23.80 24.24 26.45
4 23.80 24.24 26.36
10 23.79 24.18 25.83

TABLE 7

[m2R(T)/AR(T)(N + 2)T2]’ for T2/p
0 = 106 and various AR, N. Average parameter b = 4.

To be comparedto table 3, which hasbeengeneratedwith b = 3

N AR = i0
4 AR = 0.01 AR = 0.1

23.68 23.39 22.97
3 23.71 23.67 23.79
4 23.72 23.77 24.08

10 23.76 24.16 25.27

i.e. the consideration of the one loop average potential, the omission of the
wave function renormalization, the truncation of the evolution equations, the
uncertainties coming from the numerical solution. This is not a problem though.
The b dependenceof the results(in the family of parametrizations(2.6)) is a
measureofthe importanceof the neglectedtermsand,therefore,of the accuracy
of the calculation.We haveperformedthe numericalsolutionof the evolution
equationsalso for an averageparameterb = 4, in order to comparewith the
resultspresentedup till now,whichwereobtainedfor b = 3. In tables6 and7we
listthevaluesofI~(N+2)/poand[m~(T)/AR(T) (N + 2)T2]’, respectively,
for variousN and AR and for b = 4. Thesetablescanbe directly comparedto
tables 2 and 3, respectively. The numerical solution of the evolution equations
involveslargeruncertaintiesfor b = 4. The oscillatory behaviour of the integrals
L~(w, T) in the threshold region is more pronounced and harder to reproduce
by anumericalfit. As a result the 1% shift observedbetweentables2, 3 and6, 7
can beconsideredas a measureof thetotal uncertaintiesinducedby the various
analyticapproximationsaswell asthe limitations of the numericalsolution.We
postponethe discussionof the schemedependenceof the critical exponentsfor
anotherpublicationwhichwill includethewavefunctionrenormalizationeffects
[14].
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6. Approximateanalyticresults

In this sectionwe deriveanalyticresultsfor the critical temperature,the high
andlow temperaturebehaviouras well asforthecritical exponentsfor T nearTcr,

from approximatesolutionsoftheevolutionequations.We assumeasufficiently
small valueof the quarticcouplingAR. As describedat the endof sect.4 westart
from thephysicalzerotemperaturecouplingsatk = 0, usethefour-dimensional
evolution equationsto solve for the relevantquantitiesK and A at the scale
kT = Tie

2 = 4l?/l~”T,apply the thresholdcorrectionfor K in order to obtain
theinitial valuesfor thethree-dimensionalrunningat k = kT, andfinally follow
the three-dimensionalevolutionequationsfor k —+ 0. This proceduregives the
effectivephysicalcouplingsatnon-vanishingtemperature.

For smallAR we approximatefor the four-dimensionalrunning

= — 2~+ (N + 2)a4,

a4 ~ (6.1)

This gives:

K(kT) = N±
2a

4 + (6.2)

The thresholdcorrection

óK=~A (6.3)

results in an effective shift a4 —÷ a4 + A in (6.2). In consequence, the initial
valuesfor thethree-dimensionalrunningread:

k(kT,T) =2(N + 2)1? (-i-~-~~+ + (6.4)

.~(kT,T)=-~A(k~). (6.5)

HereA(kT) accountsfor the logarithmicfour-dimensionalrunningofA(k). We
observethatA(kT, T)k(kT, T) = A(kT, T)K(k-i-,T) << 1 for small AR and T

2>>
~ARP0. For N > 1 one can use analogous formulae also for T2 << ~ARP0 by
replacingeverywherethefactorN + 2 by N— 1. Only the N— 1 Goldstone bosons
contributeeffectively to the runningfor AK >> 1. For the three-dimensional
runningweconsiderfirst the region whereAk remains much smaller than one.
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Thenwe canapproximate

dIc -

= — K + (N + 2)a
3,

a3 ~ (6.6)

andfind the solution

k(k, T) = (N + 2)a3 + ~{k(kT, T) — (N + 2)a3}. (6.7)

Critical temperature. The critical temperatureis determinedby the require-
ment that the pair (k(kT, T), ~(k1, T)) as given by (6.4), (6.5) corresponds
to a point on the critical line in the phasediagramof figs. 5 and6. For smallAR
this is equivalent to the ultraviolet stable fixed point fork following from (6.6),
namely:

Ic = (N + 2)a3. (6.8)

Inserting (6.8) into (6.4) for T = Tcr yields:

~
2i~r 1\ j4 / 1 QA\

R — ~cr~ + — ~ -~ — ~— —2394 (69)
— P0 — (l?)2 ~2~2 1~) —

Herethenumericalvalueis givenfor an averageparameterb = 3, l~= 0.7205,

I? = O.8333,A = 6.59 x lOg. It is remarkable how close this value comes to
the “naive” perturbative result 7~= 24po/(N + 2) [2]. Without the threshold
correction(A = 0) Rwould be 20.48, which is still in good qualitative agreement
with the perturbative result. Both with and without the threshold correction
the analytic result agrees well with the corresponding numerical values (R =

24.05—24.O2andR= 2O.56—20.54forAR= O.0l,b = 3andN = l—lO).We
infer from thephasediagrams(figs. 5,6) thatfor increasingA(kT, T) the critical
value of Ic (kT, T) decreases.The critical temperaturethereforeincreases.

High temperaturebehaviour. ForTlargerthanTcr theglobal0(N) symmetry
remainsunbroken(symmetricphase).The productAk remainssmall for small
2R. The minimumof Uk runsto the origin atsomescalek

8> 0

k(k5,T) = 0. (6.10)

We write

(6.11)

anddetermineK from (6.7)

K(P0~— 1? (2— 32m
24 — 4m2/4 (612)

~71~ /~4 (/?)2(N+2)T21
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For largeT the functionK approachesa constantandk~ ~k-~-.For small AR
thereis thereforeonly very little runningof A(k,T) betweenkT andk~.Thus

A(k9,T) =A(kT,T). (6.13)

At scalesk < k5 wehaveto continuethe evolutionequationsin the symmetric
regime. In particular, the mass term m

2(k, T) = U~(0, T) obeys

dm2 = 4~2’1~1 (~)AT~ (6.14)

with m2(k
8) = 0. The physicalmassobtainsas m~jT) = rn

2(k —* 0, T). By
puredimensionalargumentsonefindsm~(T) T2, sincein the high tempera-
turelimit k

8 (2l?/l~)T,A(kT, T) AR. Foran approximatesolutionof (6.14)
we neglect the running of A andapproximates? = 1. In this way we obtain:

rn
2(k, T) = [(N + 2)/4212]/?ART(kS— k). (6.15)

This approximationis justified for k >> ART/47t2wherethe three-dimensional
running of A(k, T) can be neglected and k2 >> [(N + 2)/2m2]ART2 where
rn2 (k, T)/k2 remains small. Since the modificationsof the running for very
small k give only corrections which vanish for AR —* 0 we obtain the leading
order result for m~(T)by extrapolating(6.15) to k —~ 0:

rn~(T) — K -+ -~- (6 16)
(N + 2)AR(T)T2 — 4ir2 ‘~.T2) R~

The last result indicates the high temperature limit where corrections po/T~
areneglected.In lowestorderin AR werecovertheperturbativerelationwith the
critical temperature

lim rn~(T) = AR(T)poT2 (6.17)

T—’o~ Tcr

Again, our numericalresultscoincidewell with theanalyticrelation (6.16).
Thegood agreementbetweenour methodandhigh temperatureperturbation

theory for T>> Tcr should be of no surprise, since thisis thetemperatureregime
wherethelatteris expectedto bevalid. It maybemorepuzzlingthathigh temper-
atureperturbationtheory leadsto a good estimatefor the critical temperature,
althoughwe haveseenthat physicsnearTcr is quite different from the naive
perturbativeresultsand, in particular,not characterizedby a smallparameterA.
Thereasonis that Tcr can be determined from the behaviour of the critical line
in the phase diagram (figs. 5, 6) nearA = 0. It does not need the understanding
of the more complicatedphysicsnearthe fixed point which characterizesthe
behaviourat T = Tcr. In turn, the critical line nearA = 0 canbe obtainedin
perturbationtheory if the quarticcoupling (for T = 0) is small.

Low temperaturebehaviour. Let us first consider the region

~ARP0 << T2 ~ T~ (6.18)
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where we can use (6.4) as initial value and (6.7) for the three-dimensional
running. Inserting the definition of k(k,T) in terms of po(k, T) (4.11) one
finds:

po(T) = Po — N+ 2T2. (6.19)

This linear behaviour agrees qualitatively with figs. 11 and 12, but we note that
the true values lie actually somewhat above the straight line (6.19). Indeed, there
is always a region of the running for small k where Ak > 1 such that P0(k, T)
decreasesslowerthanimpliedby (6.7).This explains the small difference. Fur-
thermore,the slope — dp

0( T) / dT
2 is smallerthan (N + 2) /R atthe origin. In

fact, for N> 1 and T2 << ~ARP0 theaboveformulaeshouldbeusedwith N—

replacing N + 2. This gives the correct slope in the immediate vicinity of T = 0.
We emphasize,however,thatthe region in T2/powherethe behaviouris purely
dominated by the N — 1 Goldstone bosons is very small, especially for small
AR. Denoting the mass of the radial excitation (“a-field”) in the spontaneously
broken phase by M2 = 2ARPOwe find that the radial mode becomes important
for T2 >

5
1~M2.This remark may be relevant for the treatment of the non-zero

temperature behaviour of QCDby means of chiral perturbation theory.
Critical exponents. For the discussion of thebehaviournearthe critical tem-

peraturewe cannotusethe approximation (6.6), sinceAk is not small near
the fixed point characterizingthe phasetransition ~Lf~kf~= 0.45 for N = 1,
Af~kf~ = 0.70 for N = 4). We thereforestartwith the full high temperature
evolution equation for po(k,T) (4.12)

d
—~ = —1—{N- 1 + 3s?(2~k)}. (6.20)

dt 42t2

For T = Tcr thereis a critical trajectory pCj(k, T) which corresponds to the
critical line separating the two phases o’f the diagrams5 and6. Its behaviourfor
k —* 0 is characterized by the fixed point Ic = kf~,

p~T(k,T) kfpTcrk. (6.21)

We are interested in temperatures in the vicinity of Tcr, i.e. IT — TcrI << Tcr,

wherethe relevanttrajectoriesarenearthe critical line. We parametrize
po(k,T) = p~(k,T)+ 5po(k,T) (6.22)

and linearize the evolution equations as long as ôpo(k, T)I ~ p~r(kT), using
(4.12) and (d/dy)s~(y)= —(l~/~?)~~(y)

d(Ôp
0) = top0, (6.23)

where
— 3

= a(o )-a-(OPO) = 1 + ~~-~---~ = —~-4~s~(2.~ik).(6.24)



692 N. Tetradis, C. Wetterich/ Phasetransition for ~ theories

As long as .~and Ic are running near the critical line the quantity r depends on
k. Wecan define an average value

In/cT

~(k) = f r(t) dt / ln~i (6.25)
ln k

such that

/ k \ ~(k)Opo(k, T) =
0Po (kT, T) (—) . (6.26)

\ kT /

Very near the critical temperature, however, the relevant trajectory remains in
the immediatevicinity of the fixed point (kf~, )fp) for most of the running. In
the limit T Tcr the average reaches the asymptotic limit

• 3l~- ~
lirnr(k) = = ~ (6.27)

The asymptotic evolution of Op
0 is characterized by a constantanomalousdi-

mension~ With b = 3 we find
Tfp = —0.667for N = 1 andtfp = 0.193

for N = 4. The initial value &oo (kT)can be expressed in terms of Tcr — T from
(6.4)

4l~
Opo(k~-,T)=-~-7~Ok(kT,T)

41?
28k

~Tcr~(kT,Tcr)(T Tcr)

2~1(Tcr~T). (6.28)

Since ~ < 0, IOpo(k, T)I increasesfor decreasingk. For anynon-zeroOpo(k-r,
T) there will be some scale kF where lOpo(kr,T)I = cp~(kF,T)with c some
constant of order unity which we take smaller than one. For k < kF the linear
approximation (6.24) for the running of

0Po breaks down and the trajectory
goes away from the fixed point. Depending on ôPo being positive or negative
one ends in the spontaneously broken or symmetric phase. In the spontaneously
broken phase P0 essentiallystops running somewhat below the scale kF so that
its value for k —~ 0 is proportional to 0Po (kF, T)

po(T) = cs(c)Opo(kF,T). (6.29)

For c = 0.1 we find numerically rt(c) = 0.2 for N = 1, anda(c) = 0.5 for
N = 4.Thescalek~isdeterminedby (6.21), (6.26) and (6.28) (where~stands
for ~(kF)). From

Opo(kt,T) (f!) = ckfpTcrkF, (6.30)
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TABLE 8

Critical exponentsfor variousN as calculatedfrom the approximateanalytic expressionsof sect.
6 (b = 3). To be compared to table 4

N /3 II

1 0.30 0.60 0.60
3 0.40 0.80 0.80
4 0.42 0.84 0.84
10 0.47 0.93 0.93

wefind

f (Tcr — T) ~, (6.31)

1/(1—r)

= (2l?~:~) . (6.32)

This yields finally

po(T) B
2(Tcr — T)IRIT)

B2 = 2ct(c)fTpo (6.33)

where ~ may now be consideredas a function of Tcr — T by using (6.31),
(6.32). Wenote again that the asymptotic value of the critical exponent /3 =

1/2 (1 — Tip) is universal for all three-dimensional 0(N)-symmetricscalarthe-
orieswith given N. The valuesof/i obtainedby usingeq. (6.27) arelisted in
table8 andarein good agreementwith thenumericalresults(comparetable4).
The proportionality factor B2 is not universal for all three-dimensional theories.
It reflects the particular embedding of the effective three-dimensional theory for
momenta q2 << T2 in the full relativistic four-dimensional scalar model. In this
senseit is a propertyof the four-dimensionaltheory.Numericallywe find in
units of po: B2 = 0.037for N = 1, andB2 = 0.45 for N = 4. These values are
very sensitive to the precise value of the critical exponents. Therefore, they are
afflicted with ratherlargenumericaluncertainties.The abovenumericalresults
areconsistentwith the analyticexpressions(6.32), (6.33).

In the symmetricphasethelinearapproximationfor therunningof Op
0breaks

againdown for IOpo(kF, T)j = cp~(kF, T). The minimumof the potentialruns
to the origin at k5 ‘-.-~ kF and from thereon one continuesthe running in the
symmetricregime. SinceA(kF, T) A~the scalekF (or similar for k5) is the
only scale present for the running with k <kF. Oneconcludesfrom dimensional
argumentsthat

m~(T)= ii(c)k~. (6.34)
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This leadsagainto abehaviourwith a critical exponent

m~(T) N~(TTcr)2~’~,

N~= (4l?)2~f22 (6.35)

The critical exponentv = 1/ (1 — Tf~) is universalandwe recoverthe relation
v = 2/3, as appropriate whenneglectingthe wave functionrenormalization.It
alsofollows from dimensionalargumentsthatAR (T) T mustbe proportionalto
kF. This givesthe scalingrelation

AR(T)T
lim = const. (6.36)

T’Tcr mR(T)

which leads to the relation ~ v.

7. Conclusions

We haveemployedanew methodin orderto computethe temperaturedepen-
denteffectivepotentialfor the N-componentç~theory.This methoddescribes
properly the four-dimensionalrunningof couplingsat scalesk largecompared
to T andthe effective three-dimensionalrunningfor k << T. The infraredbe-
haviourof the theory is fully understoodandno divergencesappearevenatthe
critical temperature.Thehigh temperaturephasetransitionis secondorder.No
“cubic term” appearsin the potential. At the critical temperaturethe quartic
coupling vanishesandthe lowest interaction is a (universal)~6 coupling (up
to small corrections coming from the wave function renormalization). Near the
critical temperature the mass and the quartic coupling behave (T — Tcr )“,

whereii is the critical exponentof thethreedimensionaltheory.Nevertheless,
high temperature“naive” perturbationtheory gives reliableestimatesfor the
rangeT>> Tcr andfor thedeterminationof Tcr (if A is sufficiently small).

Our resultsare basedon a oneloop calculationwhich goesbeyondthe lowest
order perturbation theory (even with the inclusion of “daisy” diagrams). In high
temperature“naive” perturbationtheorythe expansionparameteris AT/m(T)
anddivergesfor m(T) —* 0. In our case it is replacedby a running coupling
A(k, T) T/k. This ratio remainsfinite for k —~ 0 at the critical temperature.
For T = Tcr it actually runsto a fixed point ~ Thereareno infrareddiver-
gencesandthe relevantparameterdoesnot grow as the critical temperatureis
approached.On the otherhand~ is not particularly smallandan expansion
in powersof A = A(k, T)T/k doesnot convergerapidly. It maythereforeseem
surprisingthatour one loop resultsgive such a good descriptionof the phase
transition, including correctvalues for the critical exponents.We shouldem-
phasizeat this place that the loop expansionin our caseis not a powerseries
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in A. Alreadythe one loop calculationleadsto non-trivial functionsof A. This
resultsfrom the thresholdeffectswhich takethe relevantmasstermsat a given
scalek properly into account. In addition, we can deal with the fact that the
averagepotential is not purely quartic and include, for example,the effective
~6 term [14]. Our pictureof an effectiveactionfor averagesof fields, wherewe
alwayswork aroundthe minimumof the k-dependentpotentialwith appropri-
atemassesfor all fluctuations,seemsto includeall relevantphysics.We believe
that it actually takesinto accountin oneloop ordermanyof the effectswhich
would only appearin higher loop order in more standardformulationsof per-
turbationtheory.Moreformally thequadratictermin the functionalintegration
is enhanced by the constraint, thus improving the validity of the saddle point
expansion.Only modeswith momentabetweenk and the ultraviolet cutoff A
areeffectively integrated.Our calculationcanbe reformulated[10] as a “block
spin” approach [18,19]. At every step the ultraviolet cutoff can then be taken as
a functionof k, i.e. A = ~k [10], with ~ someconstantlargerthanone. (Since
the ultraviolet cutoff is exponential in our case we actually work effectively with
moderatevaluesof c~,say ~ around three.) It has been proven rigorously [10]
that the oneloop approximationbecomesexactin the limit ~—* 1. In this limit
the evolutionequationsareof the typeof thosediscussedin reference[18,20]
andcoincidewith them in speciallimits. Thisgivesadditionalmotivationto be-
lieve thatout oneloop resultis muchmorereliablethananexpansionin powers
of A.

We finally should commenton the possible extensionof our resultsto the
standardmodel. The inclusion of chiral fermionsdoesnot poseanyparticular
problemsin our formulation [21]. The averageactionhasalsobeenformulated
for gaugetheories[22] but detailedcalculationsareavailableso far only for
the abeliancase.Nearthe phasetransitiononeexpectsstrongeffects from the
three-dimensionalrunningof the gaugecoupling.Beforetheyareproperlytaken
into accountastatementon the orderand the detailsof the high temperature
phasetransitionin the standardmodelseemspremature.

We would like to thank S. Bornholdt, F. Borzumatiand M. Dreesfor their
help with the numerics.After this work was completedwe becameaware of
the preprint [23] in which the importanceof the evolution of A is pointed
out. For somerecentstudiesof higherorderperturbativecontributionsto the
effectivepotentialnearthe phasetransitionseeref. [24]. The four-dimensional
~ theoryatnon-zerotemperaturehasbeenstudiedon thelattice[25]. Thephase
transitionwas foundto be of the secondorderandthe scalingbehaviourwas in
good agreementwith thatof the three-dimensionaltheoryat zerotemperature.
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