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A finite-sizescalingtechniqueis applied to the SU(2) gaugetheory(without matter fields) to
computea non-perturbativelydefinedrunning coupling a(q) for a rangeof momentaq given in
unitsof the string tension K. We find that alreadyat ratherlow q, the evolutionof a(q) is well
describedby the 2-ioop approximationto the Callan—Symanzik13-function. At the highest
momentumreached,q = 20 x we obtain o~gg(q)=0.187±0.005±0.009 for the running
coupling in the MS schemeof dimensionalregularization.

1. Introduction

From the point of view of perturbationtheory, the renormalizedcoupling ct(q)

in QCD is an input parameter,whosevalue at some referencemomentumq = q0
mustbe suppliedby experiment.There is little doubtthat QCD is a well-defined
theoryalso at low energies,wherethe perturbationexpansiondoesnot apply. We
may thusimagine that the parametersof the theoryare fixed through the hadron
spectrum,for example,or someotherset of experimentallyaccessiblequantitiesin
the low-energydomain.The runningcoupling thenbecomesa computablefunction
of momentum,in any renormalizationschemethat onemay choose.

A theoreticaldeterminationof ct(q) at high energiesis obviously desirable.In
particular, one would be interestedto know at which scale the perturbative
evolutionof thecoupling setsin. Sinceoneis concernedwith the non-perturbative
propertiesof QCD,the lattice formulationof the theory, combinedwith numerical
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simulation techniques,is currently the most promising way to approach the
problem [1—5].The basicdifficulty in any suchcalculationis that the momentaq

of interest can be orders of magnitude greater than the massesof the light
particlesin the theory. Lattices sufficientlywide to avoid finite-volumeeffectsand
with a spacing a substantiallysmallerthan 1/q thustend to be much larger than
what can be simulatedon a computer.

Many years ago Wilson pointed out that this difficulty may be overcome,in
principle, by introducinga renormalizationgroup transformationwhich allows one
to step up the energy scale in a recursive manner [1]. No simulation of an
exceedinglylargelattice would thenbe required,while all physicalscalesarekept
at a safedistancefrom the ultra-violet cutoff 1/a.

The finite-size scaling techniquedescribed in ref. [2] may be regardedas a
particularrealizationof this basicidea,eventhoughthe detailsarequite different
from Wilson’s formulation. The method has alreadybeenshown to work well in
the caseof the two-dimensionalnon-linear u-model. In the presentpaper it is
appliedto the pureSU(2) gaugetheory, the simplestasymptoticallyfree theory in
four dimensions.As a result we shallbe ableto computethe running coupling(in a
certain adaptedscheme[31)overa large rangeof momenta,q, reachingenergies
far abovethe scaleset by the stringtension.

Otherstrategiesto computethe running coupling in non-abeliangaugetheories
haverecently beenput forward by El-Khadra et al. [4] and Michael [5]. In both
casesone considersa single lattice which covers all relevantdistancescales,and
one is, therefore,limited to ratherlow momentaq. In ref. [5], for example, the
coupling is determinedfrom the static quark potential at short distances.The
largest lattice currently available has 56 x 48~points and a spacing a roughly
equalto 0.03 fm [21]. The distancesat which the coupling canbe calculatedwith
some confidenceare thus greaterthan 0.1 fm or so, a limitation which will be
difficult to alleviate.

2. Finite-sizetechnology

The finite-size scalingtechniqueof ref. [2] is basedon a renormalizedcoupling

cr(q)= , q=1/L, (2.1)

which runs with the linear extent L of the lattice. As proposedin ref. [3], we
define ,~2(L)through the responseof the systemto a constantcolour-electric
backgroundfield. For detailedexplanationsthe readeris referred to refs. [2,3].
Herewe only list the basicdefinitionsandoutline our strategy.
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2.1. BOUNDARY CONDITIONS AND FUNCTIONAL INTEGRAL

We chooseto set up the theoryon a hyper-cubiceuclideanlattice with spacing

a andsize L x L X L X L. In particular,the possiblevaluesof the time coordinate
x°of a lattice point x arex°= 0, a,2a,. . ., L (L is takento be anintegermultiple

of a). The spatialsublatticesat fixed times are thoughtto be wrappedon a torus,
i.e. we assumeperiodicboundaryconditionsin thesedirections.

A gaugefield U on the lattice is an assignmentof a matrix U(x, ~ E SU(2) to

every pair (x, x + a~%)of nearestneighborlattice points(~2denotesthe unit vector
in the~.t-directionand jx = 0, 1, 2, 3). At the top andbottomof the lattice, the link
variablesare required to satisfy inhomogenousDirichlet boundaryconditions,

U(x, k) x°=-()= W(x, k), U(x, k) x°=-L = W’(x, k), (2.2)

for all k = 1, 2, 3, whereW and W’ areprescribedspatial gaugefields. They will
be set to some particularvaluesbelow.

The action of a lattice gaugefield U is takento be

1
S[U] = —~ Ew(p) tr(II1 — U(p)}, (2.3)

g0 ~

with g0 being the bare coupling. The sum in eq. (2.3) runs over all oriented
plaquettesp on the lattice and U(p) denotesthe parallel transporteraroundp.
The weight w(p) is equal to 1 in all casesexcept for the spatial plaquettesat
x
0 = 0 and x°= L which aregiven theweight -~.

The partition function of the system,

3~=fD[U] e~[L~], D[U] = fldU(x, p.), (2.4)

involvesan integrationover all fields U with fixed boundaryvaluesW and W’. .2~
is also referredto as the Schrödingerfunctional, becauseit is just the (euclidean)

propagationkernel for going from the initial field configurationW at time x°= 0
to the final configurationW’ at x°= L.

2.2. BACKGROUND FIELD

At small couplingsg
0, the integral (2.4) is dominatedby the field configurations

with leastaction. In the casesconsideredbelow,thereis only onesuch configura-
tion (modulo gaugetransformations).Through the boundaryconditions,we have
thusforceda backgroundfield into the system.

As indicatedat the beginningof this section,we are interestedin generatinga
constantcolour-electric backgroundfield. This can be achievedby choosingthe
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boundaryvalues W and W’ to be constantdiagonalmatrices.More precisely,we
set

W(x,k)=exp{aCk}, Ck=7J~, (2.5)

W’(x, k) =exp{aC~}, C~=~ (2.6)

where i~is a realparameter,to be fixed later, and i-~ the third Pauli matrix. The
inducedbackgroundfield is then given by

V(x, p.) = exp{aB~(x)}, (2.7)

with

B0=0, Bk= [x0ck~+(L_x0)ckI/L. (2.8)

As shown in ref. [3], this is indeed a configuration with least action for the

specifiedboundaryvalues,provided

0<77<~ and L/a~4. (2.9)

From the linear time dependenceof B, it is evident that V correspondsto a
constantcolour-electricfield.

2.3. DEFINITION OF ~
2(L)

The effective action of the backgroundfield (2.7) is definedby

F= —ln .2~. (2.10)

To leadingorder in perturbationtheory, F is simply equalto the classicalaction

6 2L2 a2 2

S[V] = ~{~sin ~(~-2~) }, (2.11)

andthe higher-ordercorrectionsmaybe workedout by expandingthe Schrödinger
functionalaboutthe backgroundfield.

A crucial observationnow is that the continuumlimit of the effective action
exists,providedthe barecoupling is renormalizedin the usualway. As discussedin
ref. [3], this follows from powercountingandgaugeinvariance.The statementhas,
furthermore,beencheckedexplicitly to one-looporder.
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We are thusled to define a renormalizedcoupling g2(L) through

3F k
—= (2.12)
lI~ g~(L)

wherethe proportionalityconstantk is adjustedsuchthat ~2(L) is equal to g~to
lowest order.From eq.(2.11) we deduce

L2 a2
k = —24---~-sin—~(~ — 2s~). (2.13)

a L

A derivativewith respectto ~ is taken,becauseexpectationvaluesare much easier
to computethanpartition functions(cf. sect. 3).

To completethe definition of ~2(L) we must finally pick some value for the
backgroundfield parameters~.We decidedto take

(2.14)

which is half-waybetweenthe zeroaction point ~ = ir/2 andthe boundaryof the
stability interval (2.9).

2.4. RELATION TO OTHER SCHEMES

In the continuumlimit, and at sufficiently high energies(small L), perturbation
theory may be used to relate different running couplings. In particular, the
connectionbetween the MS schemeof dimensional regularization[6] and our
finite volume schemeis [3]

ct~=a+k
1a

2+..., k
1=0.94327(5) (2.15)

[cf. eq.(2.1); bothcouplingsare at the samemomentumq].
Anothercoupling in infinite volume, ctqq(q), is definedby

aqq(q)=~r
2F(r), q=l/r, (2.16)

where F(r) denotesthe force betweenstatic quarksat distancer. Combining the
expansionabovewith the one-loopresultsof refs. [7,8], onefinds

aq_q=cr+htct2+ ..., h
1=0.99802(5), (2.17)

i.e. to this order, thereis practicallyno differencebetweenaqq and a~-ç.
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2.5. LOW-ENERGY REGIME

When L is greaterthan the confinementscale,the behaviourof the running
coupling is determinedby non-perturbativeeffects. An importantobservationat
this point is that the boundaryfields W and W’ are locally puregaugeconfigura-
tions. Any dependenceof the effectiveaction F on the backgroundfield parame-
ter s~is henceassociatedwith correlations“around the world”. Since theseare
exponentiallysuppressedin a massive theory, we concludethat ~2(L) a e~’at
largeL.

The massp. occurringhereis characteristicfor the dynamicsof thegaugefields
close to the boundariesof the lattice. In particular, its relation to the bulk
correlationlength is not obvious. To makecontactwith the physicalscales,some
extrawork will thereforebe needed(cf. sect.4).

As a referenceenergyscalein infinite volume, we shall take the string tension
K which is definedby

K= lim F(r). (2.18)

Thereis no fundamentalreasonfor choosingthis particularquantity. Alternatives
would be the energy splitting between the 1P and iS (quenched)charmonium
levels [4], or the distancer at which r2F(r) = 5, for example.(The force between

physical heavyquarksis known to be approximatelyequalto 1 GeV/fm at r = 1
fm so that r2F(r) = 5 at this point.)

2.6. RENORMALIZATION GROUP *

We again assumethat the continuum limit has been taken and define the
Callan—Symanzikp-functionthrough

= —L~. (2.19)

From eq.(2.15) andthe known perturbationexpansionof the /3-function in the MS

scheme,we infer that

13(g) ‘~ —g3 ~ b~gTh (2.20)
g—~O n=0

with [9—12]

b
0=~(8~2)t, b1 =*(8ir2)_

2. (2.21)

* Our notation here is slightly different from theone employed in ref. [2]. The reasonfor this is that

the conventionalnormalizationof the A-parameteris unfortunatelynot the same in gaugetheories
and two-dimensionalnon-lineara--models.
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The 3-loop coefficient b2 dependson our choice of running coupling and is

presentlynot available.
When integratedtowards short distances, eq. (2.19) yields the asymptotic

expression

1 b1lnt
~2( L) = — b~Ot

2 + O(t3(ln t)2), t = — ln( AL)2, (2.22)

where A is an integrationconstant,the A-parameter.

In the following a key role is playedby thestepscalingfunction u(s, u). For any
given scalefactor s and initial value u =~2(L),the coupling u’ =~2(sL)may be
computedby integratingthe renormalizationgroupequation(2.19)(assumingthe

/3-function is known). u’ is a well-determinedfunction of s andu, and so we may
define

u(s,u)=u’. (2.23)

In otherwords, the step scalingfunction is an integratedform of the 13-function,
which tellsuswhathappensto the couplingif thebox size is changedby a factor s.

It is possibleto calculatethe stepscalingfunction through numericalsimulation
of the lattice theory. To this endonechoosessomevaluefor the barecoupling g~
andsimulatestwo latticeswith sizeL and L’ =sL. The coupling u’ =.~2(L’)then

providesan approximationto o-(s, u) at u = ~2(L).
To understandhow good the approximationis, we first note that for all lattice

spacingsa functionaldependence

u’=.~(s,u,a/L) (2.24)

exists,which is obtainedby eliminating g~in favour of u. From the discussionof
the cutoff dependenceof the effective action in ref. [3], we expect that .~(s, u,
a/L) convergesto o-(s, u) in the continuum limit a —s 0 with a rate roughly
proportionalto a/L.

A morequantitativeimpressionon the sizeof thecutoff effectsmaybe obtained
in perturbationtheory. In particular,the relativedeviation

u, a/L) —u(2, u)
~(u, a/L) = ____________________ = 5

1(a/L)u+ ~2(a/L)u
2 + ..., (2.25)

o-(2, u)

TABLE 1
One-loopcoefficient 8

1(a/L) in the expansion(2.25)

L/a - — L/a

6 0.00623 12 - 0.00396
8 0.00540 14 0.00347

10 0.00459 16 0.00309
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turns out to be quite small at one-looporder (see table 1). It will neverthelessbe
necessaryto extrapolatethenumericaldatato the continuumlimit by simulatinga
sequenceof lattice pairswith decreasinglattice spacings(andfixed coupling u).

2.7. STRATEGY

Our principal aim is to compute~2(L) for a rangeof box sizes L connecting
the low-energy domain with the perturbativescaling region. This is achievedby
settingup a recursion

u~~
1=o-(s1, u,), i=0,1,2,..., (2.26)

starting from some initial value U0 of the running coupling. By constructionwe
have

i—I

u~=~
2(L~), L~=L

0fls~, (2.27)
j=0

for some box size L0. Our choice of initial value U0 and scalefactors s, will be
such that the recursion progressesfrom the perturbativesmall coupling regime
towardslargerbox sizes.

Of coursethe statisticalandextrapolationerrors limit the numberof iterations
that can be done in practice. A careful discussionof the error propagationis
certainlynecessary,andwe shall comeback to this issuewhenwe analyseour data
in sect. 4.

After a certain numbern of iterations,dependingon the initial value U0, the
final box size L,, will be close to or even larger than the scaleset by the string
tensionK. At this point it is possibleto determinethe dimensionlesscombination
~ As a result onehas calculatedthe running coupling at all L~given in units

of the stringtension.
At the lower end of the rangeof L covered,where the coupling is small, we

mayfinally apply perturbationtheory to determinethe valueof any othercoupling
such as or aqq (cf. subsect.2.4). Note that all referenceto a finite volume
dropsout in this laststep.Onesimply getsa~ at somelargemomentaq1 givenin
units of the stringtension.

3. Numerical simulation

For fixed boundaryvaluesW and W’, the systemdefinedthroughthe partition
function (2.4) can be simulatedby adaptingany one of the known Monte Carlo
algorithmsfor pure gaugetheorieson periodic lattices.The simulationsthat we



M Lüscherci a!. / Computationof running coup!ing 255

haveperformedare heredescribedin some detail and a completelist of our data

on the running coupling is given.Thesewill be further analysedin sect. 4.

3.1. OBSERVABLES

From the definition (2.12)of the running coupling it follows that

g2(L)=k(aS/a~y’. (3.1)

The field variables integrated over do not depend on the background field
parameter i~and so only the plaquettestouching the boundarycontribute to
aS/ai

7.The observablewe shall be concernedwith in the following is thusgiven by

2a
3 ~

— = —---i--— ~ {E
1’(x) +E,(x)}, (3.2)

g0L

where EJ and E, denotethe ‘r3 componentof the colour-electricfield at the top
andbottom of the lattice. In particular,

1 —1
E1(x) = ----~tr{T3W(x,l)U(x+al, 0)U(x+aO, 1) U(x, 0) }(‘ (3.3)

and a similarexpressionis obtainedfor Ef.
It is conceivablethat other observablesexist which havethe sameexpectation

value as 0S/3i~but a significantly smaller variance. We were, however, not

successfulin our searchfor such an “improved” observable.In particular, the
so-calledmulti-hit method[13], whenappliedto the dynamicallink variablesin eq.
(3.3), did not resultin any appreciableincreasein efficiency. The datalisted below
havethusbeengeneratedtaking aS/3s~as the observable.

3.2. MONTE CARLO ALGORITHM

The mostefficient simulation algorithmsfor puregaugetheoriesknown today
involve the ideaof over-relaxationin oneform or the other [14—16].Our algorithm
is a hybrid one,with N exactlymicrocanonicalsweepsthroughthe lattice followed
by 1 heatbathupdatepass.Geometricallythe programis organizedin time slices
which are visited sequentially.At any given time, the lattice is divided into 2 or 4
sublattices,dependingon whetherL/a is evenor odd. This is donein such a way
that the link variablesin a fixed sublatticearedecoupledandso canbe updatedin
a vectormode.

For the heatbathpart of the cycle, a modified Creutz algorithm [171 was
implemented.The local heatbathSU(2) measurecannotbe generatedexactlybut



256 M. LOscherci a!. / Computationof running coupling

10

5

T

5,

2

I I I I I

6 8 10 12 14 16 18 20
L/a

Fig. 1. Integrated autocorrelationtimes r for the observableaS/hij, given in numbersof update
sweepsthroughthe lattice (countingoverrelaxationandheatbathsweeps).

requiresan accept/rejectstep. The observedacceptancerate increasestowards
smallercouplingsandwasalwaysgreaterthan90%.

TheparameterN generallyhasto grow as oneapproachesthe continuumlimit.
In various modelsa tuning roughly inverselyproportional to the lattice spacing

provesto be optimal[18,19].Someof the integratedautocorrelationtimesachieved
in this way are shown in fig. 1. All points refer to approximately the same
renormalizedcoupling ~2(L) 3.7, i.e. the measurementsaremadeat “constant
physics”.At largeL/a the autocorrelationtime is proportionalto (L/a)z (dashed
line). The fit gives z = 1.0(1) for the dynamicalcritical exponent,which coincides
with the expectedbest valuefor over-relaxedalgorithms.

3.3. SIMULATION RESULTS

As explainedin subsect.2.6, the stepscalingfunction u(s, u) maybe computed
by simulatingpairs of latticesat the samebarecoupling with sizesL and L’ = sL.
In our calculationswe chose s = 2 throughoutand producedenough data to be
able to perform 4 renormalizationsteps in succession(see table 2). We have,
furthermore, done an additional set of simulations at a fixed large value of the
renormalizedcoupling (table3). Thesedatawill be usedin sect.4 to makecontact
with the low-energyscalesof the theory.

In eachblock of datalisted in table2, the renormalizedcouplingon the smaller
lattices is constantwithin errors, i.e. the bare coupling has beentuned so as to
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TABLE 2
Pairsof runningcouplingsat fixed barecoupling ~3= 4/g~

13 L/a 4
2(L) k2(2L)

3.4564 5 - 2.0371(32) 2.413(15)
3.5408 6 2.0369(52) 2.418(16)
3.6045 7 2.0370(55) 2.397(19)
3.6566 8 2.0370(63) 2.44707)
3.7425 10 2.0369(83) 2.426(22)

3.1898 5 2.3800(43) 2.981(23)
3.2751 6 2.3801(67) 2.942(21)
3.3428 7 2.3799(67) 2.968(26)
3.4009 8 2.3801(79) 2.954(23)
3.5000 10 2.38001) 2.870(30)

2.9568 5 2.8401(56) 3.783(33)
3.0379 6 2.8401(91) 3.731(35)
3.0961 7 2.84000) 3.709(31)
3.1564 8 2.84001) 3.663(34)
3.2433 10 2.84106) 3.69503)

2.7124 5 3.550(10) 5.456(40)
2.7938 6 3.55004) 5.287(43)
2.8598 7 3.550(15) 5.310(58)
2.9115 8 3.55006) 5.168(38)
3.0071 10 3.550(23) 5.122(58)

achievethis. A reweightingtechniquewas employedin this step,as discussedin
subsect.4.1 of ref. [2].

The statistical errors were estimatedboth by jackknife binning (using several
100 bins) and,when no reweightingwas required,by summingthe autocorrelation
function overan appropriatetime interval. In the first threeseriesof table2 about
35 hours of CPU time were spent for the lattices with L’/a ‘© 14, 60 hours for
L’/a = 16 and 140 hours for the largestsystemwith L’/a = 20. All times were

roughlydoubledin the lastseries(where~2(L) = 3.55). The typical speedachieved
by our programis 210 Mflop/s. Speed and CPU times refer to a single CRAY
YMP processor.

TABLE 3
Barecouplingvs. latticesizeat fixed ±2(L)= 4.765

L/a 13 L/a 13
6 2.5752(28) 10 2.7824(22)
7 2.6376(20) 12 2.8485(32)
8 2.6957(21) 14 2.9102(62)
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4. Data analysisand results

We now follow the strategysketchedin subsect.2.7 and determinethe running
coupling in the continuumtheoryfor a rangeof box sizesL given in physical units.

4.1. STEPSCALING FUNCTION

The simulationresultslisted aboveallow us to computethe stepscalingfunction
o-(2, u) at 4 valuesof u. This involves an extrapolationof the lattice datato the
continuumlimit a/L —~0 (see fig. 2). The cutoff effectsthat we observearequite
small and linearly decreasingwith the lattice spacing. This is the theoretically
expectedbehaviour.At the lower valuesof the coupling, the size of the effect is
compatiblewith what onepredictsfrom perturbationtheory (cf. subsect.2.6). For
a detailedcomparisona higherstatisticalprecisionwould howeverbe required.

To perform the extrapolationto the continuumlimit, the error on the argument
u hasbeen tradedfor an additional error on ~, using an approximatevalue for
ci~/du. A straightforwardlinear fit then yields the values and errors quoted in

6.00 I I

u=3.550
5.50

5.00

4.50 -

E(2,u, alL)

4.00 u=2.840

3.50

u=2. 3803.00

u=2.037
2.50 - .

2.00 I I I

0.00 0.05 0.10 0.15 0.20 0.25
a/b

Fig. 2. Extrapolationof the lattice step scaling function �(2, u, a/L) to the Continuum limit. The
left-mostpointsrepresenttheextrapolatedvaluesasgiven in table4.
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TABLE 4
Valuesof the stepscalingfunction

u a-(2, u) a-(2, u)
2100~

2.037 2.45(4) 2.38
2.380 2.84(6) 2.86
2.840 3.54(8) 3.58
3.550 4.7602) 4.83

table 4. Thesecanbe comparedwith what oneobtainsby integratingthe renormal-
ization groupequation(2.19), taking u as the initial value andthe 2-loop formula
for the Callan—Symanzik13-function (third column in table 4). The agreementis
perfect, except for a 2u deviation at the lowest value of U. In a set of 4

independentmeasurements,this is not an unlikely event, however.
We shall soondiscoverthat the couplingsoccurring in table 4 correspondto a

rangeof box sizes L from about0.023 fm to 0.33 fm. It is thus rathersurprising
that the step scalingfunction is so accuratelyreproducedby perturbationtheory.

4.2. RUNNING COUPLING

Forthe error analysisit provesuseful to set up the recursion(2.26) in a logically

reversedmanner,where one first specifiesthe sequenceof couplings u~,i = 0,
1,..., andthencomputesthe associatedscalefactors5,. The couplingsaredefined

by

U0
2.037, u

1 =o-(2, U0),

U2 = 2.380, u3 = u(2, u2),

114=2.840, U5=u(2, U4),

U6~’=
3.5SO, U

7=u(2, U6),

U5
4.765. (4.1)

U~,112, u
4 and U6 coincidewith the numberslisted in the first column of table 4.

To the precisionstated,u1, 113, II~ and 117 are thusgiven by the secondcolumn in

this table.
By definition, the scalefactors s, (asdeterminedthrougheq. (2.26)) are exactly

equalto 2 for i = 0, 2, 4 and6. In all othercases,s, is a numbercloseto 1, which
may be computedby evolving the coupling from u~ to U1~1using the 2-loop
formula for the /3-function. Since the step scalingfunction is well reproducedby
perturbationtheory, we estimatethat the systematicerrors incurring at this point
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TABLE 5
Runningcoupling at scalesgivenin unitsof L

8

______ L/L8 ______________________ _____

1.000 4.765
0.500(23) 3.550
0.249(19) 2.840
0.124(13) 2.380
0.070(8) 2.037

arenegligiblecomparedto the statisticalerrorsin table4 (which translateto errors
on s1, S3~s5 and s7).

The box sizesL, at which ~
2(L~) = Ut can now be computedstraightforwardly

through eq.(2.27). The result is given in table 5 andwill be discussedbelow,after
convertingto more physical units. In this computationthe errors on the scale
factors s, havebeenaddedin quadrature,becausethey arise from independent

simulations.

4.3. PHYSICAL SCALES AND COMPUTATION OF csgf~(q)

At the largestcoupling in the recursion(4.1), it is possibleto makecontactwith
the low-energyscalesof the theory in infinite volume. As alreadymentionedin
sect.2, we decidedto takethe string tensionK as a referenceenergyscalein this
regime. K has been determinedon large lattices at /3 = 2.70 [20] and more
recently at /3 = 2.85 [211(secondcolumn of table 6; the errors quoted thereare

statisticalonly) ~.

To determinethe dimensionlesscombinationL
8~

1k,we also needL
5 in lattice

units at the samevaluesof the bare coupling. This information can be extracted
easily by interpolating the data listed in table 3 (see fig. 3). The outcomeof the
calculationis given in the third andfourth columnsof table 6.

The differencesbetweenthe valuesof L8Vk obtainedat /3 = 2.70 and /3 = 2.85
can tentatively be interpretedas a cutoff effect. In principle, L5~/kshould be
extrapolatedto the continuumlimit in the sameway as the step scalingfunction.
We, however,are hesitatingto do this, becausewe haveonly two datapoints and
since it is not certain that the observedvariation of L5~/kis a pure cutoff effect.
In particular,systematicerrorson the stringtensionvaluesquotedin table6 of the
order of 5—10% cannotbe excludedat present[22].

In the following we take L8fk = 0.713andkeepin mind that the total error on

this numbercouldbe as largeas 10%. If we set 1k = 425 MeV to convert to more

* Thenumberspublishedin refs.[20,21] are actuallyhigher by a factor of 1.09 and 1.24, respectively.

The string tension hasmeanwhilebeen reevaluated,the resultsbeing asgiven here. We thank C.
Michael andthe UKQCD collaborationfor communicatingtheserevisionsto us.
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TABLE 6
Values of thestring tensionand thebox sizeL

8

13 a
2K L

5/a

2.70 0.0103(2) 8.08(4) 0.820(9)
2.85 0.00354(26) 11.98(7) 0.713(26)

physical units,we then deducethat L8 = 0.33 fm. The lower end of the rangeof
box sizescoveredby table5 is henceroughly equalto 0.023 fm.

As shown in fig. 4 the evolution of the running coupling a(q) is well described
by perturbationtheory, down to very low energies.The error barsin this plot only
representthe statistical errors as given in table 5, but not the overall scale
uncertaintydiscussedabove.It shouldbe emphasizedthat the latter amountsto a
multiplication of the energyscaleby a constantfactor and so has no bearingon

the scalingpropertiesof the coupling.
At the highestenergiesreached,we can finally convert to the MS schemeof

dimensionalregularizationusingperturbationtheory. A typical result is

a1~g(q)= 0.187±0.005±0.009 at q = 20 x 1k. (4.2)

The first error here is statistical, as inferred from table 5, while the secondis an

estimateof the total systematicerror arising from a possibleorder a
3 correctionin

eq.(2.15) and the 10% scaleuncertaintymentionedabove.

3.10 I

3.00 - . - -

2 90

/~
2.80 - ,~--‘~ - - .- - -

2.70 - -.-~--- - -

2.60 ~--~ -

2.50 I I J I I. I

6 7 8 9 10 12 14 16 18 20
L/a

Fig. 3. Bare coupling 13 = 4/g~versuslattice size at fixed k2(L)= 4.765. The dashedcurve is a fit,
13 = 1.905 +0.380 ln(L /a), to thedatapointswith L /a ~ 8.
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4.4. RELATION BETWEEN THE BARE AND THE RENORMALIZED COUPLING

Let usconsidera largelattice,with barecoupling g~deepin the scalingregion,

and let usassumethat the lattice spacinga is known in units of some low-energy
scale. In the continuum theory, the running coupling ~2(a) then is a well-de-
termined quantity, which may be related to the lattice coupling through an
asymptoticseries,

(4.3)

with purely numericalcoefficients.At presentthe i-loop coefficient is known [3],

c
1=0.20235, (4.4)

and an effort is being made to extend the calculation to the next order [28].
Whether the expansionapplies in the accessiblerange of bare couplings (at
/3 = 2.85 for example)is not known, however,and one may in fact haveserious
doubtsthat it does,becausethe first order correctionis uncomfortablylarge.

Otherrenormalizedcouplingsfare no betterin this respectandoneis thusled
to suspectthat g~is a “bad” expansionparameter[23—261.On thebasisof a mean
field argument,Parisi [23] suggestedmanyyearsago that

~=g~/P, P= -~KtrU(p)), (4.5)

0.40 I, I II I I I I I I

0.35

0.30

a

0.25

0 20

-------.+

0.15

0.10 I I I I II I I I I I I I

0.3 1 5 10
q[GeV]

Fig. 4. Comparison of numerically computedvalues of the running coupling (data points) with
perturbationtheory.Thedashed(dotted)curve is obtainedby integratingtheevolutionequation(2.19),

startingat theright-mostpoint andusingthe 2-loop(1-loop)formula for the13-function.
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would be a more natural choice of bare parameterfor the lattice theory. The
plaquetteexpectationvalue P is to be computedon an infinite lattice.At /3 = 2.70
and /3 = 2.85, it is equal to 0.68558and 0.70577,respectively[27]. In termsof ~,

eq. (4.3) becomes

(4.6)

with

= c
1 — -~ = 0.01485. (4.7)

The correspondingexpansionof the renormalizedcoupling in the MS schemeof
dimensionalregularizationplays a key role in the work of El-Khadraet al. [4] and
is further discussedin ref. [26].

While the i-loop coefficient E~is much smallerthan c1, it is not guaranteedthat
the higher-ordercorrectionsaresmall andso it remainsunclearwhetherthe series
(4.6) yields a reliable estimatefor the renormalizedcoupling. Using the results

obtainedabovewe are now in a position to answerthis question.At /3 = 2.85, for
example,the lattice spacing in units of L8 is equal to 0.0835(5),which is in the
rangecoveredby table 5. For the running coupling, the value ~

2(a) = 2.11(5) is
thusobtained.This is to be comparedwith the r.h.s.of eq.(4.6),which evaluatesto
~2(a) = 2.05 at i-loop order. So we do confirm that the higher-ordercorrections

aresmall andthusconcludethat ~ is a good expansionparameterat the scaleof
the cutoff.

5. Conclusions

Lattice gaugetheorieshavebeeninventedto studythe propertiesof Yang—Mills
theoriesand QCD at low energies.It provedto be difficult, however, to make
contactwith the perturbativeregime,where weakly interactingquarksand gluons
are the importantdegreesof freedom.The obstacleis that onecannoteasily hold a
wide rangeof physical scaleson a single lattice, at least as long as numerical
simulationsare the only practicalway to do non-perturbativecomputationsin the

scalingregion.
Usinga recursivefinite-sizetechnique,we havenow beenableto close this gap

in the caseof the pure SU(2) gaugetheory. We found that the evolution of the
renormalizedcoupling in the chosenschemeis well describedby perturbation
theoryover the whole rangeof energiescovered(cf. fig. 4).This is a bit surprising,
but it shouldbe notedthat thecoupling is definedthrough an off-shell amplitude
andso is insensitiveto thresholdeffects. In any case,our result provesthat thereis
no complicated“intermediate” energyrange before the coupling becomessmall
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andslowly decreasingaccordingto the perturbativerenormalizationgroup. In this
respectthe situation is as in the two-dimensionalnon-linearu-model[2].

Ourmethodallows us to computethe running couplingin say the MSschemeof
dimensionalregularizationat energiesfar abovethe massesof the light particlesin
the theory. An exampleof sucha result is givenin eq.(4.2). It is certainlypossible
to achievea higherprecisionin this calculation.Comparedto the powerof present
day parallel computers,we have used an only small amount of CPU time. A

refinedstudy,with morestatisticsandan 0(a) improvedaction [3], is henceclearly
feasible.It is thenalso necessaryto extendthe series(2.15) to the 2-loop level [28]
to keepthe balancebetweensystematicandstatisticalerrors.

We finally note that an extensionof our work to the SU(3) Yang—Mills theory
shouldnot meetanyfundamentaldifficulty. QCD requiresmorethought,however,
becausethe scaledependenceof the quarkmassesmustbe takeninto account.

We are indebtedto F. Gutbrodfor discussionsandA. Kronfeld andC. Michael
for correspondence.The computationshavebeenperformedon the CRAY com-
putersat HLRZ andCERN. We thank theseinstitutionsfor their support.
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