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A finite-size scaling technique is applied to the SU(2) gauge theory (without matter fields) to
compute a non-perturbatively defined running coupling a(q) for a range of momenta g given in
units of the string tension K. We find that already at rather low g, the evolution of a(g) is well
described by the 2-loop approximation to the Callan-Symanzik B-function. At the highest
momentum reached, g = 20X \/I?, we obtain agr(q)=0.187+0.005+0.009 for the running
coupling in the MS scheme of dimensional regularization.

1. Introduction

From the point of view of perturbation theory, the renormalized coupling a(q)
in QCD is an input parameter, whose value at some reference momentum g = q,
must be supplied by experiment. There is little doubt that QCD is a well-defined
theory also at low energies, where the perturbation expansion does not apply. We
may thus imagine that the parameters of the theory are fixed through the hadron
spectrum, for example, or some other set of experimentally accessible quantities in
the low-energy domain. The running coupling then becomes a computable function
of momentum, in any renormalization scheme that one may choose.

A theoretical determination of a(q) at high energies is obviously desirable. In
particular, one would be interested to know at which scale the perturbative
evolution of the coupling sets in. Since one is concerned with the non-perturbative
properties of QCD, the lattice formulation of the theory, combined with numerical
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simulation techniques, is currently the most promising way to approach the
problem [1-3]. The basic difficulty in any such calculation is that the momenta q
of interest can be orders of magnitude greater than the masses of the light
particles in the theory. Lattices sufficiently wide to avoid finite-volume effects and
with a spacing a substantially smaller than 1/g thus tend to be much larger than
what can be simulated on a computer.

Many years ago Wilson pointed out that this difficulty may be overcome, in
principle, by introducing a renormalization group transformation which allows one
to step up the energy scale in a recursive manner [1]. No simulation of an
exceedingly large lattice would then be required, while all physical scales are kept
at a safe distance from the ultra-violet cutoff 1/a.

The finite-size scaling technique described in ref. [2] may be regarded as a
particular realization of this basic idea, even though the details are quite different
from Wilson’s formulation. The method has already been shown to work well in
the case of the two-dimensional non-linear o-model. In the present paper it is
applied to the pure SU(2) gauge theory, the simplest asymptotically free theory in
four dimensions. As a result we shall be able to compute the running coupling (in a
certain adapted scheme [3]) over a large range of momenta, g, reaching energies
far above the scale set by the string tension.

Other strategies to compute the running coupling in non-abelian gauge theories
have recently been put forward by El-Khadra et al. [4] and Michael [5]. In both
cases one considers a single lattice which covers all relevant distance scales, and
one is, therefore, limited to rather low momenta g. In ref. [5], for example, the
coupling is determined from the static quark potential at short distances. The
largest lattice currently available has 56 X 48 points and a spacing a roughly
equal to 0.03 fm [21]. The distances at which the coupling can be calculated with
some confidence are thus greater than 0.1 fm or so, a limitation which will be
difficult to alleviate.

2. Finite-size technology

The finite-size scaling technique of ref. [2] is based on a renormalized coupling

g*(L)
4

a(q) = q=1/L, (2.1)

which runs with the linear extent L of the lattice. As proposed in ref. [3], we
define g%(L) through the response of the system to a constant colour-electric
background field. For detailed explanations the reader is referred to refs. [2,3].
Here we only list the basic definitions and outline our strategy.
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2.1. BOUNDARY CONDITIONS AND FUNCTIONAL INTEGRAL

We choose to set up the theory on a hyper-cubic euclidean lattice with spacing
a and size L X L X L X L. In particular, the possible values of the time coordinate
x? of a lattice point x are x°=0, a, 2a,..., L (L is taken to be an integer multiple
of a). The spatial sublattices at fixed times are thought to be wrapped on a torus,
i.e. we assume periodic boundary conditions in these directions.

A gauge field U on the lattice is an assignment of a matrix U(x, u) € SU(2) to
every pair (x, x + afi) of nearest neighbor lattice points (4 denotes the unit vector
in the p-direction and p =0, 1, 2, 3). At the top and bottom of the lattice, the link
variables are required to satisfy inhomogenous Dirichlet boundary conditions,

U(x, k)| woo=W(x, k), U(x, k)l oop=W'(x, k), (2.2)

for all k=1, 2, 3, where W and W' are prescribed spatial gauge fields. They will
be set to some particular values below.
The action of a lattice gauge field U is taken to be

1
S[U]=?ZW(17) tr{ 1 —U(p)}, (2.3)

0 p

with g, being the bare coupling. The sum in eq. (2.3) runs over all oriented
plaquettes p on the lattice and U(p) denotes the parallel transporter around p.
The weight w(p) is equal to 1 in all cases except for the spatial plaquettes at
x%=0 and x°= L which are given the weight 1.

The partition function of the system,

z=[D[U]e ¥, D[U]=TTdU(x, ), (2.4)

involves an integration over all fields U with fixed boundary values W and W', &
is also referred to as the Schrodinger functional, because it is just the (euclidean)
propagation kernel for going from the initial field configuration W at time x° =0
to the final configuration W' at x%= L.

2.2. BACKGROUND FIELD

At small couplings g, the integral (2.4) is dominated by the field configurations
with least action. In the cases considered below, there is only one such configura-
tion (modulo gauge transformations). Through the boundary conditions, we have
thus forced a background field into the system.

As indicated at the beginning of this section, we are interested in generating a
constant colour-electric background field. This can be achieved by choosing the



250 M. Liischer et al. / Computation of running coupling

boundary values W and W' to be constant diagonal matrices. More precisely, we
set

;
W(x, k) =exp{aCy}, Co=m, (2.5)
4
.
W'(x, k) = exp{aC}}, c,;:w—mi, (2.6)

where 7 is a real parameter, to be fixed later, and 7, the third Pauli matrix. The
induced background field is then given by

Vix, p)= exp{aBM(x)}, 2.7
with
B,=0, B,=[x"Ci+(L-x"C]/L. (2.8)

As shown in ref. [3], this is indeed a configuration with least action for the
specified boundary values, provided

0<n<wm and L/a>4. (2.9)

From the linear time dependence of B, it is evident that V' corresponds to a
constant colour-electric field.

2.3. DEFINITION OF g2(L)
The effective action of the background field (2.7) is defined by
I'=-In 2z, (2.10)
To leading order in perturbation theory, I' is simply equal to the classical action

6 (21>
S[V]=? —a-z—Sln

0

a’ :
2—L2(7T—277)]} , (2.11)

and the higher-order corrections may be worked out by expanding the Schrédinger
functional about the background field.

A crucial observation now is that the continuum limit of the effective action
exists, provided the bare coupling is renormalized in the usual way. As discussed in
ref. [3], this follows from power counting and gauge invariance. The statement has,
furthermore, been checked explicitly to one-loop order.
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We are thus led to define a renormalized coupling z?(L) through

or k

i " (L) (2.12)

where the proportionality constant & is adjusted such that g*(L) is equal to g2 to
lowest order. From eq. (2.11) we deduce

1?2 a’
k= —24?sin[P(w—2n)}. (213)

A derivative with respect to 7 is taken, because expectation values are much easier
to compute than partition functions (cf. sect. 3).

To complete the definition of g2(L) we must finally pick some value for the
background field parameter n. We decided to take

n=1m/4, (2.14)

which is half-way between the zero action point =7 /2 and the boundary of the
stability interval (2.9).

2.4. RELATION TO OTHER SCHEMES

In the continuum limit, and at sufficiently high energies (small L), perturbation
theory may be used to relate different running couplings. In particular, the
connection between the MS scheme of dimensional regularization {6] and our
finite volume scheme is [3]

ays=a +ka’*+ ..., k, =0.94327(5) (2.15)

[cf. eq. (2.1); both couplings are at the same momentum q].
Another coupling in infinite volume, a(q), is defined by

ag(q) =3r’F(r), q=1/r, (2.16)

where F(r) denotes the force between static quarks at distance r. Combining the
expansion above with the one-loop results of refs. [7,8], one finds

ag=a+ha®+..., h =099802(5), (2.17)

Le. to this order, there is practically no difference between a; and ayg.
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2.5. LOW-ENERGY REGIME

When L is greater than the confinement scale, the behaviour of the running
coupling is determined by non-perturbative effects. An important observation at
this point is that the boundary fields W and W' are locally pure gauge configura-
tions. Any dependence of the effective action I' on the background field parame-
ter n is hence associated with correlations “around the world”. Since these are
exponentially suppressed in a massive theory, we conclude that g2(L)a e’ at
large L.

The mass u occurring here is characteristic for the dynamics of the gauge fields
close to the boundaries of the lattice. In particular, its relation to the bulk
correlation length is not obvious. To make contact with the physical scales, some
extra work will therefore be needed (cf. sect. 4).

As a reference energy scale in infinite volume, we shall take the string tension
K which is defined by

K= lim F(r). (2.18)
Fo o
There is no fundamental reason for choosing this particular quantity. Alternatives
would be the energy splitting between the 1P and 1S (quenched) charmonium
levels [4], or the distance r at which r2F(r) =5, for example. (The force between
physical heavy quarks is known to be approximately equal to 1 GeV /fm at r=1
fm so that #2F(r) =5 at this point.)

2.6. RENORMALIZATION GROUP *

We again assume that the continuum limit has been taken and define the
Callan-Symanzik B-function through
2 L i 2.19
B(8)= ~Lo. (2.19)
From eq. (2.15) and the known perturbation expansion of the 8-function in the MS
scheme, we infer that

B(g) ~ —g* X b,g™ (2.20)
g0 n=0

with [9-12]

-2

by=45(87%) ", b =% (87 (221)

* Qur notation here is slightly different from the one employed in ref. [2]. The reason for this is that
the conventional normalization of the A-parameter is unfortunately not the same in gauge theories
and two-dimensional non-linear o-models.
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The 3-loop coefficient b, depends on our choice of running coupling and is
presently not available.

When integrated towards short distances, eq. (2.19) yields the asymptotic
expression

Sl

n ¢t

1
22—
&(L) byt bat?

+0(:73(In 1)?), r=-In(AL)’,  (2.22)

where A is an integration constant, the A-parameter.

In the following a key role is played by the step scaling function o(s, u). For any
given scale factor s and initial value u = g*(L), the coupling u’ = g?(sL) may be
computed by integrating the renormalization group equation (2.19) (assuming the
B-function is known). ¥’ is a well-determined function of s and u, and so we may
define

o(s,u)=u'. (2.23)

In other words, the step scaling function is an integrated form of the B-function,
which tells us what happens to the coupling if the box size is changed by a factor s.

It is possible to calculate the step scaling function through numerical simulation
of the lattice theory. To this end one chooses some value for the bare coupling g7
and simulates two lattices with size L and L’ =sL. The coupling u' =g>(L’) then
provides an approximation to o (s, u) at u =g*(L).

To understand how good the approximation is, we first note that for all lattice
spacings a functional dependence

u'=3(s,u,a/L) (2.24)

exists, which is obtained by eliminating g} in favour of u. From the discussion of
the cutoff dependence of the effective action in ref. [3], we expect that 3(s, u,
a/L) converges to o(s, u) in the continuum limit ¢ — 0 with a rate roughly
proportional to a /L.
A more quantitative impression on the size of the cutoff effects may be obtained
in perturbation theory. In particular, the relative deviation
32, u,a/L)y~a(2, u)

8(u, a/L) = o2 ) =8,(a/LYu+8,(a/L)u*+ ..., (2.25)

TabLE 1
One-loop coefficient § (a /L) in the expansion (2.25)

L/a 3, L/a 3,
6 0.00623 ST - 0.00396
8 0.00540 14 0.00347

10 0.00459 16 0.00309
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turns out to be quite small at one-loop order (see table 1). It will nevertheless be
necessary to extrapolate the numerical data to the continuum limit by simulating a
sequence of lattice pairs with decreasing lattice spacings (and fixed coupling u).

2.7. STRATEGY

Our principal aim is to compute g2(L) for a range of box sizes L connecting
the low-energy domain with the perturbative scaling region. This is achieved by
setting up a recursion

ui+l=U(Si’ ui)’ l=0, 152""7 (226)

starting from some initial value u, of the running coupling. By construction we
have

i—1
u,=g*(L,), LI-=L0H)SJ-, (2.27)
i=

for some box size L,. Our choice of initial value u, and scale factors s, will be
such that the recursion progresses from the perturbative small coupling regime
towards larger box sizes.

Of course the statistical and extrapolation errors limit the number of iterations
that can be done in practice. A careful discussion of the error propagation is
certainly necessary, and we shall come back to this issue when we analyse our data
in sect. 4.

After a certain number # of iterations, depending on the initial value u,, the
final box size L, will be close to or even larger than the scale set by the string
tension K. At this point it is possible to determine the dimensionless combination
L,,\/E. As a result one has calculated the running coupling at all L, given in units
of the string tension.

At the lower end of the range of L covered, where the coupling is small, we
may finally apply perturbation theory to determine the value of any other coupling
such as ayg Or aq (cf. subsect. 2.4). Note that all reference to a finite volume
drops out in this last step. One simply gets a g at some large momenta g; given in
units of the string tension.

3. Numerical simulation
For fixed boundary values W and W', the system defined through the partition

function (2.4) can be simulated by adapting any one of the known Monte Carlo
algorithms for pure gauge theories on periodic lattices. The simulations that we
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have performed are here described in some detail and a complete list of our data
on the running coupling is given. These will be further analysed in sect. 4.

3.1. OBSERVABLES

From the definition (2.12) of the running coupling it follows that

gA(L) =k<dS/am)~". (3.1)

The field variables integrated over do not depend on the background field
parameter n and so only the plaquettes touching the boundary contribute to
38 /dm. The observable we shall be concerned with in the following is thus given by

aS 24a° 3
LY S AEM) +E®), (32)

67] gSL x [=1

where E/ and E, denote the 7, component of the colour-electric field at the top
and bottom of the lattice. In particular,

E/(x) = miztr{T3W(x, DU(x +al, 0)U(x +al, 1) U(x, 0) ‘l}x(,:o, (3.3)
and a similar expression is obtained for E|.

It is conceivable that other observables exist which have the same expectation
value as dS/dn but a significantly smaller variance. We were, however, not
successful in our search for such an “improved” observable. In particular, the
so-called multi-hit method [13], when applied to the dynamical link variables in eq.
(3.3), did not result in any appreciable increase in efficiency. The data listed below
have thus been generated taking 45 /37 as the observable.

3.2. MONTE CARLO ALGORITHM

The most efficient simulation algorithms for pure gauge theories known today
involve the idea of over-relaxation in one form or the other [14-16]. Our algorithm
is a hybrid one, with N exactly microcanonical sweeps through the lattice followed
by 1 heatbath update pass. Geometrically the program is organized in time slices
which are visited sequentially. At any given time, the lattice is divided into 2 or 4
sublattices, depending on whether L /a is even or odd. This is done in such a way
that the link variables in a fixed sublattice are decoupled and so can be updated in
a vector mode.

For the heatbath part of the cycle, a modified Creutz algorithm [17] was
implemented. The local heatbath SU(2) measure cannot be generated exactly but
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Fig. 1. Integrated autocorrelation times 7 for the observable 3S /dn, given in numbers of update
sweeps through the lattice (counting overrelaxation and heatbath sweeps).

requires an accept/reject step. The observed acceptance rate increases towards
smaller couplings and was always greater than 90%.

The parameter N generally has to grow as one approaches the continuum limit.
In various models a tuning roughly inversely proportional to the lattice spacing
proves to be optimal [18,19]. Some of the integrated autocorrelation times achieved
in this way are shown in fig. 1. All points refer to approximately the same
renormalized coupling 2*(L) = 3.7, i.e. the measurements are made at “constant
physics”, At large L /a the autocorrelation time is proportional to (L /a)* (dashed
line). The fit gives z = 1.0(1) for the dynamical critical exponent, which coincides
with the expected best value for over-relaxed algorithms.

3.3. SIMULATION RESULTS

As explained in subsect. 2.6, the step scaling function o (s, u) may be computed
by simulating pairs of lattices at the same bare coupling with sizes L and L' =sL.
In our calculations we chose s = 2 throughout and produced enough data to be
able to perform 4 renormalization steps in succession (see table 2). We have,
furthermore, done an additional set of simulations at a fixed large value of the
renormalized coupling (table 3). These data will be used in sect. 4 to make contact
with the low-energy scales of the theory.

In each block of data listed in table 2, the renormalized coupling on the smaller
lattices is constant within errors, i.e. the bare coupling has been tuned so as to
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Pairs of running couplings at fixed bare coupling 8 = 4/ g2

TaBLE 2

257

B L/a ZiL)
3.4564 5 2.0371(32)
3.5408 6 2.0369(52)
3.6045 7 2.0370(55)
3.6566 8 2.0370(63)
3.7425 10 2.0369(83)
3.1898 5 2.3800(43)
3.2751 6 2.3801(67)
3.3428 7 2.3799(67)
3.4009 8 2.3801(79)
3.5000 10 2.380(11)
2.9568 5 2.8401(56)
3.0379 6 2.8401(91)
3.0961 7 2.840(10)
3.1564 8 2.840(11)
3.2433 10 2.841(16)
27124 5 3.550(10)
2.7938 6 3.550(14)
2.8598 7 3.550(15)
29115 8 3.550(16)
3.0071 10 3.550(23)

222L)

2.418(16)
2.397(19)
2.447(17)
2.426(22)

2.981(23)
2.942(21)
2.968(26)
2.954(23)
2.870(30)

3.783(33)
3.731(35)
3.709(31)
3.663(34)
3.695(43)

5.456(40)
5.287(43)
5.310(58)
5.168(38)
5.122(58)

2.413(15)

achieve this. A reweighting technique was employed in this step, as discussed in
subsect. 4.1 of ref. [2].

The statistical errors were estimated both by jackknife binning (using several
100 bins) and, when no reweighting was required, by summing the autocorrelation
function over an appropriate time interval. In the first three series of table 2 about
35 hours of CPU time were spent for the lattices with L'/a < 14, 60 hours for
L’/a =16 and 140 hours for the largest system with L’/a = 20. All times were
roughly doubled in the last series (where g2(L) = 3.55). The typical speed achieved
by our program is 210 Mflop/s. Speed and CPU times refer to a single CRAY

YMP processor.

Bare coupling vs. lattice size at fixed g2(L) = 4.765

TasLE 3

B

2575228)

2.6376(20)
2.6957(21)

L/a

10
12
14

B

2.7824(22)
2.8485(32)
2.9102(62)




258 M. Liischer et al. / Computation of running coupling

4, Data analysis and results

We now follow the strategy sketched in subsect. 2.7 and determine the running
coupling in the continuum theory for a range of box sizes L given in physical units.

4.1. STEP SCALING FUNCTION

The simulation results listed above allow us to compute the step scaling function
o(2, u) at 4 values of u. This involves an extrapolation of the lattice data to the
continuum limit a /L — 0 (see fig. 2). The cutoff effects that we observe are quite
small and linearly decreasing with the lattice spacing. This is the theoretically
expected behaviour. At the lower values of the coupling, the size of the effect is
compatible with what one predicts from perturbation theory (cf. subsect. 2.6). For
a detailed comparison a higher statistical precision would however be required.

To perform the extrapolation to the continuum limit, the error on the argument
u has been traded for an additional error on X, using an approximate value for
43 /du. A straightforward linear fit then yields the values and errors quoted in

6.00 - j f ]
=3.550 . ]
5.50 . o ﬁ
S.00F E |
4.50 & —
£(2,u,a/L)
e u=2.840 ]
————————————————— m-—------m———-—E}——-—-——ﬂ}--————-----‘m-—-—'-"—--
3.50 B |
u=2.380
] T - T—
=2.037
2.50 R ‘u 2.0 e
2.00 _ : . . |
0.00 0.05 0.10 0.15 0.20 0.25
a/l

Fig. 2. Extrapolation of the lattice step scaling function X(2, u, a /L) to the continuum limit. The
left-most points represent the extrapolated values as given in table 4.
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TaBLE 4
Values of the step scaling function

u a2, u) (2, 4)s100p
2.037 2.45(4) 2.38
2.380 2.84(6) 2.86
2.840 3.54(8) 3.58
3.550 4.76(12) 4.83

table 4. These can be compared with what one obtains by integrating the renormal-
ization group equation (2.19), taking u as the initial value and the 2-loop formula
for the Callan—Symanzik B-function (third column in table 4). The agreement is
perfect, except for a 20 deviation at the lowest value of u. In a set of 4
independent measurements, this is not an unlikely event, however.

We shall soon discover that the couplings occurring in table 4 correspond to a
range of box sizes I from about 0.023 fm to 0.33 fm. It is thus rather surprising
that the step scaling function is so accurately reproduced by perturbation theory.

4.2. RUNNING COUPLING

For the error analysis it proves useful to set up the recursion (2.26) in a logically
reversed manner, where one first specifies the sequence of couplings u,, i =0,
1,..., and then computes the associated scale factors s,. The couplings are defined
by

u,=2.037, u =02, uy),

u,=2.380, us=0o(2, u,),

u,=2.840, us=o(2,u,),
u, = 3.550, u,=oa(2, uy),
uy = 4.765. (4.1)

u,, U5, uy and u, coincide with the numbers listed in the first column of table 4.
To the precision stated, u,, u;, s and u, are thus given by the second column in
this table. v

By definition, the scale factors s, (as determined through eq. (2.26)) are exactly
equal to 2 for i =0, 2, 4 and 6. In all other cases, s, is a number close to 1, which
may be computed by evolving the coupling from u, to u, ., using the 2-loop
formula for the B-function. Since the step scaling function is well reproduced by
perturbation theory, we estimate that the systematic errors incurring at this point
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TABLE 5
Running coupling at scales given in units of Ly

L/Ly ZAL)
1.000 4.765
0.500(23) 3.550
0.249(19) 2.840
0.124(13) 2.380
0.070(8) 2.037

are negligible compared to the statistical errors in table 4 (which translate to errors
on s, s3, S5 and s-).

The box sizes L; at which g2(L,) =u; can now be computed straightforwardly
through eq. (2.27). The result is given in table 5 and will be discussed below, after
converting to more physical units. In this computation the errors on the scale
factors s; have been added in quadrature, because they arise from independent
simulations.

4.3. PHYSICAL SCALES AND COMPUTATION OF axx(q)

At the largest coupling in the recursion (4.1), it is possible to make contact with
the low-energy scales of the theory in infinite volume. As already mentioned in
sect. 2, we decided to take the string tension K as a reference energy scale in this
regime. K has been determined on large lattices at 8 =2.70 [20] and more
recently at 8 = 2.85 [21] (second column of table 6; the errors quoted there are
statistical only) *.

To determine the dimensionless combination LK, we also need Ly in lattice
units at the same values of the bare coupling. This information can be extracted
easily by interpolating the data listed in table 3 (see fig. 3). The outcome of the
calculation is given in the third and fourth columns of table 6.

The differences between the values of LB\/E obtained at 8 =2.70 and B = 2.85
can tentatively be interpreted as a cutoff effect. In principle, LS\/E should be
extrapolated to the continuum limit in the same way as the step scaling function.
We, however, are hesitating to do this, because we have only two data points and
since it is not certain that the observed variation of LK is a pure cutoff effect.
In particular, systematic errors on the string tension values quoted in table 6 of the
order of 5-10% cannot be excluded at present [22].

In the following we take Lsx/f = (.713 and keep in mind that the total error on
this number could be as large as 10%. If we set VK = 425 MeV to convert to more

* The numbers published in refs. [20,21] are actually higher by a factor of 1.09 and 1.24, respectively.
The string tension has meanwhile been reevaluated, the results being as given here. We thank C.
Michael and the UKQCD collaboration for communicating these revisions to us.
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TABLE 6
Values of the string tension and the box size L

8 2K Ly/a LK
2.70 0.0103(2) 8.08(4) 0.820(9)
2.85 0.00354(26) 11.98(7) 0.713(26)

physical units, we then deduce that Ly = 0.33 fm. The lower end of the range of
box sizes covered by table 5 is hence roughly equal to 0.023 fm.

As shown in fig. 4 the evolution of the running coupling a(q) is well described
by perturbation theory, down to very low energies. The error bars in this plot only
represent the statistical errors as given in table 5, but not the overall scale
uncertainty discussed above. It should be emphasized that the latter amounts to a
multiplication of the energy scale by a constant factor and so has no bearing on
the scaling properties of the coupling.

At the highest energies reached, we can finally convert to the MS scheme of
dimensional regularization using perturbation theory. A typical result is

aps(q) =0.187 £ 0.005 + 0.009 at g=20x VK. (4.2)

The first error here is statistical, as inferred from table 5, while the second is an
estimate of the total systematic error arising from a possible order a correction in
eq. (2.15) and the 10% scale uncertainty mentioned above.
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Fig. 3. Bare coupling 8=4/g{ versus lattice size at fixed g2(L)= 4.765. The dashed curve is a fit,
B =1.905+0.380 In(L /a), to the data points with L /a > 8.
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4.4. RELATION BETWEEN THE BARE AND THE RENORMALIZED COUPLING

Let us consider a large lattice, with bare coupling g7 deep in the scaling region,
and let us assume that the lattice spacing a is known in units of some low-energy
scale. In the continuum theory, the running coupling g2(a) then is a well-de-
termined quantity, which may be related to the lattice coupling through an
asymptotic series,

g%(a)=g5+c gt +c85+ ..., (4.3)
with purely numerical coefficients. At present the 1-loop coefficient is known [3],
¢, =0.20235, (4.4)

and an effort is being made to extend the calculation to the next order [28].
Whether the expansion applies in the accessible range of bare couplings (at
B =2.85 for example) is not known, however, and one may in fact have serious
doubts that it does, because the first order correction is uncomfortably large.

Other renormalized couplings fare no better in this respect and one is thus led
to suspect that g2 is a “bad” expansion parameter [23-26]. On the basis of a mean
field argument, Parisi [23] suggested many years ago that

gi=g3/P, P=3{tr U(p), (4.5)
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Fig. 4. Comparison of numerically computed values of the running coupling (data points) with
perturbation theory. The dashed (dotted) curve is obtained by integrating the evolution equation (2.19),
starting at the right-most point and using the 2-loop (1-loop) formula for the B-function.
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would be a more natural choice of bare parameter for the lattice theory. The
plaquette expectation value P is to be computed on an infinite lattice. At g = 2.70
and B = 2.85, it is equal to 0.68558 and 0.70577, respectively [27]. In terms of g2,
eq. (4.3) becomes

g(a) =83+ 85+ G850+ .., (4.6)
with
¢, =c, — = =0.01485. (4.7)

The corresponding expansion of the renormalized coupling in the MS scheme of
dimensional regularization plays a key role in the work of El-Khadra et al. [4] and
is further discussed in ref. [26].

While the 1-loop coefficient ¢, is much smaller than ¢, it is not guaranteed that
the higher-order corrections are small and so it remains unclear whether the series
(4.6) yields a reliable estimate for the renormalized coupling. Using the results
obtained above we are now in a position to answer this question. At 8 = 2.85, for
example, the lattice spacing in units of Ly is equal to 0.0835(5), which is in the
range covered by table 5. For the running coupling, the value g%(a) = 2.11(5) is
thus obtained. This is to be compared with the r.h.s. of eq. (4.6), which evaluates to
2%(a)=2.05 at 1-loop order. So we do confirm that the higher-order corrections
are small and thus conclude that g7 is a good expansion parameter at the scale of
the cutoff.

5. Conclusions

Lattice gauge theories have been invented to study the properties of Yang—Mills
theories and QCD at low energies. It proved to be difficult, however, to make
contact with the perturbative regime, where weakly interacting quarks and gluons
are the important degrees of freedom. The obstacle is that one cannot easily hold a
wide range of physical scales on a single lattice, at least as long as numerical
simulations are the only practical way to do non-perturbative computations in the
scaling region.

Using a recursive finite-size technique, we have now been able to close this gap
in the case of the pure SU(2) gauge theory. We found that the evolution of the
renormalized coupling in the chosen scheme is well described by perturbation
theory over the whole range of energies covered (cf. fig. 4). This is a bit surprising,
but it should be noted that the coupling is defined through an off-shell amplitude
and so is insensitive to threshold effects. In any case, our result proves that there is
no complicated “intermediate” energy range before the coupling becomes small
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and slowly decreasing according to the perturbative renormalization group. In this
respect the situation is as in the two-dimensional non-linear o-model [2].

Our method allows us to compute the running coupling in say the MS scheme of
dimensional regularization at energies far above the masses of the light particles in
the theory. An example of such a result is given in eq. (4.2). It is certainly possible
to achieve a higher precision in this calculation. Compared to the power of present
day parallel computers, we have used an only small amount of CPU time. A
refined study, with more statistics and an O(a) improved action [3], is hence clearly
feasible. It is then also necessary to extend the series (2.15) to the 2-loop level [28]
to keep the balance between systematic and statistical errors.

We finally note that an extension of our work to the SU(3) Yang—Mills theory
should not meet any fundamental difficulty. QCD requires more thought, however,
because the scale dependence of the quark masses must be taken into account.

We are indebted to F. Gutbrod for discussions and A. Kronfeld and C. Michael
for correspondence. The computations have been performed on the CRAY com-
puters at HLRZ and CERN. We thank these institutions for their support.
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