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The first moments of the spectral densities of the resummed thermal gluon propagator are shown to have the same values as in 
the full interacting theory. The sum rules of the latter are derived from the equal-time commutator within the class of covariant 
gauges. 

1. Introduction 

The idea, which this note is based on, was stated in 1989 in a paper o f  Pisarski [ 1 ]. There he studied the 
spectral functions o f  the resummed thermal gluon propagator, noticed the exact sum rule for the transversal 
density, and asked for an equivalent in the longitudinal case. In short, under certain circumstances and restrict- 
ing to very special quantities, one can estimate the value of  perturbative results through contrasting them with 
non-perturbative ones. 

Meanwhile, the high temperature limit of  the gluon plasma has been well understood, since Braaten and Pisarski 
[ 2 ] exhibited the systematics to be followed in order to obtain consistent results [ 3 ]. Also, the direct use o f  sum 
rules has become an obvious need in calculations, which include inner lines at soft momenta  [4 ]. 

In this note, we shall first collect the more or less known facts on the "perturbative" spectral densities and its 
sum rules. For  this we focus on covariant gauges rather than Coulomb (section 2). Then, we start anew on the 
non-perturbative side (sections 3 and 4),  end up with the first moments  and compare. 

2. The spectral densities at one-loop order 

The system under consideration is a volume V containing blackbody radiation of  the "other  eight sorts o f  
light". Its lagrangian is 

~ =  ! ~ a  ~ 'u~ 1 (0UA~,)E+ghostterm (1) 

Within covariant gauges the resummed gluon propagator reads 

Au,(Q) + Bu~(Q ) +Du,(Q ) a 
Gu,(Q)= Q2_II t (Q ) Q2_H~(Q) - ~ ,  (2) 

where Q =  (iw,, Q) and to ,=  2nnT. The indices t, ~ stand for "transversal" and "longitudinal", respectively. We 
use the Matsubara contour and Minkowski metric + - - - .  Thus, Q2=  ( i to , )2_q2 with q=lQI .  (2)  is ob- 
tained when solving G = G o + G°IIG by means o f  the matrix basis A-D [ 5 ]. We shall need these matrices here 
with all their details: 

448 0370-2693/92/$ 05.00 © 1992 Elsevier Science Publishers B.V. All rights reserved. 



Volume 291, number 4 PHYSICS LETTERS B 1 October 1992 

A = g - B - D ,  B= Vo____V C= Q,V+VoQ D=Q°Q 
v 2 , x/~QZq , Qz , (3) 

where V= Q2 u -  ( U. Q) Q, and U= ( 1, 0) is the four-velocity of the thermal bath at rest. Hence, U 2 = 1 and 
V2= _ QZqZ. The properties of (3) are collected as 

AZ=A, B2=B, DZ=D, C2=-½(B+D) ,  

AB=AC=AD=BD=O, BC=CD= VoQ/x/~Q2q, 

½ TrA2=TrB2= - T r  CZ=TrD2= 1 , 

T r X Y = 0 ,  if X ~ Y  and X, Y=A-D.  (4) 

The functions Ht = ½ Tr AH and H~ = Tr BH in (2) are obtained from the leading high temperature term [ 6,7 ] 

I Iu~=3mZ(UuU~-((U'Q)YuYV/(Y 'Q))) ,  Y= (1, e ) ,  (5) 

of the polarization function at one-loop order. In (5),  ( ) is an average over the directions of e, and m2= 
~g2NT2 is the well known gluon plasma frequency at zero three momentum (with N the number of colours). To 
complete the listing: 

(z+l) 
/ T t = ~ m Z g ( ~ )  ' H ' = 3 m 2 [ 1 - g ( - ~ ) ]  ' g ( z ) = z 2 - ½ z ( z 2 - 1 ) l n \ ~ - l ] "  (6) 

At large z: g(z) = ] + 2 z -2 d I_ .~5 z - - 4 +  . . . .  

The spectral densities pj(x, q) of each of the partial propagators in (2), Aj(Q),j=t, ~, c, d, are defined by 

( J )  ( J )  = ~ d x ~ x '  q) (7) 
Aj(Q)= Q2 IIj(Q ) - 02_qZ_Hi(O 'q) O - x  ' 

where the notation has changed to Q= (/2, q) to indicate analytical continuation from the set of discrete values 
Qo=iw, to the complex O-plane. The numerators ( j )  are ( t )  = (~)  = 1, ( c )  =0  and ( d )  =or. Furthermore 
Ha = 0. Hence, pd(x, q) is just a times the spectral density ( 1/2q) [8(x-q)  - O ( x +  q) ] of the bare propagator. 

Probably the easiest way of deriving sum rules is by expanding both sides of (7) into power series with respect 
to 1/O, the (n+  1 )th power giving the nth moment: 

n = l  

n=3  f 

n = - I  

I dxxpy(x, q) = 1 (j'=t, ~) ,  

dxx3pj(x,q)=m2+q 2 (J=t,  ~) , 

(8) 

(9) 

d x l p t ( x  , q )=  1 ,  ~ dxlp~(x,  q ) =  l q---i 3mZ+q2 • (10) 

( 8 ) -  ( 10 ) are in essence the sum rules given by Braaten and Yuan [ 4 ], translated into our notation and applied 
to our propagators (note that A~ is defined differently). To derive (8), the leading term A (t2, q ) ~  I /O  2 at 
IOj2-,oo is sufficient for the LHS of (7). On the RHS of (7) the densities Pt and p, are required to be odd 
functions of x, as will be seen in ( 11 ), ( 12 ) below. To derive (9), one more term of A at large 12 is required. 
Finally, (10) derives from the small Q asymptotics of both sides of (7) together with At ~ - q - 2  and A,-, - 1/ 
(3m 2 + q2) in this limit. In this way, moments of arbitrary order (n = - 1, 1, 3, 5 .... ) can be generated, since the 
densities are non-zero only in a finite x-interval. However, only the first moment (n = 1 ) will be accessible also 
non-perturbatively, 

The explicit forms of the densities p, at one-loop order, have been worked out by Pisarski [ 1 ] for the propa- 
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gator in Coulomb gauge. Here we like to point to the little differences made by the metric and by our"covariant" 
propagator definitions. The weights p can be obtained directly [ 8 ] from the definitions (7) by taking the differ- 
ence [Aj(x-i~, q) --dj(x+iE, q) ]/27ti. The results read 

1 N 
p=ppole+pCUt, ppOle=rt~(x_o9)_rS(x+og), pCUt=O(q2--x2) m2 D2 + C2 , (11)  

where the quantities p, r, o9, N, D and C are understood to carry an indexj=t ,  £ and are given by 

ogt ((.02 -- q 2 ) O9£ ( ) '  - 6  -~ 
rt= 3m2o9 2_ (o92_q2)2, r~--- 3m2_o92+q2, Nt= 12~t/ ~ -  q'X r/- 1-~2 N~ = ~/, 

Ct=37t~r/, C~=3zt,, Dt = 4q2rl + 6,2 + 3~tl ln ( l + '~ (-~"~) \ 1 - ~ ] '  D~=2q2+6-3~ln  1+~ . (12) 

The frequency spectra ogj = o9i (q) cannot be made explicit. They are the positive solutions ( # q) of to 2 = q 2 +/-/j.(o9, 
q), see (6). 

Note that both spectral densities p are odd functions of x (in view of section 4 this is not entirely trivial). On 
the positive x axis both pole contributions are positive, and so is the transversal cut part. But the longitudinal 
density has a negative cut-contribution. Nevertheless, the sum rule (8) holds true (as one can also obtain with 
(11 ), (12) by contour integration). In passing, there is no "second pole" of the longitudinal propagator at 
Q2 =0 (i.e. at ~= 1, r/= 0). The denominator has a zero three, but the residue vanishes due to the logarithmic 
singularity in D~. The area under p~ut is finite. 

3.  N o n - p e r t u r b a t i v e  a p p r o a c h  

For a general Bose system the spectral representation (or "Lehmann representation") of the thermal Green's 
function is well introduced in the textbook of Fetter and Walecka [ 8 ], § 31 and § 32. Here we consider the 
peculiarities when applied to a non-abelian gauge field A ~(x) with lagrangian ( 1 ). We must distinguish between 
the former "perturbative" quantities and the following "non-perturbative" ones, even if they have the same 
physical meaning. Accordingly, the full gluon propagator is now denoted by D (instead of G). Its partial prop- 
agators read Dj (instead of dj) and have spectral densities aj (instead ofpj). We supply our black box V with 
periodic boundary conditions. Let x = ( - iz, r), Q = ( io9n, Q), and, to exploit translational invariance, let y = ( 0, 
r' ) be a toy variable, the propagator D does not depend on. Then, the spectral density tr~,~ of the full interacting 
theory is obtained along the following three lines: 

p 

D~b(a) = j d3r j dzexp(iQx)(JAa~(x+y)Ab(y) ) 
v 0 

# 

= f dz exp(io9.r) f d3r e x p ( - i Q . r )  
0 v 

X ( e x p ( H z ) 1  ~ exp(iP.r+ iP.r' )~a (p)exp(-Hz) 1 ~r exp(iK.r' ).4b(K)) 

f 1 ab a~(x,Q) (13) = d x  iO)n --  X 

with 
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~uv(X ~ a b  Q) exp [fl ( F -  E f  ) - exp (~(.~fg ) ],~(x- o Jig) ] [1 1 <)q.T~ ( - Q )  [g) <glAd(Q)If> • (14) 

( ) is the thermal average Tr{exp [fl(F- H) ]...} with F the free energy and H the hamiltonian of the system 
(1). H governs the Heisenberg time dependence of the field operators A. Its many-particle eigenstates, 
HI f> =EAf>, are used to perform the trace and to put a unit operator [g) (g[ into (14). (.Ofg=-Ef--gg. In the 
step to the last line of  (13) the RHS was integrated over the toy variable r '  and multiplied by 1 / K 

In passing, there is, of  course, also a response function X having the spectral representation (13) with to + ie 
in place of  ion, [ 8 ]. In the case at hand, it relates the answer (A~(x) )  of the system to an external source 
Jb(x) tO be included in (1) as +J~bAb. X(~o)=D(ico,--*w+i()  is the reason behind the common analytical 
continuation. 

There is more symmetry than the translational one already exploited. Colours do not mix. At a ~ b there is no 
state [g) giving a non-zero double matrix element in (14). This also follows from perturbation expansion. We 
refer to the latter in stating symmetry among the Lorentz indices also. Thus, 

ab (~u,(x, Q ) = a ~ , ( x ,  Q)6 ~b and au,(x, Q ) = c , u ( x ,  Q ) .  (15) 

As a nice little exercise one derives from (14) that 

- t ru . ( - x ,  -Q)=tr.u(x,  Q)=tru~(x, Q) . (16) 

There is also rotational symmetry. To make it transparent, we expand tTu~ with respect to the non-orthogonal 
matrices g, Uo U, To T and Uo T+  To U -  S, where T= (0, Q). In essence, these matrices are A-D, see (3),  taken 
at Qo = 0 (only A is a linear combination). Now, rotational symmetry tells us that the coefficient functions ~o, X, 
¢/, 0 can only depend on I Q I = q: 

cru~(x, Q)=gu~@(x, q)+UuU~x(x, q)+TuTu~(x, q)+Su.O(x, q). (17) 

Note that Su. changes sign under Q--, - Q. (17) and (16) can now be combined to learn all about the symmetry 
properties under x ~  - x: 

q,(x, q)= - q , ( - x ,  q) ,  x(x, q) = - x ( - x ,  q) ,  

~u(x, q) = - ~,( - x ,  q ) ,  but O(x, q) = O( - x ,  q) .  (18) 

4. Sum rules 

The first moment  of  au. is related to the thermal average ov an equal time commutator. To realize this, mul- 
tiply ( 14 ) with x and integrate over. In front of  the delta function x is converted to cofg = Ey-- Eg, and (at suitable 

• , • a .  

places ) the energies El, Eg become H. Wxth the definition A u (Q) - i [ H, -4u (Q) ] one obtains 

dx x tru.(x, Q) = ~ ( [ A . ( - Q ) ,  Au(Q) ] > • (19) 

It is now irresistible to confront the commutator  in (19) with the quantization rules. But note that the latter 
must be those of the full interacting theory. They are written as 

[Ag(O, r+r' ), H~(O, r' ) ] --iguv6abcS(r) , (20) 
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where H°u=0,~L¢. With (1)  one obtains Ho b = - ( l / a ) / t b - ( 1 / o t ) o k A ~  and Hkb=Fkob =OkAob_A~- 
gf ~dA ~Ad. There are also the vanishing equal t ime commuta tors  between two A fields. Thus, inserting H6u into 

a ' a ~  (20) ,  we retain only the ~1 terms of  H°o, H~. Nevertheless, the A u are now Heisenberg operators, and A u - 
i [H,  A~]. Operat ing on (20) with fvd3rexp(iQ.r) as well as with - (i/V)fvd3r ' and taking the thermal  av- 
erage, we obtain 

i ~- ( 1 )  
[ A v ( - Q ) ,  WuPAb(Q)l)=Sabgu,,, Wf-guP+ -1 UuUP. -~(-a 

With view to ( 19 ) we set a = b, apply ( W - 1 ) fl, = gfl, + ( o~ - 1 ) Ua U u, and end up with 

~dx x a,,~ (x, Q) --g,.. + ( ~ - )  U. U~. (21) 1 

Inserting ( 17 ) into (21 ) we obtain the first moment s  of  ~0, )~ and ~,. The 0 te rm of  ( 17 ) does not contribute, 
because it is an even function of  x. Instead, one learns about 0 by just integrating over  (14)  without the weight 
x. This leads to an equal t ime commuta to r  of  two undotted fields, i.e. to a vanishing result. To summarise,  

f dxx~o(x,q)=l, ~dxxz(x,q)=ot-1, f dxx~(x,q)=O, f dxO(x,q)=O. (22 ,  

The information on au~(x, Q) ,  obtained so far, must  now be converted into statements on the spectral densi- 
ties e i (x, q) of  the partial propagators Dj (Q) .  To formulate this problem, we recall Q = (O, Q) and use (13 ) at 
ioon--* O: 

O - x  ' O - x  " 

Our (humble)  exact information is on the left end of  this line, where ( 17 ) can be inserted. The densities we like 
to learn about  are defined at the right end. In a first step we invert the left equation (23) by taking traces and 
using (4) .  This gives 

f dxaJ(x'q)- f dx o l ~  - ' (24)  

where the functions Mj are linear combinat ions of  ~o(x, q) to O(x, q) with coefficients depending on O, q. These 
coefficients are 1, 0, 0, 0 ( j = t ) ;  1, _q2/Q2, _q2O2/Q2 ' 2q20/Q2 ( j = £ ) ;  0, v/2qO/Q 2, v/2q30/Q 2, 
-x/~q(O2+q2)/Q 2 ( j = c ) ;  1, 02/Q 2, q4/Q2, _2q2O/Q2 ( j = d ) .  Note  that, f o r j = t ,  £, d, the odd functions ~o, 
X, ~t have a prefactor, which is even in O, while the even function O has an m-odd prefactor. We conclude f rom 
(24) that  at, tr, and ad are odd functions o fx .  Things are reversed for j =  c, and, therefore, a¢ is an even function 
o fx .  Using these properties we now make the O dependence in (24)  fully explicit. But let us omit  the obvious 
arguments x, q of  aj and of  ~ to O: 

i d . x ~ a ~ =  fdxQ2_~x2iX(~O 02-q O 2 - q  2Ozqz v/)+ 2q202 Ol ' 

dx 1 1 ~ - ~ - ~ - x 2 a ¢ = f d x - ~ - x E I X ( ~  Z+v/~q3~ q/) - x//2q(O2 + q2) 1~ ] O 2  q 2 , 

x dx 1 

(25)  

(26)  

(27) 

(28) 
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( 25 ) allows for the conclusion that  at ( x, q) = ~ ( x, q). But we may  also consider ( 25 ), as well as ( 2 6 ) -  ( 28 ), at 
I2--, ~ ,  equate the f2-2 terms, and use the sum rules (22) .  This immediate ly  leads to the following results: 

f d.xx~(x,q)=l, ~dxxaQ(x,q)=l, (29,30) 

f dxtrc(x, q) = 0 ,  f dxx%(x, q) = a .  (31,32) 

In view of  (31) ,  it is tempting to consider also the ~r~--4 terms in (27):  

fdxx2trc(x,q):v/2q(ot-1- fd.xx:O(x,q))=O. (33)  

At this point, and in order  to explain the zero to the right of  (33) ,  we remember  that there is a third equal t ime 
commuta tor ,  namely [/7, 17] = 0. Exploiting it by following, in essence, the lines through ( 1 9 ) - ( 2 2  ), one ob- 
tains f dx  x 20 (x, q) = a - 1, indeed. As soon as we go to higher order moments ,  however, our  lack of  knowledge 
on the non-perturbat ive side will become appearent .  Possibly, the function crc (x, q) vanishes identically; we do 
not know. 

5. Discussion 

The first momen t s  (8)  o f  the "per turba t ive"  spectral densities of  the transverse and longitudinal gluon prop- 
agators are equal to the exact ones (29) ,  (30) .  Even the gauge dependent  part  is confirmed by (32) .  

Since we know [ 2 ], however,  that  (a )  the r e summed  gluon propagator  (2)  contains all contributions to 
leading order, when the outer m o m e n t u m  Q is soft, (b)  the bare propagator  is sufficient at hard Q and (c) with 
increasing Q (2)  turns into the bare propagator  automatically,  this agreement is no surprise. The resummed 
propagator,  and moreover  the corresponding gauge invariant  effective action [ 7,9-11 ], is the exact first term of  
a high temperature  asymptotics.  As the first moment s  do neither depend on temperature  nor on the coupling, 
non-agreement  would have been a disaster. F rom this point  of  view, we have merely seen here that two quite 
different procedures both work well. 

On the other hand, as the spectral propert ies of  the full theory are detailed here to some extent, any gluon 
propagator  improving over  the one-loop approximat ion  can now be tested in this respect. 
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