PHYSICAL REVIEW D

VOLUME 47, NUMBER 3

1 FEBRUARY 1993

Effect of the ¢7 threshold on electroweak parameters
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Threshold effects in e *e ~ — 7 induce contributions to key electroweak parameters such as Ap, Ar,
and sin?6, beyond the scope of perturbative calculations of O(a) and O(aa,). We quantitatively ana-
lyze these effects using once-subtracted dispersion relations which manifestly satisfy relevant Ward iden-
tities. The derivation and properties of the dispersion relations are discussed at some length. We find
that the threshold effects enhance the familiar perturbative O (aa;) corrections by between 25% and
40%, depending on the #-quark mass. The shift in the predicted value of the W-boson mass due to the
threshold effects ranges from —8 MeV at m, =91 GeV to —45 MeV at m, =250 GeV.

PACS number(s): 13.65.+1, 11.20.Fm, 14.40.Jz

I. INTRODUCTION

Dispersion relations (DR’s) provide a powerful tool for
calculating higher-order radiative corrections. To evalu-
ate a matrix element ‘Tﬁ, which describes the transition
from an initial state i to a final state f via one or more
loops, one can, in principle, adopt the following two-step
procedure. In the first step, one constructs the imaginary
part of T, for an arbitrary invariant mass s = p? by
means of Cutkosky’s rule [1]:

—i(Tp—TH=3 @m)*8“p, —p)Tr T, »

n

(1.1)

which is a corollary of S-matrix unitarity. Here the sum-
mation extends over all kinematically allowed intermedi-
ate configurations n which can be obtained by cutting the
original diagram into two pieces in such a way that one
of them is connected to i and the other one to f (this also
includes phase-space integrations) and p; and p, denote
the four-momenta of i and #, respectively. In the second
step, appealing to analyticity, one derives the desired real
part of T from a DR:

ImT 4(s")

s —Ss

ReT(s)=—P [ ds (1.2)
where P denotes the principal value of the integral and
Smin =min,p2. Depending on the high-s behavior of
ImT 4(s), the right-hand side (RHS) of Eq. (1.2) may not
converge, and one may need to replace the upper limit of
integration by a cutoff scale A? to regulate the ultraviolet
divergence. Furthermore, in order to avoid the oc-
currence of spurious quadratic divergences, which violate
basic physical principles such as gauge invariance, it may
be necessary to employ a suitably subtracted DR. We
shall return to this point later.

Dispersive techniques offer both technical and physical
advantages. Within perturbation theory, they permit the
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reduction of two-loop calculations to standard one-loop
problems plus phase-space and dispersion integrations,
which can sometimes be performed analytically even if
massive particles are involved [2,3]. This procedure can
also be iterated to tackle three-loop problems [4]. On the
other hand, dispersive methods can often be applied
where pure perturbation theory is either not reliable or
bound to break down. To this end, one exploits the fact
that, by virtue of the optical theorem, the imaginary
parts of the loop amplitudes are related to total cross sec-
tions, which can be determined experimentally as a func-
tion of s. Perhaps, the best-known example of this kind
in electroweak physics is the estimation of the light-quark
contributions to the photon vacuum polarization, and
thus to a(MZ), based on experimental data of
o(e e —hadrons) [5,6]. This type of analysis can be
extended both to higher orders in QED [7] and to a
broader class of electroweak parameters [8].

Although loop amplitudes involving the top quark are
mathematically well behaved, it is evident that interesting
and possibly significant features associated with the
threshold cannot be accommodated when the perturba-
tion series is truncated at finite order. In particular, per-
turbation theory up to O (aa,) predicts a discontinuous
steplike threshold behavior of o(e e~ —f7), which is, of
course, a rather unrealistic approximation. It is well
known that for low m, there should be a spectrum of nar-
row toponium (@) resonances lying densely across the
threshold region (for a review see Ref. [9]). Above
m,~130 GeV the partial width of t — W b becomes so
large that the revolution period of a {7 bound state would
exceed its lifetime, and the individual resonances are
smeared out to a coherent structure [10-12]. From the
above discussion it is obvious that a phenomenologically
acceptable description of o(e Ye ~—7) produces contri-
butions to the absorptive parts of the photon and Z-
boson self-energies beyond the usual perturbative calcula-
tion of O(aa,). This suggests the use of the dispersive
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calculus in order to evaluate the additional contributions
to the real parts, which in turn induce shifts in various
electroweak observables.

The influence of quarkonium resonances on a variety of
electroweak parameters was studied a couple of years ago
[13]. At that time, special attention was focused on the
case m,~M, /2, in which 6-Z mixing plays a dominant
role. Meanwhile, the range m, <91 GeV has been ex-
cluded at the 95% confidence level [14] and the possibili-
ty that m,R 200 GeV still exists [15]. An interesting
property of virtual heavy-top-quark effects in O(aca;)
[3,16] and O (a?) [17,18] on the p parameter [19] and Ar
[5] is that they tend to reduce the m,-dependent parts of
the one-loop results and thus to screen the familiar non-
decoupling. As a consequence, the m, upper bound is re-
laxed to higher values. It is of great phenomenological
interest to find out whether this trend is supported by the
radiative corrections that arise from the departure of the
tf threshold from the naive steplike shape.

It is the purpose of this paper to present a careful
quantitative analysis of the influence of #f threshold
effects on central electroweak quantities such as Ap, Ar,
and sin’6y,, which, in conjunction with accurate My,
CERN e Ye ™ collider LEP, and neutral-current measure-
ments, give important information concerning m, and
M. A crucial technical detail in this context is the use
of a subtraction prescription for the DR which manifestly
complies with basic Ward identities (WI’s). We have pro-
posed such a prescription in a previous paper [20]. This
paper is organized as follows. In Sec. II, we establish the
dispersive formalism generalizing the derivation of Ref.
[20]. In Sec. III, we apply this formalism to study thresh-
old effects. In Sec. IV, we describe our parametrizations
of the 7 threshold. In Sec. V, we present and discuss our
numerical results. Our conclusions are summarized in
Sec. VI.

II. DISPERSION RELATIONS

Let us consider the vacuum-polarization tensor of a
gauge boson, with four-momentum g, induced by a pair
of virtual fermions with masses m | and m,:

HL/{'A(qaml’mZ)
= —i [d*x 0| T*[J 7 A (x)I 4T (0)]]0)
(2.1a)

where T* denotes the covariant time-ordered product
and J L/’A(x) represents the vector and axial-vector
currents in configuration space, respectively. Except for
flavor-preserving vector currents, with m,=m,, current
conservation is explicitly broken by mass terms. Lorentz
covariance implies

04 gmy,my) =1V As,my,my)g,,

-H»V’A(s,ml,mz)q#qv , (2.1b)

where s=gqg2 As a rule, only the transverse parts
HV’A(s,ml,mz) contribute significantly to amplitudes in-
volving light external fermions, and we wish to derive
suitable DR’s to evaluate these functions. Contracting
Eq. (2.1) on both sides with g*, one obtains

N As,m ,my)=—sAV4s,m ,m,)+AV4s,m,,m,) ,
(2.2a)

where AV’A(s,ml,mz) is defined by

Jd*x e=ColT (#4741 ()]]0)

=AV4(s,m,m,)q, . (2.2b)

A number of papers [2,13] have made use of DR’s to
relate the 1" “4(s,m,,m,) functions to their imaginary
parts. In Ref. [20] we proposed to use the WI of Eq.
(2.2a) directly and to write DR’s for A" 4(s,m,m,) and
A" 4(s,m,,m,). This procedure eliminates the quadratic
divergences present in the wunsubtracted DR for
HV”’(s,ml,mz) in a way that conforms with the WI, a
crucial requirement. We present here an alternative dis-
cussion that clarifies some aspects of the derivation. We
consider a closed contour in the complex-s plane con-
structed from straight lines just above and below the real
axis from threshold s =(m,+m,)?> up to some large
cutoff scale s =A? and a large circle of radius |s|=A2 It
is understood that this contour is to be described anti-
clockwise. Application of Cauchy’s theorem, Schwartz’s
reflection principle, and the usual analytic properties de-
rived from perturbation theory leads to

V,A( ot
" 1 oAl ,ImA"A(s",my,m;)
AV A(s,my,my)= — s . ;
T ¥ (m+m,)? s'—s —ie
1 AV As' ,my,my)
’
T Pt T

(2.3a)

ImAY A(s',my,m,)

I

1
T Y (m +m,?

V,A¢ o1
1 ,A s’ ,my,my)
gy Pt

AV’A(S,ml,mz): ’ .
S —S —I€

(2.3b)

where the cutoff is assumed to satisfy A2>>s,m?,m3%. In
the integrals over the large circle we have neglected s in
the denominators because A" “4(s’,m,,m,) and
AV A(s',m,,m,) are known to behave as constants
(modulo logarithms) as |s’|— . Inserting Eq. (2.3) in
Eq. (2.2a) and using again this equation to relate the
imaginary parts, one obtains
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V,Af o1
A2 ImIT”“(s’',m,m,)
ds' - - +ImAY (s, my,m,)
s'—s—ie

1
HV’A(S,m],mz)z_ )
T~ (my+m,)

—sAV (s, my,my)
2.4)

’

V,A¢ ot
1 ,A ’ (S 7m1)m2)
§|s|“A2ds s

+ _
2771

The contribution of ImA"4(s’,m,m,) cancels the quadratic divergence of the first integral. There remains a logarith-
mic divergence that is regularized by A%2. Except for the integrals over the large circle, Eq. (2.4) is the DR proposed in

Ref. [20].

As in that paper, we restrict ourselves to the two cases of greatest interest, namely, m,

=m, and m, =0,

which to a very good approximation can be applied to the tb isodoublet.

Expanding " 4=11}" 4+ (a, /m)II} 4+ - - -

and similarly for A4 and A" 4, calculating the imaginary parts of the

one- and two-loop diagrams with constant a;, and performing the integrations, one finds

s As',m,m)
I (s,m,m) =X, + V(- S Pl = (2.5a)
s m? 1 A;‘(s',m,m)—skf’(s’,m,m)
/s, m,m) =25 X, + 2 [Y,+ A4,(0]+ 5.7 P o ds” = : (2.5b)
2 | Y; 1 AV A(s',m,0)—sA) (s, m,0)
V, A __5 m- | “i P! s 78 i s 1,
I A(s,m,00= 25X, + 5 | L+ Filo) - ¢M:A2ds = , (2.5¢)

where i =0, 1 labels the one- and two-loop amplitudes, X;
and Y; are A’-dependent constants, and V;(r), 4,(r), and
F;(x) are finite functions. Specifically, we have

Vo(r)=1—2r +1)g(r), (2.6a)
Ay(r)=1—2(r—1)g(r), (2.6b)
_1_1_ 1 111
Fo )=~ a P 2 |1 %
X[In|1—x|—im6(x —1)], (2.6¢c)

where r =s/4m?2,x =s/m?. We have included the color

factor, and, defining D=1/r — 1,

v—D 1+vV=D .

2 ln“_‘/—_$| imo(r 1)], D<O0,
glr=1| _ 1

v'D arctan—-‘/i:, D>0.

(2.6d)

The two-loop functions V,(r), 4,(r), and F,(x) are stud-
ied in detail in Ref. [3]. They depend sensitively on the
precise definition of m,. In Ref. [3], as in most current
discussions of electroweak physics, m, is identified with
the zero of the real part of the inverse top-quark propaga-
tor. In the literature, it is variously referred to as the
physical, on-shell, or dressed mass. It is also the mass
that appears naturally in the application of Cutkosky’s
rule and the parameter that governs the start of the 7 cut
on the complex-s plane in S-matrix theory. Throughout

this paper we follow the same definition. Calling

L =In(A?/m?), the divergent constants are [20]
Xo=X,=—2Y,=L, (2.7a)
Y, =3L’-3L—1. (2.7b)

We recall that H,»V(s,m,O)ZHI-A(s,m,O), with analogous
equalities for the A;’s and A;’s.

When, instead of using DR’s, the vacuum-polarization
functions are evaluated directly in the framework of di-
mensional regularization one finds [16]

n)(s,m, m)——X + V(r) (2.8a)
472
A S My 4 2.8b)
As,m,m)= a2 X ‘Tr—z[ i+ A4,(n], @.
_ 2 | Y,
1}/ A(s,m,00= ==X, + 7 | ==+ F,(x) (2.8¢)
472 | 4

The divergent constants X; and Y; are now expressed in

terms of (n —4) poles and the ’t Hooft mass pu.

Specifically,
5 1 5
=——]+= 2.9
X, . 1 3 (2.9a)
< 3 3
Yo=—F—+=1-3, 2.9b
0 2¢ 2 ( )
> 1 55
—_— _+___ .
X, e 1 —4£(3) T (2.9¢)
S 3 1 11 11
=——+4+—|-3l+— 2 —
Y, 22 + c [ 3 2 +31 ) l
11
+6§(3)+3§(2)—? , (2.9d)

where e=2—n /2 and [ =y z +In(m?/4mu?).

As pointed out in Ref. [20], in the evaluation of physi-
cal quantities such as Ap or Ar the divergent constants
X;,Y; and, equivalently, X;,¥; cancel identically among
themselves. In order that Eq. (2.5) be consistent with di-
mensional regularization, it is clearly necessary that the
integrals over the large circle be absorbable in
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redefinitions of X; and Y;. Moreover, comparison of Egs.
(2.5) and (2.8) shows that, if the integrals are evaluated in
dimensional regularization, their effect must be simply to
replace X; and Y; in the first set of equations by X; and
Y;, respectively. We have verified this by a direct evalua-
tion. We note that the integrals over the large circle re-
ceive contributions only from the leading asymptotic
terms of the A;’s and A;’s as |s'|— oo; i.e., terms of
O(1/s') do not contribute. One readily finds that the
leading asymptotic behaviors of the A;’s are independent
of m,; and m, and of whether we are dealing with vector
or axial-vector currents. Furthermore, one verifies that

AVA(s',m,0) 1 Af(s',m,m)
gsmzAzds' 5 =Z§!s';=1\2ds' :

Sl
(2.10

These results imply that the integrals over the large circle
in Eq. (2.5), when evaluated in dimensional regulariza-
tion, are indeed absorbable in redefinitions of X; and Y;.
Moreover, the calculation confirms that their effect is to
simply replace X; and Y; by X, and Y,, respectively. In
particular, for the three cases of greatest interest, Eq.
(2.4) leads to

ifAz ds’ ImH,»V(s',m,m)

H,!'(s,m,m)=2£—2—(f,~—Xi)+
T

7 Y4am? s’ s'—s—ie
(2.11a)
2
S S m -
nA(s,m,m)= m(Xi—X,.)Jr ?(Yi— Y;)
+1 A2 ImIA(s’,m,m)
T Y 4m? s'—s—ie

+Im?»,-”(s',m,m)} , (2.11b)

mn’4 0)= =S (X —X )+ (T =¥
H (S,m, )= 477_2( i i) 2( i i)

4
2 ImI1) 4(s’,m,0)
N [z
T9m s'—s —ie€
+ImA} 4(s’,m,0)

(2.11¢c)

In Eq. (2.11a) we have made use of the fact that
Al(s,m,m)=—T11"(s,m,m)/s, which is a consequence of
the WI. In Eq. (2.11) the first-degree polynomials in s in-
volving X; —X; and Y, — Y, cancel the A2 dependence of
the integrals and introduce the pole and / contributions of
dimensional regularization. Thus, these expressions are
suitable for calculations in both modified minimal sub-
traction (MS) and on-shell frameworks.

The DR approach is a very convenient way of perform-
ing higher-order calculations and provides a welcome
check on the structure of V;(r), 4;(r), and F;(x). On the
other hand, for the evaluation of X; and ¥;, which are in-
dispensable in the MS scheme, there is no substitute for

the dimensional-regularization calculation of Ref. [16].
One could argue that the DR of Eq. (2.4) can be used to
evaluate physical observables such as Ap and Ar. That
also has a caveat: indeed, one must show that the in-
tegrals over the large circle are absorbable in redefinitions
of X; and Y;, so that they cancel in these observables.
We were able to do this in the case of Eq. (2.5), but only
after appealing to the dimensional-regularization evalua-
tion. As explained in the next section, one of the interest-
ing applications of Eq. (2.4) is that, coupled to some very
plausible assumptions regarding asymptotic behavior,
they provide a framework to analyze 7 threshold effects
that are not taken into account in the usual perturbative
calculation.

We close this section with a related topic of general in-
terest, namely, the expression of physical observables
such as Ap and Ar in terms of convergent dispersion in-
tegrals. Such observable radiative corrections have the
property that they are automatically finite, i.e., devoid of
(n —4) poles when evaluated in the on-shell renormaliza-
tion scheme. But this implies that when Eq. (2.4) is sub-
stituted into the theoretical expressions for observable ra-
diative corrections, the combination of dispersion in-
tegrals that appears must necessarily be convergent as
A?— . In fact, the cancellation of the X; and ¥, terms
implies that of the X; and Y, terms. As X; and Y; exactly
compensate the A%-dependent terms in the dispersion in-
tegrals, this means that the latter also cancel.

The case of Ap is of sufficient simplicity and interest
that it is instructive to give an ab initio derivation.
Defining p as the ratio of the effective coupling strengths
of the neutral- and charged-current amplitudes at zero
momentum transfer and writing p=1/(1—Ap), the fer-
mionic contribution to Ap is given by [19,21]

_ Ayp(0)  4Z0(0)

A
T, M2

, (2.12a)

where the A’s are the appropriate transverse self-
energies, as defined in Ref. [21]. Recalling that
I1%(0,m,m)=0, the contribution to Eq. (2.12a) due to an
isodoublet (1,2) reads

_ Gr
V2

m40,m,,m,;)+140,m,,m,)
2

(Ap)ig

—1"0,m,m,)—140,m,,m,)

(2.12b)

The WI of Eq. (2.2a) tells us that this can be written in
the equivalent form

(M) — Gy | ANO,m ,m)+A%0,my,m,)
P id ‘/E )

—AY0,m,,m,)—A40,m,,m,)

(2.12¢)

Consider now the function
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A"’(s,ml,m1 )+A”(s,m2,m2)
2
*AV(s,ml,mz)—

As Eq. (2.12¢) is finite and the divergences in
AV 4(s,m,,m,) are independent of s, we see that Eq.
(2.124) is finite for all values of s. [Here finite means free
of (n —4) poles.] Moreover, we expect that

fls,my,m,)=

Ads,m,m,) . (2.12d)

[lim. 6. Hz a5 (st myymy)=0, (2.12€)
so that f (s,m,m,) obeys an unsubtracted DR,
© Imf(s"ml’m?.)
flsmy,ma)= f(m,+m2 s'—s—ie ’
(2.12f)

We have explicitly verified Eq. (2.12¢) for arbitrary m,
and m, at one loop and for m, =0 at two loops, in which
case it reduces to Eq. (2.10). We conclude that (Ap);4 can
be expressed succinctly as a convergent dispersion in-
tegral:

Gr
(Ap)id:—rf(o,ml,mz)

V2
Gr o ds’

= = I my, . 2.12
w2 (m1+m2)2 s’ mf (s i mz) ( g)

For the purposes of this paper the most interesting ap-
plication of Eq. (2.12g) is to analyze the tb contribution
to Ap. Approximating m,=0 and recalling that

V(s,m 0)=A (s m,0) and A/(s,0,0)=0 (i =0,1), Egs.
(2.12d) and (2. 12g) lead to

(Ap)y =

GF o ds’ AA(S"mnmt)
2 2

—2A4s",m,,0) | . (2.13)

As we shall see below, this simple integral representation
will permit us to understand almost immediately why the
threshold effects associated with the 7 and th channels
give a contribution to Ap of the same sign as the pertur-
bative O (aa,) terms. We also note that Eq. (2.13) can
directly be obtained by setting m, =0 and inserting Egs.
(2.11b) and (2.11¢) into Eq. (2.12b). As the
AV’A(s,m,,mz) functions involve the divergence of the
vector and axial-vector currents, we recover from Eqgs.
(2.12d), (2.12g), and (2.13) the notion that Ap is a measure
of weak-isospin breaking.

III. INCORPORATION OF THRESHOLD EFFECTS

Threshold effects involving the 7, tb, and bb channels
can be expressed as contributions to ImIIV’A(s,ml,mz)
[12,13] and ImA" 4(s,m,m,). In the following, our aim
is to analyze how they affect IT1"> (s, m 1,Mm,), and we pro-
pose to do so on the basis of Eq. (2.4). In using the DR
approach we assume that the threshold effects do not
alter the leading high-|s| behaviors of A}>4(s,m,m,) and

AV A(s,m,,m,), so that the integrals over the large circle
are not affected. This is equivalent to assuming that the
leading asymptotic behaviors of A “4(s,m,,m,) and
A A(s,m,,m,) are given by the usual perturbative re-
sults discussed in the previous section, with the threshold
effects providing only subleading contributions that van-
ish as |s|— . In particular, f(s,m,,0) still satisfies an
unsubtracted DR and (Ap), can still be expressed in
terms of the dispersion integral of Eq. (2.13). As the
threshold effects on the imaginary parts have support
over a small, bounded range, the corresponding contribu-
tions to the dispersion integrals are rapidly convergent
and the resulting functions vanish as |s|— . Thus, the
above assumption is very plausible and self-consistent. In
summary, in our formulation threshold effects are de-
scribed by the DR’s [20]

ImIT" 4

s'—s —ie

(s',m,m,)

1
n" 4s,m,, =— | ds’
(s,m,m,) ﬂ_f s

+ImAVA(s' ,my,m,) |,

(3.1a)

where the range of integration is to be chosen such that
the threshold support, which starts below the open-flavor
threshold, is included.

Using Eq. (2.2a), we see that n” A(s,m,,mz) can alter-
natively be written as

» ImIY As’,my,m,)
" As,m,,m,)= > ds’ 2

’

T N

s'—s—ie
+if£ImAV’A(s’ my,m,) . (3.1b)
T S' » 1>

We note that this representation can be directly derived
from the following assumptions: (i) n” A(s,ml,mz)
satisfies a once-subtracted DR; (ii) the subtraction con-
stant is determined from the WI of Eq. (2.2a),
so that IM"40,m,m,)=A"40,m,,m,); and (iii)
AV 4(s,m,,m,) satisfies an unsubtracted DR, so
that A" 4(0,m,,m,) can be calculated from the second
integral of Eq. (3.1b). Thus, the DR’s for I1""4(s,m ,m,)
proposed in Ref. [20] to study threshold effects, namely,
Egs. (3.1a) or (3.1b), are the simplest possible ones con-
sistent with the WI of Eq. (2.2a). The latter is, of course,
a crucial requirement.

It is important to note that, according to Eq. (3.1),
threshold effects modify the asymptotic behavior of
" 4(s,m,,m,) as |s|— o by constant terms, i.e., sub-
leading contributions. Therefore, considerable care must
be exercised in attempting to evaluate these effects by
considering unsubtracted DR’s for combinations of IT" 4
functions, judiciously chosen so that the usual perturba-
tive contributions vanish as |s|— . Indeed, when
threshold effects are incorporated, it is possible that such
combinations do not vanish as |s|]— o, in which case the
assumption of unsubtracted DR’s is no longer warranted.

In the remainder of this paper, we shall focus on the 7
threshold. Threshold effects associated with the tb chan-
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nel are known to be proportional to the square of the re-
duced mass of the th system [13] and can be neglected.!
This suppression also manifests itself in the fact that close
to threshold the continuum results for ImH,-V’A(s,m,O)
and Imk,-V’ 4(s,m,0) scale like v2, where
v=(s —m?2)/(s+m?) is the velocity of the massive
quark in the center-of-mass system (c.m.s.) [20]. Thresh-
old effects in the bb channel, i.e., bottonium resonances,
give significant contributions only to the photon self-
energy, which are routinely included [6]. Thus, only the
case m; =m,=m, is relevant in our applications.

We conclude this section by collecting the DR’s on
which our subsequent analysis will be based. They read

s ¢ ds' ImI¥(s",m,,m,)

n"s,m,m)=— | — S - ) (3.2a)
Ty s s'—s—ie
ImI“(s’',m,,m,)
M4(s,m,,m,)= —l-fds’ l - Lt
T s'—s —ie
+ImA4(s",m,,m,) (3.2b)

While threshold effects on ImIT"(s,m,,m,) are well un-
derstood [12,13], ImHA(s,m,,m,) and Imk”(s,m,,m,)
seem, at first sight, to require a separate analysis. In the
next section we shall see that this task is greatly facilitat-
ed by the fact that at threshold the ¢7 system is essentially
nonrelativistic.

J

IV. PARAMETRIZATION OF THE ¢t THRESHOLD

As pointed out in the Introduction, the shape of the 7

-threshold is expected to depend crucially on the value of

m,. For m, close to its lower bound there should be a
rich spectrum of distinct nonrelativistic states bound by
strong long-range forces. For increasing m,, however,
the weak decay of a single top quark inside the bound
states comes to dominate their widths. At m, =130 GeV
the widths surpass the 1S5-2S mass difference, so that the
bound-state resonances lose their separate identities and
smear together into a broad threshold enhancement. Al-
though it is then still technically possible to compute the
characteristic parameters of the individual resonances,
their physical interpretation becomes dubious, and it ap-
pears more reliable to directly calculate the imaginary
part of the Green’s function of the Schrédinger equation
that characterizes the {7 system allowing for a complex
energy. The latter formulation effectively resums the
contributions of soft multigluon exchanges in the ladder
approximation. In our analysis we shall adopt the reso-
nance parametrization of Ref. [13] in the lower-m, range
and the Green’s function approach of Ref. [12], although
in a slightly modified form, in the upper-m, range. Prior
to discussing these two methods, we shall briefly review
the perturbative results up to O (aa,), which have to be
subtracted in order to avoid double counting.

Within perturbation theory, the imaginary parts that
enter Eq. (3.2) exhibit the following threshold behaviors:

N, a 2
%ImHV(s,m,,m,)Z 12;%(3—112) 1+CF?S %—4+0(u) + - ] , (4.1a)
a 2
%Imll"(s,m,,m,)=72—:—;v3 1+CF7’ ;T—v—2+0(v) R (4.1b)
N, a 2
—TmAA(s,m,,m, )= 12; %(3—:;2) 1+CFTTS— ;—U—3+0(v) + - ] , (4.1c)

where N, =3, C,=(N?>—1)/2N,, and v =1"1—4m?/s
is the velocity of either quark in the c.m.s. Full expres-
sions for the O (a,) terms may be found in Refs. [3,20].
We notice that ImIT4(s,m,,m,) is suppressed near
threshold by two powers of v relative to ImII V(s,m,,m, ).
This may be understood by observing that
ImIT"(s,m,,m,) corresponds to kinematically preferred
JP=1" states, with L =0, while ImII A(s,m,,m,) couples
to 17 states, with L =1, which are disfavored due to cen-
trifugal barrier effects. On the other hand,
ImA“4(s,m,,m,) receives contributions also from 0~
states, with L =0, which are again not subject to suppres-
sion. In fact, ImA“4(s,m,,m,)~—ImI"(s,m,,m,)/s
holds true in the nonrelativistic regime. We shall see
below that this relation can be explicitly verified in both

IThe occurrence of a Coulomb singularity in I1}(s,m,,m,) at
s =M}, is excluded because M} < (m,+m, )%

]
resonance and Green’s function approaches. We note
further that for v—0 the O(a;) corrections of Eq. (4.1)
are enhanced relative to the lowest-order results by the
universal term 7Cra, /2v, which is the QCD analogue of
Sommerfeld’s Coulomb rescattering correction [22]. In
the framework of nonrelativistic quantum mechanics,
this term is absorbed in the wave functions of the bound
states. The leading relativistic corrections to this term
are attributed to the exchange of a virtual hard gluon be-
tween the quarks and will be implemented explicitly in
the nonrelativistic formalism to refine the prediction.

We now make some observations concerning the renor-
malization scale p of a; in self-energy contributions in-
duced by the tb doublet. Since present knowledge
reaches only to leading order in QCD, conventional
methods of optimizing p such as the concept of fastest
apparent convergence [23] or the principle of minimal
sensitivity [24] cannot be applied. However, the mean-
value theorem of integration provides a consistent pro-
cedure to fix p within the dispersive formalism. Toward
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this end, one calculates the zb contribution to some elec-
troweak observable in two different ways, namely, once
with u linked to the integration variable s’ and once with
u kept fixed, and equates the two results. The matching
point comes out typically in the vicinity of u=m,. This
choice can be motivated independently by direct inspec-
tion of the two-loop amplitudes [25] and by arguments
based on an effective field theory [26]. By this means, it
is, of course, difficult to reliably distinguish between
u=m,/2 and u=2m,, say, and there remains a theoreti-
cal uncertainty which may be regarded as being of O (a?)
and higher. We stress that all these considerations ignore
tf threshold effects that arise from the resummation of
the perturbation series—or are of a nonperturbative na-
ture.

In the resonance picture, ImII"(s,m,,m,) can be ap-
proximated by a series of 6 functions [13]:

1 v a(M,)
~ImIl%(s,m,;,m,)=3 N, [1—4Cp——"—
N n o

M N n) za

n

where M, and R,(0) are the mass and the radial wave
function at the origin of the nth excited state, respective-
ly, and the QCD correction factor may be gleaned from
Eq. (4.1a). The interactions between the quarks are de-
scribed by a nonrelativistic, and thus spin-independent,
QCD potential. The positions and strengths of the reso-
nances are, therefore, determined by the radial equation
of motion and controlled by the angular momentum
quantum number L. Consequently, the dominant contri-
butions to ImAY(s,m,,m,)=—ImIl"(s,m,,m,)/s and
Imk”(s,m,,m,) are characterized by the same values of
M, and R,(0). Adjusting the QCD factor according to
Eq. (4.1c), we find that

a,(M,)
1—3CF~—S—2——
T

—ImkA(s,m,,m, )=> N,
n

|R,(0)]?
M

n
From the above discussion it is obvious that we may safe-
ly neglect ImI1“4(s,m,,m,) in the threshold region.

In our analysis we use the values of M, and |R,(0)|
which have been calculated in Ref. [13] for the twelve
lowest-lying toponium states as a function of m, in the
nonrelativistic quark model endowed with the Richard-
son potential [27]. To ameliorate the matching between
the resonance and continuum parametrizations, we
adopt the local-duality recipe suggested in Ref. [28] and

8(s —M?) . (4.2b)

choose ,u=2|p|=\/s —4m}? in the perturbative result,
where p is the three-momentum of either quark in the
c.m.s. We do this in the range (2my)?<s <5m}?, where
my=m,+400 MeV roughly represents the mass of the t&
or td mesons T. In this way, a,(u) increases towards the
threshold, simulating the onset of confinement. (We note
that throughout this transition region p takes a value
that corresponds to five active quark flavors.) The upper
end of the interval is chosen so that at this point u=m,,

the scale advocated for the purely perturbative treatment
of tb contributions. Thus, at s =5m} the two evaluations
of the imaginary parts, with £=2|p| and constant u=m,,
merge. For s>5m?, the imaginary parts are identified
with the usual perturbative contributions evaluated with
a,(m,). To determine the excess threshold effect relative
to the usual perturbative calculation, we subtract the
contribution to Eq. (3.2) coming from the latter, evalu-
ated with a,(m,) and integrated along the interval
4m?2<s<5m}.

In the Green’s function approach, ImlIl
given by [12]

"s,m,,m,) is

a,(2m,)
1—4C,——
™

1
2

lImHV(s,m,,m,)= N,
s 2m;

XImG (0,0;V’s —2m,+iT,) ,
(4.3a)

where G (r,r';E +iT’,) is the solution of the nonrelativis-
tic Schrodinger equation of the 7 system bound by the
potential V (r),

[H—(E +il)]G(r,r;E +il,)=8%(r—r") , (4.3b)
with the Hamiltonian
H=—-L9v24v(r). (4.3c)
m,

Notice that this correctly reflects the reduced mass m, /2
and effective width 2I", of the particle-antiparticle sys-
tem. The authors of Ref. [12] considered only vector
currents. However, replacing in their Eq. (3.2) the vector
couplings by axial-vector ones and repeating, mutatis mu-
tandis, the subsequent analysis, one finds that

1
2m}?

a,(2m,)

—ImA“4(s,m,,m,)= N, ‘1-—3CF

XImG (0,0;V’s —2m,+iT,) ,
4.3d)

where the QCD factor again follows from Eq. (4.1c),
while ImIIA(s,m,,m, )=0 as anticipated above.

We deviate from the procedure of Ref. [12] in the fol-
lowing two respects. First, we employ the potential J by
Igi and Ono [29], which accurately describes charmoni-
um and bottonium spectroscopy; to be consistent with a
recent global QCD analysis [30], we set A%=3OG MeV
in that potential. Second, we include QCD corrections to
the top-quark decay width I', [31]. We include the
contributions _ of  Eq. (4.3) in the range
(2m,—v'm,T,)?<s <(2m,+800 MeV)2. The lower
bound ensures that in all cases of interest the binding en-
ergy E=Vs —2m, of the f system satisfies
|E| <4'm,T', <<2m,, consistent with the underlying
nonrelativistic approximation, and that the domain
where ImG(0,0;V's —2m,+iT',) contributes signifi-
cantly is included; cf. Ref. [12]. At s=(2m,+800
MeV)?, the Green’s function results are already quite
close to the usual continuum calculation with ,u=2|p|, SO
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that from this point onwards we use the same transition
method as in the resonance approach. In particular, we
have to correct for double counting in the interval
4m?<s <5m? by subtracting, as before, the perturbative
results.

Figure 1 compares the three different parametrizations
of ImIT V(s,m,,mt) in the threshold region, as a function
of E, for selected values of m,. The dashed curves corre-
spond to the perturbative results up to O (aay), with o,
evaluated at the constant u=m,, for which the dispersion
integral of Eq. (2.11a) can be solved analytically to yield

LN B ) B B L N
L (G) ‘.'.‘ 4
I i o ]
6000 [— ! 'I u? = 4p® + Resonances —
L I
i - Green Function b
&L i i R
3 s N .
A i |
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Q T
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& i V)
& 2000 — P —
1 4
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FIG. 1. Perturbative, resonance, and Green’s function pa-
rametrizations of ImIT"(s,m,,m,) in the threshold region as a
function of E=V's —2m,, assuming (a) m,=120 GeV, (b)
m, =150 GeV, and (c) m, =200 GeV,; see text.

the familiar expressions [2,3]. The vertical lines visualize
the § functions of Eq. (4.2a). Their heights have been ad-
justed in such a way that the histogram, which is spanned
by connecting their peaks in stepwise fashion starting out
from the leftmost one, measures the integral over the &
functions. Specifically, if we integrate ImIl"(s,m,,m,)
over E using Eq. (4.2a), the area of the first (leftmost) rec-
tangle in the histogram represents the contribution to
this integral of the first (leftmost) resonance, the area of
the second rectangle from the left represents the contri-
bution of the second resonance, and so on. The adjacent
solid curves represent the continuum results with
u=2|p|. We point out that these curves would set on
somewhat too high if u=|p| was used; for a detailed dis-
cussion of this point see also Ref. [11]. Finally, the dot-
dashed curves illustrate the Green’s function parametriz-
ations by Eq. (4.3a). The Richardson potential has a
more singular short-distance behavior than the two-loop
potential that we use to compute the Green’s functions,
so that the 1S state is shifted to lower energy relative to
the latter case. This reflects the model dependence of our
analysis. However, this uncertainty in location is incon-
sequential after integration. We do not show curves for
ImA“4(s,m,,m,) because they exhibit very similar qualita-
tive features.

V. RESULTS

In the following, we shall work in the on-mass-shell
scheme [5]. A comprehensive analysis in the MS scheme
will be reported on in a forthcoming paper [32]. Before
presenting our final quantitative results, we reveal the
main qualitative features by drastically simplifying both
resonance and Green’s function approaches. We first
consider a single toponium resonance 6 with mass
My=2m,. Neglecting the hard-gluon correction factors,
we may write Eq. (4.2) as

%ImHV(s,m,,m, )=—ImA4(s,m,,m,)

=7fiMi8(s —M3) , (5.1)

where f2=N.|R,(0)|>/(wM}) is a dimensionless con-
stant measuring the vector coupling strength of 6. The
presence of 6 induces the following additional contribu-
tions in Ap and Ar:

Gr

=_ _JF a0
8(Ap) 2\/2fVM , (5.2a)
c2 LI Ve
s(an=—sap) [1- [1-353 | -2
Sw 3 MB_MZ
+%Traf,2, ) (5.2b)

where cZ,=1—s3 =M% /M2. Equation (5.2a) follows
immediately from Eq. (2.13) using Egs. (2.2a) and (5.1)
and recalling that ImHA(s,m,,m,)»wO near threshold.
For phenomenologically acceptable QCD potentials, the
empirical relation |R,(0)]>«<m?Z,, where m.4 denotes
the reduced mass of the quark system, is approximately
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satisfied for given n [13]. In the case of the Richardson
potential, the proportionality factor of the 1S state is
roughly 1.1 GeV in the bb and tb channels, and varies be-
tween 1.9 and 2.8 GeV for M, =m, <200 GeV in the 7
channel [13]. Hence, —6&(Ap) increases with m,, and so
does 8(Ar) for m, >>M, /2. Notice the enhancement fac-
tor of ¢, /s, in Eq. (5.2b).

As anticipated in Sec. II, threshold effects associated
with the tb doublet shift Ap in the same direction as the
familiar O (aa;) corrections. The sign of the effect can
also be understood directly from the basic equations (2.1)
and (2.2). The contributions of a sharp O~ toponium res-
onance to A4(s,m,,m,) and A“s,m,,m,) are
f5/(s—M3%) and f3M}%/(s —M}%), respectively, where
fg is defined by (0]J,1(0)[6(q)) =if 4q,. The WI of Eq.
(2.2a) tells us then that IT14(s,m,,m,) receives a corre-
sponding contribution — f%. Inserting this result into the
first term of Eq. (2.12b), with m;=m, and m,=0, we
find a contribution —Ggf3/2V2, which is consistent
with Eq. (5.2a). A related argument, involving spontane-
ously broken axial-vector currents, is often invoked to ex-
plain the generation of the vector-boson masses in tech-
nicolor theories. To stress the similarity, we note that
GrM2f%/2V2 is part of 455(0) in Eq. (2.12a), and can
therefore be interpreted as a contribution to the Z-boson
mass.

In the Green’s function approach, the 7 excitation
curve can be imitated crudely by lowering the open-flavor
threshold of the perturbative result from s=4m? to
s =(2m,—A)? and by defining in this interval
Nc CF

16

%ImHV(s,m,,m,)=—Imk“‘(s,m,,m,)= a(u),

(5.3)

which continuously merges into Egs. (4.1a) and (4.1c).
The length and height of this rectangle are controlled by
the free parameters A and u, respectively, while m, is re-
garded as fixed. Up to terms of O (A?), the resulting con-
tributions to Ap and Ar read

Gp a(u)
8(Ap)=— 3 N Cp - m,A (5.4a)
2 2 2
Ciy ) M3
8(Ar)=——-8(Ap) [1— |[1— == —_—
’ sk P 3 W] (2m,)*—M3
N,Craa,(pn)A
it i Al il (5.4b)

9m,

This exhibits a similar structure as Eq. (5.2), which nicely
demonstrates the duality of the two underlying pictures.
Taking A and p to be roughly m, independent, Ap again
receives a negative correction that increases with m,.
The above discussion is only qualitative. The detailed
calculations show that, in the range 150 GeV =<m, =250
GeV, the threshold contributions to Ap and AT increase
with m, faster in the Green’s function than in the reso-
nance approach, and that both grow more rapidly than
m,.

Our quantitative analysis of the continuum contribu-
tions in O () and O (aq,) is based on Ref. [15] with the
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FIG. 2. Predictions of M, as a function of m, for M, =60
GeV and M =600 GeV from «, Gr, and M. The dashed lines
represent the electroweak calculation with a;=0, the dot-
dashed lines include the perturbative O (aa;) corrections, and
the solid lines include the additional contributions from ¢
threshold effects. The latter are evaluated in the resonance ap-
proach for m, <140 GeV and the Green’s function formulation
for m, > 120 GeV; the difference between the two methods in
the range 120 GeV =<m, <140 GeV is not visible in the figure.
For comparison, we display the current value of My from CDF
and UA2 measurements.

modifications suggested in Ref. [33]. We incorporate the
result of a very recent calculation [18] of two-loop correc-
tions to the p parameter, which generalizes the formula
of Ref. [17] to arbitrary Higgs-boson masses M;. We
employ the three-loop formula for a,(u) [34], which we
adjust in such a way that a,(M,)=0.117 [30]. We adopt
the parametrization of the light-quark sector from Ref.
[35]. We use M,=91.187 GeV [36] and otherwise em-
ploy the standard-model parameters of Ref. [37].

Our final results are presented in Figs. 2—5. Figure 2
demonstrates the significance of QCD corrections for the
mass relation established by Ar. Both continuum and

T LA B S B B B T T L B N Ly
150 — L
—— Perturbative QCD -

---- Pert. QCD + Resonances

~=-- Pert. QCD + Green Function

—AMy [MeV)

My = 200 GeV

ol b v v b v v b v b v b b b v v 1y

100 120 140 180 180 200 220 240
m, [GeV]

FIG. 3. Shift of My due to perturbative QCD corrections
(solid line) plus 7 threshold effects calculated in the resonance
approach (dashed line) and the Green’s function approach (dot-
dashed line) as a function of m,, assuming My =200 GeV.
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FIG. 4. Shift of sin’0y, as a function of m,, assuming
M =200 GeV; see caption of Fig. 3.

threshold contributions act in the same direction, and at
high m, their combined effect becomes comparable in size
to the uncertainty caused by the lack of knowledge of
My. For comparison, also the combined result of the
My, measurement by Collider Detector at Fermilab
(CDF) and UA2 Collaborations [38] is shown. It is clear
that measurements of m, to ~+5 GeV and of My, to
~ 150 GeV would give valuable information about M.
Figure 3 illustrates, in the case of the My, shift, the rela-
tive size of the threshold effects and the usual O(aa,)
corrections originating from the continuum. We see that,
depending on m,, the former amount to 25-40 % of the
latter. Already for m, 2150 GeV, the overall QCD-
induced My, shift exceeds the expected experimental er-
ror of the M, measurement planned at LEP 2. Figure 4
displays the same information in terms of
sin’0,, =1—M3,/M2%. Figure 5 shows by how much
QCD corrections shift the value of m, predicted from
current My, measurements. In Figs. 3-5, we have as-
sumed the central value My =200 GeV. However, the
M, dependence essentially cancels out in the parameter
shifts considered there.

At this point, we roughly estimate the errors on the
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FIG. 5. Shift of m,, as a function of My, assuming My =200
GeV; see caption of Fig. 3.

evaluation of the My, shift. Of course, every QCD
analysis suffers from the relatively poor knowledge of a,.
The current world average at the Z-boson scale is
a,(M,)=0.117£0.007 [30]. In the continuum, the QCD
corrections are proportional to a,(u), so that the experi-
mental error is roughly £6%. To estimate the theoreti-
cal error, which is mainly due to the lack of knowledge of
terms beyond O (aa,) we vary u between m, /2 and 2m,.
This changes a,(u) by typically £10%. Moreover, if we
recall that the O (aay) corrections to Ap and to the m,-
dependent part of Ar are ~10%, it appears plausible that
terms of O(aaf) may, in fact, amount to ~10% of the
O (aay) contributions. It is clear that knowledge of the
tb contributions in O (aa?) is requisite in order to further
constrain the fudge factor in the choice of u. We thus ar-
gue that the total error in the continuum calculation is
presently at the level of +£15%. To determine the experi-
mental error on the threshold contributions, we repeat
our Green’s function analysis using the parametrizations
of the J-type Igi-Ono potential appropriate for A%)s-=200
and 400 MeV, which roughly correspond to
a,(M,)=0.110 and 0.124, respectively. We find a varia-
tion of £16%, which is nearly three times as large as the
experimental error in the continuum. This may be under-
stood by observing that the line shape of the 1S reso-
nance is highly sensitive to a,, the dependence of the
peak height on a being approximately cubic for m, <150
GeV [12]. Furthermore, the prediction of the #f excita-
tion curve depends to some extent on the underlying
quark-model assumptions. To estimate this model depen-
dence, we have compared the resonance approach, with
the Richardson potential, and the Green’s function ap-
proach, with the Igi-Ono potential, in the transition re-
gion 120=m, <140 GeV. We have also checked that the
potential used in Ref. [12] yields results that are rather
close to those based on the Igi-Ono potential. This leads
us to an estimated theoretical error of +15% on the
threshold effects. Thus, the total error in the threshold
calculation is at the level of £30%. Taking into account
that, for M, <m, <250 GeV, the threshold contributions
make up 20-30 % of the total QCD corrections, we con-
clude that our overall QCD predictions have an error of
~+20%. Finally, it is encouraging to point out that, al-
though one expects the resonance and Green’s function
approaches to be preferable at lower and higher m,
values, respectively, the M, shifts predicted by the two
methods are, in fact, rather close over the entire range
M, <m, <250 GeV [32].

VI. CONCLUSIONS

We have investigated the sensitivity of central elec-
troweak quantities such as Ap and Ar to the precise shape
of the ff excitation curve in ete ™ annihilation. For
m, 5130 GeV, we have parametrized the threshold line
shape by a spectrum of separate toponium resonances
along with a suitably adjusted continuum onset
[11,13,28]. For higher values of m,, we have employed a
Green’s function technique which automatically resums
to leading-logarithmic order in QCD the ladder diagrams
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involving the exchange of any number of uncrossed
gluons [10,12]. By the optical theorem, o(e e ™ —tf)
corresponds to the absorptive parts of the photon and Z-
boson self-energies, and its enhancement at threshold in-
duces additional contributions in the corresponding real
parts, which are not included in the usual perturbative
calculations to O (aa,). We have evaluated these contri-
butions by means of dispersion relations which manifestly
satisfy the underlying Ward identities [20] and have ana-
lyzed the resulting shifts in Ap and Ar. The threshold
effects turn out to reduce the value of M, predicted from
a, Gp, and M, by ~(8,14,25,45) MeV for
m,=(91,150,200,250) GeV, respectively; i.e., in that
range of m, values they enhance the well-known pertur-
bative corrections [3,16] by some 25 to 40%. Conversely,
the value of m, predicted from current measurements of

My, is increased by 1.6 to 3.3 GeV as My, varies from
79.87 to 80.41 GeV.
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