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We consider the class of supersymmetric models whose Higgs sector contains a “‘conventional” pair of
SU(2), doublets and an arbitrary number of extra “exotic” SU(2), X U(1)y neutral Higgs singlets (possi-
bly related to an extra symmetry group G), with a priori arbitrarily large vacuum expectation values
(VEV’s). We show that, as a consequence of the functional structure of the scalar potential (dictated by
gauge and supersymmetry invariance), a general property exists in the scalar mass matrix which decou-
ples the lightest Higgs-boson mass from the large VEV effects at the tree level. At one loop, we show
that, if the fermion-sfermion sector is considered, the analogous property “screens” the lightest Higgs-
boson mass under very general assumptions for the symmetry-breaking mechanism.

PACS number(s): 12.15.Cc, 11.30.Pb, 14.80.Gt

A well-known property of a class [1] of “minimal” su-
persymmetric models with two SU(2); doublets of Higgs
fields is the existence of one light scalar=H, for whose
mass the famous bound exists at the tree level,

My <M, (1)

which can be also expressed as the statement that the
bound on My is of O (v), where v =(wi+v3)?and v, ,

are the vacuum expectation values (VEV’s) responsible
for the SU(2); XU(1)y breaking.

The problem of the existence of a similar bound has
also been investigated for nonminimal supersymmetric
cases. In particular, models where one extra Higgs sing-
let acquires a VEV =x have been recently and extensively
considered, both for the canonical situation of a conven-
tional fermionic spectrum [2] and for the case where the
extra Higgs singlet is related to a larger gauge group
which could be the low-energy relic of an original sym-
metry suggested by superstring models [3]. In both cases,
it has been remarked that the light Higgs-boson mass
remains, at the tree level, of O (v) rather than becoming
of O(x). This means that in the large-x limit (formally,
in the limit x — o) the nonminimal VEV effect decouples
from the light Higgs-boson mass bound. The latter con-
tains, though, in addition to the “minimal” term, Eq. (1),
an extra piece depending on the new couplings that ap-
pear in the potential. To fix qualitatively a bound re-
quires now therefore the use of renormalization-group ar-
guments, from which one derives in general a “correc-
tion” of the same size =0 (v) as that of the minimal
bound.

The previous considerations are valid at the lowest or-
der of perturbation theory. Since the considered models
are renormalizable ones, the question naturally arises of
whether this fundamental feature is retained, or lost, at
the next one-loop order. In fact, the presence of radiative
corrections of the kind 8M ,211 =0 (ax?) would destroy the
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previous formal decoupling property and affect dramati-
cally the low-energy spectrum of the theory. Therefore, a
general investigation of this problem (that, to our
knowledge, is still lacking) seems to us rather strongly
motivated.

The aim of this paper is to show the following.

(i) For a class of supersymmetric models whose Higgs
sector contains, in addition to the two minimal doublets,
an arbitrary number of SU(2), XU(1)y singlets [not
necessarily related to extra U(1); although this might be
the case] with possible “large” VEV’s x;>>v,
i=1,...,N, aspecial property of the mass matrix exists
that automatically produces the phenomenon of the tree-
level x; decoupling from the light Higgs-boson mass
bound.

(ii) For the previous class of supersymmetric models,
assuming that the fermion-sfermion spectrum is made of
the ‘“‘conventional” standard model multiplets with the
possible addition of an “exotic” sector [not necessarily
SU(2), XU(1)y neutral] whose masses are only generat-
ed by the extra x;, an analogous property of the mass ma-
trix exists that automatically eliminates, in the formal
x;— oo limit, the contributions to the bound on M ,2,‘
from this sector that are of O (ax?), O(ax;) and only al-
lows the presence of logarithmic terms ~a Inx?.

To prove our statement, we consider a supersymmetric
model for which the part of the superpotential that only
contains Higgs fields has the form

W(hi,hy¢))=Niihihy+W (), 2
where k| , are the “minimal” SU(2), doublets and

W(¢i):kijz¢i¢j¢z+:u‘ij¢i¢j 3)
is the most general function of the extra Higgs fields.
The choice of the various couplings will be dictated by

the specific considered model. In particular, it might be
possible that the new Higgs fields are associated with an
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extra gauge symmetry group G (typically, whenever in
the low-energy phenomenology a new Z appears). In this
case, we shall require that the full superpotential is a sca-
lar with respect to the extended gauge group
SU(2); XU(1)y X@G, and this will automatically select
the number of possibly nonvanishing A;, k;;,, p;;.

Starting from the general expression Eq (2) we are led
to the scalar potential

V(h,hy,0;)=Vp+Vp+Vsp 4)
where, in the minimal-energy configuration,
2

aw

V=Y |—

F 2{ dx;
=3 k,-vlvz-i-——-—ZZ/‘ +|k | w?+0v3], (5)

i i

Vp=D?=D} +D}y+D}

+

=§9—8§’—| I |2+-—2—|v T +03T5+x2T7) .

(6)
In Eq. (6) T are the generators of the extra group G with
coupling g,; T7=($;T°;)/{$;6;) (no sum on the in-
dex 0; T4 =(Hy3THyz))/(H\)Hy5)); and we
have assumed the usual expression of the soft supersym-
metry breaking term:

Vsg=mwi+mid+mix}—2A4Nx0,0,—24W(x),

(7
where AW(x) could be, in principle, still split into two
different (bilinear and trilinear) terms (since this will not
affect our conclusions, we retained this simplified in-
clusive notation). Starting from the potential Eq. (4) it
would be straightforward to derive the nondiagonal mass
matrix of the scalar sector; this will be a 2+ N)-
dimensional quantity, whose eigenvalues will provide the
masses of the physical scalar Higgs particles. But for the
specific purpose of the determination of a general bound
for the lightest Higgs boson, the problem is much
simpler. In fact, a known property of any Hermitian ma-
trix is that its minimum eigenvalue must be smaller than
that of its upper-left-corner 2X2 submatrix [we choose
the ordermg so that the (1,2) indices correspond to & ,].
Calling m}? ;j the matrix elements of the squared mass ma-
trix [M?], and denoting by M} i, the lightest physical

Higgs-boson mass, the followmg rigorous bound will
therefore obtain:

2 2 172
2 < mi +mj [1_

2.2 4
miyma—my
2 < _q 1122 P12
1 2 (m3,+m2,)?

(8)
Starting from the expressions Egs. (4)-(7) of the potential
and imposing the mlmmum condmons dV/dh,,=0, the
following expressions for m?,, m%,, m2, are obtained:

gZv}
2

%Z —Ax, | |+ +2g303TITS

—A;tanf8

2 —
mn =

9)
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T 2,2
dW—Ax,- 8203

mi,= [—}»,»cotB . +2g%iTiTs

(10)

m},= [7\:' l“‘%ﬁ"‘ Ax;

8212

+ (3 2A%v,0,—

i

+2g%,v,TITS |, (11)

where tanB=v, /v, and g2 =g%-+g?2. As one can see, all
the three matrix elements are separately a priori of
O(x?). To make this fact evident, we have rewritten
them in the form

ml=m}+m} (12)

where the first terms on the right-hand side (RHS) con-
tain all the (quadratic and linear) x dependence, and cor-
respond to the first set of square brackets in Egs. (9)-(11),
while 77;; contains terms of O(v) multiplied by dimen-
sionless constants that can be treated by
renormalization-group (RG) arguments. Thus, a priori,
one might expect that the bound of Eq. (8) is of O (x?) as
well, and as such not particularly useful. The surprising
fact that invalidates this argument is that, while the trace
of the 2X2 matrix m%, +m3, is actually of O(x?, its
determinant m3;m%, —m$, is in fact not of O(x*) but
only of O(x?). This “miraculous” cancellation of the two
highest orders is a pure consequence of the functional
structure of the scalar potential, whose form is dictated
by the constraints of supersymmetry and gauge invari-
ance. In fact, the general expression of the determinant
reads

ij

2.2
mymsy;
2 -2 4 2 — —4
—nqllm12+mllm22—m12 (13)

and one sees that the cancellation of the leading power is
automatic in our case, since

2 4 ___
MM, — M, =0 (14)

is verified irrespectively of the explicit form of W(x;).
Therefore,

2 .2 _
mymy

is of O(x?), and its ratio with (m? +m%)?* is of
O(1/x?). In the (formal) limit x;—> oo this allows us to
develop the square root in Eq. (8) and to obtain the for-
mal result

M},l(xi—w:o)_<_;%[mflv%+“m‘§2v%+2n—1ﬂvlvz] , (15
which contains terms of O (v?) multiplied by dimension-
less couplings. We can reformulate Eq. (15) as the state-
ment that for the class of supersymmetric models deriv-
able from the superpotential of Eq. (2) there exists a tree-
level bound on the lightest Higgs-boson mass that
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remains of O(v) in the formal limit x; — . Thus, the
extra introduced VEV’s decouple from the latter bound
in this limit.'

Equation (15) represents the generalization to a more
general class of models of a property that was previously

stated in some specific cases [2,3].2 The new property

that we shall show is that, even when one considers one-
loop corrections, an almost analogous phenomenon is
met. As a consequence of this, the two leading x powers
in the bound disappear in the formal limit x; — o, leav-
ing only a logarithmic term that will be, in general,
nonzero. This is somehow reminescent of Veltman’s
“screening” theorem [5] of electroweak radiative correc-
tions at one loop in the minimal standard model, which
only retain a logarithmic dependence on the Higgs-boson
mass in the (formal) limit My — oo, since the ~M} term
is exactly canceled. Contrary to what happens at the tree
level, this screening property of the bound is only possi-
ble if a supersymmetric scenario is assumed, and as such
it appears as a genuine feature of models of this type.

To demonstrate the previous statement, a specification
of the full particle-sparticle spectrum, in particular of the
fermion-sfermion sector, is now needed. We shall consid-
er in this paper a fermionic sector consisting of the con-
ventional standard model families, whose masses are gen-
erated by v, ,, and of a possible “exotic” sector of parti-
cles whose masses are only generated by x; (in this way,
as a subcase of special interest, models originated by a
previous Eg4 symmetry will be incorporated in our treat-
ment). This corresponds to adding to the Higgs superpo-
tential Eq. (2) some extra terms, leading to the complete
expression

W =Wen(S,hy )+ W(hy,hy,¢;,)+WI(E,$)+W(S,E)
(16)
where Wy, is the superpotential of the conventional
matter superfield (S) of the minimal supersymmetric
(SUSY) standard model; W(h,,h,,¢;) is the superpoten-
tial of Eq. (2) involving only Higgs superfields; W(E, )
and W(S,E) are the terms which give mass to the exotic
fields and describe the possible interactions with the stan-
dard fields. From Eq. (16) one easily derives by standard
techniques the complete form of the full scalar potential.
Rather than giving that, we write the expressions of those
field-dependent masses that will be relevant for our pur-
poses. More specifically, we shall be first concerned with
the fermion-sfermion sector, where the (potentially

10ne easily verifies that this property remains true if the model
is such that the terms of O(x}?) coming from W are absent, such
as, e.g., in the models with extra Z’s of Ref. [3]. In this case,
myy,2,,12 are separately of order x and the determinant is of or-
der x as well owing to the same mechanism, so that the previous
conclusion still applies.

2Strictly speaking, a similar result could be obtained even
without imposing supersymmetry and starting from a scalar po-
tential whose form is constrained (e.g., by gauge invariance of
some kind) to be as in Eq. (4) (an example of this statement can
be found in previous works where two nonsupersymmetric dou-
blets were considered [4]).
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dangerous) Yukawa couplings are contained. For a gen-
eral sfermion system of two physical states, we shall
write, in full generality,

M, =M*+A%, (17)

M?=3{(ME +Mig), A*=1V (M — Mg ) +4Mfy

(18)
gf gy
M =miyg +M] _2‘T3L ‘—Z—YL (v3—v?)
g}
+—2~TL(T;*U%+Tgv§+fo,?) , (19)
Mjip =M}, with (L=R). (20)

Here mszoft, L(r) and the squared SUSY-breaking masses
generally not equal at the M, scale, M y is the mass of the
corresponding fermion, and Ty, 3z, Y. g, Tf g are the
charges of the left and right sfermion with respect to
SU(2)., U(1)y, and G; M7, is the mixing term of the
sfermion matrix, which has to be computed separately for
each specific case.

The strategy for computing radiative corrections at
one loop to the Higgs scalar mass matrix is well known
[6]. Starting from the effective potential at one loop [7]

Vh=(1/647)STtM*“(InM?/Q>—3) ,

and using the given expressions of the various masses,
one is led to an expression for the mass matrix at one
loop that contains the contribution of all field-dependent
masses. In particular, we shall be interested here in the
2 X 2 submatrix mj-, i,j=1,2. Writing the corresponding
matrix elements as

m,-3-=m,-‘j072+8m,-2j , (21)

where m/?? is formally analogous to the tree-level expres-

sions but depends on the renormalized running couplings
(evaluated at Q*=M % in our case), and using the
definitions of Egs. (17) and (18), it is easy to derive (taking
the minimum conditions into account) the following ex-
pressions of the sfermion contributions:

n d’A* 1 dA?
sm2=—2-1z —
T 3277'2[ dw? vy dv,
2 2
dM? dA?
+| |5 | + |5
{ dv, ] dv, v
dA? dM?
+25= 22 R,
o, do, @2
dm,=8m, (12), (23)
sm2. = d’A’ dA? dA* | dM? dM’
mlz‘_ Z
3272 | dv,dv, dv, dv, dv, dv,
dA?* dM?* | dA* dM?
+ R, 24
dv, dv, dv, dv, @4
where
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R =In(M}/M3), (25) easily computed, and from them one can isolate the most

) 2 2 divergent components of the matrix elements at one loop,

V=In(M}/Q*)+In(M3/Q% , (26) which read

Z=MR+AXV-—2), Q7 8t =—(n;/321%)ZhgAtanBm?, /A%, (34)

and n is the number of degrees of the fermion (n,=3 for 8%, =—(n;/32m%)ZhgA;cotBmi, /A%, (35)
a colored particle, n,=1 for a lepton). To compute the N 5 2 )

fermion contribution is trivial, but unnecessary for our &y, =(ny /32w )ZhgiAim7, /A7 . (36)

purposes of isolating the leading-x behavior of Egs.
(22)-(24), since from our previous discussion it is clear
that no fermion state will be able to produce x-dependent
terms. Thus, Egs. (22)-(24) are all we need for the dis-
cussion of the fermion-sfermion sector.

The large-x behavior of the light Higgs-boson mass
bound at one loop will still be determined by the proper-
ties of the 2X2 determinant m?,m3, —m$, at the corre-
sponding order, since the bound Eq. (8) is valid at every
order of perturbation theory. Using the notations Egs.
(19) and (12) to isolate the terms of O(x?2), O(x) from the
remaining part of the matrix elements [which as we shall
see will include at one loop smooth logarithmic O(Inx?)
terms), the constraint that the leading x powers be can-
celed in the bound at one loop leads to the ‘“‘screening
equation”

COtB 6m 11 +tanB 8m 22 +28m 1= (28)

as one easily sees from Eqgs. (9)-(11) and (14).

To verify whether this is actually the case, a separate
analysis has to be performed for different fermion-
sfermion systems since the properties of the related A?
terms are generally different. We shall consider here the
two most characteristic and relevant cases.

(i) The exotic fermion-sfermion system. Here the ex-
pansion of A% [Egs. (17) and (18)] reads

AZ:%\/[Ams2+kixi2+Q1v% +quiP+aMEy , (29)

where
ki=1g}[T{ —TR1T7, (30)
q; =%312f[YL — YR ]_%gE[TsL —T3g]
+ig} [T —TRITY, j=1,2, (31)

and Am? is the difference m §0ﬂ L soft r»> Which will be,
in general nonzero at the relevant MZ scale and vy, in-
dependent. The mixing term M7, has the form

M,ER:EhE,- }»ivlv2+—d::/—Axi > (32)
where
d*w
———==hgx; . (33)
dEdEc F

Quite generally, A% is of O(x?) in the large-x limit and, in
principle, the radiative corrections to m (5,j =1,2) will
be of the same order. The crucial point for our analysis is
the fact that all the various A? derivatives that appear in
Eqgs. (22)-(24) are now finite in the limit. Thus, the only
dangerous terms will come in this case from the quantity
Z, Eq. (27). The expressions of the Z coefficients can be

These equations allow us to confirm our statement for
this contribution, since the cancellation Eq. (27) turns out
to be automatically satisfied. Thus, the only possible
corrections to the light Higgs mass bound will come from
logarithmlc terms, which are actually present at one loop
in the 87} “smooth” components.

(i) The top-quark —top-squark system. In this case (an
identical treatment can be given for the bottom-
quark-bottom-squark or lepton-slepton case with obvi-
ous t—b,l replacements) the expression of A? is analo-
gous to that of Eq. (29), with the only difference that
M}, now reads

IR =h v A;x; —

A proper treatment of this term requires a separation of
three different subcases, corresponding to three different
situations. We discuss them in order of decreasing sim-
plicity.

(a) An extra group G exists, and the quantum numbers
of the left-handed and right-handed top system under the
group are different, T/ Tx. In this case, the treatment
is similar to that of case (i). All the A2 derivatives are
finite, and the formal expressions of Sm become

AU2] . (37)

8m3, =(3/32m*)Zh( AN;x; /A?)tanf , (38)
8hi3, =(3/3271)ZhH ANix; /A?) cotB (39)
83, =—(3/(3201)Zh2( AN;x; /A?) , (40)

from which one derives immediately the screening condi-
tion Eq. (28).

(b) A gauge group G exists, but now Ty =Tg. In this
case, the quantity® A? is still of O (x?) if M? is of O (x?)
and the difference m2 ; —mZy g is of O (x?) as well. In
this situation, the treatment is again similar to that of
case (i) and one comes to the same conclusion. If, as a
particular case, M? is of O(x?) and mZg ; =mZy g, the
quantity A? is of O (x) rather than being of O (x?), and its
relevant expression is

A’=h, v Ax;— Av,] . (41)

The proof of Eq. (28) is more elaborate, since all the three
terms in Egs. (22)-(24) are separately contributing 8m

due to the fact that dA?/dv, is now of O (x). To demon-
strate our statement, a full expansion of all the various
terms in the large-x limit is needed. In this procedure, an

3Actually, this is not only a formal consequence of the pres-
ence of the D terms in Eqgs. (17) and (18) but is also motivated
from the fact that the scale of soft SUSY breaking is actually of
the same order as that of the extra group breaking ~ x in a class
of relevant models [3].
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essential ingredient is the fact that one can write
InM? /M%=2(A’/M*)+0(1/x%) . (42)

When Eq. (42) is taken into account, the final expressions
of the relevant quantities become

dmi, =(3/32m)Vh2 AN;x; tanf , (43)
83, =(3/3201)Vhr AA;x; cotfB , (44)
i, =—(3/320)Vhr AN x; , (45)

and the screening condition Eq. (28) is again recovered.

(c) No extra gauge group exists. This would be the
case of “minimal-nonminimal” SUSY models such as
those treated in Ref. [2]. This case is formally analogous
to the previous one (b). Therefore, our procedure will au-
tomatically guarantee the screening of the large-x effects
under the assumption that, in the large-x limit,* M? is of
O(x?). If this condition is not met, our formal proof
fails, and we cannot guarantee, in this simple and general
way, the absence of dangerous radiative corrections to
the bound. This would require separate and specific anal-
yses (e.g., if they turned out to be sizable but negative
they would not affect the final result in any case).

In conclusion, we can say that, for the fermion-
sfermion sector, for a rather general class of models, the
large-x effect on the light Higgs-boson mass bound is
screened to one loop.> Since this happens for each single
contribution separately, no kind of fine-tuning is request-
ed between the different couplings. In other words, the
requests of SUSY and gauge invariance protect at one
loop the light Higgs-boson mass from the potentially
dangerous effects of exotic scales in this sector. This is,
in fact, the main result of our paper.

The next important step would be to verify whether the
previous nice property remains true for the remaining

4This seems to be, at least, a natural assumption in the model if
the minimum conditions of the potential have to be valid in the
large-x limit without resorting to special ““fine-tuning” condi-
tions.

5Note that the cancellation of the unwanted effects is valid in-
cluding a formal O(a?) term that was neglected in Eq. (26),
since their factorization in the overall one-loop quantities repro-
duces rigorously the tree-level situation of Egs. (9)-(11).
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contributions to the one-loop potential, i.e., those coming
from the Higgs-Higgsino-gauge-gaugino sector. In the
case in which an extra gauge group G is present, an
answer to this question requires a specification of the con-
sidered group. This would imply a detailed analysis of
the various possible realistic cases [extra U(1), extra
SU(2), ...] that is clearly beyond the purposes of this
preliminary investigation. We have, though, performed a
partial analysis in the simplest relevant case, that is for
the “minimal-nonminimal” model examined in Ref. [2].
For this model, we have performed an analysis of the
charged scalar, pseudoscalar, chargino, and neutralino
sector using some recently proposed approximate expres-
sions for the neutral masses [8]. We have verified that
even in these cases the separate contributions satisfy the
screening condition Eq. (28). This leads us to conjecture
that the property will remain true for a more general
case, although at the moment we cannot provide a
rigorous proof of this statement (that is, in fact, under in-
vestigation).

We want to conclude this paper with the derivation of
a particularly simple formulation of our result in the
(possibly meaningful) situation of large tanfB values,
tan8>>1. In this limit 73, =73, =0 [see Egs. (9)-(12)],
and the one-loop bound on the light Higgs-boson mass
assumes the compact expression

M (tanB>>1) <3, +8m3, =223 g Th ) +8m3, ,
n

(46)

where now n denotes the general symmetry group of the
model [n =1,2 correspond to U(1)y, SU(2),; higher n
values correspond to the remaining possible components
of the extra group G]. Thus the full extra information on
the bound at one loop from the fermion-sfermion sector
is contained in the finite part of the (2,2) matrix element.
Quite generally, we obtain from our formulas that the
latter is dominated by the top-quark—-top-squark system.
Therefore, in this situation of large tanf, the full contri-
bution of the exotic sector can be safely neglected, which
is the generalization of a result already found for the spe-
cial case of the so-called n model in a previous work [9].

We have greatly benefited from several discussions
with M. Drees. We are both grateful to the theory
division of DESY, where this paper was written, for its
warm and friendly hospitality.
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