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We investigate an effective chiral quark model containing besides a two-quark Nambu-Jona-Lasinio force also three-quark 
forces. By means of path-integral techniques this model is, at first, convened into a quark-diquark-meson-baryon theory and 
afterwards hadronized into a meson-baryon theory. This way, we have performed an approximative step-by-step reduction of a 
three-body problem to a two-body problem in the collective field approach. 

1. Introduction 

QCD as the theory of  strong interact ions should describe hadrons.  However,  it is given in terms of  coloured 
quarks and gluons, which are supposed to be unobservable  objects and, therefore, should be confined. It is a 
challenge to derive effective chiral lagrangians describing low-energy hadron physics from the microscopic QCD. 
Some progress in this direct ion has been rcached, especially concerning the "der iva t ion"  of  effective meson 
lagrangians. Here in termedia te  QCD-mot iva t ed  quark models  such as the Nambu-Jona -Las in io  ( N J L )  model  
[ 1 ] play an impor tant  role. A lot of  papers  devoted to the path-integral  bosonizat ion of  QCD and NJL models  
has been published [ 2 -6  ]. In this way, the microscopic  theories arc rewritten as effective theories given in terms 
of  composi te  bosonic objects, mesons. Let us ment ion that in a similar  way diquarks as effcctive degrccs of  
freedom have been introduced both in two-dimensional  QCD [ 2 ] and in four-dimensional  QCD-type  models  
[ 6-8  ]. The concept of  d iquarks  is also successfully used for the unders tanding of  nonleptonic  weak decays at 
low energies [9] .  Fur thermore ,  there are first a t tempts  in the direct ion of  path-integral  hadronizat ion,  intended 
to describe QCD in terms of  hadrons  ( mesons and baryons)  [ 10-12 ]. 

Our  purpose consists in further investigating path-integral  hadroniza t ion  using the method appl ied in ref. [ 8 ] 
for meson -d iqua rk  bosonizat ion but  extending the underlying NJL model  by including in addi t ion  to the two- 
quark N J L  force a three-quark force. As usual, the two-current  N J L  interaction term in the lagrangian models  
qua rk -an t iqua rk  and qua rk -qua rk  interact ions via gluon exchange. The novel introduced six-quark interact ion 
terms describe in addi t ion  gluon-media ted  qua rk -d iqua rk  interactions.  From a methodical  point  o f  view these 
terms require the deve lopment  of  sophis t icated functional methods for reducing in an approximat ive  way thc 
three-body problem to a two-body problem of  interact ing quarks and diquarks.  Extra compl ica t ions  duc to 
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additional many-body interactions are neglected. These techniques could be useful for other applications, too. 
It is worth mentioning that in our model the baryon fields must be introduced from the very beginning as 
dynamical fields. This is in contrast to ref. [ 10 ] where they are required only in a later stage in order to handle 
closed loops appearing in the evaluation of the fermion determinant. 

In the present paper the effective meson-diquark-baryon action is derived and presented in a complete form, 
including all interaction terms. After integration over the diquark fields we obtain the effective meson-baryon 
action with explicit expressions for the meson and baryon propagators. Moreover, the inhomogeneous Bethe- 
Salpeter equation for the quark-diquark Green function is quoted. Finally, the effect of the quark-diquark 
interaction on the baryon spectrum is qualitatively estimated. 

The paper is organized as follows. In section 2 we introduce the model including some motivations for the six- 
quark interaction term. Section 3 is devoted to the derivation of the meson-diquark-baryon lagrangian. Its final 
hadronized form is presented in section 4. 

2. The model 

Throughout this paper we consider the following effective quark model with the lagrangian: 

.~e=~ + ~ .  + ~(6, .  ( l )  

Here ~o is the free lagrangian, 

.5ao = q S f f  ~ q , S f f  l ( x ) = i~x - mo , (2) 

and -~NJL<P(4) denotes the extended NJL four-quark interaction term taken from ref. [8]. It consists of two parts 
with quantum numbers of meson and diquark bound states: 

4 

~'{N4)L = Z [ G,(ti./t'~q) (ClJ/ '~q) + (~(t/..//~'gq c) (tl¢.#~'gq) ] • (3) 
i = 1  

Here qC and •¢ are charge-conjugated fields, 

qC= COT , ClC=qTC, 

with C being the charge conjugation matrix, and T means transposition. The meson o¢¢~ and diquark JC0D pro- 
jection matrices in eq. (3) are defined by 

where .)~~ are Dirac matrices 

{ , l  , } 
{.K', i=  1, 2, 3, 4}= 1, 17 , _ 7 ~', 7"7 5 

and ~ is the antisymmetric Levi-Civita tensor defined in colour space for the group SU ( 3 )~. For simplicity, we 
consider the case of isospin flavour symmetry SU (2)f, so that the flavour generators .~ ,  ~ g  are given by the 
relations 

{ : ~ , e = 0 , 1 , Z ,  3 } = { ~ 2 1 r ,  x / ' - 2 r ' , v / 2 T Z ,  xf~2T3 } ,  {.rCg, g =  l, 2, 3, 4}={.T~, e=2 ,  0,1, 3} , 

with T " =  ½a" and a" being Pauli matrices. In eq. (3) summation over repeated indices r, 0 is understood. The 
coupling constants for mesons (G,) and diquarks ((~,) have dimension (mass) -2. For scalar/pseudoscalar 
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channels we take Gt = G2- G, G~ = (72 = G and for vector/axial-vector channels G3 = G4-  - G', (73 = (74- - (7'. 
In this way chiral symmetry takes still place ~ 

Before discussing the last term on the RHS of ( 1 ) let us mention, that the effective lagrangian Lfo + Lf (N'~_ can 
be motivated from QCD by using adequate Fierz identities [ 8 ]. Thereby, the simultaneous decomposition into 
colour singlet (qq) and colour antitriplet (qq) channels is physically attractive. The diquark sector of this model 
has been studied in ref. [ 8 ], whereas the meson sector has been extensively investigated earlier in ref. [4 ]. 

Now, the six-quark interaction term ~<6) included into ( 1 ) reads 

4 

, ~ ( 6 ) =  E E - -  - a  - or ig  c N ~ - c  c¢ ' i g  a . G6,v[G,q~(gl.I[D q )]O, [G,(q .gD q)q~'] (4) 
N i = l  

Here the index a refers to quark spin and flavour. The new coupling constants G6N are of dimension (mass) - 2, 
and the operators O N have dimension of mass (the coupling constants (7~ are included for convenience). In this 
paper we will work with unspecified operators O N, i= 1, 2, 3, 4, entering ~(6) in eq. (4). The lagrangian Lz(6) 
can be motivated phenomenologically as describing gluon-mediated quark-diquark interactions in the local 
approximation for the gluon propagator (cf. section 3). Note, that an n-quark interaction term is for large colour 
number Arc proportional to N~ -" .  Thus the three-quark interaction (4) with n=3 is a I/N¢ correction to the 
two-particle interactions (3). 

3. Path-integral approach with collective fields 

Let us consider the generating functional for Green functions of mesons and baryons for the model ( 1 ), 

Z[riM, O., q.] = j" ~q (J~exp i J" d4x ( Y +  ~ ) ,  

- a  - ~ C ~=(#~thq)rih+[(7,q,,(q.gD q ) ] r i ~  - , ~  - - c  , ~  a , +rib [G,(q .go q)q,~] (5) 

where riM, rib and qB are meson and baryon sources, respectively ,2. Next, we introduce collective fields analo- 
gously to ref. [8], including from the very beginning also baryon degrees of freedom in addition to meson and 
diquark ones. To this end, use of the following identities is made: 

l= ~ l-J ~M'<i(glJghq-M~)= ~ ~M ~Oexp i f d4x [ (4~#~q-M')¢:]  , 

1 = f 1"I ~D*° .(/DO" 5(4g°q¢-D'°)f i(gf . ,g~,q -D° '  ) 
0,0" 

= J" ~D* ~ D ~ '  C_/oJ exp i J" d4x [ ( ( l .g°qC-D'° )w°+~t°( ( ILg°q-De)]  , 

5(G,qa(q.AtD q ) - B  ) 8 ( ~ i ( q , / g D  q)q,~. ) 1 =  V I  C"~ B a ' A  ~ B a "  A '  ~ - .  - o ~  c -a..I - c  a"  A " a" __ B a "  A " 
a,.4.a" ,t1" 

= ~ l O e B C J ~ ( J ' ~ c x p i ~ d 4 x { t G ,  Clg,(gl/J~q¢)-a~l~,°A+~°~[ ~Gi(q-¢ ,A([ o~ q)q,~--B"A]}" , (6) 

~ The relative minus sign between the couplings of scalar/pseudoscalar and vector/axial-vector channels is due to the Fierz rearrange- 
ment of Dirac matrices for the t-channel vector exchange. 

~2 From now on in lhe source terms and other formulae the summation over i is assumed. To understand this summation we should 
remind the reader that we use the earlier introduced short-hand notations A for the indices {i, g}, r for {i, e} and 0 for {or, i, g}. 
Therefore, beside the couplings G,,  f~, all quantities depending on A, r, 0 carry the index i. 
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where M, D, D t, B,/? are auxiliary fields to be integrated away and 2M =  ]-[, C_eM ~, ~'./D=- FIo 2D ° etc. The 6- 
functionals have been rewritten as functional Fourier integrals over meson (0), diquark (co, co t) and baryon 
(~u, ~) fields, respectively. The indices A and a refer both to spin and flavour of the diquark and quark constit- 
uents, respectively. Notice that the baryons should be in a completely antisymmetric state. Concerning the col- 
our antisymmetric diquark fields according to the Pauli principle for flavour antisymmetric If and flavour sym- 
metric 3f states we must have respective antisymmetric or symmetric spin states. 

Inserting the identities (6) into (5) and integrating over the auxiliary fields yields 

x~ { q(Y) "~ Z[r/M. ,,. r/.] =C, I 2~'L/q~O~'-zco.c-ecotX~'-z~expi~d ' ~ ~day(~1(x,,qX(x))£(x,.,~qr(y))V" 

q,~l +ql q,,co -- O, cot°coo-b ( f l~-g/° '4)Oi- ' (q~-gt  °-a) , (7) 

where for simplicity we have introduced the short-hand notations 

O, = E G6NOtN" (8) 
N 

I n ( 7 ) £ i s t h e 2 × 2 m a t r i x  

( S i ) ( x ,  y) 2.Q(x)a(4) ( x - y ) ~  
£(x 'Y)=k2Ot(x )a(4) (x - . v )  -(Si,~)T(x,>,) ) '  

with 

Sg~ (x, y) = [S~ ' (x) +C,#"(x)~uA(x) +.t /hO~(x)]a(4)(x-y)  

and 

t2(x)---~lt° d'co°(x) , t2*(x)-cot°(x)C,#°o. 

We shall stress that a nontrivial result of the integration over the auxiliary baryon fields B,/~ has become only 
possible because of the presence of a term B~AO, Ba* resulting from the six-quark interaction (4). Without (4) 
one would get a trivial 6-functional ~(r/B-~,) fixing the dynamical baryon field. In eq. (7) the baryon field q/ 
couples to the fields of a quark q and a diquark co. Phenomenologically, the interaction term 2 ,(6) is suggested 
to arise from a quark-diquark interaction mediated by gluon exchange (figs. l a, b) in the local approximation 
for the gluon propagator. Thereby, in dependence on the Lorentz structure of the diquark system several types 
of  operators O, 'v in (8) are possible, 

O} =X0_  f o r i =  1, 2,  

=y.d+ for i=3,  4 ,  

OZ,=c f o r i = l ,  2 ,  

=c'xuY. for i=3,  4 ,  

(a) 

Fig. 1. Quark-diquark interactions mediated by (a) one-gluon and (b) two-gluon exchange. 
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where c denotes a constant, and the derivatives 

with 

"~ 0 0 0 duo9~-Ouog~-O~o9u, etc. ,  

are applied only to the diquark fields co °, co t°, 0 -  {or, i, g}, when acting on expressions ~ (qo9). 
Let us next integrate over the quark fields. The result reads 

Z[rlM, qB, rlB] =C2 J" .~0 ~o9'  c2o9 c_/q) .q/~' exp i( W ~ ' +  W.) , (9) 

with 

W~¢~6'¢ = - i  Tr In Sg~ - ½i Tr In( I + 4ST~f2tS~£2) 

+ S d4x --½ f d4y(]~'-flT)/~ ~__~Y] \4G(O~)2+~ogt°o9°+O'~Ou'W ~ ' (10) 

) - + V  O, qB + q ~  O~ ~U ~ W , =  d4x 4~,  [ ( r / h ) 2 _ 2 O ~ r / h l _ q W O y t r / W  -o.t - ,  ~ -,~ - i  , 

and 

fl,~=ogt.%,a~, fl.o=~o9,,~. 

In the derivation of  (10) we have used the fact that 

det £ = -S~,2 ( 1 + 4S~g2 t S~-Q) .  

The trace Tr in (10) runs over internal and spinor indices and includes an integration over space-t ime vari- 
ables. Eqs. (9),  (10) represent the result o f  the meson-diquark bosonization. A further integration over the 
intermediate diquark fields leads to a "hadronizat ion"  of  the model, i.e., one obtains an expression for Z in 
terms of  fields of  observable physical hadrons (mesons and baryons).  This integration has to be done rather 
carefully because of  the presence of  the diquark fields co*, o9 up to all orders due to the second term in ( 10 ). 

As usual let us perform a stationary phase approximation and restrict ourselves to the consideration of  the 
sector with co°=og*°=0, ~ 'A"=#A"=0,  but ~ #0 .  Here ~ satisfies the Schwinger-Dyson equation and is re- 
lated to the constituent quark mass m by 08"= V/6 ( r a p - m  )6~t6~°, where 

A 
d4k m 

m-mo=8Gi ( 2 r t ) 4 k 2 _ m  2. 

Shifting the integration variable ~ ' - - ,~)~=~*-0~ and expanding We~  ~ in eq. (10) in terms of  fields around 
this solution, one obtains 

W~ff~'~'--Wf~ I + W f ~ + W ~ l + W i m  . ( l l )  

Here 

W~r~e= f f daxd4yo9W(x)(,d~,~)°°" (x,y)og°' (y) , 

o Wfre¢. =½ d4xd4y~*(x)(,d~,))**'(x,y)qOC(y) , 

(12) 

(13) 
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f 
W~ee J = J d 4x ~ ( - OF t t~aa'(~A.4" - -  6A-4'i(7, tr S~" ) ~./a'A" ( 14 ) 

are the free effective action for the fields of diquarks 09, co* and parts (given before the integration over the 
diquark fields has been performed) of  the free effective actions for the fields of mesons • and baryons gt, ~9, 
respectively. The inverse free composite field propagators in (12) and ( 13 ) are defined by the relations 

1 
( 3 ~ )  '"  (x, y) = - ~ ~ " ~ c 4 J ( x - y )  + i  t r [ S , . ( x - y ) J l ~ S . . ( y - x ) J [ ~ ]  , (15) 

(z17o ~ )~" (x ,y)  = - ~ ,  ~s~'6(4) ( x - y )  +2i  tr[S,.(x-y).Ig°DS,.(y-x).~q~ ] , (16) 

with S, . (x)= ( i~ -m)- td (4) (x ) .  The trace tr means summation over internal and spinor indices. In the deri- 
vation of (16) we have used the fact that CS T C= -S , . .  The inverse meson and diquark propagators (15) and 
(16) were obtained within the meson-diquark bosonization scheme already earlier in ref. [8 ] ~3. The complete 
expression for the interaction part WC"C, nt of  the effective action is given by the sum 

w~., ~ " , =  w~., + w ~ ,  + w ~ ,  + ~ ' W i n  t 2 [ 0 )  , 0 ) ]  , (17) 

with 

I 
W ~ , = i  Z -2Tr(S,.@) p, @-- - .Achq~ ' ,  (18) 

p ~ 3  p 

1 
W ~ , = i  y. qTr(- -~,S~,~(fA~hA) q, (19) 

q ~ 2  

W m~', t = i p.~, pl+q Tr[ (Sin ~ ) " ( -  G , S ~  ~ ' A p  'hA) q+...] , (20) 

w '~., 2 t~0)t, 0)] = _¢~o~0)~ ~ [(_4S,~,,f2S~f2t).S~]O.,'0)t,~'~,.'A' 

+½i Tr(  ,,=,~ l -4Sra~'f2tScvf2)"+ 4STf2tS"f2) " (21, 

Here W~.t¢~ ' describes the meson-diquark-baryon interaction, W~¢,, and W~, are the higher-order self-interac- 
tions of  the corresponding fields. W~,¢~(~ is the first part of the meson-baryon interaction, where the dots in the 
RHS of (20) denote analogous terms with all possible orderings of the p and q factors in brackets. Notice, that 
everywhere in ( 18)-(21 ) the space-time arguments for the fields ~'~, 0),~n and ~* have been included into the 
indices A, B and r, respectively. A similar recipe holds for the propagators. (An integration over space-time 
arguments is understood. ) 

4. The effective meson-baryon  lagrangian 

So far we have obtained the generating functional Z in the representation (9). Now we want to derive in the 
final step the effective meson-baryon action. To do this we perform now the diquark integration. To this end, 
let us rewrite (9), ( 11 ) in the form 

s3 Notice, that some misprints in eqs. (16) and (17) of ref. [ 8 ] concerning signs and numerical factors have been corrected here. 
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Z[rlM, OB, rl.]=C3 ~q)~v/~tgcxpi(W~ee,+W~ee,+W,~t+W~t+Wim,+W, 0 

×exp  iWi,t 2 i 5J,o ' i  ~ ./ij~=jm=o 

After the integration one has 

Z[rlM, OB, rlB]=Cs y ~ ~,~ c.q.u/expi( ,t, W ~ t +  + ~v, W~) Wfree + W~ree 1 + W E t  Wintl + 

Xexp i Wm'~t 2 i ' i a J ~  expi  J,oA,o Jo, 
. 1 , ;  ,/  I j *w=j~=O 

Here the new effective meson action * Wr~,~ differs from (13) only by the inclusion of  self-energy correction 
terms associated to additional internal diquark propagators. 

For simplicity we next neglect contributions in Z corresponding to diagrams of  the type shown in figs. 2a, 2b 
and 2c as well as higher-order self-energy corrections to the baryon propagator ,4. Then, in this approximation 
we obtain 

f W f ~  + W ~ +  Wmt [ q~, ~,, ~u] + W.} .  (22) Z[rlm, Oe, rla]'~C4 ~q) ~ ~ u e x p  i{ 

Here the free effective baryon action reads 

W~= f l  d4xd'~YU2°'A(x)(A~")°*"A'(x'Y)q/""V(Y)' (23) 

with the inverse baryon propagator being given by 

(AT~)"A"'A'=--d'~"'dA*o7 ~ --i(~i tr (Sama') 6AA'-IAc~A°~A''qaa'-~w ~ m  --l--m'TaAa'A" , (24) 

~ [ ( _  • o, o,o~ o~ T~,,'A =A(~)e, 41Sm,I IDSmA¢ ° ,4(~D)... ( Zl;C l l O .  q A O n ( ¢ x A ' )  l lO'n . . . . . . . . .  D ' J m l ' - a ~  ~'r, D ) a m ]  aa" " (25) 
tl=l 

The first two terms in (24) are taken from (14).  The remaining terms result from the baryon-diquark  interac- 
tion in the first term of  the R HS of  (21).  (The second term of  (21) leads to self-energy corrections only. ) 

Before giving the expression for Wm,[q~, qT, ~,] in (22) let us mention that on the RHS of  (24) the second 
term is cancelled by an equivalent expression associated to the third term. Finally, this leads in short-hand 
notations to the following compact formula for the baryon propagator: 

(a) 
. _ . . . _  ( b )  ( c )  : : 

Fig. 2. Examples for complicated neglected diagrams in (22) (a) with internal diquark self-interactions and (b) baryon-baryon inter- 
actions; (c) Simplest box diagram contributing to baryon-baryon scattering. 

,4 Note that the simple box diagram contributing to baryon-baryon scattering (see fig. 2c) arises in perturbation theory in second order 
of Wm'~t 2 with n=0 and S~, replaced by S,.. 
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,J~,= -O,[1 + i(,J~' ) S,,, + T,,)O,] -t  , 

with 

I 
d ~ ) - A ' ° + C " = - C " H ' °  I -G,H,o G,, H,o=2i tr(S,,,.,¢[oS,~.#o) . 

The interaction part Wint of the effective action defined in eq. (22) can be represented as a sum, 

Wint [~ ,  /if,/ffl ~-- Wight "]- W~t  "~ Wint , 

where W~t and W~t are given by (18) and (19), respectively. In the approximalion leading to eq. (22) the 
meson-baryon interaction part W,~ now reads 

W i . ,  - W i~.~ l + ( S ~ - S m ) + 7 ~  - T , ,  a A a "  A " ] ( f f a "  A ' 

with *~' W~, t ~ taken from (20). T,~, is given by (25) with all S,,, substituted by S~,. Thus, the effective meson- 
baryon action in (22) is now defined. 

In the second part of this section we want to derive the Bethe-Salpeter equation for the hadron spectrum. To 
do this we have to integrate in the generating functional (22) over the meson and baryon fields, taking as usual 
all interaction terms outside the functional integral. This yields 

Z[rIM'fla'rlal'~expiWint iSJ@ ' iSJ~ ' i Zo[qM'flB'rIalJc"J~"J~'] =o 

where 

1 q ~ )  f ~4~ i [ W f ~  + Zo[ ]=C4expi  f d 4 x (  - ~ , ,  ( r /~ ) : -O~O,  - '  exp ~ J" d 'x  ~ ( ~ G  r / ~ + J ~ ) ]  

× f ~ c_?lffexpi(W~+ J ' d ' x  [ o A ( O T ' q ~ + J ~ , ) + ( O ~ O , ' ' + J ~ , ) ~ A ] ) .  

After the integration over ~, ~', ~ one has for the free part ~5 

Zo[r/M, 0B, r/B, 0, 0, 0 ] = C e x p ( - i  j 'j" ( ½/TM ~ ~;1~/~M "~-/TB A ~/~B ))  , 

where the new quantities A~, and A~, arc given by 

-H,~ 
A~,= H a , = i  t r ( S,n JIM S,,,, I{M ) (26) 

1-2GiHa, ' 

and 

i ( A ~ ) S "  + T")  (27) 
A'~= l+iO, (d~ , )S , ,+  T,,, ) . 

They describe quark-antiquark and quark-diquark Green functions, respectively (see figs 3, 4) ~6 
,J~, fulfils the inhomogeneous Bethe-Salpeter-equation 

, • (I zl~ = ~ (Ao,)S,, + T,,) - i (A  L' )S,,, + T,,,)O,A~,. (28) 

~ Here the constant Ccontains the determinant det(zJ~,)- t. 
For convenience, here and in other pictures quark and diquark lines in the initial and final states are not drawn together into a point. 
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• 4 -  • • • 

Fig. 3. Lowest order contributions to the meson Green function 
,J~, eq. (26). 

+ T.~ 
> > > 

+ . . .  

Fig. 4. Lowest order contributions to the baryon Green function A ~,, eq. (27), with T~, defined in eq. (29). 

A , h  

(b )  : + , 
_- > ; . > > ,  

Fig. 5. (a) lnhomogeneous Bethe-Salpeter equation (28) for the quark-diquark Green function with kernel K; (b) Definition of the 
kernel K. 

, ?  = + " .  

> ) > 

Fig. 6. Bethe-Salpeter equation for quark exchange defined according to eq. (29). 

This equat ion is i l lustrated in figs. 5a, 5b. The quant i ty  T,,, defined by (25)  can be represented in the form 

T,,, = S , , A , ,  T ' , , S , , A , , ,  , 
V 

T~, - 1 -A,oS,,, V '  
(29)  

with 

V =  -- 4 i . t l o  S,,,.//[ o . 

It describes a Bethe-Salpeter  ladder  o f  quark exchange diagrams shown in fig. 6. The corresponding bound state 
spectrum has been investigated in ref. [ 10]. Note, that the baryon pole of  the quark-exchange ampl i tude  1,, is 
not present in the qua rk -d iqua rk  Green function A~,. Since the denomina to r  in (27)  will have a zero near the 
pole posi t ion of  T,,, there should appear  a shifted pole in A~,. Thus, the effect of  the interact ion term containing 
Oi consists in shifting the baryon spectrum which is generated from quark-exchange diagrams alone. Numerical  
calculations of  the shifted mass spectra for different  O, are under  way. Besides one should calculate the coupling 
constants  of  the meson-baryon interact ion for concrete couplings 0 , .  

In conclusion, we have s tudied an extended NJL-type model  which includes as a novel feature a six-quark 
interact ion term modell ing qua rk -d iqua rk  interactions.  Integrating ovcr  the in termediate  diquarks an effective 
meson-ba ryon  action with meson and baryon propagators  was obtained.  
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