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We present the first corrections to the BFKL pomeron and discuss some of their properties, in particular their application to 
the small-x region of deep inelastic scattering. We find evidence that the fan diagrams of the Gribov-Levin-Ryskin equation are 
not the most dominant ones. 

1. It is now more and more being realized that  the 
small-x region in deep inelastic scattering is one of  
the new frontiers in per turbat ive  QCD. HERA will 
soon allow to measure,  for the first t ime, structure 
functions for Bjorken-x values down to 10 -4. Later  
on, also the hadron  colliders LHC and the SSC will 
face the low-x behavior  of  structure functions. F rom 
the theoret ical  side, the small-x region represents the 
challenge of  studying the interface between pertur-  
bat ive  and nonper turba t ive  QCD, with the pecul iar  
feature that  this t ransi t ion is taken in a kinemat ic  re- 
gion where o~s is small. 

It has been poin ted  out  in several papers  and arti-  
cles [ 1,2 ] that  the breakdown in the low-x region of  
convent ional  per turba t ive  QCD can be made  visible, 
for example,  in the opera tor  expansion: when I n ( l /  
xB) is of  the order  of  In ( QZ/A2 ) (for i l lustrat ion see 
fig. 1 ), terms of  higher twist which in the canonical  
t rea tment  of  the Bjorken l imit  are neglected because 
of  the 1/Q2 suppression,  become as impor tan t  as the 
leading-twist  contr ibut ion.  In this k inemat ic  region 
the par ton model  becomes more and more compli-  
cated and requires serious modif ica t ions  (e.g. pa t ton  
recombina t ion  and annihi la t ion  te rms) .  Alterna-  
tively, the small-x region of  deep inelastic scattering 
can be seen as the analytic cont inuat ion  of  the Regge 
l imit  ( 1 / x ~ s / Q 2 :  it is the l imit  s - - , ~  at large Q2). 
In contrast  to the usual Regge l imit  at low Q2 where 
the use of  per turba t ion  theory could never by just i -  
fied, one is now in a much bet ter  posit ion:  since 
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Fig. 1. The In Q2-1n(l/xB) plane. The line marks the expected 
end of perturbative QCD (from ref. [ 3 ] ). 

Ol s (Q2) is small at least the beginning (i.e. the region 
where x is not yet so small ) lies in the region of  valid- 
ity of  per turba t ion  theory. The Regge l imit  feels most 
strongly unitarity. It is therefore natural to expect that 
the small-x l imit  of  DIS first witnesses a reordering 
of  the relevant terms in the per turbat ion  expansion: 
instead of  the opera tor  expansion in inverse powers 
of  Q 2, uni tar i ty  in both the x-channel  and the t-chan- 
nel now take over as the guiding principle.  Ulti-  
mately, i.e. at very small x, nonper turbat ive  contri-  
butions must come in. One might hope, however, that 
a careful investigation of  per turbat ive unitar i ty will 
give insight into this nonper turba t ive  dynamics.  
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Pioneering work on QCD in the low-x region has 
been done more than ten years ago by Gribov, Levin 
and Ryskin [4].  Starting from the standard QCD 
framework in DIS, they investigated which set of  
Feynman diagrams have to be added in the small-x 
region, and they suggested to modify the usual linear 
QCD evolution equations by simply adding a nonlin- 
ear term. This can be interpreted as a first step to- 
wards unitarizing the usual one-ladder approxima- 
tion. The effect of  this new term is a lowering of  the 
increase of  the structure at small Bjorken-x. In the 
limit xB--,oo, the structure function approaches a 
constant limit (saturation).  Because of  the impor- 
tance of  this equation, in particular for practical ap- 
plications, further studies of  its validity are urgent. 

In this letter we report on an attempt to approach 
the small-x limit of  DIS coming from above, i.e. from 
the Regge limit. The leading-In s approximation,  the 
so-called Bal i tzky-Fadin-Kuraev-Lipa tov  [ 5 ] 
(BFKL) pomeron,  has been known by now since 
more than 15 years. With its fixed angular momen-  
tum plane cut to the right of  1 it violates s-channel 
unitarity. Its connection with DIS is well-understood 
[4].  We have calculated the first corrections to this 
approximation, observing both t-channel (reggeon 
unitarity) and (asymptot ic)  s-channel unitarity. The 
main motivation comes from the hope that, because 
of  the reggeization of  the gluon, it should be possible 
to derive a full reggeon field theory which satisfies 
unitarity in both the direct and the exchange channel. 
The results presented in this paper in fact support this 
hope, although a few essential steps are still missing. 
A solution to such a (effective) field theory should 
bring in nonperturbative contributions. 

As a first application, we have analyzed the limit 
of  large transverse momenta  of  these new corrections 
to the BFKL pomeron. When this limit is taken in the 
BFKL pomeron,  it leads to the standard evolution 
equation of  the gluon structure function (in the dou- 
ble logarithmic approximation).  In the same way one 
would expect that the first corrections should lead to 
the first fan diagram of  the GLR equation. Our result 
does not quite confirm this expectation: the matrix 
of  anomalous dimensions which governs the QZ-evo- 
lution of  the four gluon operator is found to have an 
eigenvalue larger than predicted by the GLR equa- 
tion. Numerically the difference is not large, thus giv- 
ing rise to the hope that the numerical estimates which 

are all based upon the GLR equation will not change 
by too much. The appealing simple form of  the equa- 
tion, however, can survive, if at all, only as an ap- 
proximation. Even in the restricted transition region, 
QCD seems to require a more complicated evolution 
scheme. How this scheme will look in detail, is pres- 
ently unknown and requires more work. 

2. Since the high energy behavior in the Regge limit 
is generally most easily described in terms of  cross 
channel partial waves, we need to calculate the par- 
tial wave for the transition 2-part icles~4-(reg- 
geized) gluons. The point of  interest is angular mo- 
mentum l=  1 (or, in the language of  moments, n =  1 ). 
One starts from a six-point amplitude in the triple 

Regge limit (fig. 2a): Sl2=(pl+p2)  2, Sl,3,=(Pv+ 
P3') 2, S122 ' =  (Pl +P2--P2')2-+OO; S122'/S12, S122'/S1'3' 
<< 1; t12= (Pl --PI ')  2=0;  t22', t33,=0(  l ). The corre- 
sponding partial wave is given by a triple energy dis- 
continuity (in &> s~22, and sv3,) (fig. 2b) which is 
calculated from unitarity integrals. Its phase space is 
restricted to the multiperipheral region, and for the 
amplitudes T2~n, T,~m we use the (real-valued) 
leading-In s approximations. Signature in all three t- 
channels is introduced by adding (or subtracting) the 
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Fig. 2. (a) Six point amplitude in the triple Regge limit; (b) the 
triple energy discontinuity; (c) reggeon unitarity equation in the 
partial wave of the elastic scattering amplitude; (d) the AGK 
cutting rules. 
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proper s -u  crossing terms. Finally, we move onto the 
nonsense pole at 111,=122,+133,--1 and take the two- 
reggeon cut in the t22, and t3y channel. Inserting these 
"residues" C4 into the reggeon unitarity equations [6 ] 
for the partial wave of the 2--+2 scattering amplitude 
(at the tip of the four-reggeon cut), and inserting the 
proper signature factors, one arrives at the partial 
wave (fig. 2c). We mention that this construction is 
in agreement with the Abramovsky-Gribov-Kan- 
cheli [ 7 ] cutting rules: the resulting scattering ampli- 
tudes could also have been obtained from s-channel 
unitarity directly (fig. 2d). For the present purposes, 
however, we do not need this 2-+2 scattering ampli- 
tudes, but only the "residue" function Ca. 

Finally, a remark is in place about the complete- 
ness of these new contributions. Clearly, any set of 
diagrams that goes beyond the BFKL ladders leaves 
the leading log s approximation. The new contribu- 
tions discussed in this letter present only a "minimal 
subset" of nonleading terms, in the sense that they 
are needed to satisfy unitarity equations. One of their 
most important is their selfconsistency. Neverthe- 
less, this cannot be the whole story: there also exist 
other nonleading contributions to the elements K2~2 
etc. (part of which will be responsible for changing 
the fixed coupling into a running one), and they can 
be obtained only by calculating new real parts. This 
program is being persued by V. Fadin and L. Lipatov. 
A similar effort will be needed, in order to include 
fermions. 

3. Results for D2, D 3 and D4 are illustrated in fig. 3. 
At the upper end the gluon lines couple to the photon 
via a closed fermion loop; properties of such coupling 
functions have been studied in ref. [2 ], and further 
details will be presented elsewhere [8]. Moving 

Fig. 3. The coupled equations for D> D3 and D 4. 

downwards, the number of gluon lines never de- 
creases; in addition to the interaction of two gluon 
lines (the BFKL kernel K2~2), there are two new ele- 
ments, K2~3 and K2~4. They have been derived first 
in ref. [ 9 ]. In order to write equations for these new 
terms, it is useful to define vertex functions D, for 2- 
particles-~ n-gluons (with n = 2, 3, 4) (in contrast to 
the functions Cn from above, the Dn include a reg- 
geon propagator, e.g. D4=C4/[(,o.-Z4=I a ( k i ) +  
3) ]. For the group structure we choose the coupling 
scheme where line 1 is combined with line 2, 3 with 
4. Since the total color content is that of a singlet, 
both pairs ofgluons must be in the same representa- 
tion (1, 8A, 8S, 10+ 1~, or 27). Furthermore, it is 
necessary to introduce signature in both subsystems, 
defined as symmetry or antisymmetry under the 
combined exchange of group indices and momenta. 
For n = 2 we have only one possibility, D2; this is the 
BFKL pomeron. For n=3,  one pair of gluons, say 
(23), must be in the 8A representation, but two sig- 
natures are possible: D~ +) and D~-).  The equations 
are 

oJD~ ) ( k l , k2 , k3 ;e ) )  

= D~ff ) + 3x/3 D2 ®K2.3(k, {k2k3 }) 

+ D~-  ) ® [ - 3 K2_:2( kzk3) - ~K2~2( k~ k2) 

- ~K2~2(klk3) +o~(kl ) + vc(k2) + vc(k3) - 3 ]  , 

o)D~ + )( kl ,  k2, k3;o)) 

=D~-)D~ + ) ®K2~3 (k~ [k2k3] ) 

+D~ 8"; + ) ® [ - 3K2~2(k2k3) - ~K2~2 (k~ k2) 

-- 3K2~2 (kl k3) q-0¢ ( k l )  + or(k2) + o~(k3) - 3] . 
(1) 

Finally, in the case of n = 4, we have three sets of five- 
component vectors, D~,,-~ + ), D~.7- ), and D~ +) with 
ie{ 1,5 }. The components are labelled by the different 
color representations. It turns out that the different 
signatures in D 4 decouple from each other, and we 
arrive at three sets of coupled equations. For the 
D~++): 

"k D2 @K}~4;, ¢oD~; ++) - ~'4o;, _ n(+ +) ++) 

+ Z D3 '~ r''(+ +)'~'~3~4;, +D~;++)®K4-4"j,,, (2) 

where ® = d 2k/(27r) 3. In D4 and D4o the components 
are the color representations, e.g. 
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D~;+I + ) =D~1; ++ )( co; k~, k2, k3, k4) . (3)  

On the RHS of  eq. (2) ,  the first term stands for the 
coupling of  gluon lines to a quark loop with two ex- 
ternal photon lines with ( m a s s ) 2 =  - Q 2 .  The second 
term has the form 

K(++) 9 K2~4({k,,kz}{k3, k4}) 2~4;1 ~ ~ 

+ +  K~4~  = ~K~4( [k,, k21 [k3, k41), 

K~+~4+~ = 9K2~4({L~, k2}{k3, k4}),  

K(++) =0 2~4;4 

3,/3 
K~+4+~ = ~ -  K2~4({k~, k2 }{k3, k4} ) (4) 

(the explicit form of the kernels will be given below). 
In the third term, the ~ includes two terms. In the 
first of  them the five vector components  are 

-- 3x/~g { D r  (k,, [kbk4 ] ) ®K2~3 ({k, k2 }k3) 

+ D ~  ( [k, ka]kb)®K2~3(k2{k3k4}  ) } , 

- 3x/3{D~ (ka[kbk4]) ®K2~3( [k, k2 ] k3) 

+ D f  ( [k~ k~] kb)®K2~3 (k2 [k3k4 ] )} ,  

- ~x/3{D~(ka[kbk4] )®K2~3({k, k2}k3) 

+ D~ ( [ k,k~]kb)®K2~3( k2{k3k4} ) } , 

3 
- ~ {D+(ka[kbk4] )®K2~3({k, k2}k3) 

+ D~ ( [ k,k.]kb)®X2~3( k2{k3k4} ) } (5)  

(k., kb are the internal m o m e n t a  which connect D3 
with the 2-*3 transit ion vertex) .  The second term is 
obtained by interchanging k, with k2 and k3 with k4 
(in the second component  we have to include a mi- 
nus sign. since it belongs to the ant isymmetr ic  octet 
representation and hence is antisymmetric in the color 
indices),  such that in total the third term has even 
signature in both pairs (12)  and (34) .  Finally, 

K4~4;11 = - 3 Q ( 1 2 ) ( 3 4  ) + ~ ' ,  

3 
K4~4;~2 = ~7~ ( - Q ( , 4 ) ( 2 3 )  + Q ( , 3 ) ( 2 4 ) ) ,  

3 
K4-4;21 - -  / ~  ( - Q ( 1 4 ) ( 2 3 )  +Q(,3)(24)) , (6)  

K4•4.22 -~-  3 3 + S -  ~ (Q(,4~(23~ + Q(~3~(24~) , - -  ~Q( ,2 ) (34)  

K4~4;23 = 3 ( _ Q('4) (23) -1- Q( 13 )(24) ) , 

K4~4;25 = ~ - ~  ( -Q( ,4)(23)+Q(,3)(24))  , 

K4~4;32 = 43- ( - Q(14)(23) + Q(t3)(24)) , 

K4~4.33 ~-- _ 3 , ~Q(I2) (34)  + ~  

_ 3 (Q(14)(23) + Q(,3)(24)) , 

3 
K4~4;34 - x / i 0  ( -Q(14)(23)+  Q(,3)(24)) , 

3 
K4~4;43 = ~ ( - -  Q(14) (23) + Q(,3)(2,)) , 

K4~4;44 3 = S +  ~ (Q(,3)(24) + Q(~4)(23~), 

K4~4~4, =~-~(-Q(14)(23) + Q(~3~(~4)), 

K4~4;52 = x / ~ ( - Q ( 1 4 ) ( 2 3 )  k- Q(13) (24) )  , 

/4~4;54 = X ~ (  - -  Q ( , 4 ) ( 2 3 )  + Q ( ,  3 ) ( 2 4 ) )  , 

K4~4:55 = Q(12)(34) + S  

- 2 ( Q ( 1 4 ) ( 2 3 )  + Q ( 1 3 ) ( 2 4 ) )  , (6 cont 'd )  

The other matrix elements K4~4;a vanish. Here we 
have used the abbreviations 

4 
s =  5Z [o~(k,) - 1 ] ,  

1 

Q(~2)(34~ =K2~2(k~, k2) + K2~2( k3, k4) , 

a(q) = 1-3q2flz(q) , 

f l z ( q )  = g 2  
d2k 1 

(2~z)3 ke (k_q)2 .  (7) 

The kernels are 

~2K2~2(k, k2;k ' , , k l )=q 2 k2ki2 +k2k'l 2 
' ( k , - k ' ~ )  ~ ' ( 8 )  

1 (k'~ +k'2)2k 2 
g~ K2~3( k~k2; k'~k'zk'3)= _q2 + (k2-kg) 2 

t r 2 2 1 ~ 2 L - 2 1 . . , 2  (k2 + k 3 )  kl t'~ l ~ 2 ~ ' 2  

+ (k, _ k,l ) 2 (k,_k,1)2(k2_k,3)2, (9)  

and 
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1 (kl +k'2 +k'3)Zk 2 
• t p t ! g4 K2~4(klk2'klk2k3k4)=q2- (k2_k,4)2 

. t  t t 2 2 (k2+k3+k4) k, k~,k~(ki+k;) 2 
- + 

(k~ -k'~) 2 (k~ - k ' l ) 2 ( k z - k ' 4 )  " 
(10) 

For the other two signature configurations, D~;7-) 
D + and ~;i - ) ,  the equations have exactly the same form 

as eq. (2).  Changes are in the first three terms. In 
order to arrive at K~Z2 ), substitute in eq. (4) for 
K~++) }~ ~ For K~+2 ), this substi- 2~4 { [ ] a n d [ ]  {}. 
tution should be done only for the second pair of  mo- 
menta. For the third term, substitute in eq. (4) 
{ } ~ [ ] and [ ] --, { }, and then antisymmetrize (sym- 
metrize) in (kl, k2) and in (k3, k4), such that we ob- 
tain negative signature in both pairs. For the mixed 
signature case, again start from eq. (4)  and perform 
the substitutions { }--, [ ] and [ ] - ,  { } in the follow- 
ing way: for each component ,  in the first term only in 
the argument of  D3, in the second term only in Kz~3. 
Then symmetrize or antisymmetrize in (kl, k2) and 
in (k3, k4 ), to obtain the correct signature properties. 

4. Let us list a few properties of  these equations: 
(a) Although almost each term on the RHS of  the 

equations contains infrared singularities, it can be 
shown that in the sum all singularities cancel: all ver- 
tex functions D2, D3, D 4 are infrared finite. This is the 
generalization of  the celebrated infrared finiteness o f  
the ladder graphs of  BFKL. 

(b) After some lengthy algebra one finds that the 
solutions to these equations can greatly be simplified. 
Starting with D 3 o n e  finds 

D~-)(k~, k2, k3; ~o) =g .  ½x/3 D2 (k,,  k2 +k3; o)) 
(11) 

and 

D~+ )(k~, k2, k3; 0 9 ) = g - i x / 3  [D2(kl +k2, k3; 09) 

-D2(kl + k 3 ,  k2; fo)  ] .  ( 1 2 )  

For D4 we have 

D~ l ; - - )  = D~ 8 s ; - - )  = D ~  10+r0; -  - ) - - D ~  27; - - ) = 0 , 

(13) 

whereas 

D ~ s A ; - - ) ( k l ,  k2, k3, k 4 ; o ) )  

= _g2.3D2(k I _t_k2 ' k3 + k 4 ;  (z)) . ( 1 4 )  

In other words, all amplitudes with "wrong statis- 
tics" vanish, except for the channel with the quan- 
tum numbers of  the gluon which reggeizes. The same 
is also true for the mixed signature case: 

D,~'; + - ) = D~ ss; + - ) = D~ 1° +r°; + - ) = D,~ 27; + - ) = 0 ,  

(15) 

D~8A;+-)(kl,  k2, k3, k4; o)) 

= - g . ½ , ~ D ~  (k~, k2, k3 +k4; ~o). (16) 

For the double-even signature case D~ ++),  we only 
remark that the intermediate state with three gluons 
can be eliminated by use ofeqs.  ( 11 ) and (12) (fig. 
4). At the transition from the 2-gluon state to the 4- 
gluon state a new reggeon vertex appears which fol- 
lows from eqs. (2) and ( 11 ), (12).  Fig. 4 should be 
compared with the first fan diagram of  GLR: in the 
4-gluon state there is pairwise interaction between all 
four gluons, and there is no restriction on the group 
structure (except for an overall singlet). In contrast 
to this, the fan diagram consists of  two isolated color 
singlet ladders. 

The reggeization properties in eqs. ( 11 ) - (  13 ), and 
(16) are generalizations of  the famous "bootstrap" 
property o f  the BFKL pomeron. Together with the 
infrared finiteness in (a),  this result indicates that 
the BFKL is just the first term in a systematic expan- 
sion, and what we are discussing in this paper ( D  3 

and D 4) are the second and third term• 
(c) We have studied the limit of  D~ + +) where 

k~ =k~ =k3  2 = k ~ = q e < < Q 2 .  (17) 

This is the region where fig. 4. should describe the 
small-x region of  DIS: following the experience with 
the BFKL pomeron,  one expects to reach the double- 

\ - /  
m 
D 
i 
I 
I 

= i 

1 

Fig. 4. Diagrammatic illustration of D~ ++~ . 
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logari thmic approx imat ion  of  DIS. In part icular ,  the 
leading behavior  in l n (Q2 /q  2) should exhibit  the 
singular (near  n = 1 ) part  of  the anomalous  d imen-  
sions of  the two and four gluon states, and the strength 
of  the 2 -g luon~4-g luon  t ransi t ion can be calculated. 
Detai ls  of  this calculation will be presented else- 
where. Here we only report  that  the anomalous  di- 
mension of  the four gluon opera tor  is der ived from 
the singularity structure of  a 12®12 matrix.  The 
leading singulari ty lies at 

y4(co) = 12.1 15 cg~, (18)  
o91[ 

and the corresponding four gluon state consists 
mainly  (but  not exclusively)  of  two color-zero two- 
gluon ladders. 

This result may  have serious impl icat ions  for the 
G L R  equation.  Namely  from this equat ion one easily 
deduces that the four gluon anomalous  d imension  
should satisfy [ 10 ] 

74(O)) =2y2( (o /2 )  . (19)  

With  the 2-gluon anomalous  d imens ion  y2(o) )=  
Nc(O~s/o)n) one concludes that  the numerical  coeffi- 
cient should be 12. Although the numerical  differ- 
ence is small, it nevertheless implies  that  the fan dia- 
grams in the G L R  equation are not exactly the leading 
ones. The evolut ion of  the four gluon state is not sim- 
ply the product  of  two independent  two gluon lad- 
ders, but  proceeds through the pairwise interact ion 
of  all four gluon lines (also the strength of  the 2- 
gluon--, 4-gluon t ransi t ion differs from that  o f  G L R  ). 
In order  to decide whether  the G L R  equat ion never- 
theless remains a useful tool, we need to know whether 
(and by how much)  

y , (o ) )>  ny(~o/n) . (20)  

If  the difference stays as small as in the present  case, 
the G L R  equat ion may remain  a very good approxi-  
mat ion  (but  not  more!)  to the true QCD predict ion.  
Otherwise we will have to live with a much more 
compl ica ted  evolut ion scheme. 

(d )  Finally,  no analyt ic  method  for de termining  
the leading singulari ty in the angular  m o m e n t u m  
plane has been found yet. One may however specu- 
late that the result in eq. ( 18 ) indicates the existence 
of  a new bound  state (f ixed cut)  of  the four gluon 
state to the right of  the " two-pomeron"  cut. In the 

absence of  anything better,  one may try a computer  
analysis of  eq. (2)  and find numerical ly  the location 
of  the leading singularity. 

It should be ment ioned that there are immedia te  
appl icat ions  of  such a calculation. Some t ime ago, 
Mueller and Navelet  [ 11 ] pointed out that  the BFKL 
pomeron  could be tested in a hadron coll ider or at 
HERA by looking at certain jets  in the final state. In 
context with HERA, these jets probe "hot  spots" [ 12] 
in the proton.  Up to now it is not known whether the 
BFKL pomeron  will become visible at all before the 
unitar i ty correct ions take over. A similar  word o f  
caution applies to the hypothesis  that  the power be- 
havior  of  the BFKL pomeron  might describe the low- 
x behavior  of  the gluon dis t r ibut ion at low Q2. 

5. Clearly, the results presented in this letter should 
be considered only as a step towards improving  our 
unders tanding of  the small-x behavior  of  deep-ine- 
lastic scattering and, ult imately,  also the nonpertur-  
bat ive Regge limit. As was said before, we strongly 
believe that a full reggeon field theory can be der ived 
for the Regge l imit  of  QCD. So far we have consid- 
ered only pa r t i c le~reggeon  ampl i tudes  but not reg- 
geon~reggeon  ampli tudes.  Ult imately,  the small-x 
problem in DIS can be solved only by solving this 
reggeon field theory. The novel aspect of  this "o ld  
p rob lem"  is the smallness of  c~s: the t ransi t ion from 
per turbat ive  to nonper turba t ive  QCD is taken in a 
region where the coupling is still small. 

I wish to thank E. Levin and M. Ryskin for intense 
and profi table discussions. 
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