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We calculate the potential between heavy fermions in the lattice Schwinger model in the euclidean formalism with 
staggered fermions by an unquenched strong coupling expansion and Monte Carlo simulations. The results are compared 
with the corresponding continuum expressions including finite size corrections. 

1. Introduction 

Up to now attempts to show the screening of the 
colour charge in QCD have had only limited success 
[1 ]. It appears difficult to see the influence of the 
fermion determinant in Monte Carlo (MC) simula- 
tions and to distinguish between screening and finite 
volume effects. We address these questions within the 
Schwinger model (SM) on a euclidean lattice with 
massless staggered fermions, because the SM is ex- 
actly solvable and shows the screening property too 
[2]. For the comparison with our staggered fermion 
calculations we refer to the solution of the "geomet- 
ric" SM on the torus T2 [3,4], which is essentially the 
SM with two fermion species. The advantage of tak- 
ing staggered fermions and comparing with the "ge- 
ometric" continuum SM is the well-defined connec- 
tion between lattice and continuum [ 5 ], while totally 
breaking the chiral symmetry on the lattice is avoided 
[6]. 

In this letter we calculate gauge field observables 
with MC simulations and using an unquenched strong 
coupling expansion (SCE) up to order N = 3 for a 
fixed volume. In particular, we show how the lattice 
reproduces the screening behaviour. Finite volume ef- 
fects and topological questions, as far as they concern 
gauge field variables, can be treated explicitly. 

Screening within the SM has already been investi- 
gated in the hamiltonian formalism by Bender, Rothe 
and Rothe [ 7 ] and Potvin [8 ]. Other authors use the 
SM in order to test MC algorithms [9,10]. For that 
it might be useful to have control over the effects of 

finite volume and finite lattice spacing. 
The paper is organized as follows: In section 2 we 

present the pure gauge results, in section 3 we perform 
the SCE for the unquenched theory, whereas section 
4 gives the results of our MC simulations. In section 
5 we conclude and give an outlook to further work to 
be done. 

2. Pure gauge theory 

2. I. Lattice Schwinger model 

The Wilson action of the lattice Schwinger model 
is given by 

X 

Px = U[x,1] U[x+el,2 ] U -1 U -I Ix+e2,11 ix,2] • (1) 

Quantities in units of the lattice spacing a, as fl, are 
marked by a bar. 

In order to calculate the expectation values of Wil- 
son loops W [ U  ] a strong coupling expansion, com- 
bined with a duality transformation [ 11 ] can be per- 
formed. For an infinitely large lattice this yields im- 
mediately 

(W)g - . /  D[U] W [ U ]  exp( -Ss [U])  = It (B)g,  

Ik (-fi) = Ik (-fi) / Zo(fl) . (2) 
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Here A, V are the area of  W and the volume of  the lat- 
tice in lattice units and Ik denote the modified Bessel 
functions of  order k. With the asymptotic expansion 
o f ~  up to second order (see e.g. ref. [12])  we find 
on a finite lattice with periodic boundary conditions 

[ 2 ~ (  a2)]  0 3 ( ( A / V ) ~ I ~ )  
(W)g = exp - 1 + ~ 03(01 z ) 

+ O ( a 4 ) ,  

i V (  a 2 ) z=~--~. 1 + ~ . .  (3) 

Here the values A,V ,#  are fixed in physical units, 
while ~ = # / a  2 etc. For our definition of  Jacobi's 
function 03 (z I z) see ref. [ 13 ]. 

We want to compare this result with the non- 
compact formulation of  the gauge field variables with 
a simple quadratic lattice action. In this case we get 

(W)g = exp[-2--~ (1 - A ) ]  . (4) 

The last two equations show the well-known fact that 
the scaling behaviour of  the lattice SM is trivial, i.e., 
in the limit a ~ 0 we get scaling by fl = 1/e2a 2, e is 
the physical coupling constant. 

2.2. Continuum S M  

For the corresponding calculations in the contin- 
uum SM on the torus 7~ we follow the definitions 
given in ref. [3]. There, a general gauge potential in 
Lorentz gauge is written as 

Au = & + eu~O~b(x ) _ 1 ~Ckf -#vXv  , 

2nk 
C k -  e V  ' (5) 

k c Z gives the topological sector of  A u, V = L x T is 
the volume of  T2. I f  we restrict A u to the topologically 
trivial sector, the expectation value of  a Wilson loop 
W of  area A becomes 

(W):,~ = e x p [ - { e 2 A ( 1  - A ) ] .  (6) 

This is exactly the result of  the non-compact lattice 
calculation eq. (4) with fl = 1/e 2. In fact, it is easy 
to see that the non-compact lattice formulation sup- 
presses the topologically non-trivial gauge configura- 
tions [Ant] with S~ . . . . . .  pact[Ant] ,~ 1/a 2 in the con- 
t inuum limit. 

4 V c ( R  ) , /  (Trm) 

1 5  
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Fig. 1. Continuum potential: unquenched (full line), un- 
quenched with infinite volume approximation (dashed), 
quenched non-compact (dotted) and quenched compact 
(dash-dotted). The squares show MC measurements for 
f l = 1 0 .  

The inclusion of  the topologically non-trivial sectors 
leads to 

(W)gc = e x p ( - l e 2 A )  0 3 ( ( A / V ) z c  [ "rc) 
' O3(0 [ Tc) ' 

ie 2 V 
~ c -  2n ' (7) 

which agrees with the result of  the compact lattice 
formulation in the limit a --* 0. 

In fig. 1 we give the potential between two heavy 
fermions for L = 16, T = 6, fl = 10. It is extracted 
from the expectation values in eqs. (6), (7) of  an 
R × T Wilson loop, i.e., two opposite Polyakov loops 
PL(R)  at distance R 

Vc(R) = ~ ln(PL(R))g,C. (8) 
1 

3. SCE with dynamical  fermions 

We denote the action ofmassless staggered fermions 
by 

Sf = 2a P u ( x ) [ x ( x ) U [ x u l Z ( X  + eu) - h . c . ]  
X,It 

1 
- f a ~ Q [ U l z .  (9) 
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After integration of  the fermionic variables we get the 
expectation value of  a gauge field observable f~ [ U ], 

(f~) _ Ya _ <n tU]  de tQtUl>g 
Z (detQ[Ul>g 

(10) 

The fermion determinant is usually treated with Wil- 
son fermions using the hopping parameter expansion 
[ 14 ]. For the staggered fermion determinant such an 
expansion is not known yet. Instead, one proceeds 
with its evaluation by the Cramer rule [ 15 ] 

d e t Q [ U ]  = Z t o ~ [ U ] ,  
G 

toG[U] = (--1)" H sign(p)Pu(x)Utx'ul" 
tx,u]~G (11 ) 

Here G is a general graph consisting of  n oriented 
loops, which touches every lattice point exactly once. 
The smallest loop, consisting of  two opposite links, is 
called a dimer. It has no orientation and the weight 
to = 1.In the infinite volume limit the gauge field inte- 
gration in eq. (10) gives a factor ~ (fl) A to every graph 
G surroundingA plaquettes once #1 . So ~ (fl) = ~, will 
serve as the expansion parameter of  a strong coupling 
expansion. We neglect the finite volume corrections 
because they are o f  order ),(v-a). 

In the further evaluation in the next two subsections 
all quantities are understood in lattice units, but for 
simplicity of  notation we drop the bars. 

3.1. Zero order strong coupling approximation 

In zero order strong coupling approximation a U (n) 
theory with staggered fermions is equivalent to a dense 
dimer gas [ 15 ], since dimers are the only loops with 
trivial gauge factor. We have 

Z ° = ~ 1 ,  yO = s i g n ( ~ ) Z 1 ,  (12) 
D D~ 

where D is a general combination of  dimers covering 
all lattice points but having no points in common,  for 
Do the dimers are not allowed to touch f2 either. In the 
lattice SM either sign(fl)  is positive or yO vanishes 
(see e.g. ref. [ 16 ] ). For the further calculation we use 

#1 A plaquette surrounded k times gives rise to a factor 
Ik (P), but this does not occur up to the regarded orders. 

the representation of  the sums in eq. (12) as integrals 
over Grassmann variables given by Samuel [ 17 ]. The 
effect of  the double periodic boundary conditions on 
T2 are treated with methods described in ref. [ 18]. 
The result is 

Z ° = ½ ( Z - -  + Z -+  + Z + - ) ,  

r° = ½ ( r j -  + + r J - -  rg+), 

Z q~2 [ D [ ~ , ~ b ] e x p  - ,,,2 = ( - ~ Q f  ~b), 

= ( 1 3 )  

xEfl 

Here ~ lives on the even, ~b on the odd sites of  the lat- 
tice, Q~,,2 is the fermion matrix of  eq. (9) restricted 
accordingly without gauge fields, el (e2) = 4-ldenote 
periodic and antiperiodic boundary conditions in 
space (time) direction, respectively. Furthermore 
~b(x) = ~ ( x )  (q6(x)) for x even (odd). Doing again 
the Grassmann integrals we get 

Zq '2  = H (4 Z sin2pu) " (14) 
{p}ele2 p=l,2 

With LI - L, L2 - T the momenta p in {p}q~2 are 
given by 

2n Pu = -~uu(nu +a,u),  nuC [-1L u,¼L u)nZ, 

I a+ = 0 ,  a -  = ~ .  (15) 

¢1~2 The y~,,2 can  be calculated by Y~ le2 = Z ' l ¢ 2 y ~  `2, Yn 
is the usual n-point function of  the free fermion action 
in eq. (13). For that a sensible limit has to be taken for 
the zero mode appearing with Oe2 = + + .It causes 
Z + + to be 0, while in general Y+ + # 0. This gives in 
principle the zeroth order strong coupling expectation 
value of  all observables f2 [ U]. However, in practice, 
e.g., for Polyakov loops the sum over permutations in 
the n-point functions Yn is not very practicable. 

In two dimensions it is possible to calculate the yO 
for fl  = PL(R) ,  i.e., two opposite Polyakov loops at 
distance R, as 

0 YPL(R) = ZI, L ( R ) Z p L ( L  - R ) ,  (16)  

where ZpL (R) is the dimer gas partition function on 
a R x T lattice with boundary conditions simulating 
the presence o f  a Polyakov loop. We obtain 
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ZpL(R ) m 1-[(.4 E sin2pu ) f o r R o d d ,  

pl,p2 tt= 1,2 

= H 12 sinp2[ H (4 E sin2 P~) 
P2 Pl p=l,2 

for R even, (17) 

where PI,P2 take the values Pt = zt/2R, 3z~/2R, 
. . . .  (R - 2)n/2R, for R odd, Pl = n /R ,  2 n / R  . . . . .  
(½R - 1)rt/R, for R even, P2 = 2re(n2 + ½)/T,  

1 1 n2E [ - ~ T ,  gT)  A L  

3.2. SCE o f  (f~) up to the Nth  order 

For a SCE of (D) up to the Nth order we define 
to be a graph G where all dimers have been omit- 

ted and ord(G) to be the power of y with which the 
corresponding Wilson loops would be weighted after 
gauge integration in pure gauge theory. So we have to 
do the sums 

N 

Z N = z o ( 1  + ~ , n  ~ x ( G ) )  , 

n = l  G,ord(G) =n 

(18) 

x ( G )  ~ Y ~ / Z ° i s t h e  zero order expectaion value of 

G, given by eq. (13), 

N 

n=l  G,ord(Gu~) =n 

(19) 

For f~ = PL(R),  x n ( G )  = yO a /yO can be com- 
puted as the n-point function u n ~ r  the Polyakov loop 
boundary conditions mentioned above. 

We define the Nth order SC ap~proximation of the 
potential V ( R )  in two ways: 7 ~" (R) and ~N(~) .  
For ~ N ( ~ )  the expansion of V(R),  defined as 
in eq. (8), terminates with the Nth power of y, 
whereas for ~N (~) = _ In W N ( R ) / T  the expansion 
of W(R) = (PL(R)) terminates with the Nth power 
of y. 

For a comparison with Monte Carlo data we have 
evaluated these potentials for a 16 x 6 lattice up to or- 
der N = 3, see figs. 2,3 for ~N. With the "convergence 
criterion" [7 3 ( R ) - V  2 (R)[ < 1~2 ( ~ ) _ V l  (R)I for all 
R we found "convergence" up to fl = 0.6.For T = 6 
it appears that the convergence is faster for p s ,  in 
particular ~-N decreases uniformly with N = 0, 1, 2, 3, 

whereas the corrections in V N change their sign with 
each N. 

3.3. Continuum S M  

For the continuum SM on T2 in the "geometric" 
formulation the potential given by the Polyakov loop 
correlation is calculated as [4] 

Vc(R) = ¼nm[1 - exp ( - m R ) ]  

zcm (cosh m R  - 1 ) 
2[exp ( m L )  - 1] ' 

m 2 = --2e2 . (20) 

The finite volume correction is only given by L, i.e., 
Vc(R) does not depend on T. In the limit m L  - .  o o  

the second term in eq. (20) vanishes and the well- 
known screening potential remains, see fig. 1. 

For a potential V (R) on a lattice with the same size 
as T2 in physical units we expect for a ~ 0 scaling as 
in the pure gauge theory with fl = f l /a  2, fl = 1/e 2, 
therefore for sufficiently small a 

m - l V c ( R ) l a  = N - 1 V ( ~ ) I g  ' ~ 2  = & . (21) 
n# 

For gauge field observables, i.e., in our case the lat- 
tice potential V (R), no difference is expected between 
non-compact and compact lattice formulation in the 
scaling region, because det Q [ U ] - 0 for topologically 
non-trivial sectors. Therefore the influence of dynam- 
ical fermions on the potential is bigger in the com- 
pact case due to the suppression of these sectors by 
the fermion determinant, as can be seen in fig. 1. 

4. Monte Carlo simulations 

For the generation of gauge field configurations we 
used the hybrid Monte Carlo algorithm with pseudo- 
fermions [ 19]. As a check we did quenched simula- 
tions on a 10 × 10 lattice reproducing the results of 
section 2. With the trajectory length r = 1 we had to 
give the system hits changing the topological charge 
Qtop [20] (cf. ref. [9] ). The unquenched potential 
defined as in eq. (8), was measured on a 16 × 6 lattice 
for various values of ft. The small extension in time 
direction "T = 6 was necessary to see clear signals for 
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Fig. 2. Potential in the strong coupling region fl = 0.3: MC 
measurements, SCE up to order N, ~N (full lines, interpo- 
lated with a spline algorithm) and potential with assumed 
scaling eq. (21) (dotted line). 

m 
(PL(R)) ,  in particular in the strong coupling region. 
However, this is no shortcoming at least in the scaling 
region, because there we expect no dependence on T 
as in the continuum equation (20). The estimation 
of  autocorrelation times ta was given by a jackknife 
procedure and checked by putting the data into a few 
blocks. 

For fl = 10, after equilibration we generated 10 000 
configurations each separated by five trajectories. All 
measured observables but Qtop showed correlation 
times ta ~ 5, for Qtop we found ta "~ 50. Using the 
scaling formula eq. (21) the Monte Carlo data for the 
potential are in agreement with the continuum result 
eq. (20) within the very small error bars, see fig. 1. 

For fl = 0.3 fluctuations of  the expectation val- 
ues (PL(R))  exceeding the range of  error bars could 
be seen up to a time of  20 000 trajectories. There- 
fore we started our measurement after 40 000 trajec- 
tories. Then autocorrelation times ta ~ 3 were found 
for all evaluated observables, so we took 30 000 con- 
figurations separated by two trajectories. The result- 
ing potential V (R) matches the SCE, which converges 
rapidly in this region of  r ,  see fig. 2. 

Finally we compare the strong coupling and scal- 
ing behaviour. At strong coupling V(R) is given by 
the SCE, thus it is constant with fl in leading order, 
or - when next to leading orders come into play - 

1.0 . . . .  , ,  

r ' '  
.,."" 

0 .8  N = 0  

0 6  

0 . 4  N = 3  ,*"" 
9 

/ . "  

/ 
0 . 2  " 

/ " , o  

O 0  / "  ' ' ' L . . . .  I . . . .  L , , , , I , 

0 . 0  0 . 5  1 0 1 5 2 . 0  

1/Sqrt(g') 

Fig. 3. Vmax versus 3: MC measurements, SCE up to or- 
der N, ~N (full lines) and scaling line without finite vol- 
ume corrections (dotted line). The latter explain the devi- 
ation of the fl = 10 measurement, see fig. 1. 

m 

decreasing slowly as fl increases. It appears that the 
first order remains important for relatively small ft. 
As a begins to resolve the screening length Rs = 1/m 
(usually [21 ] one requires 2a < typical length scale, 
i.e., fl > 2.5 in our case), we expect a transition 
to the scaling behaviour. Fig. 3 shows this for 
Vm~x = 7 (½L) .  AS long as ½L >> Rs we should find 

Vm,x "~ ~-1/2 in the scaling region. This is confirmed 
by the Monte Carlo data. 

The fl = 1.0 measurement is surprisingly close to 
the scaling straight line. The reason must be a cancel- 
lation of  O(a  2) effects (see the deviation of  the point 
at fl = 3.0 from the scaling line) with higher order 
effects. On the other hand, the third order SCE at 

= 1.0 matches quite well with the MC data. How- 
ever, here it is crucial to take the expansion given with 
~N (~)  rather than V N (R), which converges better 
for small T. Thus, although the region of  seen conver- 
gence of  the SCE: fl < 0.6 (see section 3) and the scal- 
ing region: fl > 2.5 are apart from each other, r" = 1.0 
appears to be a good value for rough estimations on 
the lattice via SCE as well as MC simulations. The 
same could be seen for V(R) with different values 
of  R. 

5. Conclusion 

In the lattice SM with staggered fermions we did a 
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SCE up to third order  for a fixed lattice size. It was 
compared with MC data and corresponding expres- 
sions in the cont inuum "geometric" SM, which ex- 
plicitly include finite volume dependence. 

The potential  in the SCE shows the screening prop- 
erty (fig. 2) - i f  we assume values o f f l  near the scal- 
ing border  with a quali tat ively correct value in the 
screening plateau (see fig. 3). 

On the other hand, a comparison of  the MC data  
with the cont inuum potential  gives control over the 
effects of  finite lattice spacing a as well as finite vol- 
ume in the scaling region. For  f l  = 10 the finite a ef- 
fects are already small. In order  to see this, it is crucial 
to know the finite volume correction in the contin- 
uum, since it dominates  the finite a effects here (see 
fig. 1 ). A comparison with the cont inuum expressions 
in pure gauge theory also shows how screening has to 
be distinguished from the strong finite volume cor- 
rections in the pure gauge theory and from the mere 
suppression of  the topologically non-trivial  field con- 
figurations. We could see explicitly how this suppres- 
sion occurs when taking the non-compact  instead of  
the compact  lattice formulat ion in pure gauge theory. 

It may be useful to treat the SM mass spectrum with 
similar methods in order to investigate the val idi ty of  
the SCE for spectra and the influence of  the quenched 
approximat ion thereby. It has to be remarked that 
for non-vanishing fermion mass and for dimensions 
d > 2 there are approximate  results [ 17 ], which could 
be used instead of  the exact formula eq. (13). 

Moreover,  the propert ies of  the SCE should be in- 
vestigated in more detail. In particular,  we would like 
to know more about its large volume behaviour  and 
the nature of  the oscillations within the potential  in 
the strong coupling region (see fig. 2). 
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