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Superselection sectors in low dimensional
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The occurrence of braid group statistics in low dimensions is reviewed and an extension
of the general theory to solitonic sectors is described where the DHR endomorphisms are
replaced by homomorphisms between different extensions of the algebra of observables.

1. Introduction

One of the characteristic features of quantum field theory is the decomposition
of the space of physical states into superselection sectors between which relative
phases cannot be observed. A typical example is the theory of a Majorana field y
where the physical Hilbert space is generated from the vacuum by polynomials of
w. The field y itself is not observable due to its anticommutativity at spacelike
distances (and/or its nontrivial transformation property under full rotations).
Only even functions of i can be observable. Hence the Hilbert space decomposes
into a direct sum of the even and the odd part, and matrix elements of observables
between even and odd states vanish identically.

A similar situation may occur for a Hermitian scalar field ¢ provided only
even functions of ¢ are observable. However, here the vacuum is not necessarily
invariant under the symmetry ¢ — —¢. If it is noninvariant, i.e. the symmetry
1s spontaneously broken, ¢ can be approximated by even functions of ¢, and the
Hilbert space generated by the even functions coincides with the Hilbert space
generated by all polynomials.

The general structure of superselection sectors can best be analyzed in the
framework of algebraic quantum field theory [1]. There one starts from a family
of von Neumann algebras A = A(O),, where K denotes the set of double
cones in Minkowski space. A(Q) is interpreted as the algebra generated by all
observables which can be measured within the space-time region O. In models,
one typically constructs this algebra in terms of all observable Wightman fields
¢(x) with x € 0. There are some technical problems in this construction which
I will not discuss (see ref. [2] and references therein). A is supposed to satisfy
the Haag—Kastler axioms [3].

O, C Oy => A(O)) C A(O7) (isotony), 1)
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0, C 0y = A(0,) C A(O,) (locality) (2)

(O) is the spacelike complement of O, and A (03)’ is the commutant of 4(05).)
Translations a are represented by automorphisms of A such that

ag (A(O0)) = A(O + a) (covariance). (3)

For the purposes of particle physics one is mainly interested in positive energy
representations (PER) of A [4]. These are representations 7 of A in some
Hilbert space H, together with a strongly continuous representation U of the
translation group such that AdU(a) on = 7 o g, and the spectrum of U is
contained in the closed forward light cone V.. A vacuum representation is a
PER together with a unique (up to a phase) translation invariant unit vector £2,
and a one particle representation is a PER where the spectrum of U contains an
isolated mass hyperboloid.

The investigation of PER‘s was initiated by Borchers. In his analysis local-
ization properties of representations turned out to play an important role. This
point of view was fully developed by Doplicher, Haag and Roberts [5,6] who
analyzed representations n of .4 which were local excitations of some vacuum
representation 7, in the following sense:

Ay = Tolaey YO EK (DHR criterion) (4)

Here A(O’) denotes the C*-subalgebra of A generated by all algebras A(O,)
with O’ > 0; € K, and ~ means unitary equivalence.

In the analysis a maximality property of local algebras in the vacuum repre-
sentation first proposed in ref. [7] and verified by Araki [8,9] for the free field
was used in a crucial way:

o (A(O")) = ng(A(O)) (Haag duality). (5)

Roberts later showed [10] (see also ref. [11]) that Haag duality is violated in
the case of spontancous breakdown of symmetry. A weaker property, essential
duality, holds under more general circumstances due to results of Bisognano
and Wichmann [12], and leads, in more than two space—time dimensions to the
same structure of DHR superselection sectors.

A DHR representation 7 in general does not satisfy Haag duality [5]. The
deviation from Haag duality can be measured by a number d{(n) € [1,oc]
called statistical dimension. d (x) equals one if and only if n satisfies Haag
duality. As Longo recently showed [13], d(7)? can be interpreted as the Jones
index [14] of the inclusion w(A(O')) D n(A(O)) (which is independent of
O € K). The class of DHR representations with finite statistical dimensions in
D > 3 dimensional space-time is now completely understood by the work of
Doplicher and Roberts [15] . There are always a compact group G (the group of
internal symmetries) and embeddings of the local algebras .4(O) into algebras
F(O) C F on which G acts by automorphisms such that 4(0) is the set of
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fixed points in F(Q). The algebra F(©) has a Z, grading related to the presence
of Fermi fields such that the system of algebras F(Q)ock satisfies the Haag-
Kastler axioms with a graded version of locality. The restriction of the vacuum
representation of F to A is a direct sum of irreducible DHR representations
with multiplicities given by the statistical dimensions which at the same time
are dimensions of irreducible G-modules in F whose elements induce transitions
to the vacuum sector.

The proposal of Borchers to derive localization properties from the spectrum
condition was further pursued in the work of Buchholz and myself [16]. We
could show that one particle representations automatically satisfy a version of the
DHR criterion (4) where the double cone O is replaced by an infinitely extended
spacelike cone. Moreover, it turned out that one particle representations always
have finite statistical dimensions [17]. The DHR analysis could be generalized to
this class of representations and yielded the same structure in D > 4 dimensions
[16,15].

It was known since long time that in low dimensions the structure of sectors
is more complicated, sec e.g. ref. [18]. But only after the progress in the rep-
resentation theory of the braid group due to Jones [14] and the discovery of
new interesting models of conformal field theory in two dimensions by Belavin,
Polyakov and Zamolodchikov [19] which exhibit a rich superselection struc-
ture, a detailed analysis of superselection sectors in low dimensional space-time
was performed, mainly by Buchholz, Mack and Todorov [20], by Frohlich,
Gabbiani and Marchetti [21-24], by Longo [13] and by Rehren, Schroer and
myself [25,26]. In this note I want to treat the following cases: DHR sectors in
2D (sectoin 2), sectors with localization in spacelike cones in 3d (section 3)
and soliton sectors in 2d (section 4). The first two items were already discussed
in detail in the literature, but the last item is essentially new. It goes back to a
proposal which I made in [27]. Earlier observations of Frohlich [28] and of
Schroer and Swieca {29] on models and a proposal of Frohlich abstracted from
models turn out to be special cases of the general framework which is presented
here.

2. DHR sectors in two dimensions

Let ny be a fixed vacuum representation satisfying Haag duality, and let 7 be
a representation which fulfils the DHR criterion. Choose some Oy € K. From
(4) there is a unitary V: H, — H, such that

Vig(d) = n(4)V (6)

for A € A(O(). Then one can define the representation 7y = AdV~!ox in
Ha,. The representation my is unitarily equivalent to = and coincides with 7g
on A(0;). Now let O; € K be arbitrary. There is some O € K which contains
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both Oy and O,. Using isotony, locality and the coincidence of 7y and 7y on
A(O") C A(Oj) we obtain

ny (A(0))) C iy (A(0)) Cy (A(O")) = me(A(0"))". (7)
Using Haag duality we finally get
ny (A(O01)) C rp(A(O)), (8)

hence the algebra my (A) is a subalgebra of 7ng(A). Since by (4) the kernels of
7 and 7 coincide we may without loss of generality assume that xy is faithful.
We then consider the endomorphism p = =#; "o my of A. p acts trivially on
A(Oy). We refer to this fact by saying that p is localized in Oy. We may identify
A by its image in the vacuum representation and consider the endomorphism
p as a representation. Now let p and p’ be endomorphisms localized in O € K
which are unitarily equivalent as representations. Then, by Haag duality, the
corresponding unitary is an element of A(O), and the endomorphisms are re-
lated by an inner automorphism. The latter fact implies that the multiplication
of endomorphisms induces a composition law of equivalence classes of repre-
sentations. It also follows that endomorphisms localized in spacelike separated
regions commute so that the composition law is commutative on the level of
equivalence classes. This is the basis for an intrinsic definition of statistics.

Let p, = AdU; o p, i = 1, 2 be localized in mutually spacelike regions O;,
I = 1,2 Then

PP =pipy = papi = p* 9)

with a unitary intertwiner

e = p(UT) Us Up(Lh) € A(Oy). (10)

¢ is called the statistics operator. ¢ turns out to depend only on the regions O,
and 5, not on the choice of intertwiners U; and U,. Moreover, it is locally
constant under changes of O and O, provided the regions remain spacelike to
each other. Hence in two dimensions & can assume at most two values. It satisfies
the relations
ept(A) = p*(A)e, A€ A (11)
(this is nothing than the intertwining property of ¢) and
ep(e)e = ple)ep(e) (12)

which follows by the following calculation (we choose U}, = 1 and U; = U in
the definition of ¢):
ep(e) = U™'p*(U) (13)

hence
ep(eye = U1 p2(U)e = U lep? (U) (14)

by (11) and
pe)ep(e) = pe)U' p*(U) = UL AdU o p(e)p*(U) (15)
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hence (12) follows from the fact that Ad U o p is localized spacelike to O and
therefore acts trivially on ¢ € A(Qg). The relations (11) and (12) now lead, by
setting

e (a;) = p'~l(e), (16)

to a unitary representation of the braid group B, i.e. the group generated by
generators ¢;, [ € N with the relations

gi0; = 0;0;, |1—j[22 (17)

and
Gi0; 410 = 0;410i0; 4] (18)

(the first relation being respected because of (11) and the second because of
(12)).

The occurring braid group representation describes an anomalous statistics
of particles. It may be analyzed in terms of a so-called left inverse of the endo-
morphism p. One always finds a Markov trace (in the sense of Jones [14]) on
the braid group and associated link and ribbon invariants as well as invariants
of three-manifolds. A general classification has not yet been reached, but many
interesting examples were found. For details see refs. [26,13,24].

3. Braid group statistics in three dimensions

DHR sectors in three space-time dimensions always have permutation group
statistics. The reason is that the statistics operator 1s globally constant since
any pair of spacelike separated double cones can be continuously deformed into
each other pair such that the two regions remain always spacelike separated.
Then ¢ = 1, hence &'”) factors through a representation of the permutation
group.

There is an apparent conflict with the observation in quantum mechanics [30]
that braid group statistics may occur in two spatial dimensions. The solution of
this conflict comes from the fact that a PER does not necessarily satisfy the DHR
criterion.

As mentioned in the Introduction, a general localization property of irre-
ducible one particle representations was found by Buchholz and myself. Ex-
tending an older result of Swieca [31] we showed that there always exists a
dense subspace in the representation space of a one particle representation n
such that for any unit vector & in that subspace the derivatives of expectation
values

0u (D, ey, (A)D) (19)

are strongly decreasing for |a|—|a®| — oc for all local observables 4. It follows that
the expectation value of 4 approaches a limit as a tends to spacelike infinity.
The limit is independent of @ and, in at least three space-time dimensions,
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independent of the direction in which one goes to spacelike infinity. Hence
there is a state wq (in the sense of expectation functionals on the algebra of
observables)

wo(A) = ligl(d),fma(A)(D), (20)

which is translation invariant. By the GNS construction there is a Hilbert space
‘Ho, a representation mg and a cyclic vector £ € Hg such that

wo(A4) = (2,70(A) Q2) (21)
together with a unitary implementation of the translations
Up(a)mg(A)Q2 = mpag(A)2 (22)

and one can show that Uj is strongly continuous and satisfies the spectrum
condition, hence 7y is a vacuum representation which is uniquely associated to
the one particle representation 7.

In two space-time dimensions spacelike infinity is not connected, hence there
may be different limits in (20) for right and left spacelike infinity leading to
different vacuum representations 7, and z_, respectively. This case (“solitons”)
will be treated in the next section.

Returning to D > 3 space-time dimensions we may now ask whether local
fields exist which interpolate between 7y and z. One finds that for any spacelike
cone

S=a+ |10, (23)
>0
where O is a double cone spanned by two spacelike unit vectors with timelike
difference the following modified DHR criterion holds:

Tl acsy = Tolacs)- (24)

This result may be understood as an abstract version of Mandelstam’s heuristic
formula for gauge invariant charged fields in gauge theories

w(x)pee? (25)

where C is a path 1o infinity contained in some spacelike cone S and P denotes
path ordering.

In view of this result one may redo the DHR analysis for representations
7 satisfying (24) for a fixed vacuum representation 7. Let S denote the set
of spacelike cones. In close analogy to DHR one chooses some Sy € S and
exploits the unitary equivalence of 7 and 7y on A(S}) in order to replace 7 by
an equivalent representation 7 on Hg such that 7 and 7ny coincide on A(S").
Again 7y defines a faithful representation p of np(A) in Hy, the image of p,
however, is not contained in 7y (.4), in general. If one assumes Haag duality for
spacelike cones,

mo(A(S")) = mo(A(S))", (26)
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one finds for S, Cc S, € S
p(mo(A(S1))) C mo(A(S)))”, (27)

hence the image of p may contain nonlocal operators which only belong to the
weak closure of the algebra of a spacelike cone.

In D > 4 dimensions the problem can be circumvented [16,15], and one
obtains the same structure of sectors as in the DHR theory. In D = 3 dimensions
a new situation occurs which is essentially identical to the situation found in
two dimensional chiral conformal field theory. A treatment of sectors where this
point of view is emphasized may be found in ref. [26, I1]. Here I want to describe
the original method of ref. [ 16]; a modification of this method will then be used
in the two dimensional case.

The idea is the choice of a forbidden spacelike direction r which replaces
spacelike infinity in the case of bounded regions. Let S(r) denote the set of
spacelike cones which contain Ar for all sufficiently large values of A. Then we
introduce the C*-algebra

A= | mo(A(S))" (28)
Ses(r)

One finds that for each r, p has a unique extension p" to A" which is weakly
continuous on each algebra 7(A(S’))”, S € S(r). Moreover, if p is localized in
some spacelike cone S which is spacelike to r (i.e. there is some S| € S(r) such
that § C S}) then p” is an endomorphism of A". In general, the extensions p”
and p" for different spacelike directions do not coincide on the intersection of
their domain of definition. They coincide, however, on the image of A under an
endomorphism, so products of representations are well defined as in the DHR

theory. It is at the level of intertwiners that the differences become visible.
Let p,, p2 be localized in S, and let Ad U, o p; be localized in S, € S’. Then for
each spacelike direction r which is spacelike to S and t0 .S, the statistics operator

e (p1,p2) = Uy pi(Us) (29)

intertwines p{ p, and p5 p;. But &" may be different from ¢ if the configuration S,
r, S, cannot be continuously be deformed into the configuration S, #, S>. In this
case, &” (py, p») coincides with & (p2, p1)~", hence the “monodromy operator”
whose nontriviality shows the occurrence of braid group statistics

em(pr,p2) i=e(p2, pr)e(pr, p2) = /Jfl (L) ol () (30)
measures the difference of both extensions of p;.

4. Soliton sectors in two dimensions

Let us first look at examples. In the sine-Gordon theory the field equation
O¢ + Asingp =0 (31)
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has the symmetry ¢ + ¢ + 27n/g. There are classical soliton solutions which are
characterized by the topological charge

p(x)—p(—x) = Z—ZE, ned. (32)

In quantum theory, the symmetry is spontaneously broken, there exist vacua
(-}n with {p), = 27nn/g, n € Z and interpolating states (- ),, »

2
(@ X)) mym — ?”ni, X — £o, (33)

resembling very much the classical solitons.

In the P(¢), models where P is a polynomial which is bounded from below
and has global minima at points v € V', one expects vacua (- ), with (@), = v
and interpolating states (- ),, ,_ (“kinks”) with

(@, X))y, v. — Ux, X — E2c. (34)

This phenomenon is not necessarily connected with spontaneous breakdown of
symmetry.

In ref. [28] Frohlich made a proposal for an extension of the theory of su-
perselection sectors to sectors containing solitons. This proposal is restricted to
theories where the set of vacua is a homogeneous space for some group of inter-
nal symmetries. The idea is that soliton sectors are generated by endomorphisms
of the observable algebra which act trivially on some left half space and as an
inner symmetry on some right half space (or vice versa). E.g. in the sine-Gordon
theory he discusses the automorphism

p(p(0,x)) = ¢(0,x) + h(x), (35)
p(9(0,x) = ¢(0,x) (36)

with a smooth function 4 (x) which vanishes for sufficiently negative values of
x and equals 2n/g for sufficiently large x.

It is not clear how this idea can be generalized to situations where the vacua
are not related by inner symmetries, and even in situations with the presence of
symmetries it is not evident that one always can find endomorphisms with the
prescribed properties.

For a discussion in the general case one may start from the result in ref.
[16] on the localization of one particle representations which assumes in two
dimensions the following form. Let n be a one particle representation. Then
there exist vacuum representations 74 such that

Tl AWy +x) = T aws +x)- (37)
Here W, denote the right and left wedge, respectively,
W, = {x eR% |x° < +x'}. (38)
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In analogy to D = 3 dimensions one may introduce extensions of the algebra
A. These extended algebras depend not only on the spacelike direction (there
are only two different possibilities in two dimensions) but also on a vacuum
representation. Let 7y be some vacuum representation. The set of trace class
operators T in H,, induces via

Allr = [tr Trp(A4)] (39)

a family of seminorms on .4 (W, + x). The associated completion A(W. + x) g,
is an abstract von Neumann algebra which is canonically isomorphic to the
weak closure of mg (. A(Wi + x)), the canonical isomorphism being the g-weak
extension of 7. The inclusion A(Woe 4+ x) C AW +y)forWe4 xC Wi +y
extends uniquely to the completions, hence we may define the C*-algebras

Az = JAWL + X)q, (40)

By (37),  has unique extensions 7* to AZF, which are o-weakly continuous on
AWy + x)g, forall x.
We now assume that all vacuum representations 7y satisfy Haag duality for
wedges,
o (A(We + x)) = mo(A(W5E + x))". (41)

We then may proceed as in the construction of DHR endomorphisms. Let x € RZ.
By (37) there is a unitary V: H,_ — H, such that

Va_(4) = n(A)V, Ae A(W_ + x). (42)

The representation 7 = Ad ¥V ! o z then coincides with 7_ on A(W_ + x).
Now let y € R? be arbitrary. There is some z € R? such that

W, +zoW, +xUW,_ +y . (43)
Therefore

(AW, + y)a,) Cay(AW- +y)) Cay(AWZ + 2)) (44)

= (AW_+2)) =n_(AW, +2))" = a2t (AW, + 2),_)
45)
hence we may define a homomorphism p from Af to A} by p = (z*) 'z},
p is o-weakly continuous on each subalgebra A(W,. + u),, , u € R? and satisfies
7t ~ ntop, (46)
Plaw_+xy = Wdlaw 4x)- (47)
These (right hand side localized) homomorphisms are the appropriate gener-
alizations of the DHR endomorphisms. Their semigroupoid structure induces

a natural composition rule for representations. Let 7 and 7’ be representations
satisfying (37) for suitable vacuum representations 7y and 7/, respectively.
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Then 7 and n’ are composable provided n, ~ n’ . Let p and p’ be correspond-
ing right hand side localized homomorphisms. Then the product is defined up
to equivalence by
nxn ~ntoppia (48)

One now has to show that the product does neither depend on the choice of the
homomorphisms (this is easy since if p and p both satisfy (46), (47) they differ
by an inner automorphism of A} induced by a unitary U € AW, + x),_)
nor on the choice of the right hand side.

If we choose instead left hand side localized homomorphisms 4 from A,
to A7, which satisfy (46), (47) with + and - exchanged we can define the
composition of 7 and 7’ by

mon ~n's odA| 4 (49)

We want to show that both composition laws are equivalent.
First we remark that

7t><7r’f_v7'c+op6:(7t0_o/10)+op’0 (50)
and

non' ~n'"odo= (nf o py) oo, (51)
where mp ~ n, ~ n’_and p; = p'|4 and Ay = 4| 4. Hence what remains to be
shown is essentially the commutativity of homomorphisms which are localized
in spacelike separated regions. This can be done by an adaptation of the original
argument in ref, [5].

Let 4 € A(O), O € K. There are a right wedge W, + x, D W, + x and a
left wedge W_ + x_ D W_ + xsuchthat O ¢ W, + x, UW_ + x_. Let A be
localized in W_ + x_ and U_ € A(W_ + Xx),, unitary such that

A=AdU_oZ (52)
and let p’ be localized in W, + x, and U, € A(W, + X )z, unitary such that
pl=AdU, op. (53)
Then 2(A4) = A = p'(A) . Since ny oIO and 7y coincide on A(W, + x) they
coincide also on the o-weak closure with respect to ng, hence
(g 0Ag) T (Uy) = g (Uy) € mo(A(W, + x))"
and by the corresponding argument
(n o plo) " (U-) = my (U-) € mo(AW- + x))”
. We finally get
(ny 0Ag) T o po(A) = Adrg (U_)rnd (U, ) (A) (54)
= Adnf (Up)ag (U-)(A) = (] o pg) ™ o Ag(A). (55)
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and we conclude that the composition laws x and ¢ are equal.

It turns out that the endomorphisms discussed by Frohlich fit nicely into the
framework described above. Namely, let p be an endomorphism of .4 which acts
trivially on A (W_ + x) and like the inner symmetrycon A (W, +y),y—x € W,.
Then with 7y also myoa is a vacuum representation, and p has a unique extension
Pry: Afy — Af ... Moreover, if p’ is another such endomorphism we find for
the product

(plp)no = p;(ooapﬂ()’ (56)
hence the composition structure is the same.
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