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The renormalization group equations (RGEs) of the standard model at one loop in terms of the gauge couplings gl,2,3, the top 
Yukawa coupling gt and the scalar self coupling 2 are reexamined. For g~.2=0, the general solution of the RGEs is obtained 
analytically in terms of an interesting special solution for the ratio 2/g2t as function of the ratio g2t/g2 which (i) represents a RG 
invariant line which is strongly infrared attractive, (ii) interpolates all known quasi-fixed points, and (iii) is finite for large 
g~/g] (ultraviolet limit). All essential features survive for gL2 ~ 0. The invariant line translates into an infrared attractive top- 
Higgs mass relation, which e.g. associates to the top masses mr= 130/145/200 GeV the Higgs masses mn-~68-90/103-115/207 
GeV, respectively. 

The exper imenta l  lower bounds  on the top and 
Higgs masses are meanwhi le  quite sizeable, mr> 91 
GeV [1] and rnH>60 GeV [2] ,  respectively. This 
implies  that  the top Yukawa coupling gt as well as the 
square root  x/2  o f  the Higgs self coupling, related to 
the respective masses by 

m t = g t v ,  m i ~ = x f 2 v ,  with v~  174 G e V ,  (1)  

are compet i t ive  in size with the gauge couplings ga, 
g2 and gl of  the S U ( 3 ) c × S U ( 2 ) L × U (  1 ) r s tandard  
model  gauge group. 

This led us to reconsider  the per turba t ive  renor- 
mal iza t ion  group equat ions ( R G E )  in the s tandard  
model  at one loop, in a first step analytically with g3, 
gt, 2 as the only nonvanishing couplings, in a second 
step numerically including also g~, g2 ~ 0. Our  a im was 
to search for infrared attractive RG invariant rela- 
t ions among couplings such as quasi-f ixed points  and 
invar iant  lines etc., beyond those known already [ 3 -  
5 ]. Throughout  this paper  we shall consider  an evo- 
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lut ion of  the RGE from the ul traviolet  ( U V )  region, 
character ized by a scale A within the range of  physi- 
cal interest,  1 T e V < A ~  1015-I0 ~9 GeV, into the in- 

frared ( IR)  region, characterized by the scale mz. We 
stop the evolut ion at rnz, since g3 eventually runs out 
of  the region o f  val idi ty  of  the one-loop RGEs. 

After a br ief  recapitulation of  the known quasi-fixed 
points  [ 3 - 5 ]  the general solution o f  the s tandard  
model  one-loop RGEs  for g3, gt, 2 ¢ 0  and g~, g2=0,  
gu,d,s,c,b = 0  is presented and discussed. An &variant 
line in the ratio 2 / g  2 as a function of  the ratio gZ/g] 

is found which turns out to be strongly IR attractive, 
This interest ing solution of  the RGEs actually inter- 
polates all known quasi-fixed points  [ 3-5 ]. The gen- 
eral solution of  the RGEs is obta ined in analytical  
form in terms of  this invar iant  line solution. Finally,  
the main  features turn out to remain  unaltered,  i f  the 
electroweak gauge couplings g~, g2 are switched on. 
The resulting invar iant  line may  be immedia te ly  
t ranslated into an IR at t ract ive top-Higgs  mass 
relation. 

Let us start by acknowledging a decade of  analyti-  
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cal and numerical studies of the one-loop RGEs in 
the presence of  large Yukawa and Higgs couplings, 
with refs. [ 3-12 ] being the most closely related to 
the issues addressed in this paper. Naturally, we con- 
firm all the known features, most importantly for our 
purposes: 
- The "containment" of infrared mH, rnt values within 
the familiar wedge [6,19 ] implementing the con- 
straints from triviality and vacuum stability. The 
wedge is known to shrink for increasing values of the 
UV scale A, as included for illustration in fig. 1. 
- The quasi-fixed points [ 3-5 ] and related numeri- 
cal and analytical results [ 6-12 ]. 
In addition to providing new information, the ana- 
lytical solution for the case g3, gt, 2 ~ 0, gl.2 = 0 will 
also considerably enhance the conceptual insight into 
the known results. 

The starting point are the one-loop RGEs for g3, gt, 
2 ~ 0 with g~,2 = 0 and g,,d,~x,b = 0 

d g  2 7 4 ( 2 )  
d t  - -  8n2 g 3 ,  

dg~ 1 2 9 2 
dt - 8~ 2gt(~gt - 8 g ~ ) ,  (3) 

d2 1 
dt - 8E 2 (322+62g~-  12g4) ' (4) 

with t=  ½ ln(Q2/A2). The general solution in the IR 
region, of course, depends on initial values, say, in 
the UV region, 

g~o=gZ(QZ=A2), gZo=gZ(Q2=A2), 

20=2(QZ=A 2) , (5) 
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Fig. 1. The strongly IR attractive "invariant line" translated into 
an IR attractive top-Higgs mass relation (solid line ) for two typ- 
ical limiting values of A, A=  1 TeV and A=  10 Is GeV; the two 
lines coincide for mt>~ 170 GeV and differ only weakly below. 
Also shown are the very weakly IR attractive "quasi-fixed points" 
(open dots),  the wedges corresponding to the triviality and vac- 
uum stability bounds for A=  104 GeV and 1015 GeV (dashed 
lines), the top-Higgs mass pairs from ref. [ 14] (solid dots) for 
representative values of A, 109 ~<A ~< 1019 GeV, and the experi- 
mental bounds mt>~ 91 GeV, mn>~ 60 GeV. 

with 1 TeV~<A~< 1015-1019 GeV. 
Our primary interest is in IR stable quasi-fixed 

points, or, more generally, in invariant lines of the 
RGEs. According to the definition in ref. [ 3 ], a quasi- 
fixed point is a fixed point in a ratio of two couplings. 
In mathematical terms [ 13 ], it represents a (linear) 
invariant line in the plane of the two couplings. In 
this paper, we shall find a new (non-linear) invariant 
line in the plane of two ratios of couplings. The prac- 
tical significance of any IR attractive quasi-fixed point 
or IR attractive invariant line depends on: 
- The size of lnA/mz  measuring the "length of the 
evolution path" from the UV to the IR region. 
- The power of (In A/mz)  -~ controlling how fast the 
general solution (for arbitrary initial values) ap- 
proaches the quasi-fixed point or invariant line. 

Already in 1981 Pendleton and Ross [3] pointed 
out an IR attractive quasi-fixed point of eqs. ( 2 ) -  
(4) in the ratios g~/g~ and 2/g 2 at 

g2 2 2 6 x / ~ - 2 5  
R -  ~0.31 . (6) P t = g 2 -  9'  g 2 -  4 

This fixed point was advocated again in 1985 by 
Kubo, Sibold and Zimmermann [ 11 ] as a non trivial 
special solution of the differential equations ( 2 ) -  ( 4 ) 
in the framework of their parameter reduction pro- 
gramme. The quasi-fixed point (6) corresponds (for 
g~, g2=0) to rn,~ 100 GeV and m n ~  56 GeV. Unfor- 
tunately, it is approached exceedingly slowly, as may 
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be read off the general solution [ 4 ] of eqs. (2), (3),  
given in terms of the initial values g]o and gt2o or 
rather pro =g2o/g2o, 

2 1 (7) 
Pt= 9 1 + (gZo/g]) ~/7 ( 2/9pto - 1 ) ' 

with 

g] = g2o 
1 + (7/16~r2)g]o ln(QZ/A z) ' (8) 

where g2 =g ] ( t )  and p, =p,(g~(t) ), t= ½ ln(Q2/A 2). 
The rate of approach to Pt=~ in eq. (7) for 
Q2--,mZz is controlled by [g]o/g](t) ]~/7, which - due 
to the forbiddingly small power - evolves e.g. from 
A = 10 ~ 5 GeV to mz only from 1 to 0.8. In fact, as was 
pointed out in ref. [4], for all initial values P,o >> ~ a 
ratio 

2/9 
Pt~ 1 -  (g~o/g~) l/v ~ 1.1 fo rA~ 1015 GeV,  

~5.7 fo rA~  1 TeV, (9) 

substantially larger than ~ is reached in the IR, inde- 
pendently ofp, o. On the basis of this observation, Hill 
[4] solved the differential equation (3) with an ap- 
propriately defined average for g~ with the result of 
approximating p, by a A-dependent effective quasi- 
fixed point 

14 1 
P'~ 9 ln(g~/g2o) 

valid for initial values satisfying 

9 2 2 1 /7_1  iPto[ (g3/g30) ] >> 1 . (10) 

A realization thereof may be found in the scenario of 
electroweak symmetry breaking through top quark 
condensation recently proposed by Bardeen, Hill and 
Lindner [ 14 ]. The resulting A-dependent values for 
the top quark mass are included for illustration in fig. 
1, they lie typically well above 200 GeV. 

Finally, an interesting IR stable quasi-fixed point 
of eqs. ( 2 ) - ( 4 )  has been pointed out by Wetterich 
[ 5 ] in 1987 for g3 = 0 which is the appropriate limit 
for very large couplings g2, 2 >>g2, i.e. for very large 
top and Higgs masses, 

2 ~ - 1  
R-- g 2T - ~ ~1 .77 ,  (11) 

implying a ratio ran~mr = v/R--- 1.33. 
In summary, the various IR attractive fixed points 

for p,=gZt/g] and/or  R=2/g  2, given in eqs. (6), 
(10), ( 11 ), correspond to interesting but rather 
strongly differing values for the top and/or  Higgs 
mass or their ratio. 

Next, let us show that they are all special points on 
an invariant line in 2/g 2 as function ofg2/g 2, which 
will translate into the top-Higgs mass relation advo- 
cated in this paper. 

First, we observe that the three one-loop RGEs 
( 2 ) -  ( 4 ) may be rewritten in a decoupled form 

dg 2 7 4 
dt - -  8n 293 '  (12) 

- 14g 2 dp-----Lt dg~ =p,(  9pt - 2 ) , (13) 

( 9 p , - 2 ) ~ p t  =6R2+ 3+ R - 2 4 ,  (14) 

with pt =g~/g] and R =2/g 2. This is achieved by fol- 
lowing a standard procedure in solving a system of 
coupled differential equations [ 13 ] involving the 
same variable (t): eq. (13) is obtained by eliminat- 
ing dt from eqs. (2), (3) (valid with the possible ex- 
ception of the "point" g] = 0), eq. (14) is obtained 
from eq. (4) by first using eq. (2) to eliminate dt in 
favour of dg 2, then eq. ( 13 ) to eliminate dg 2 in fa- 
vour of dpt (valid with possible exception of the 
"point"pt  = ~ ). The solutions of the three decoupled 
equations (12) - (14)  will exhibit an increasing de- 
gree of nesting in their dependence on the original 
variable t = ½ In ( QZ/A2 ), 

g~=g}( t ) ,  pt=pt(gE(t)) ,  

R = R  (pt(g](t) ) ) . (15) 

The initial values, entering the general solution are 
g3o, gt0, 20 or rather g2o, 2 2 Pto =gto/g3o and Ro = 
2o/g2o. Remember that Pt determines the top mass 
a n d R  the ratio 2 2 ran~mr at the appropriate infrared 
scale. The general solutions of eqs. (12), (13) have 
been given already in eqs. (7), (8). It remains to solve 
the Riccati differential equation (14). 

The most important observation is that eq. (14) 
has a special solution R(p,) which is independent of 
the initial values pto and Ro, it is, instead, determined 
by the 
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boundary condition of regularity for pt ~ o o .  ( 16 ) 

This solution is in mathematical terminology [ 13] 
the announced (non linear) invariant line in 
R=R(p t )  or 2/g z as function ofg2t/g], which plays 
the key role in this paper. In a forthcoming publica- 
tion [ 15 ] we show that there is exactly one solution 
satisfying the condition (16) for R, Pt >i O. The limit 
p, =g2t/g~ ---,~ corresponds to gt 2 ~c~ or g~ --. 0, i.e. to 
the UV limit (for Pto > 2 ).  Thus, in physical terms, 
R(pt) is the only special solution of the RGEs with a 
finite ratio 2/g2t in the UV limit. 

l~(pt) can be represented by infinite series expan- 
sions in powers ofpt  around pt=O, o f p t -  ~ around 
Pt = -29 and of 1/p, around pt = ~ with overlapping re- 
gions of validity 

Pt = O: 

K(pt)=4pt 2 2 + 3Pt - ~P~ - ~P~. . . ,  

Pt = 2: 

a(p,)_ 6Jg~-25 
4 

6 x ~ - -  25 
+27 6V/~-~ _ 3 ( P t - { ) +  .... 

Pt --~ ~ :  

.~(pt)_V/~-1 4 x / - ~ - I  1 
4 3 x / ~ + 3 p t  

8 85+11x/~  1 + -  
9 417+ 55w/~ pt 2 

(17) 

Further expansion coefficients and the regions of va- 
lidity will be presented in ref. [ 15 ]. As may be read 
offthe expansions (17), R(p,) starts at the fixed point 
Pt = 0, R = 0, passes for Pt = -~ through the Pendleton- 
Ross quasi-fixed point (6), viz. the Kubo-Sibold- 
Zimmermann solution, and approaches in the limit 
pt--*oo the Wetterich quasi-fixed point (11 ); this is 
indeed the appropriate limit, since g3--*0 translates 
through &=g2/g]  into pt--,oo. In accord with the 
boundary condition (16), the finite value /~o = 
( x / ~ -  1 ) / 4 ~  1.77 is reached f o r  p / - - .oo,  l ~ ( p t )  also 
interpolates the effective quasi-fixed points (10) at 
p, >/O ( 1 ) for varying values of A (cf. also ref. [ 7 ] ). 

A solution similar in structure as Jff for large Pt was 
also discussed in ref. [ 9 ] in the different context of 
RGEs for extra heavy fermion doublets without mass 
splitting. 

Before presenting and discussing the general ana- 
lytical solution of eq. (14), we display in fig. 2 the 
RG flow, i.e. the numerical solutions ofeq. (14) for 
various representative pairs of initial values (Pro, Ro). 
The arrows show the direction of flow from the UV 
to the IR regime. From fig. 2 one may infer the most 
important properties, which will be supported and 
further enlightened by the analytical discussion: 

(i) t~(pt) is indeed the only solution which is reg- 
ular (finite) forpt-*o~ and, as it turns out, for pt~0.  

(ii) /~(p~) is an invariant line, i.e. the evolution 
(from UV to IR) starting anywhere on/~(p,)  pro- 
ceeds along R(Pt) for all g] or equivalently, for all 
choices of g]o and A; the evolution continues very 
slowly towards the Pendleton-Ross quasi-fixed point 
(6). 

(iii) Any other solution is first rapidly attracted 
towards the invariant line/~(Pt), then it continues 
(very slowly) along the line towards the Pendleton- 
Ross quasi-fixed point. Thus, in contrast to the 
Pendleton-Ross quasi-fixed point, the invariant line 
l~(pt) is strongly IR attractive. This will be quantified 
later on. 
All these features and many more may be read off the 
general solution of the Riccati differential equation 
(14), which is given in terms of the special solution 

8 

~ 6  

oSz., 

2 

g1,2 =0 

a77 

1 2 3 4 5 6 7 8 9 10 

Fig. 2. One-loop renormalization group flow (with arrows point- 
ing towards the IR) of  R=2/g~  as function ofpt  =g2/g~, in the 
approximation gl,2 = 0. The invariant line and the strong IR at- 
traction towards it become apparent. The invariant line ob- 
viously interpolates the very weakly IR attractive quasi-fixed point 
[ 3 ] at Pt = -29, R ~- 0.31 (open dot ) as well as the quasi-fixed point 
[5] R =  ( x / ~ -  1 ) / 4 2  1.77 valid in the limit g~ =0,  which is 
reached for Pt ~ ~ ,  
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R(Pr) and the pair of  initial values Pto, Ro in analyti- 
cal form as follows: 

R(pr) = R(pr) + (Ro - R 0  )exp [ -F(&,  Pro) ] 
pr0 -- 1 

)~(I '~3(RO-~O) ~ dp'texp[-Jf~(Pi'Pt°)])Pt--9 
pt 

(18) 

with Ro= R (&o ), Ro = R (PlO ) and 

prO 

F(p,,p,o)=k _-7--3- 4/~(p't) + 1 + - -  (19) p r - ~  ~ ' 
pt 

A detailed analytical discussion of this general solu- 
tion is deferred to ref. [ 15 ]. Let us only summarize 
the important results. The difference of the general 
and the special solution, R(pr)-R(p,) ,  is given by 
the second term on the RHS of eq. (18), which in 
turn is controlled by the exponential exp[-F(pt, 
Pro) ] in the numerator and denominator. If  the ini- 
tial value Ro happens to lie on the invariant line, i.e. 
if  Ro= R-~, then clearly R(pt)=K(p,), confirming 
observation (ii) above, eqs. (7), (8) tell us that for 
the evolution from the UV to the IR, Pt evolves to- 
wardspr = ~ from below, ifpr0 < ~, and from above, if 
P~o > 2; in both cases, F(p~, P,o) is positive and in- 
creases for increasing evolution path; this confirms 
the IR attractiveness of the invariant line (point (iii) 
above). For the discussion of the rate of attraction let 
us distinguish two cases: 

Case 1. Ro - Ro sufficiently small, such that the de- 
nominator of eq. (18) remains close to one; the rate 
of  approach to the invariant line is then given by 
exp [ -F(&,  Pro) ] in the numerator with a behaviour 
for Pt, Pto close to ~.z" 

{ F Pt -- ~ Pto y jg~/3 
exp [ - F(p,, P,o) ] ~ I~,p,o_ } p~/ 

(g~o'~ ~ 6",/~/3 

7 I/Q2"~] 6x/-~/2 ! 
= 1+ 1-- g olnt )J , (20) 

with the high power 6 , ~ / 3 ~  8.75 beating the for- 
biddingly low power ~ in eq. (7); and for Pr, Pto>~ 
O(1)  

/ 2 \ x / ~ / 3  

exp[-F(p,,p,o) ~lV)t--~--~_ ~/ 

pro - / 3  o, (21) 
\ g 3  / 

with a strong rate of IR attraction for sufficiently large 
P,o. This is the rate controlling the approach to the 
effective quasi-fixed point (10) on R(&).  

Case 2. IfRo - R o  becomes larger, the IR attraction 
towards K(&) is strongly enhanced, due to the sub- 
stantial increase of the denominator in solution (18). 
Even for R o - ~  (which, of course, is only of mathe- 
matical interest since it leads out of the range of va- 
lidity of perturbation theory) the general solution 
R(pt) is attracted towards R(pt) to within a finite 
difference 

Ro--*~: R(p,) -t~(pt)--*3 exp[ -F(pt,  Pro) ] 

× exp[-F(p;,&o)] , (22) 
P t - - ~  

pt 

which shrinks for increasing evolution path, again 
controlled by exp[ -F(p,, PrO)]. In the formal limit 
A ~ ,  which again is of academic interest only, the 
difference (22) shrinks to zero. Eq. (22) is, of course, 
the mathematical expression for the "triviality 
bound" for Higgs mass values in the wedge of fig. 1, 
which shrinks with increasing A. 

Finally, let us point out an equivalent way of 
phrasing our results: the ratio R(&)/I~(&) has a 
strongly IR attractive fixed point at 1. 

Next, we switch on the electroweak gauge interac- 
tions, g~, g2 ~ 0. In this letter, we only summarize the 
input and the results. For a state of the art mathe- 
matical treatment we refer to ref. [ 15 ]. The one-loop 
RGEs ( 2 ) -  (4) obtain additional terms on the right- 
hand sides and are supplemented by the one-loop 
RGEs for g~ (t) and gz(t) 

dg~ 41 4 dg~ 19 
- 4 - ~  2 g l '  dt ~ -  48n 2g~" (23) dt 

By introducing the experimentally known values 
2 1 o~(mz) = t-~, sin20w(m2) = 0.23, 2 2 2 Ots(mz) = g 3 ( m z )  

/4n=0.12 ,  mz=91.18 GeV, one may reexpress the 
solutions g~ and g~ of eqs. (23) as functions of 
g2(t) (within the range of validity of one-loop per- 
turbation theory) as follows: 
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p,(g~)_ g~(g~) 1 
g2 - 8.491g2 41, 

g22(g~) 1 (24) 
P2(g~)-- g~ - 2.043g~ + ~9 • 

For g~,2 # 0, the differential equations ( 13 ) a n d  ( 14 ) 
are then to be replaced by 

, 2dPt ( 2 17pl 9 )P2 -14g3~g~=p 2 9 (25) 
Pt 6 Pt 2 ~ ' 

1 4 2 d R  =pt[6R2+(3+ 16 l pl 9 ~ )  R 
- g3 dg-'--~3 Pt 6 Pt 

_ _ 2p l 3p~ +3pip2  + (26) 
- 2 4 +  ~p2 p~ 2 p 2 ] "  

The explicit dependence on g2, introduced by the p~, 
P2 terms, cannot be eliminated anymore. However, 
we see immediately that the Pl,2 dependence enters 
in the form of the ratios p~,Jp,. As long as A~< 
1015-1019 GeV, we have p~.2~<O( 1 ); hence one ex- 
pects the PL2 dependence to become negligible for 
large values ofpt, which will be borne out by our nu- 
merical calculations. It is sizeable only for small val- 
ues ofpt, which fortunately are already excluded by 
the experimental lower bounds on rnt and mH. 

The system of differential equations for Pl, Pz, Pt 
and R as functions ofg~ has a fixed point at p~.2=0, 
pt = 2 , R = (  6 x ~ - 2 5 ) / 4 .  Followingref. [ 13 ] ,we  
solve the linearized system in the neighborhood of 
this fixed point analytically [15] and find the 
following: 

-L  (17p~o + (i) Only for initial values Pto~-324  
27p2o), one is driven to the solution advocated in ref. 
[ 11 ], which leads to m r -  95 GeV and mn ~ - 65 GeV, 
values which are close to the present experimental 
bounds. 

(ii) Else, any solution is again strongly attracted by 
an effective "invariant line" and very weakly by an 
effective "fixed point" on this line, the gl,2~ 0 gen- 
eralization of the Pendleton-Ross fixed point (6). 
Given an evolution from Q2=A2 to Q2=m2, the 
"invariant line" is the locus of all endpoints of this 
evolution for all starting points on and sufficiently 
close to this line. The location of this "invariant line" 
in the R -Pt plane depends on A: however, the impor- 
tant point is that for any A, 1 TeV~A~< 1015-1019 
GeV, the A-dependence disappears for p,>~ 0.8 and is 

only weak for Pt~ 0.8. More precisely, for pt>/0.8 all 
A-dependent "invariant lines" merge with the genu- 
ine invariant line of the g~,2=0 case; for p,~< 0.8 the 
A-dependence remains weak as long as one remains 
within the region of R, Pt values admitted by the pres- 
ent experimental lower bounds on mt and ran. This 
justifies a posteriori the term "invariant line" in 
quotes; it is an effective invariant line in a similar 
sense as the effective quasi-fixed point (10). On each 
"invariant line" lies the announced effective A-de- 
pendent "fixed point", defined as the point in the R -  
Pt plane where the starting point and the end point of 
the evolution from A to rnz coincide. To quantify the 
A-dependence, we choose two physically motivated 
extremal values for A, A= 1 TeV and A= 1015 GeV; 
the corresponding two "invariant lines' may be con- 
sidered as limiting "invariant lines". For a figure we 
refer to ref. [ 15 ]. 

Finally, let us translate these two limiting "invar- 
iant lines" for A = 1 TeV and 10 ~5 GeV into limiting 
relations between the physical parameters mH and rnt 
using 

m/~ = ~x/-~tg~ I .fa~= m~," 174 GeV,  

m , =  px/~tg321x/~=m.174GeV. (27) 

The resulting infrared attractive top-Higgs mass re- 
lations are displayed in fig. 1 for mt<~ 500 GeV (solid 
lines). The experimental lower bounds, 60 GeV for 
rnn and 91 GeV for mt, the boundary wedges for 
A= 104 GeV and 1015 GeV (dashed lines) and the 
values of the top and Higgs masses obtained in the 
framework of the BHL top condensation model [ 14 ] 
for various values of A (solid dots), are shown as well. 
The A dependent "fixed points" (open dots) are also 
included. 

The most recent indirect experimental informa- 
tion on the top mass from LEP and other precision 
experiments amounts to [ 2 ] 

all data I mH-~ 300 Gev: m, = 145_+ [ ~ GeV,  (28 ) 

andto  [16] 

• I "~'~ + 2 4  all data I ran= mz" mt . . . . .  26 GeV,  (29) 

all datal rnHfree: mt = 124+-28~ GeV,  

mtl = 25-+775 GeV.  (30) 
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Let us therefore quote some representative values, 
read off the two limiting top-Higgs mass relations in 
fig. 1, within the region of special interest, 91 ~< rnt ~< 
200 GeV, 

for m,v~in = 60 GeV,  mr___ 112-125 GeV,  

for m t =  130 GeV,  mn-~ 68-90 GeV,  

for mr=  145 GeV,  mn-~ 103-115 GeV,  

for m t =  200 GeV,  mn ~ 207 GeV.  (31 ) 

The locations of  the effective Pendleton-Ross "fixed 
points" for the two chosen extremal values of  the cut- 
off scale A are 

mn= 97 GeV,  mt = 134 GeV,  

for A = 1 TeV,  

m/~= 126 GeV,  mr=  155 GeV,  

f o r A =  1015 GeV.  (32) 

Of  course, the top-Higgs mass relation in fig. 1 and 
the mass values in eqs. (31 ), (32) depend somewhat 
on the chosen values for as(m2), sin20w(m~), 
a(m~) and mz. 

It is furthermore very instructive to discuss the be- 
haviour of the boundary wedge as function of A in 
relation to the invariant line (cf. fig. 2). For a given 
value of A the boundary wedge consists of  two well- 
known branches [6,10], the triviality bound 
(bounding rn ,  from above) and the vacuum stability 
bound (bounding mt from above). The two branches 
meet at the tip of  the wedge. The tip (i) collects the 
IR images of the UV points with Pro >> 2, i.e. it coin- 
cides with the effective quasi-fixed point (10), (ii) 
it correspondingly coincides with the pair of  top-  
Higgs masses obtained in the BHL top condensation 
approach [ 14], and (iii) it lies on the invariant line. 
For increasing values of  A, the tip of  the wedge slides 
down the invariant line. For A = 10 4 GeV the two 
branches of  the wedge are - apart from the tip region 
- well distinct from the invariant line. For increasing 
A they are attracted towards it. For A = 1015 GeV the 
vacuum stability bound has essentially reached the 
invariant line, which increases its significance. This 
is not the case for the triviality bound, which collects 
IR images of  UV points with very large Ro and small 
Pro; it continues to shrink towards the invariant line 
for increasing A. 

The physical significance of the essentially A inde- 
pendent IR attractisve top-Higgs mass relation has 
to be judged according to the usual criteria applied to 
fixed point structures: it is the more significant the 
longer the evolution path is, measured by lnA/mz, 
and the stronger the rate of attraction towards it. The 
rate of attraction has been shown to be strong indeed 
(in contradistinction to that of the Pendleton-Ross 
quasi-fixed point). For large values of A, e.g. in grand 
unified theories with A ~ 1015 GeV, all UV points ad- 
mitted within one-loop perturbation theory, except 
those pairs Ro, Pro with Ro large and Pto small, evolve 
into IR points on or fairly close to the top-Higgs mass 
relation in fig. 1 (for a quantification see ref. [ 15 ] ). 

In this context a more speculative but quite attrac- 
tive suggestion [17,11] is worth recalling: parame- 
ters like renormalized couplings (masses .... ) of the 
standard model in the IR regime ( x f ~  ~ mz) might 
well be selfconsistently determined such as to cancel 
their sensitivity to the UV regime ( x ~  ~A) ,  the 
presumed onset of new unknown physics. A well-de- 
fined realization of these ideas is to tune the param- 
eters onto IR attractive quasi-fixed point or invar- 
iant line solutions of the RGEs. The IR attractive top-  
Higgs mass relation in fig. 1 is precisely of this kind, 
the Pendleton-Ross "fixed point" (32) even more 
SO. 

Finally, let us speculate on the limit of possibly very 
large top and Higgs masses, outside the range of va- 
lidity of perturbation theory. We remember that the 
advocated invariant line is the only solution of the 
one-loop RGEs which tends to afinite ratio for 2/g 2, 
in the formal UV limit of large gE/g]. Thus, it is near 
at hand to suggest (cf. also ref. [5] ) that it might 
continue to be approximately valid in the non-per- 
turbative regime of large g~, 2. First results in lattice 
Higgs-Yukawa models [ 18 ] actually tend to confirm 
this suggestion. In other words, if there is any "escape 
route" from the perturbative triviality and vacuum 
stability bounds, it is presumably along the invariant 
line through the tip of  the boundary wedge. 
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