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We investigate in detail the transition from the symmetric to the broken phase in scalar
electrodynamics at finite temperature. Our analysis is based on the effective potential to order
e? and A%/% where e and A are the gauge coupling and scalar self-coupling, respectively. Plasma
masses of scalar and vector fields are determined from a set of one-loop gap equations which
also yield the range in e, A and temperature T, where perturbation theory is consistent. We
determine the values of e and A for which the symmetric phase is metastable. Depending on the
convergence of the perturbation series, for a vector boson mass of 90 GeV the Higgs boson mass
may be as large as 120 GeV. Following the theory of Langer we calculate the nucleation rate of
critical droplets and determine the temperature at which a cosmological phase transition would
be completed. For large vector boson and Higgs boson masses the phase transition is weakly first
order.

1. Introduction

The standard model of particle physics describes strong and electroweak inter-
actions correctly down to distances of order 107! cm or equivalently, up to
energies of order 100 GeV. An important postdiction of the standard model is the
occurrence of a phase transition in the very early universe at a critical temperature
of order 100 GeV, above which the gauge symmetry of weak and electromagnetic
interactions is restored [1-4]. This electroweak phase transition has recently
attracted much attention. It is of crucial importance for the baryon asymmetry of
the universe, since baryon- and lepton-number violating processes fall out of
thermal equilibrium at the corresponding critical temperature [5]. If the cosmologi-
cal phase transition was first order, relics may have been left over due to departure
from thermal equilibrium. In particular, it is then conceivable that the baryon
asymmetry of the universe was produced primordially at the electroweak scale.

Several important steps towards a theory of the electroweak phase transition
have already been made [6—8], although a fully satisfactory quantitative description
of the phase transition is still lacking. To a large extent this is due to problems
caused by infrared divergencies which plague perturbation theory in finite-temper-
ature field theory. These infrared problems are manifest, for instance, in spurious
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terms linear in the scalar field ¢ [9,10], which appear in separate contributions to
the effective potential, but cancel in the complete expression. Other open ques-
tions concern the decay of metastable states, i.e., nucleation, growth and coales-
cence of critical droplets. Furthermore, in the case of a weak first-order transition
one has to worry about the importance of subcritical droplets and large thermal
fluctuations [11-14].

In this paper we shall address some of these problems in the context of scalar
electrodynamics at finite temperature where the interesting possibility of a first-
order phase transition was considered already many years ago [15,16). This theory
is much simpler than the standard model of electroweak interactions but it already
exhibits most of the problems related to infrared divergencies. The paper is
organized as follows. In sect. 2 we calculate the effective potential to order > and
demonstrate explicitly the cancellation of spurious linear terms. We also discuss
the breakdown of ordinary perturbation theory and the necessity of an improved
perturbation theory where plasma masses are incorporated from the beginning.
Sect. 3 deals with the vector boson propagator at finite temperature, in particular
with the relation between longitudinal and transverse plasma masses and the
self-energy tensor in the case of spontancous symmetry breaking. In sect. 4 we then
obtain the complete set of one-loop gap equations. We evaluate the effective
potential to order > and A>/?, and estimate the range in e, A and temperature 7T,
where the potential is reliable. This allows us to determine a region in the plane of
couplings (e?, A) for which the symmetric phase is metastable. Following the
theory of Langer [17,18] we compute the nucleation rate of critical droplets in sect.
5. We also determine the temperature at which a cosmological phase transition
would be completed and discuss the strength of the first-order transition. Our
results are summarized in sect. 6.

2. Breakdown of perturbation theory

Perturbation theory of scalar electrodynamics at finite temperature is based on
the action *

sﬁ[¢,A]=[de(—%Fwa+|Dp¢|2— (V20%)), (1)

where
dx= [Par[a® L b i —iea 2
Lx=j£) Tf X, B——f, ), =90, —ied,, (2)
Vo=ud*® + A(d*d)%, u<0. (3)

* We use the conventions of ref. [19].
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Fig. 1. One-loop contributions to the effective potential.

The complex scalar field @ = (1/v2 X¢ + i) contains Higgs and Goldstone boson
fields ¢ and x respectively, F,  is the field strength of the vector field 4, and e is
the gauge coupling. v = \/ —u/A =v* is the zero-temperature vacuum expecta-
tion value of 2 ®. The free energy FI®, T] can now be expressed in terms of a
functional integral over the shifted action S, (cf. ref. [20]):

e~ BFI®.T) _ j’[DqG][DA“](S(f) detj—f
B 43

SF[®,T] .

Xexp(—sﬂ[q:wm‘s, A,]- fﬂdxm)—cb(x) Y

where f is a gauge fixing condition for the gauge field. In this paper we choose the
Landau gauge. The functional integration is over periodic fields, i.e., (0, x) =
d(B, x) and AM(O, x)=A,L(B, x).

For constant background fields F[®, T} is identical with the finite-temperature

effective potential and in the one-loop approximation one finds (cf. fig. 1, refs.
[15,19])

¢
Pl 7| =16, D) = ¥io) +vi(6,7)
= — 27 T4 — HSA2T? + 5[ $5(3e2 + 40)T? — av?| 2
1
_ E[3e3¢3 + A/2(3¢p — U2)3/2 + A2 — U2)3/2]T+ Lrd*

1

+
6472

T2
[Befe* +2(3¢2 - 0?) + (62 =0?) Iz (9)
Here, in the high-temperature expansion, terms up to order (m,;/T)* have been

kept, where the tree-level vector boson mass m, the Higgs mass #i s and the
Goldstone boson mass 7, are given by

m?=e’p?, my=A3¢*—v?), m=A($>—0v?). (6)

Note that r_n'?,,J and m§ are negative for small values of ¢.
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Let us first ignore the terms of order A*/? in eq. (5) which may be justified for
A < e? and recall the qualitative features of the free energy. As a result of the
finite-temperature corrections the second derivative of the effective potential at
the origin becomes positive for temperatures above the “barrier temperature” T,

- 12A02 .
b 36244\ (7
Hence, for T> T, the symmetric phase is a local minimum of the effective

potential. From eq. (5) one easily finds that for temperatures close enough to T,
which satisfy the upper bound

T2 -T? 278
2 < 2 2 L] (8)
T 1672A(3e? + 4A)
two other extrema exist:
. 3¢3 " \/1 1672A(3e2 + 4A) T2— T2 .
= + — .
¢+(T) 8A - 27e® T2 ©)

¢ _ corresponds to a local maximum of F and ¢, is a second local minimum
which at the critical temperature T, where

T2 -T2 3e®
T? 27232 +4))’

C

(10)

is degenerate with ¢ =0. The global minimum of the free energy is ¢, for
temperatures below 7. whereas it is the symmetric phase ¢ = 0 for temperatures
above T,. Note, that the second minimum ¢, occurs due to a compensation
between terms of order A and e°.

Our determination of the critical temperature is based on the effective potential
in the high-temperature expansion, which breaks down for m(¢.)=e¢ > T,
where ¢.= ¢ (T.). Together with egs. (9) and (10) this implies for A the lower
bound

A e’ 11
> —,
2 (11

Note that this condition is much more stringent than the Weinberg—Linde bound
A > 3e*/(3272) [21]. The lower bound on A provides upper bounds for the critical
temperature 7, and the critical field ¢,:
7 1 2

—_— <=, — < —. 12
TC2 T v? T—1 (12)

T2 -
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Fig. 2. Two-loop contributions to the effective potential. (Vector loops only.)

As expected, the expectation value ¢_ at T, is smaller than the vacuum expecta-
tion value v at T=0. Due to the barrier in the effective potential, generated by
quantum fluctuations, the symmetry breaking phase transition appears to be first
order with a strength which depends on the ratio A /e? of coupling constants.

To what extend can we trust this result? For our calculation we needed the
effective potential for values of ¢ between 0 and ¢_.. But finite-temperature
perturbation theory is well known to yield in higher orders terms proportional to
(eT/m(p)" =(T/P)", i.e., the series is badly divergent for small values of ¢. A
manifestation of these infrared divergencies is the appearance of terms linear in ¢
in the effective potential. The two-loop graphs shown in figs. 2a, b yield the linear
terms

3

e
Vi (¢, T)=—E1—TT3¢+..., (13)
e3
Vz(b)(¢,T)=mT3¢+.... (14)

Clearly, a linear term in the effective potential would invalidate our previous
discussion.

The most infrared divergent contributions in higher orders arise from ring
diagrams (cf. fig. 3, refs. [8,19,22]). Their sum yields the contribution to the
effective potential

Vl + VRING
~ —%fﬁdp In(p? — m2) + 2 In( p> — m%)
om? omi
- -2 15
p2_m2 pz_mz ( )

where m; (m) is the longitudinal (transverse) plasma mass of the photon
propagator and 8m{ (8m3) is the deviation from the tree-level mass, ie., mi 1 =
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Fig. 3. Ring diagram contributions to the effective potential. (Vector loops only.)

m®+ 8m} 1. Here we have anticipated the structure of the photon propagator
which will be discussed in detail in the following section. For the one-loop plasma
masses we find (cf. fig. 4)

e’ e’
smi=—T?~—Th+..., (16)
T
Sm? 263T + 17
my = 3 b+ ... (17)

The integral (15) is easily evaluated. One obtains

Vit Ve = — w7 T + 3’ T7¢?

T2
+ W[mi+2mﬁ}—2m2(6mi+6m%)] lnm. (18)
The result contains a term linear in ¢ which, to leading order in e, is given by

3

€
migT =5 —T%+.... (19)

3e
244
Hence, the ring diagram contribution precisely cancels the sum of the two-loop

terms V5 + V® (cf. egs. (13) and (14)) to leading order in e. One expects that the
linear terms of higher order in e are also spurious and cancel if all contributions to
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Fig. 4. One one-loop contributions to the photon plasma masses.
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the effective potential are summed, but, to our knowledge, this hope has not been
proven so far.

Summing the “daisy” graphs [3], i.e., the ring diagrams with one-loop self-en-
ergy insertions, had lead to a cancellation of linear terms. However, a new problem
has appeared. According to eq. (17), at small values of ¢,

2 T 20
<51,

<5 (20)
the transverse plasma mass square m3 becomes negative and perturbation theory
appears to break down! As we shall see in the following sections, this problem is
cured if the plasma masses of the scalar fields are also taken into account. This is
needed anyhow since to order A>/2 the one-loop approximation breaks down for all
values of ¢ between zero and ¢ < v! A self-consistent determination of all plasma
masses by means of gap equations amounts to summing “daisy” and “superdaisy”
graphs for the effective potential and will be carried out in sect. 4.

3. Improved perturbation theory

In order to determine the plasma masses of vector and scalar fields, we first
have to discuss the structure of the vector propagator at finite temperature. The
photon self-energy I1,,(k) depends on the photon four-momentum k* and the
four-vector u* = (1, 0) which specifies the rest frame of the system (cf. ref. [19]).
Hence, in general II,, is a linear combination of four tensors. A convenient choice
is

(. kik\
PTp.Vzg;L Bij_ k2 gJV’ (21)
kf‘k” ’ T,T

PLuv=7_guV—PTuuzpuuuv’ (22)
k. k,

PGp.u = - k2 » (23)
1 T T

S,,= (kb +kuy), (24)

V2k?

where “E =u, —k,(u-k)/k* is transverse, qu“ = 0. These tensors satisfy the
relations

Pi=—Pr, Pi=-P., Pi=-P;, §?=3(PL+Ps), (29
PPy =PyPg =P P5s=SPr=P SP, =0, (26)
Ppt=2P F=2Ps 0 =-2, S}t=0. (27)
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In Landau gauge, where the bare propagator is transverse,

D(k) = 177 (PL+ Pr), (28)
the photon self-energy tensor
H(k)=HL(k)PL+HT(k)PT+HS(k)S+HG(k)PG (29)

yields the full propagator
D(k)= ¥ D(k)(II(k)D(k))"
n=90

-1 -1
P, + P
K—m?>—H (k) " kK2—m? - (k) T

(30)

Due to the relations (25) and (26) the full propagator does not depend on IT{(k)
and I15(k).

However, knowledge of Il is important since it enters in the relations which
yield the longitudinal and transverse plasma masses:

dmi = I1,(0) = Tr(I1(0) P) = —I5(0), (31)
omi =1I11(0) =3 Tr(I1(0) Py) = —3(11*,(0) + I1,(0) + I5(0)),  (32)

where
HG(k)=Tr(H(k)PG). (33)

Here I1,,(0) is defined by setting first k,=0 and then performing the limit
k> — 0. In gauge theories with unbroken symmetry one has ;=0 in Landau
gauge. Note, that this is not the case if the symmetry is spontaneously broken. As
eq. (32) shows this fact is important in order to extract the correct transverse mass
from 11,,.

In scalar electrodynamics the one-loop photon self-energy corrections are given
by figs. 7a—c. The corresponding integral reads

1 1
11,,(k) :"Zf,;dq{qewg [(ﬁk)z_mi(zmk)n(zq +k),

1 1 (34)
+ )
qz—mﬁ5 qz—mi

4m? (g+k) . (g+k),
(a+ k) —m? |5 (a+k)?

-8,
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Using eqs. (29)-(33) we find, including terms up to In(m?/T?),

2 2
8m2L=leZT2—e— 42 m,tm T
? dr | m+my ¢ X
3e? m? , m? " m;,
Tor? ez \™ Mz mmengz ) (9)
s = — e’ m? (my—m,)* .
T 27\ m+m,  myF,
3e? m? 2 m? . m},
T mromz ™ N e |- G6)

With m, =m, =0 and ignoring terms O(n(m,/T)) one obtains egs. (16) and (17).

For small values of ¢ the temperature-dependent plasma mass corrections
SmZL,T can become larger than the tree-level mass m?. This suggests an improved
perturbation theory, where loop diagrams are evaluated with propagators contain-
ing the exact masses m} . =m?+ dmi 1, mj , =m;  +&mj . The radiative cor-
rections are treated as counter terms,

8S;=— %/;;dp[A”‘(p)(BmZLPLW + Sm%PTw)/f”(p)

—8m22(p) — 6mig3(p)], (37)

and are determined self-consistently by solving gap equations at the corresponding
loop order. To order €3, 8m? and 8m? are given by egs. (35) and (36).

It is instructive to study in this framework the cancellation of linear terms which
appear in separate contributions to the effective potential. The one-loop graphs
shown in figs. 5a, b yield

Vi= = 2w T* + LT %’

- ——(mi +2m} — jm dm} — 3m 6m3)T
127

TZ

+W(mi+2mﬁ}-—2mi5mi—4m%8m%) lnﬁz—. (38)

This result is very similar to eq. (18), the sum of one-loop and ring diagrams

V, + Vging in ordinary perturbation theory. Note, however, that the term m&m?
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al b)

Fig. 5. One-loop contribution to the effective potential with full photon propagators including
counterterms. (Vector loops only.)

in eq. (18) which gave the linear term to order e3, has been replaced by

6‘3 2

]
mLSmi=ﬁT3 1+5F+0(6) . (39)
Hence, V; does not yield a linear term to order e®. For the two two-loops shown in
figs. 6a, b we find

3
Vz(a)=—24—7TT3¢+...=—V2(b)+.... (40)
Hence, to leading order in e the two-loop contributions compensate each other
and there is no need to sum up an infinite series of ring diagrams to achieve the
cancellation. This is expected since the leading infrared divergencies are elimi-
nated by the longitudinal plasma mass of the vector boson and the subtractions
due to the counter terms dm? and 8m%. In order to discuss subleading infrared
divergencies the gap equations have to be studied at finite momentum.
It is straightforward to show that an equivalent cancellation occurs for all scalar
loops to O(A3/2). Therefore the effective potential

V(6. T) = cT* 4 (3> + 1A)(T = T3)47 + g’

T
—(mi+2m3T+m3,+mi)I2—+O(e4, ) (41)
™

does not have a term linear in ¢ to O(e3) and O(A*>/2),

//"‘\\\ kp
/ ST
| L 9.X / ™
\ ; ), \
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X
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Fig. 6. Two-loop contributions to the effective potential with full photon propagators. (Vector loops
only.)
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Fig. 7. The gap equations: All one-loop self-energy corrections with full propagators.

4. The gap equations

Let us now investigate the phase structure of scalar electrodynamics by means
of the one-loop gap equations. The corresponding graphs are shown in fig. 7. A
straightforward calculation yields the following set of equations:

2 1 2T2 2 82 4m2 T 12
=124 m?— — | —— +m, + ,
LTS " 4 m;+m, o " My (42)
e’ 8m? m,—m.)>
my = m?— - et )y, (43)
m\mytm, my+m,
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2

e 2
m} = (3€*+ 3A)(T* = T¢) +3m* — — |my + 2mp+ m*| — + — ||T
47 m; mg
A —, 9 1
——4——7; 3m¢+mx+m m_¢+m_X T, (44)
m? = (4e? + 1A)(T? - T?) + 72
a 2 T A 3 4’ T 45
——(m+ -— + —
47T(mL mr) 4 | e T My my+m, | (43)
where
12A0°
m=ed>, m=\/)Td>, sz=m (46)

Here we have neglected terms of order In(m;/T) in the high-temperature expan-
sion.

It is instructive to consider the gap equations for the pure scalar theory (e = 0)
and at ¢ = 0. From eqgs. (44) and (45) one obtains for temperatures close to the
barrier temperature:

ie., my and m, approach zero with critical index one. This well-known result was
first obtained by Dolan and Jackiw in the large-N limit [3]. We obtain the same
result since at ¢ = 0 only graphs (h) and (1) of fig. 7 contribute, which are the
leading terms in a (1 /N)-expansion. The behaviour of m, and m  for small values
of ¢ at T =T, cannot be obtained from egs. (44) and (45) as m, and m, are only
O(1/N) in this case, and graphs (g) and (k) of fig. 7 contribute to the same order.
Due to these graphs perturbation theory breaks down for temperatures T close to
T,. Consequently, eq. (47) cannot be expected to hold in our case where N = 2.

From the gap equations (42)-(45) one can determine the plasma masses to
O(e3, A3/?). They are easily found by inserting the lowest order results

m) = y3e*T* + m?,

m = J(Fe? + IA)(T? - T2) + 32,

m = (4e* + 3A)(T* - TE) +m?, (48)
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into the RHS of the gap equations. From the scalar masses m} and m’, one can
derive the effective potential by integration. Note, that due to the global U(1)-sym-
metry of our theory the potential is only a function of V2®*® = y¢? + x*. Hence,
at y =0, the masses m (¢, T) and m (¢, T) are given by

w1 = L2 ()
mo. 1) =5 D, (50)
and thus
V(6 T) = [*d’ ¢'mi(#', T)
=cT*+ 3(3€* + 3A)(T? - TZ) > + 4Ad*
—(m%3+2m9r3+m2,3+m23)% +0(e, A2). (51)

As expected, there are no terms linear in ¢ and eq. (51) coincides with eq. (41) to
the order in which we are working. The evaluation of the effective potential to
O(e*, A?) requires to incorporate two-loop contributions in egs. (42)-(45), and in
order to obtain the exact effective potential the gap equations have to be replaced
by the full Schwinger—Dyson equations.

Under which conditions is the perturbative expansion valid? At the origin,
¢ =0, the curvature of the potential m3(¢, T) is positive if

3

= (260 )T 1) et e Y ) 20 ()

This implies the corrected barrier temperature

12A0°
3e2+4r -3 ¥/

12 _
b=

7T(1 +0(e*, 1)), (53)

in agreement with a recent calculation of Arnold [23]. Note, that there is no
correction of order A*/2. In addition, for temperatures above T, the limit ¢ — 0
can now be taken in the equation for the transverse photon mass, yielding sz =0.
The difference with respect to the case discussed in sect. 2 (cf. eq. (20)) is due to
the summation of “daisy” graphs for the photon plasma mass which correspond to
“superdaisy” contributions to the potential. These graphs yield a nonvanishing,
real plasma mass m, which now appears on the RHS of eq. (43).
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Away from the origin, at ¢ > 0, terms proportional to T /m; become important
in the gap equations. These terms reflect the expected infrared divergencies in
finite-temperature perturbation theory which appear if zero mass excitations are
present. Inspection of egs. (42)—(45) suggests that perturbation theory is reliable if
the following inequalities are satisfied:

2¢? d 1 54
—‘S ,
§31T my+mg, (54)
AT [ 9 1 . s
—|—+—] <L
§12'rr m, m, ()

The first inequality stems from the equation for m?2 and the second from the

equation for mi. We do not know how well the perturbation series converges
without a complete calculation to O(e*, A%). Hence, we have included a factor ¢
which ensures that leading terms of order e? and A are ¢ times larger than
next-to-leading terms of order e and A%*/?, respectively. The dependence of our
results on ¢ indicates the influence of unknown higher-order corrections.

Close to the origin, at ¢ = 0, the above conditions imply that one cannot even
reach the barrier temperature T,. Egs. (48), (54) and (55) yield the lower bounds
on the temperature T, T > Ty, and T > T, where

T2-T? 16£2%*
S = (56)
T2 3mw2(3e2 +42)
and
T2-T? 25¢2)° 5
T:  3w’(3e?+4r) (57)

Here, the subscript “V”’ (“‘S”’) indicates that the infrared divergence fo the vector
(scalar) field plasma mass sets the temperature. Our expression for the effective
potential is therefore only reliable for temperatures above T*, which denotes the
largest temperature among 7T,, T, and Ty.

Let us now turn to the validity of V(¢, T) at ¢ +# 0. Egs. (42) and (43) show that
the plasma masses m, and m are well-behaved for all values of ¢. However, m}
and mf( vanish at the turning points and at the extrema of the potential according
to egs. (49) and (50) and become negative beyond these points. To the order in
which we are working this is not visible in the potential because only the
lowest-order plasma masses, given in egs. (48), enter. Nevertheless, eq. (55)
indicates the appearance of infrared divergences in the next order. Hence, we can
rely on the potential only a little away from turning points and extrema such that
the condition (55) is met.
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Fig. 8. The effective potential to order e* and A%/? for different values of A at the smallest

temperatures 7 * which are compatible with perturbation theory. The parts with broken lines are not
reliable due to imaginary masses.

These restrictions are illustrated in fig. 8 where we have plotted V(¢, T) at the
smallest allowed temperature T* for some values of A. Whenever perturbation
theory is trustworthy a solid line is drawn and a broken line otherwise. At the
upright cross “+ and the tilted cross “X” m, and m,, respectively, have reached
their smallest values compatible with eq. (55). We denote the value of the scalar
field at the tilted cross ¢ .

In order to establish the existence of a first-order phase transition we have to
show that a critical temperature 7> T* exists, such that at temperatures T
between 7, and T* the effective potential has a global minimum at an expectation
value ¢(T) > 0. In particular, one has

V(¢*, T*) <V(0, T*), ¢*=¢(T"). (58)

Here V, ¢* and T* depend upon the couplings, and in this way we can find a
region in the plane of couplings e? and A where the symmetric phase is metastable.
As illustrated in fig. 8, as A increases, V(¢*, T *) increases as well and eventually
becomes degenerate with V(0, T*) at A =: A. Repeating this procedure numeri-
cally for different values of e? yields a boundary A(e?) for the region of metastabil-
ity.
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Fig. 9. Regions in coupling space where we can establish metastability of the symmetric phase. They
depend on the convergence parameter £.

So far we have ignored the breakdown of perturbation theory at large values of
¢. Because of condition (55) A must not be increased until the two minima of V
become degenerate but only until

V(0, T*)=V(d, T*). (59)

The numerical difference is tiny (cf. the blown up box in fig. 8), and the boundary
A(e?) remains essentially unchanged.

The resulting regions of metastability are shown in fig. 9. The solid curves are
the boundaries at T* = T for different values of the convergence factor £. The
dotted curves indicate the convergence of the high-temperature expansion for
which we require

mi(d))(’ Tc’)
—_— <
T’

c

0.5. (60)

The corresponding error in the effective potential is less than 1%. The region
bounded by these two curves contains pairs of couplings (e2, A) which guarantee
metastability of the symmetric phase as long as ¢ < 1.8. Once £ becomes larger
and the requirements on the convergence of the perturbation series more strin-
gent, the broken curve with 7* = T, crosses the dotted high-temperature line and



W. Buchmiiller et al. / Phase transitions in electrodynamics 403

excludes the region to its right. The quite unexpected shape of the broken curve
which intersects lines e? = const. twice traces back to the dependence of 7, and
Ty upon A for fixed e It turns out that 7, has a minimum whereas eq. (56)
shows that T, decreases monotoneously, and at sufficiently large ¢ the tempera-
tures T, and Ty, intersect twice. In scalar electrodynamics with N scalar fields
regions of metastability have recently been determined by Jain [24] using different
techniques.

As an example, for a convergence factor £ = 2, the largest permissible ratio of
scalar mass to vector boson mass is

ms _Ms=0) V2 ~13. (61)
my ev e

The region of metastability shrinks drastically as ¢ increases, and we cannot even
reach the vector boson mass m, = ev =90 GeV. Note, that this rather stringent
bound arises from infrared divergencies affecting m3.

The main result of this section, the regions of metastability shown in fig. 9,
strongly depends on the value of £, i.e., on our assumption on the convergence of
the perturbation series. Our results may be improved in several ways. First, the
proper values of £ are presumably different for eq. (54) and eq. (55) because the
effect of m% on the potential is of higher order in the couplings. Furthermore, the
most stringent constraints are derived at ¢ = 0 where one may hope to improve
the convergence by means of the renormalization group and by evaluating the gap
equations at finite momentum. We plan to discuss these problems in more detail
clsewhere.

5. Decay of metastable states
In condensed matter physics the decay of metastable states is described by

Langer’s theory [17,18]. Here the starting point is a coarse-grained free energy
F,lc, T] of the type shown in fig. 10, where a local metastable minimum and the

Fule,T]

N

Fig. 10. Typical coarse-grained free energy F,lc, T] as functional of the order parameter c.
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global minimum are separated by a barrier; ¢ is the order parameter of the system
under consideration and A is the coarse-graining scale. Based on an investigation
of the Fokker-Planck equation for the probability distribution of large fluctuations
of the order parameter (“subcritical droplets”) Langer obtained the following
relation for the decay rate [18]:

x Im Z,|c
- — _ﬂ’ (62)
2m Zg[c=0]
with
Z,[c] = e pFLeT], (63)

where Fle, T]is the total free energy of the configuration ¢, and « is a dynamic
factor which cannot be obtained from equilibrium thermodynamics; ¢ =0 corre-
sponds to the homogeneous metastable state and &(x) is a configuration which
interpolates between ¢ =0 at |x| — « and the global minimum at x=0. The
imaginary part in eq. (62) reads explicitly

1 - - =
Im Z,[¢] = ——=2T] (%) V2 o -BFAET] (64)

JIx_1

where ¢ is a stationary point of F,,

8F,[c, T]
de(x) .

c=cC

=0, (65)

IT~ denotes the product of all positive eigenvalues )_\,. of fluctuations around ¢, A _
is the single negative eigenvalue, and 7~ is the volume of zero-modes associated
with the symmetries of the system under consideration.

How can we apply this formalism to the decay of the metastable symmetric
phase in scalar electrodynamics? In analogy to eq. (62) the decay rate is given by

k Im Z,[P]
2m Zg[®=0]"

(66)

with
Z (@] = e FFIT]
. of
= /;;[ch][DA,L]B(f) det—=

A SF[@, T] ,
Xexp[—(s,,[d>+¢>, A,] —[ﬁdxﬁd%(x)”. (67)



W. Buchmiiller et al. / Phase transitions in electrodynamics 405

Here @ is again a field configuration which interpolates between the symmetric
and the broken phase. @ = 0 and @ are approximate stationary points of the free
energy F[®, T]. Hence, we neglect the second term of the integrand in eq. (67).

The functional integrals over the vector ficld yields an effective action which
depends on the scalar field ¢ + &b,

af b,
./;[DAM]a(f) det-é—‘;e SglP+P,4,)
B eXp( — [dx(0 (D + B)on(D + &)
B

—Vo(2) = V2, T) + Z(z, T)o (P + ®)a*(Pd + b) + )) (68)

where z=V2 |® + ®|. V,(z, T) is the familiar contribution of vector loops to the
one-loop effective potential (cf. eq. (5)). In the following we will neglect the wave
function correction Z(z, T).

The integral over the scalar field fluctuations & can now be carried out in the
saddle point approximation. As discussed in sect. 2, ¢ =0 and ¢, (T) are the two
local minima of the potential V,, = V;; + V. In the thin wall approximation [25] the
stationary point of the “vector loop” free energy

F [, T]=/d3x(|vq>12+VA(z, T)) (69)
is given by
_ 1 _ 1 r—R(T)
®(r) = qu(r) - —2—‘/2=¢+(T) 1—tanh(w) , (70)
with
22
)= Ry
o(T) = [* Ve V(8.T),
20
R(T)=——, e=Vy0,T)—Vy(¢.(T), T). (7))

e(T)’
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The free energy FA[5, T] is then the sum of a volume term and a surface term:
E,[®,T]=4wR*(T)o — +wR¥(T)e(T). (72)

It is sufficient to evaluate the surface tension ¢ at the critical temperature 7.
The scalar fluctuations @ consist of the radial modes ¢ and the Goldstone
modes § (¢ = V2 P):

F[®+&,T| =F,[®,T]+ fdxdyd)( )mé( )
A A 3¢(x) d¢(y)
1 2FA[(j’ T] A
Efdx dy x(x )WX(Y)- (73)

The corresponding potentials for the scalar fields q[; and y are

82
U =—V(¢, T )
U =5V @D (74)
1
U, =——V T . 75
(N =535V D] (75)

Both potentials are plotted in fig. 11. The spectrum of eigenvalues contains four
zero-modes, three translational invariance and one for the global U(1)-symmetry of
F[®, T).

The discrete ¢ spectrum is well known [17,26], since the bound states are
localized at r = R. There is one negative eigenvalue,

2

A= Ao = T R%’

(76)

U(r)

R r

Fig. 11. The potentials U,(r) and U, (r) for the scalar fluctuations ¢; and y.
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which guarantees that 23[5] is purely imaginary. Furthermore, there are “Gold-
stone modes” A,,, which correspond to deformations of the droplet surface
[17,26,27],

(I-D({+2)
/\Olm = R2 N (77)
Here ! and m label the three-dimensional spherical harmonics. The three zero
eigenvalues A,,,, are the zero-modes of translational invariance. yx,~ ¢ is the
zero-mode of the U(1)-symmetry. A straightforward calculation yields for the
corresponding phase space volumes:

B _ 3/2
7= (5ol 11) .

B 12
W)(=27r(;fd3x¢2) , (78)

where V' is the total volume of the physical three-dimensional space. For the
product of the low-lying “Goldstone modes” one can obtain a closed expression
{17,27,28]:

1 1/2
I'1 (;Amm) =(pR) ", (79)

Aotm < /-"2

where p =m0, T). Combining egs. (66), (72) and (76)—(79) we finally arrive at
the transition rate

2 3
% ° k(B )>2(Br) TV H(Rr)®/® exp(— 4mBoR?). (80)

r
Vv A
Here the contributions of zero-modes and Goldstone modes to the determinant of
scalar fluctuations around the saddle point have been taken into account. The
“dynamical factor” « has recently been related to plasma viscosities {29].

Eq. (80) gives the decay rate of the metastable symmetric phase according to
Langer’s theory of metastability. The free energy F,[®, T], obtained by integrating
out the vector field A4, plays the role of the coarse-grained free energy F e, Tlin
condensed matter physics. An important aspect of this approach is that scalar
fluctuations are only computed around the stationary points ¢ =0 and @ = @ of
F,[®, T] and not, as usually done, around unstable homogeneous scalar back-
ground fields. Hence, perturbation theory is consistent and does not break down
due to infrared divergencies or negative scalar mass terms. The decay rate (80) is
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similar to the results previously obtained by Linde [25]. There are, however, some
qualitative differences with respect to the treatment of scalar fluctuations, the
negative eigenvalue and the occurrence of a dynamical pre-factor «.

In our approach an approximate free energy, which yields the non-trivial saddle
point, is obtained by first integrating out the vector field. Alternatively one could
try to first integrate out high-momentum modes with k2 > A? for scalar and vector
fields (cf. refs. [30,31]). The corresponding free energy F,, where A is now an
infrared cutoff, should exhibit a barrier between a stable and a metastable
extremum. Low-momentum modes with k% < A? should then yield the interpolat-
ing configuration ¢. Such a cutoff A must not destroy the effect of the cubic term
in the effective potential, which implies A? < {e?¢?, ¢ < 1. Furthermore, ¢ must
be essentially homogeneous for distances r < 1/A, i.e., A>> 1/d* ~A¢p?% (cf. eq.
(71)). Both conditions together require A /e? < £, which can indeed be satisfied for
the range of A and e? identified in sect. 4. Since ¢, = e>T /(27 1), one may choose
A? <eT?. In this case we expect plasma masses to appear in the free energy F,.
Correspondingly, one should include in the evaluation of the decay rate eq. (80)
plasma mass effects, which essentially reduce the cubic term in the effective
potential by 3 [7].

Let us finally examine whether our approach can consistently describe a
first-order cosmological phase transition. A rough estimate of the temperature 7,
at which the phase transition ends, is obtained by requiring

It)ei~1, (81)

where ¢ = 0.03m/ T2 (cf. ref. [32]). In table 1 we compare three examples of
couplings for which perturbation theory is consistent if £ < 1.8. They are evaluated
at e = 0.32, where my, =90 GeV for a choice of v =160 GeV. The self-coupling
A is chosen such that the scalar masses mg = V2 Av are mg = 60 Gev, mg = m,, = 90
GeV and mg =120 GeV. The latter is close to the largest scalar self-coupling
which satisfied the bounds in fig. 9 for £ = 2. All temperatures, the surface tension
o, the droplet radius R, the correlation length 1/u and the droplet thickness d
have been extracted from the “vector loop” potential V, in eq. (69). In parenthe-
ses we added their relative deviation from values that stem from the full potential

TABLE 1
Observables of first-order phase transitions for e? = 0.32 and three different values of A (see text).

A T, (GeV) T,-T,(GeV) T,-T,{(GeV) o (103GeV)® R7'(GeV) 1/Rp d/R

0.07 150 (8%) 0.41 37%) 6 (37%) 8 (40%) 13 0.11 0.28
0.16 230 (18%) 0.14 (29%) 4 (40%) 3(25%) 0.67 0.06 0.15
0.28 300(27%) 0.07 (14%) 3(29%) 2(36%) 0.44 0.04 0.10
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Fig. 12. The “vector loop” potential for the values of A given in table 1 at the corresponding
temperature 7. The potential with A = 0.07 has been reduced by a factor of five.

IV in eq. (51). They illustrate the uncertainty due to unknown higher-order
corrections.

Table 1 shows to what extend the thin wall approximation is valid. The ratios
d/R appear acceptable for A =0.16 and A = 0.28 whereas the case A =0.07 is
marginal. Note, that this value of A is not contained in the metastability region for
& =2. In all cases the critical radius is much larger than the correlation length 1 /.
We have compared the exact saddle point free energy (cf. ref. [7,25]) with its thin
wall approximation. For all values of A the difference is less than 7%. Also the
semiclassical approximation appears to be accurate. For I'/(VVT*) the correction of
the calculation pre-factor to the saddle point free energy is about 1%. In fig. 12 the
“vector loop” free energy is shown as function of ¢ for the three values of A at the
corresponding temperatures 7, where the phase transition is completed (cf. table
1). For A =0.16 and A =0.28 the barrier height is larger than the depth of the
global minimum. This further supports the validity of the thin wall approximation
for these values of A.

To conclude, we have obtained a consistent description of a cosmological
first-order phase transition for values of e? and A within the £ =2 metastability
region. However, the transition is only weakly first order, and its cosmological
implications remain uncertain at present.
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6. Summary

In the previous sections we have studied the transition from the symmetric to
the broken phase in scalar electrodynamics at finite temperature. We have seen
that, due to infrared divergencies, ordinary perturbation theory to finite order in ¢
and A does not yield a useful approximation to the effective potential. However, an
improved perturbation theory, which takes plasma masses into account, describes
consistently the symmetric phase (¢ = 0) and also the broken phase (¢ > 0) in the
neighbourhood of the second non-trivial, local minimum of the effective potential.
Using this improved perturbation theory we have evaluated the effective potential
including all terms of order e and A*/2, To this order all contributions linear in ¢
cancel.

The plasma masses have been determined from a set of one-loop gap equations
which also yield the range in the couplings e and A, the temperature 7 and the
scalar field ¢ where the perturbation series converges. Knowing the range in T
and ¢ as function of ¢ and A where the effective potential is reliable has allowed
us to determine the range in e and A where the symmetric phase is metastable. As
a criterion we required the effective potential at the origin, ¢ =0, to have only a
local and not a global minimum for the allowed values of 7. In sect. 3 an
important technical point has been the derivation of the correct relations between
longitudinal and transverse plasma masses and the photon self-energy in the case
of spontaneous symmetry breaking.

Following the theory of Langer we have finally computed the nucleation rate for
critical droplets. We have argued that the effective action, obtained by integrating
out the vector field, plays the role of the coarse-grained free energy in condensed
matter physics. Here a necessary condition is A <e? which is satisfied within the
regions of metastability found in sect. 4. Scalar fluctuations are only computed
around the critical droplet and not around unstable homogeneous scalar back-
ground field. Hence, the usual problems related to infrared divergencies and
imaginary scalar masses are absent. We have also shown that for Higgs boson
masses of the order of the vector boson mass a cosmological phase transition
would indeed by first order, i.e., it would proceed via nucleation and growth of
critical droplets. Since the transition is only weakly first order, its cosmological
implications remain rather uncertain at present.

Our results could be improved in several respects. First, it is important to
replace our criterion for the convergence of the perturbation series, which we
obtained by inspection of the gap equations, by a complete computation of the
effective potential to order e*, A%. This is necessary in order to be sure about the
range of parameters for which perturbation theory is reliable. Furthermore, the
validity of the expansion in powers of derivatives used in sect. 5 and the validity of
the thin wall approximation have to be examined in greater detail. Finally, it would
be interesting to study a renormalization group improved version of the gap
equations and eventually the full Schwinger—Dyson equations.
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An extension of our approach to the electroweak phase transition is in principle
straightforward. We will report on our results in a forthcoming publication.

We would like to thank D. Bodeter, Z. Fodor, V. Jain, A. Linde, M. Liischer, N.
Tetradis and C. Wetterich for helpful discussions and comments.
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