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We investigatein detail the transition from the symmetric to the broken phase in scalar
electrodynamicsat finite temperature.Our analysis is basedon the effectivepotential to order
e

3 and A3~2,wheree and A arethe gaugecoupling and scalarself-coupling,respectively.Plasma
massesof scalarand vector fields are determinedfrom a setof one-loopgapequationswhich
alsoyield the rangein e, A and temperatureT, whereperturbation theoryis consistent.We
determinethevaluesof e andA for which thesymmetricphaseis metastable.Dependingon the
convergenceof the perturbationseries,for a vectorbosonmassof 90 GeV the Higgsbosonmass
maybeas largeas 120 GeV. Following the theoryof Langerwe calculatethe nucleationrateof
critical dropletsanddeterminethe temperatureatwhich a cosmologicalphasetransitionwould
becompleted.For largevectorbosonandHiggs bosonmassesthe phasetransitionis weaklyfirst
order.

1. Introduction

The standardmodel of particle physicsdescribesstrongandelectroweakinter-

actions correctly down to distancesof order 10 16 cm or equivalently,up to
energiesof order 100 GeV. An importantpostdictionof the standardmodel is the
occurrenceof a phasetransitionin theveryearlyuniverseat a critical temperature
of order 100 GeV, abovewhich the gaugesymmetryof weak andelectromagnetic
interactions is restored [1—41.This electroweakphase transition has recently
attractedmuch attention. It is of crucial importancefor the baryonasymmetryof
the universe, since baryon- and lepton-numberviolating processesfall out of
thermalequilibrium at the correspondingcritical temperature[51.If the cosmologi-
cal phasetransitionwasfirst order,relics mayhavebeenleft overdueto departure
from thermal equilibrium. In particular, it is then conceivablethat the baryon
asymmetryof the universewasproducedprimordially at the electroweakscale.

Severalimportantstepstowardsa theoryof the electroweakphasetransition
havealreadybeenmade[6—81,althougha fully satisfactoryquantitativedescription
of the phasetransition is still lacking. To a largeextent this is due to problems
causedby infrareddivergencieswhichplagueperturbationtheoryin finite-temper-
aturefield theory. Theseinfraredproblemsaremanifest,for instance,in spurious
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termslinear in the scalar field ~ [9,101,which appearin separatecontributionsto
the effective potential, but cancel in the completeexpression.Other open ques-
tions concernthe decayof metastablestates,i.e., nucleation, growth and coales-
cenceof critical droplets.Furthermore,in thecaseof a weakfirst-order transition
one hasto worry about the importanceof subcritical dropletsand largethermal
fluctuations [11—141.

In this paperwe shall addresssomeof theseproblemsin the contextof scalar
electrodynamicsat finite temperaturewhere the interestingpossibility of a first-
order phasetransitionwas consideredalreadymanyyearsago [15,161.This theory
is much simpler thanthe standardmodel of electroweakinteractionsbut it already
exhibits most of the problems related to infrared divergencies.The paper is
organizedas follows. In sect.2 we calculatethe effectivepotential to order e3 and
demonstrateexplicitly the cancellationof spuriouslinear terms. We also discuss
the breakdownof ordinary perturbationtheoryand the necessityof an improved

perturbationtheorywhere plasmamassesare incorporatedfrom the beginning.
Sect.3 dealswith the vectorbosonpropagatorat finite temperature,in particular
with the relation between longitudinal and transverseplasma massesand the
self-energytensorin the caseof spontaneoussymmetrybreaking.In sect.4 wethen
obtain the completeset of one-loop gap equations.We evaluatethe effective

potential to order e3 and A3”2, andestimatethe range in e, A andtemperatureT,
wherethe potentialis reliable.This allows usto determinea region in theplaneof
couplings (e2, A) for which the symmetric phase is metastable.Following the
theoryof Langer[17,181we computethe nucleationrateof critical dropletsin sect.
5. We also determinethe temperatureat which a cosmologicalphasetransition

would be completedand discussthe strengthof the first-order transition. Our
resultsare summarizedin sect. 6.

2. Breakdownof perturbation theory

Perturbationtheoryof scalarelectrodynamicsat finite temperatureis basedon

the action *

~ A] = fdx(— ~F~~F’~’+ I D~IiI2— V
0(V2b*~i)), (1)

where

1
çfJ i~3Jdx~J dTjdx, f3=—, D,A=dM—leA~, (2)0

V0=*~+A(~I3*~)
2, p<O. (3)

* We use the conventionsof ref. [19].
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Fig. 1. One-loopcontributionsto theeffectivepotential.

Thecomplexscalarfield J~= (1/ v~)(4+ ix) containsHiggsandGoldstoneboson
fields 4’ and x respectively,~ is the field strengthof thevectorfield A~and e is
the gaugecoupling. v = — ~/A = v* is the zero-temperaturevacuumexpecta-
tion value of i/~ cP. The free energyF[1, TI cannow be expressedin termsof a
functional integral overthe shiftedactionS,3 (cf. ref. [201):

af
~ f [DP][DA,L16(f) det—

aa

xexp(_S,3{~+~,A~]_jdx ~(x) ~(x))~ (4)

wheref is a gaugefixing conditionfor the gaugefield. In this paperwe choosethe
Landaugauge.The functional integrationis over periodic fields, i.e., ~I’(0,x) =

qi(p, x) and A~(0,x)=A~(J3,x).

For constantbackgroundfields F[cP, TI is identicalwith the finite-temperature
effective potential and in the one-loop approximationone finds (cf. fig. 1, refs.
[15,19])

F[~~ T] V(4’, T) = V0(4’) + V1(4’, T)

= — ~r
2T4 — ~Av2T2 + ~~[~(3e2 + 4A)T2— Av2]4’2

— ~ [3e3~3+ A3/2(34’2 — v2)3/2 + A3/2(4’2 — v2)3/2}T +

1

+ 64ir2 [3e44’4+ A2(34’2 — v2)2 + — v2)21 ~ (5)
Here, in the high-temperatureexpansion,termsup to order (m

1/T)
3 havebeen

kept, where the tree-levelvector boson mass m, the Higgs mass and the
Goldstonebosonmass aregiven by

m2= e24’2, ~ = A(34’2 — v2), ~ = — v2). (6)

Note that and arenegativefor smallvaluesof 4’.
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Let us first ignore the terms of order A3”2 in eq. (5) which may be justified for
A ‘~ e2 and recall the qualitative featuresof the free energy.As a result of the
finite-temperaturecorrectionsthe secondderivative of the effective potential at
the origin becomespositivefor temperaturesabovethe “barrier temperature”Tb,

12Av2
(7b 3e2+4A~

Hence, for T> Tb the symmetric phase is a local minimum of the effective
potential.From eq. (5) one easily finds that for temperaturesclose enoughto Tb,
which satisfy the upperbound

T2 — T,~ 27e6

T2 ~ 16~2A(3e2+ 4A)’ (8)

two otherextremaexist:

3e3 I l6ir2A(3e2 + 4A) T2 — T~
4’~(T)~-,~-T1~V1— 27e6 T2 (9)

4’ correspondsto a local maximum of F and 4’ + is a secondlocal minimum
which at the critical temperatureI~,where

3e6 0

T2 — 2~2A(3e2+4A)’ (1)

is degeneratewith 4’ = 0. The global minimum of the free energy is 4’~for
temperaturesbelow T~whereasit is the symmetricphase4i = 0 for temperatures
above T~.Note, that the secondminimum 4’~occurs due to a compensation
betweentermsof order A and e3.

Ourdeterminationof the critical temperatureis basedon the effective potential
in the high-temperatureexpansion, which breaks down for m(4’~)= e4’~>T~,

where & = 4’+(T~).Togetherwith eqs.(9) and (10) this implies for A the lower
bound

e4
A>—. (11)

2~r

Note that this condition is much morestringentthan the Weinberg—Lindebound
A > 3e4/(32ir2)[211.The lowerboundon A providesupperboundsfor the critical
temperature7~andthe critical field 4’~:

1~2—T~ 1 4’~ 2
2 <~‘ ~< . (12)~r v IT-i
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Fig. 2. Two-loopcontributionsto theeffectivepotential.(Vectorloops only.)

As expected,the expectationvalue ~ at T~is smallerthan the vacuumexpecta-
tion value v at T = 0. Due to the barrier in the effective potential, generatedby
quantumfluctuations, the symmetrybreakingphasetransitionappearsto be first
order with a strengthwhich dependson the ratio A/e2 of coupling constants.

To what extendcan we trust this result? For our calculationwe neededthe
effective potential for values of 4’ between 0 and 4’s. But finite-temperature
perturbationtheory is well known to yield in higherordersterms proportionalto

(eT/rn(4’)y1 = (T/4’Y1, i.e., the seriesis badly divergentfor small valuesof 4’. A
manifestationof theseinfrareddivergenciesis the appearanceof termslinear in 4’
in the effectivepotential.The two-loop graphsshownin figs. 2a, b yield the linear
terms

e3
v~~(4’,T) = — —T34’ + ..., (13)

l6ir

e3
v~)(4’,T) = —T34’ + .... (14)

48IT

Clearly, a linear term in the effective potential would invalidate our previous
discussion.

The most infrared divergentcontributions in higher orders arise from ring
diagrams (cf. fig. 3, refs. [8,19,221).Their sum yields the contribution to the

effectivepotential

V
1 + VRING

= _~jdp(ln(p2_m~)+2ln(p2_m4)

— 2 22 2 2 (15)p—rn p—rn

where rnL (rnT) is the longitudinal (transverse)plasma mass of the photon
propagatorand 6rn~(6m~,)is the deviationfrom the tree-levelmass,i.e., rn~T=
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0~0~
Fig. 3. Ring diagramcontributionsto theeffectivepotential.(Vector loopsonly.)

m2 + 8rn~T.Here we have anticipatedthe structureof the photon propagator
which will be discussedin detail in the following section.For the one-loopplasma
masseswe find (cf. fig. 4)

e2 e3
(16)

3 IT

2e3
6rn~.= —-~—-T4’+.... (17)

The integral (15) is easilyevaluated.One obtains

V
1 + VRING = — ~ir

2T4 + ~e2T24’2

- —~-- [rn~ + 2rn~- ~rn(~rn~ + 2~m~)]T

+ 642 [rnt + 2rn~— 2m2(~m~+ ~rn~)1ln~. (18)

The result containsa term linear in 4’ which, to leadingorder in e, is given by

3e e3
—~m~q5T=—T34’ + .... (19)
24IT 241T

Hence, the ring diagramcontributionpreciselycancelsthe sum of the two-loop
terms~ + ~ (cf. eqs.(13) and(14)) to leadingorder in e. Oneexpectsthat the
linearterms of higherorder in earealso spuriousandcancelif all contributionsto

1p,x
‘1

~,1x
a) b) c)

Fig. 4. Oneone-loopcontributionsto the photonplasmamasses.
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the effectivepotential aresummed,but, to our knowledge,thishope hasnot been
provenso far.

Summingthe “daisy” graphs[31,i.e., the ring diagramswith one-loop self-en-
ergyinsertions,hadleadto a cancellationof linear terms.However,a newproblem
hasappeared.According to eq.(17), at smallvaluesof 4’,

2e
(20)

the transverseplasmamasssquarem~becomesnegativeand perturbationtheory
appearsto breakdown! As we shall seein the following sections,this problem is
curedif the plasmamassesof the scalarfields arealso taken into account.This is
neededanyhowsinceto order A3~2the one-loopapproximationbreaksdown for all
valuesof 4’ betweenzeroand4~< v! A self-consistentdeterminationof all plasma
massesby meansof gapequationsamountsto summing“daisy” and“superdaisy”
graphsfor the effectivepotentialandwill becarriedout in sect.4.

3. Improved perturbation theory

In order to determinethe plasmamassesof vector and scalar fields, we first
haveto discussthe structureof the vector propagatorat finite temperature.The
photonself-energyH~(k)dependson the photon four-momentumk~and the

four-vectoru~= (1, 0) which specifiesthe rest frame of the system(cf. ref. [19]).
Hence,in generalH~is a linear combinationof four tensors.A convenientchoice
is

PT~V=g,~~(~iJ_!~~i)gip, (21)

kk k2
= — ~ — = ~ (22)

kk
1~Gp~, ~ (23)

1
s~=,(k~u~+k~u~), (24)

where u~= u~— k~(u. k)/k2 is transverse,u~k’~= 0. Thesetensorssatisfy the
relations

~T1~T, ‘~L~~15L, ~ s2=~(PL+PG), (25)

= ~T~G = ~L~G = SPT = PLSPL = 0, (26)

~Tp2~Lp2”Gp!~ —2, S~=0. (27)
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In Landaugauge,where the barepropagatoris transverse,

—1
D(k) = k2_m2~~PT)~ (28)

the photonself-energytensor

H(k) =HL(k)PL+HT(k)PT+Hs(k)S+HG(k)PG (29)

yields the full propagator

ñ(k) = ~ D(k)(H(k)D(k))~
n=0

—1 —1

= k2_rn2_HL(k)PL+ k2_rn2_HT(k)PT~ (30)

Due to the relations(25) and(26) the full propagatordoesnot dependon H~(k)
and HG(k).

However, knowledgeof HG is importantsinceit entersin the relationswhich
yield the longitudinalandtransverseplasmamasses:

5rn~=HL(0) =Tr(H(0)PL) = —11~~(0), (31)

8rn~.=HT(0) = ~ Tr(H(0)P.~)= —~(H~(0)+HL(O) +HG(0)), (32)

where

110(k) = Tr(H(k)PG). (33)

Here H~(0) is defined by setting first k0 = 0 and then performing the limit
k
2 -~ 0. In gaugetheorieswith unbrokensymmetry one has HG= 0 in Landau

gauge.Note, that this is not the caseif the symmetryis spontaneouslybroken. As
eq.(32) shows this fact is importantin order to extractthe correcttransversemass
from H~.

In scalarelectrodynamicsthe one-loopphotonself-energycorrectionsaregiven
by figs. 7a—c. The correspondingintegral reads

H~(k) =e2f d~{ 2 ~ [(q + k)2
2(2q+ k)~(2q+k)~

4m
2 (q+k),~(q+k)~

— 2 g~,— 2
(q+k) —rn (q+k)

1 1
2 2+ 2 2 (34)q —m

4, q —m~
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Usingeqs.(29)—(33)we find, including termsup to ln(rn~/T2),

e2 rn2
6rn~= ~e2T2— 4 + m + rn T

411- m+rn~ ‘~ X

3e2 rn2 rn2 m2

— 16IT2 rn2—rn~(rn2 ln~ —rn~ln~)~ (35)

e2 rn2 (m —rn )2____ — ~ X T
l2ir m+rn~ rn

4+rn~

3e
2 rn2 rn2 m2

— 16IT2 rn2—rn~(m2 ln~ —rn~ln~). (36)

With rn
4 = mx = 0 andignoringtermsO(ln(rn~/T))oneobtainseqs.(16) and(17).

For small values of 4’ the temperature-dependentplasma mass corrections8rnLT can becomelarger than the tree-levelmass rn2. This suggestsan improved
perturbationtheory, whereloop diagramsareevaluatedwith propagatorscontain-
ing the exactmassesrn~T= rn2 + ~ ~ = + ~ The radiativecor-
rectionsare treatedascounterterms,

8S,3 = — ~jdp[A~(P)(6rn~PL~ + ~rn~PT,~)A~(p)

-3rn2(p) _~rn~2(p)I, (37)

andaredeterminedself-consistentlyby solving gapequationsat the corresponding
loop order. To order e3, 5rn~and ~ are given by eqs.(35)and (36).

It is instructiveto studyin this frameworkthe cancellationof linear termswhich
appearin separatecontributionsto the effective potential. The one-loopgraphs
shown in figs. 5a,b yield

V
1 = — ~ir

2T4 + ~-e2T2q52

— -j~-—(rn~i+ 2m~— ~rnL~mL — 3m
1-8m~)T

1 T
2

+ MIT2 (m~+ 2rn~— 2rn~8m~— 4m~rn~~)ln—~-. (38)

This result is very similar to eq. (18), the sum of one-loop and ring diagrams
V

1 +
17RING in ordinaryperturbationtheory. Note, however,that the term rn5rn~
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p9
Fig. 5. One-loop contribution to the effective potential with full photon propagatorsincluding

counterterms.(Vector loopsonly.)

in eq. (18)which gavethe linear term to order e3, hasbeenreplacedby

e3 34,2
-
7=T3(1+ + 0(e)). (39)

Hence,V1 doesnotyield a linearterm to order e
3.For the two two-loopsshownin

figs. 6a,b we find

e3
V~”~=—————T34,+...= —V

2~
t’~+.... (40)

24 IT

Hence,to leading order in e the two-loop contributionscompensateeachother
andthereis no needto sumup an infinite seriesof ring diagramsto achievethe
cancellation.This is expectedsince the leading infrared divergenciesare elimi-
natedby the longitudinal plasmamassof the vector bosonand the subtractions
due to the counterterms t3m~and 6rn~.In order to discusssubleadinginfrared
divergenciesthe gapequationshaveto be studiedat finite momentum.

It is straightforwardto show that anequivalentcancellationoccursfor all scalar
loops to 0(A3~2).Thereforethe effectivepotential

V(4’, T) = cT4 + ~(~e2 + ~A)(T2 — T~)4’2 +

— (m~+ 2m~+ m~+ m~)~+ 0(e4, A2) (41)

doesnot havea term linear in 4, to 0(e3) and O(A3~2).

/ \
/

\\~~ _/)

9
Fig. 6. Two-loop contributionsto the effectivepotential with full photon propagators.(Vector loops

only.)
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Fig. 7. Thegapequations:All one-loopself-energycorrectionswith full propagators.

4. The gap equations

Let us now investigatethe phasestructureof scalarelectrodynamicsby means
of the one-loopgap equations.The correspondinggraphsare shown in fig. 7. A

straightforwardcalculationyields the following set of equations:

e2
1 4rn2

m~=~e2T2+m2——I +m
4+mx)T, (42)41r\rnL+rn~~

2’e2 ( 8m2 (rn
4,—m ) I_______ X IT, (43)rn~=m

2— T+m~ — m~+m~)
l2IT m
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~ T
4IT mL mT

A 9 1
—— 3m,

4+m~+ñ
2 —+-— T, (44)

411- rn,
4 m~

rn~= (3.e2+ ~A)(T
2 — T~)+ ~2

e2 A 4~2

—~----(rnL+2rnT)T—~—m
4+

3rn~+ T, (45)

where

12Av2
m = e4,, ~ = ~ 4,, T~= 3e2 + 4A (46)

Here we haveneglectedtermsof order ln(rn,/T) in the high-temperatureexpan-
sion.

It is instructiveto considerthe gapequationsfor the pure scalartheory (e = 0)
and at 4, = 0. From eqs.(44) and (45) oneobtainsfor temperaturescloseto the
barrier temperature:

rn,
1, —‘rn~—‘ ~IT(T— Tb), (47)

i.e., rn4, and rn~approachzerowith critical indexone.Thiswell-known result was
first obtainedby Dolan andJackiw in the large-N limit [3]. We obtain the same
result sinceat 4, = 0 only graphs(h) and (I) of fig. 7 contribute,which are the
leadingtermsin a (1/N)-expansion.Thebehaviourof m~,and m~for small values
of 4, at T = Tb cannotbe obtainedfrom eqs.(44) and(45)as m4, andmx areonly
0(1/N) in this case,andgraphs(g) and(k) of fig. 7 contributeto the sameorder.
Due to thesegraphsperturbationtheorybreaksdown for temperaturesT closeto
Tb. Consequently,eq. (47) cannotbe expectedto hold in our casewhereN = 2.

From the gap equations(42)—(45) one can determinethe plasma massesto
0(e

3, A3”2). They areeasily found by inserting the lowest order results

rn~= ~/~e2T2 + m2,

m°r= rn,

rn~,= ~/(~e2 + ~A)(T2 — T~)+ 3j~j2

rn~= ~/(~e2 + ~A)(T2 — T~)+ (48)
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into the RHS of the gapequations.From the scalarmassesm~and m~onecan
derive the effectivepotentialby integration.Note,that dueto the global U(1)-sym-
metry of our theory the potential is only a function of y2I*~P= ,/4,2 + x2. Hence,
at x = 0, the massesrn,

1,(4,, T) and m~(4,,T) are givenby

a
2V(4,, T)

34,2 ‘ (49)

1 3V(4,,T)

34, (50)

andthus

V(4,, T) = f~d4,~4,’rn~(4,’,Tb)

= cT4 + ~-(~-e2+ ~A)(T2 — T~)4,2+ ~A4,4

_(m0~+2rn~+m0,43+m~3)~+ 0(e4, A2). (51)

As expected,thereareno termslinear in 4, andeq.(51) coincideswith eq. (41) to
the order in which we are working. The evaluationof the effective potential to
0(e4,A2) requiresto incorporatetwo-loop contributionsin eqs. (42)—(45),and in
orderto obtain the exacteffectivepotential the gapequationshaveto bereplaced
by the full Schwinger—Dysonequations.

Under which conditions is the perturbative expansionvalid? At the origin,
4, = 0, the curvatureof thepotential rn~,(4,,T) is positive if

= (~e2+ ~A)(T2 - T~)- ~ IT - ~ ~ + ~A)(T2 - T~)~ 0. (52)

This implies the correctedbarrier temperature

12Av2
T’2= (1+0(e4 A2)\ (53)b 3e2+4A_V~e3/IT~

in agreementwith a recent calculation of Arnold [231. Note, that there is no
correctionof order A3~2.In addition, for temperaturesaboveT~the limit 4, -~ 0
cannow be takenin the equationfor thetransversephotonmass,yielding m~= 0.
The differencewith respectto the casediscussedin sect. 2 (cf. eq.(20)) is dueto
the summationof “daisy” graphsfor thephotonplasmamasswhichcorrespondto
“superdaisy” contributions to the potential. Thesegraphsyield a nonvanishing,
realplasmamassm

4 which now appearson the RHS of eq.(43).
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Away from the origin, at 4, > 0, termsproportionalto T/rn1 becomeimportant
in the gap equations.Theseterms reflect the expectedinfrared divergenciesin
finite-temperatureperturbationtheorywhich appearif zero massexcitationsare

present.Inspectionof eqs.(42)—(45)suggeststhat perturbationtheoryis reliable if
the following inequalitiesaresatisfied:

2e
2 T

(54)
3IT rn

1-+rn4

AT 9 1
~— —+——— ~1. (55)

l
2IT rn

4, rn~

The first inequality stemsfrom the equation for m~and the secondfrom the
equationfor rn~,.We do not know how well the perturbationseriesconverges
without a completecalculationto 0(e

4, A2). Hence,we haveincluded a factor ~
which ensuresthat leading terms of order e2 and A are ~ times larger than
next-to-leadingtermsof order e3 and A3~2,respectively.The dependenceof our
resultson ~ indicatesthe influenceof unknownhigher-ordercorrections.

Closeto the origin, at 4, 0, the aboveconditionsimply that one cannoteven
reachthe barrier temperatureT~.Eqs. (48), (54) and (55) yield the lower bounds
on the temperatureT, T> T~and T> T~,where

iee2 4
1V 1b u

5e
T.~ — 3IT

2(3e2+4A)

and

T~—T~ 25~2A2

T~ = 3IT2(3e2+ 4A)~ (57)

Here,the subscript“V” (“5”) indicatesthat the infrareddivergencefo the vector
(scalar)field plasmamasssetsthe temperature.Our expressionfor the effective
potential is thereforeonly reliable for temperaturesaboveT ~‘, which denotesthe
largesttemperatureamongT~,T~and T

5.
Let usnow turn to thevalidity of V(çb, T) at 4’ ~ 0. Eqs.(42)and(43)show that

the plasmamassesmL and rnT arewell-behavedfor all valuesof 4’. However, m~
and rn~ vanishat theturningpointsand at the extremaof the potentialaccording
to eqs.(49) and (50) and becomenegativebeyond thesepoints. To the order in
which we are working this is not visible in the potential becauseonly the
lowest-order plasma masses,given in eqs. (48), enter. Nevertheless,eq. (55)
indicatesthe appearanceof infrareddivergencesin the next order.Hence,we can
rely on the potentialonlya little awayfrom turningpoints andextremasuchthat
the condition (55) is met.
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Fig. 8. The effective potential to order e3 and A3~2for different values of A at the smallest
temperaturesT* which are compatiblewith perturbationtheory. Theparts with brokenlines are not

reliabledueto imaginarymasses.

Theserestrictionsare illustrated in fig. 8 wherewe haveplottedV(4,, T) at the
smallestallowed temperatureT* for some values of A. Wheneverperturbation
theory is trustworthy a solid line is drawn and a broken line otherwise.At the
uprightcross“+“ andthe tilted cross“X” rn,

1, andmx, respectively,havereached
their smallestvaluescompatiblewith eq. (55). We denotethe value of the scalar
field at the tilted cross4’~.

In order to establishthe existenceof a first-orderphasetransitionwe haveto
show that a critical temperatureTa’> T * exists, such that at temperaturesT
betweenT~’and T * the effectivepotentialhasa globalminimumat anexpectation
value 4,(T)> 0. In particular,one has

V(4,*, T*) ~ V(0, T*), 4,* = 4,(T*). (58)

Here V, 4,* and T * dependupon the couplings,and in this way we can find a
regionin theplaneof couplingse

2 and A wherethe symmetricphaseis metastable.
As illustrated in fig. 8, as A increases,V(4,* ,T *) increasesas well andeventually
becomesdegeneratewith V(0, T *) at A =: A. Repeatingthis procedurenumeri-
cally for differentvaluesof e2 yieldsa boundaryA(e2)for the regionof metastabil-
ity.
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.6 High—T—Expansion -

~1.5

0 7

Fig. 9. Regionsin coupling spacewherewe can establishmetastabilityof thesymmetricphase.They
dependon theconvergenceparameter~.

So far we haveignoredthe breakdownof perturbationtheoryat largevaluesof
4’. Becauseof condition (55) A must not be increaseduntil the two minima of V

becomedegeneratebut only until

(59)

The numericaldifferenceis tiny (cf. the blown up box in fig. 8),and the boundary
X(e

2) remainsessentiallyunchanged.

The resulting regionsof metastabilityare shownin fig. 9. The solid curves are
the boundariesat T * = T~for different valuesof the convergencefactor ~. The
dotted curves indicate the convergenceof the high-temperatureexpansionfor
whichwe require

m,(4,~,~’)<0.5. (60)

The correspondingerror in the effective potential is less than 1%. The region
boundedby thesetwo curves containspairs of couplings(e2, A) which guarantee
metastabilityof the symmetric phaseas long as ~ < 1.8. Once ~ becomeslarger
and the requirementson the convergenceof the perturbationseriesmore strin-
gent, thebrokencurvewith T * = T~crossesthe dottedhigh-temperatureline and
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excludesthe region to its right. The quite unexpectedshapeof the brokencurve
which intersectslines e2 = const. twice tracesbackto the dependenceof T,~and
T~upon A for fixed e2. It turns out that 1~’has a minimum whereaseq. (56)
showsthat T~decreasesmonotoneously,andat sufficiently large ~ the tempera-

tures T~and T~intersect twice. In scalar electrodynamicswith N scalar fields
regionsof metastabilityhaverecentlybeendeterminedby Jam [241usingdifferent
techniques.

As an example,for a convergencefactor ~ = 2, the largestpermissibleratio of

scalarmassto vectorbosonmassis

rnSrn,4(4,=0)V5~ (61)

my ev e

The regionof metastabilityshrinksdrasticallyas ~ increases,andwe cannoteven
reachthe vector bosonmass m~= et = 90 GeV. Note, that this rather stringent
bound arisesfrom infrareddivergenciesaffecting rn~.

The main result of this section,the regionsof metastabilityshown in fig. 9,
stronglydependson the valueof ~, i.e., on our assumptionon the convergenceof
the perturbationseries. Our results may be improved in severalways. First, the
propervaluesof ~ arepresumablydifferent for eq.(54) andeq. (55) becausethe
effect of rn~on the potential is of higherorder in the couplings.Furthermore,the
most stringent constraintsare derived at 4, 0 where one may hope to improve
the convergenceby meansof the renormalizationgroupandby evaluatingthegap
equationsat finite momentum.We plan to discusstheseproblemsin more detail
elsewhere.

5. Decayof metastablestates

In condensedmatter physics the decayof metastablestatesis describedby
Langer’s theory [17,181.Here the starting point is a coarse-grainedfree energy
FA[c, TI of the type shown in fig. 10, where a local metastableminimum andthe

FA[c,T]

Fig. 10. Typicalcoarse-grainedfree energyFA[c, TI asfunctionalof theorderparameterc.
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global minimumareseparatedby a barrier; c is theorder parameterof the system
underconsiderationand A is the coarse-grainingscale.Basedon an investigation
of the Fokker—Planckequationfor theprobabilitydistributionof largefluctuations
of the order parameter(“subcritical droplets”) Langer obtained the following
relationfor the decayrate[18]:

K Im Z [~]
— 2IT Z,3[c = 0]’

with

Z~[c] = ~_~FV~TJ (63)

where F[c, TI is the total free energyof the configurationc, and K is a dynamic
factor which cannotbe obtainedfrom equilibrium thermodynamics;c = 0 corre-
spondsto the homogeneousmetastablestate and e(x) is a configuration which
interpolates between c = 0 at I x I —~ co and the global minimum at x = 0. The
imaginarypart in eq.(62) readsexplicitly

Im Zb[ë] = 1 ~ >(X~~2~_~FA[C~TJ (64)

where ë is a stationarypointof FA,

6FA[c, TI
=0 (65)

6c(x) ~

H> denotestheproductof all positiveeigenvaluesA
1 of fluctuationsaround~, A -

is the single negativeeigenvalue,and ~‘ is the volume of zero-modesassociated
with the symmetriesof the systemunderconsideration.

How can we apply this formalism to the decayof the metastablesymmetric
phasein scalarelectrodynamics?In analogyto eq.(62) the decayrate is given by

K ImZ[P]
(66)2IT Z,3[D=0]

with

Z,3[cP] =

c9f
= J[D~]{DA~]8(f) det—

13

6F[~,T]
xexp — (s

13[~+ ~, A~j — fdx ~ ~(x)) . (67)
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Here 1 is againa field configurationwhich interpolatesbetweenthe symmetric
and the brokenphase.cP = 0 and D are approximatestationarypointsof the free
energyF[’I’, TI. Hence,we neglectthe secondterm of the integrandin eq. (67).

The functional integralsover the vectorfield yields an effective action which

dependson the scalar field J, + tj,

f [DA~}6(f)
fJ da

= ex~(— f dx(d~,(c1i+ c~)d~(cb+ c~)

—V0(z)—V1(z,T) +Z1(z, ~ + ...))~ (68)

where z = I cP + ~ I. V1(z, T) is the familiar contributionof vectorloops to the
one-loopeffective potential (cf. eq. (5)). In the following we will neglectthe wave
function correction Z1(z,T).

The integralover the scalarfield fluctuations ‘1’ can now be carriedout in the
saddlepoint approximation.As discussedin sect. 2, 4, = 0 and 4,+ (T) are the two
local minima of the potentialVA = V0 + V1. In the thin wall approximation[25] the
stationarypoint of the “vector loop” free energy

FA[I,T]=Jd3x(IVbI2+J/~(z,T)) (69)

is given by

— 1 — 1 r—R(T)
~(r) = 7=4’(r) = ~~r4’+(T) 1- tanh( d(T) )‘ (70)

with

2V~
d(T)=

cr(T) = f~+
tlTIld4’~/2J7~(4,T),

R(T) = E(T)’ C = VA(0, T) - VA(4,+(T), T). (71)
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The free energyFA[
1, TJ is then the sum of a volume term and a surfaceterm:

FA[~,T]=4ITR2(T)o—~ITR3(T)e(T). (72)

It is sufficient to evaluatethe surfacetensiono- at the critical temperatureT~.
The scalar fluctuations çji consistof the radial modes 4, and the Goldstone

modes~ç = V~I

— — ~2FA[cP T]
FA[cP+ cP, TI =FA[cP, T] + ~jdx dy 4,(x) ~qS(x)

1 62FA[P, T]+~fdx dy x(x) x(y). (73)
13 ~x(x) ~x(~)

The correspondingpotentialsfor the scalarfields 4, and~ are

U
4(r)=—~V(4,,T) , (74)

34’ ,4=4~(r)

13
U~(r)=——V(4,,T) . (75)

4, 34,

Both potentialsareplotted in fig. 11. The spectrumof eigenvaluescontainsfour
zero-modes,threetranslationalinvarianceandonefor the global U(1)-symmetryof
FAE~,TI.

The discrete 4, spectrumis well known [17,26], since the bound states are
localized at r R. There is onenegativeeigenvalue,

2
A.=A000~—~, (76)

U(r) ________ r —

Fig. 11. ThepotentialsU,1/r) and(J5(r) for thescalarfluctuations~ and~.
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which guaranteesthat Z13[~I is purely imaginary. Furthermore,thereare “Gold-
stone modes” A01,,, which correspond to deformationsof the droplet surface
[17,26,27],

(1— 1)(l+2)
Aoim R

2 (77)

Here 1 and rn label the three-dimensionalsphericalharmonics.The threezero
eigenvaluesA

01m are the zero-modesof translationalinvariance. ,~ 4, is the
zero-modeof the U(1)-symmetry. A straightforwardcalculation yields for the
correspondingphasespacevolumes:

/3 3/2

V,

1/2
~=2IT(~_fd3x~2) , (78)

where V is the total volume of the physical three-dimensionalspace. For the
product of the low-lying “Goldstonemodes” one can obtain a closedexpression
[17,27,281:

1 1/2
fl ~ (~R)

5”3, (79)
A

01,,,<p? /~

where p. = m4(0, T). Combining eqs.(66), (72) and (76)—(79) we finally arrive at
the transitionrate

= ~—K(/3u)
3~2(/3p.) 1~2(Rp.)23~6exp(—~IT/3~R2). (80)

Herethe contributionsof zero-modesand Goldstonemodesto the determinantof
scalar fluctuations aroundthe saddlepoint havebeen taken into account.The
“dynamical factor” K hasrecentlybeenrelatedto plasmaviscosities[291.

Eq. (80) gives the decayrate of the metastablesymmetric phaseaccordingto
Langer’stheoryof metastability.The free energyFA[D, T], obtainedby integrating
out the vectorfield A~,playsthe role of the coarse-grainedfree energyFA[c, TI in
condensedmatter physics. An important aspectof this approachis that scalar
fluctuationsare only computedaroundthe stationarypoints c1~= 0 and çji = ‘1’ of
FA[~Ii, TI and not, as usually done, around unstablehomogeneousscalar back-
ground fields. Hence,perturbationtheory is consistentanddoesnot breakdown

dueto infrareddivergenciesor negativescalarmassterms.The decayrate (80) is
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similar to the resultspreviously obtainedby Linde [251.There are, however,some
qualitative differenceswith respectto the treatmentof scalar fluctuations, the

negativeeigenvalueandthe occurrenceof a dynamicalpre-factorK.

In our approachanapproximatefree energy,whichyields the non-trivial saddle
point, is obtainedby first integratingout the vectorfield. Alternatively one could

try to first integrateout high-momentummodeswith k2 > A2 for scalarandvector
fields (cf. refs. [30,31]).The correspondingfree energy FA, where A is now an

infrared cutoff, should exhibit a barrier between a stable and a metastable
extremum.Low-momentummodeswith k2 <A2 should thenyield the interpolat-
ing configuration4,. Sucha cutoff A mustnot destroythe effect of the cubic term
in the effective potential,which implies A2 < ~e24~, ~~ 1. Furthermore,4, must
be essentiallyhomogeneousfor distancesr < 1/A, i.e., A2> 1/d2 ‘~ A4~(cf. eq.
(71)). Both conditionstogetherrequireA/e2 <~, whichcanindeedbe satisfiedfor
the rangeof A and e2 identified in sect.4. Since4’÷~e3T/(2ITA),onemaychoose
A2 <e2T2. In this casewe expectplasmamassesto appearin the free energyFA.
Correspondingly,one should include in the evaluationof the decayrate eq. (80)
plasma mass effects, which essentiallyreducethe cubic term in the effective
potentialby ~ [7].

Let us finally examine whether our approachcan consistently describe a
first-ordercosmologicalphasetransition.A roughestimateof the temperatureI~
at which the phasetransitionends,is obtainedby requiring

F(te)t~—, 1, (81)

where t 0.03m~
1/T

2(cf. ref. [321). In table 1 we comparethree examplesof
couplingsfor which perturbationtheoryis consistentif ~ ~ 1.8. They areevaluated
at e2 = 0.32, wherem~= 90 GeV for a choiceof v = 160 GeV. The self-coupling
A is chosensuchthat thescalarmassesm~= v~Av arem~= 60 Gev, m~= m~= 90
GeV and rn~= 120 GeV. The latter is close to the largestscalar self-coupling
which satisfiedthe boundsin fig. 9 for ~ = 2. All temperatures,the surfacetension
o, the droplet radius R, the correlationlength i/p. and the droplet thicknessd
havebeenextractedfrom the “vector loop” potentialVA in eq.(69). In parenthe-
seswe addedtheir relativedeviationfrom valuesthat stemfrom the full potential

TABLE 1
Observablesof first-orderphasetransitionsfor e2 = 0.32andthreedifferentvaluesof A (seetext).

A T~(GeV) T~~Te (GeV) T~— Tb (GeV) ,r (iO~GeV)3 R’ (0eV) 1/Rjs d/R

0.07 150 (8%) 0.41 (37%) 6(37%) 8 (40%) 1.3 0.11 0.28
0.16 230(18%) 0.14(29%) 4(40%) 3(25%) 0.67 0.06 0.15
0.28 300(27%) 0.07(14%) 3 (29%) 2(36%) 0.44 0.04 0.10
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Fig. 12. The “vector loop” potential for the values of A given in table 1 at the corresponding

temperatureT, Thepotentialwith A = 0.07hasbeenreducedby a factorof five.

V in eq. (51). They illustrate the uncertainty due to unknown higher-order
corrections.

Table 1 shows to what extend the thin wall approximationis valid. The ratios
d/R appearacceptablefor A = 0.16 and A = 0.28 whereasthe case A = 0.07 is
marginal.Note,that this valueof A is not containedin themetastabilityregionfor

= 2. In all casesthe critical radiusis much largerthan the correlationlength i/p..
We havecomparedthe exactsaddlepoint free energy(cf. ref. [7,25])with its thin
wall approximation.For all valuesof A the differenceis less than 7%. Also the
semiclassicalapproximationappearsto be accurate.For F/(VT

4) thecorrectionof
the calculationpre-factorto thesaddlepoint free energyis about1%. In fig. 12 the
“vector loop” free energyis shownasfunction of 4’ for the threevaluesof A at the
correspondingtemperaturesTl~wherethe phasetransitionis completed(cf. table
1). For A = 0.16 and A = 0.28 the barrier height is larger than the depth of the
global minimum. This further supportsthe validity of the thin wall approximation
for thesevaluesof A.

To conclude, we have obtained a consistent description of a cosmological
first-orderphasetransition for valuesof e2 and A within the ~ = 2 metastability
region. However, the transition is only weakly first order, and its cosmological

implications remainuncertainat present.
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6. Summary

In the previoussectionswe havestudied the transition from the symmetricto
the brokenphasein scalarelectrodynamicsat finite temperature.We haveseen
that, dueto infrareddivergencies,ordinaryperturbationtheory to finite order in e
andA doesnot yield a usefulapproximationto the effectivepotential.However,an
improvedperturbationtheory, which takesplasmamassesinto account,describes
consistentlythe symmetricphase(4, = 0) and also the brokenphase(4, > 0) in the
neighbourhoodof the secondnon-trivial, local minimumof the effective potential.
Using this improvedperturbationtheorywe haveevaluatedthe effectivepotential
including all termsof order e3 and A3~2.To this order all contributionslinear in 4,
cancel.

The plasmamasseshavebeendeterminedfrom a set of one-loopgapequations
which also yield the range in the couplingse and A, the temperatureT and the
scalar field 4, where the perturbationseriesconverges.Knowing the range in T
and 4, as function of e and A where the effectivepotential is reliable hasallowed
usto determinetherange in e andA wherethe symmetricphaseis metastable.As
a criterion we requiredthe effective potential at the origin, 4, = 0, to haveonly a
local and not a global minimum for the allowed values of T. In sect. 3 an
importanttechnicalpoint hasbeenthe derivation of the correctrelationsbetween
longitudinal andtransverseplasmamassesand the photonself-energyin the case
of spontaneoussymmetrybreaking.

Following the theoryof Langerwe havefinally computedthe nucleationratefor
critical droplets.We havearguedthat the effectiveaction,obtainedby integrating
out the vectorfield, playsthe role of the coarse-grainedfree energyin condensed
matterphysics.Here a necessarycondition is A ~ e2 which is satisfiedwithin the
regionsof metastabilityfound in sect. 4. Scalarfluctuationsare only computed
around the critical droplet and not around unstablehomogeneousscalarback-
ground field. Hence, the usual problems related to infrared divergenciesand
imaginary scalarmassesare absent.We have also shown that for Higgs boson
massesof the order of the vector bosonmass a cosmologicalphasetransition
would indeedby first order, i.e., it would proceedvia nucleationand growth of
critical droplets.Since the transition is only weakly first order, its cosmological
implicationsremainratheruncertainat present.

Our results could be improved in several respects.First, it is important to
replaceour criterion for the convergenceof the perturbationseries,which we
obtainedby inspection of the gap equations,by a completecomputationof the
effective potential to order e4, A2. This is necessaryin order to be sureaboutthe
rangeof parametersfor which perturbationtheory is reliable. Furthermore,the
validity of the expansionin powersof derivativesusedin sect. 5 and thevalidity of
the thin wall approximationhaveto beexaminedin greaterdetail.Finally, it would
be interesting to study a renormalization group improved version of the gap
equationsandeventuallythe full Schwinger—Dysonequations.
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An extensionof our approachto theelectroweakphasetransitionis in principle

straightforward.We will report on our results in a forthcomingpublication.

We would like to thankD. Bödeter,Z. Fodor,V. Jam,A. Linde, M. Lüscher,N.
TetradisandC. Wetterich for helpful discussionsandcomments.
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