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Symmetry scattering is related to the scattering by an effective local potential in 
the Schrddinger frame using the quantum mechanics inversion techniques of 
Marchenko, Gel’fand, and Levitan. Exact solutions or exponentially convergent 
approximations are found. 

I. INTRODUCTION 

In symmetry scattering,’ systems possessing symmetry are considered. These systems are 
described by differential operators which are invariant under certain symmetry transforma- 
tions. Usually these operators are second-order Casimir operators of Lie groups, or more 
precise, of noncompact Riemannian symmetric spaces. Symmetry scattering is obtained by 
comparing asymptotically the systems having the whole symmetry with those obeying only a 
more trivial one which results by letting some of the symmetry operations commute. From this 
comparison, a scattering operator related to the interaction due to the difference of the sym- 
metries can be introduced. Thanks to the well developed mathematics in this area, the relevant 
quantities for the scattering theory turn out to be given by explicit formulas depending only on 
the symmetry, i.e., on the parameters characterizing the noncompact Riemannian symmetric 
spaces. 

Symmetry scattering thus provides us with a series of scattering matrices corresponding to 
the abstract symmetry interaction. 

The abstract character of the interaction can be visualized as potential scattering in the 
Schriidinger frame by applying similarity transformations to the eigenvalue equation of the 
Casimir operators to transform them into corresponding Schriidinger equations with certain 
potentials.2 In this manner for instance, symmetry scattering for the SO(2,1)/SO(2) space is 
seen to correspond to the scattering by a radial Poschl-Teller potential. 

This approach, however, is not general and for each operator it must individually be 
determined. 

We associate here, the abstract symmetry scattering with the scattering by local potentials 
in the Schrodinger frame using the quantum mechanics inversion techniques of Marchenko and 
Gel’fand-Levitan. 

In this paper we are mainly concerned with the development of a convenient set up for the 
inversion to deal with symmetry scattering, we hence illustrated this approach in the most 
simple case of the rank one spaces. The inversion applied to higher rank spaces can in principle 
be treated using the same approach as for rank one spaces but requires additionally the use of 
frame Hamiltonian techniques.3 This inversion together with its large number of applications, 
will be treat in a forthcoming publication. 

The paper is organized into four sections. After the Introduction, in Sec. II, the quantum 
mechanics inversion techniques of Marcher&o and Gel’fand-Levitan are presented in a manner 
that suits the needs of symmetry scattering. In Sec. III the inversion technique is applied to all 
rank one spaces and the results are compared with the ones available in the literature. A 
conclusion completes the paper. 
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II. GENERAL THEORY 

To relate scattering data presented by the S-matrix with the scattering by a local potential, 
Marchenko’s equation is well suited. Assuming that the scattering data results from the scat- 
tering of a system described by the wave function Y, where Y obeys the radial S&r&linger 
equation (/=O) with unknown potential q(x), XE [0,03 ), 

d2Y(x) 
-dfc2+qb)Y(x) =@m), 

the potential is obtained from 

4(x) = -2 -$4,(x), 

where the transformation kernel A,(y) obeys Marchenko’s integral equation4 

4Cy) =f;(x+y) + s O” A,(t)FCy+t)dt=O, y>x, x 
with 

F(l)=& s_s, e’Q[S(k) - I]&, 

(1) 

(2) 

and S(k) the S-matrix. 
The scattering data resulting from symmetry scattering is such that the following general 

properties are valid for the input kernel F(g): ( 1) F(c) E L2n L’ on infinite interval [x0, CO ) 
for any x0 > 0; (2) F(g) decreases exponentially as g- 03, i.e., F(c) = o( cmN) for any N)O; 
(3) J’(C) ER. 

Under these conditions the operator K,, 

(q.f ,w-s,m W+t)f(W, (4) 

is compact on the interval [x, co ). Its spectrum is hence discrete and since K, = c it is 
self-adjoint on L’[x, 00 >. We can therefore expand the function A,(y) using the orthogonal set 
of its eigenfunctions, 

A,(y) = c %(X)f,Lw), Y>X. (5) m 
Here x is a parameter and 

G.fm(xYYY) =Ux)f&,y). (6) 

Substituting Eq. (5) into Eq. (2) we obtain 

a,(x)=- (~(x+YLfm) 
1+;1, ’ 

where ( * , * ) stands for the inner product in L2[x, CO ). Now, since (F(x+y),f,J = (KJm) (x) 
=A.z,(x)fm(x,x), we have 
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4(x) = - c L(wi(x,x> 
m l+&(x) . (7) 

Next, let us consider the eigenvalue problem (6) for the operator K, . Calculating the derivative 
of Eq. (6) with respect to the parameter x (denoted by prime) we have 

-F(x-ty)f&,x) + s O” F(y+t)f~(x,t)dt=a~(x)f,(x,y) +L(x)f~kY). x 
Using the self-adjointness of K, to calculate in this equality the inner product with f,(x,y) it 
follows, 

q&> &(x,x) = -- L(x) * 

Equalities (7) and (8) imply 

(8) 

(9) 

which is a direct consequence of the well-known formula5 

q(x) = -2 Q In det(K,+I). (10) 

The simple proof of the equality (9) has been given above for the sake of completeness. 
Equations (9) or (10) are used in this paper to obtain the potential q(x). For this purpose, 

some preparation is required. We note that in symmetry scattering the Jost functions are just 
products of gamma functions;’ hence using a contour integration the analytic structure of the 
gamma functions imply that the kernel of the operator K, can be represented in the form of 
finite or infinite sum of separable terms, 

F(g) = x rnembnc, 
n>l 

(11) 

where b, > an > 0, a ER, and r, increase slower than e”” for a > 0. Now, using this expansion, 
we rewrite the eigenvalue problem (6) as 

-bq-(x,t)dt=af(xy). 

Calculating the inner product with the function eebu and using the notation 

(12) 

we have 

q~,( f )r(f,evbny) = J” f(x,y)eebnY dy, 
x 

c rn -e-bfie-b&pn=~~kb 
,,>I bn+bk 

We have thus transformed the original eigenvalue problem for the operator K, into an eigen- 
value problem in the I’+ space, namely, 
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where 

Tp=@, (13) 

7, 
Tk,Ax) =b,+bk e -(b,,+b& and ~=CF~~~>I+ 

Note that the operator T is in general not self-adjoint because the system {eebn3 is not 
orthogonal in L2[xo, 03 ). This is however not essential here, since the function A,(x) is gained 
from Eq. (9) which only uses the spectrum and not the eigenfunctions of T. 

If the sum in the representation ( 11) is finite, the input kernel is separable and thus the 
potential q(x) can be calculated in a totally analytic way. When the sum is intlnite we can only 
approximate the potential by truncating the sum. To estimate the accuracy of such an approx- 
imation we use Lidsky’s theorem6 which states that for a normal non-negative compact oper- 
ator of trace class, its trace is equal to the sum of its eigenvalues. The operator T satisfies indeed 
all these requirements. The normality and compactness are clear. To see that it is non-negative, 
we note that Eq. (7) implies that the eigenvalues A,(x) as function of x do not cross the real 
axis for any m. Thus, eventually choosing - T this condition is also fulfilled. To calculate the 
trace of the operator T we use the basis {ei)ieN, where e’ is the sequence having a one at the 
ith position and zeros elsewhere. We obtain 

Tr T= c T/l=: c 71e-2blx, 
1 I bl 

where bl and r1 are defined in Eq. ( 11). From the properties of bl and tl it follows Tr T < 03. 
We can therefore apply Lidsky’s theorem to obtain 

TrT=CTN=x&,. (16) 
I m 

To calculate the kernel A,(x) and hence the potential when the input kernel is given by an 
infinite exponential expansion, we represent the operator T(x) in the form 

T= T(N) + +‘) t (17) 

where 

TifT) = I 
T knt if k&N 
0, if k>N or n>N. (18) 

The kernel AiN) is obtained from the N-dimensional operator TcN) again in a purely 
analytic way using Eq. ( 10). 

We now estimate the required dimension N= N( E) of the operator TcN) sufficient to obtain 
the accuracy E in the calculation of A,(x), i.e., 

14(x) -A:N,N’(x) 1 GE, (19) 

where 

N (ACN)) fi (x) 
A:N,N)(x) = m., 1 +;(N’(xj * 

m 
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For this purpose we introduce the notation AkNj =&,-AkN’. We have 

G (a(N))’ 12’ -(,QN)y 
-- 
1+/l, l;k”= 

m m N) -pJ,N’ %I 
l+A!, (~+&,W+~,CA~~) * 

Using the following inequality, 

and supposing that N is large enough so that 

1 T,,+ 
I>N 

it follows, 

(20) 

+2Tr T(N)x ILkI. 
m 

Obviously 8, A& = (Tr T) ’ = 2~ T;, hence, 

The values I AL - (AkN))’ I are now estimated through the norm of the perturbation oper- 
ator and of its derivative, II F(N)IIp+ < z,>N Tlland II T’““ll~ ( 8[>N Tb. 

Let {q”) and {I/“) be biorthogonal sets of the eigenvectors of the operators T and T*, 
respectively: 

Tpm=A,cpm, T*Zyn=&,$“‘, (cp”,v) =a,,,,, . 

Calculating the derivative of the equation T#“=A2,~m with respect to the parameter x and 
considering the inner product with $“’ in the space I’, we obtain 

( T’$“‘,~J”) =A:, . 

In a similar way (( T(N))r$(N)m,q(N)m)= (AkN))‘. Hence, 

IA:,-(A~N,N’)t 1 = 1 (T’qm,cpm) -((T’N’)‘$‘N’m,q+N)m) I <2ljT’II Il~m--(N)mlJ+IIT(N)rII. 

The Born series yields the estimate Il~m-~(N)mll<211T(N)II, hence, 

~~2:,-((;l~N’)‘~<4~~T’(l IIT’N’II+II(T(N))‘II. 

Therefore, 
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~n~)lnh-(n~‘).I<~T11(4~~NTmml~T:,l+/~NT:mj). (22) m 

Finally, relations (21) and (22) give 

From Eq. ( 14) we further have 

71 
T,,=z/ em2’lX, ,/ T’ = - 7,e-2b/X* 3 

and since in symmetry scattering the coefficients r1 are bounded by i, i.e., I r/l <& and b$al, it 
follows, 

1 2alx Tll<z e- . 

This leads to 

,FN T/I< & e-2a(N+1)X [z. e 

where 

def emar 
Q(x) = a sinh ax ’ 

For N=O we then have 

In the same manner we obtain 

j!,, UY~~2@b). 
Formulas (23)-( 26) finally imply 

Q(xW 2aNx f (24) 

(25) 

(26b) 

Thus, to obtain the kernel A,(x) in the point x with the accuracy E [see IQ. (19)] the 
finite-dimensional matrix TcN’ of the dimension 
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N(e)>&ln 
4u2@(x)(1 +4Q(x) +8@(x)) 

E (28) 

is required. Let us note that in symmetry scattering for rank one spaces, a=2 or a= 1, further 
&>,,7 T[,< 1/2 for N)2. 

In general, the estimation (28) is not effective for small x. In this region is better to 
calculate the asymptotical behavior of the kernel A,(x) [and consequently of the potential 
q(x)] directly from Marchenko’s equation (2) or use Gelfand-Levitan’s equation7 for the 
function B.&) : 

s 
x WY) + G(w) + Wt)GW)dt=O, wx, 

0 
(29) 

where G(y,t) = G(ty) Ef H(y - t) - H(y f t), and H(c) =H( -c) is the Fourier cosine 
transformation of the spectral measure. Equation (29) can be solved in L2[0,x] if H(c) E L2; 
otherwise we can consider it on the interval [x0,x], xo>O. The potential is given by Eq. (3), 
where the function A,(x) is substituted by B,(x). 

Since G&t) =H(y-t) -H(y+t); Oc&t<x, the function H(S) should be treated at least 
on the interval -x<g<2x. For symmetry considerations, however, it is better to expand it over 
the cosines (as it is even) on the wider interval [-2x,2x], 

H(c)= i h,co+, 
n=O 

H( {) cos E 6 d$. 

Then 

G&t) = 2 c h, sin 2 y sin z t. 
n 

Using the notation 

flk(X)= s,” B,(y) sin g y dy, 

we obtain from Eq. (29) the following relation for the set of coefficients Bk, k> 1 

a,+: it h m-o 2m+l(-l)mRk,2m+l+-~ 2x i, h&n& =o, 

where 

Rkn=---& sin 
r(n-k) 1 

--sin 
dn+k) 

2 n+k 2 * 

For even and odd k we have the coupled system of equations 

(30) 

(31) 

(32) 

(33) 

(34) 
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TABLE I. Parameters required by symmetry scattering for all rank one symmetric spaces of the noncompact type. K 
stands for a maximal compact subgroup of the corresponding group. 

Space 

SO(n,l)/K 
SU(n,lVK 
Sp(n,l)/K 

FJK 

Table of parameters 
K 

SO(n) 
SU(n) @U(l) 

Sp(n)eSp(l) 

so(g) 

ma m2a 

n-1 0 
2n-2 1 
4n-4 3 

8 7 

(l+xh~pl&~+$ mto +,~“;“z”m:l~~ (-l))pfmh2m+l+4X 2 2q+l 

r q=o 4p2-(2q+l)’ 

( 1 +xh,+ 1 4” 
)4+1+; *J (2p+1)L@ ( - 1 )P+q+‘h2qj?2q=0, 

which serve as the starting base for the calculation of the potential q(x) near the origin. 

Ill. CALCULATIONS 

The Jost functions in symmetry scattering can be written as’ 

T&k) T&k+;) 
c(k) = 

r(i($m,+ l+ik)) IY$(&,+m2,+ik))~ 
(36) 

The values for m, and for m2n are listed in Table I. 
We calculate now the input kernel I;(l) using Eq. (3) for all rank one symmetric spaces 

of the noncompact type. We obtain the following expressions: Group SO(n,l) 

Group S0(2m, I) 

Group SO(2m + I, I) 

l?(ik) 
S(k) =- 

r( -ik+ (n- 1)/2) 
I?( -ik) I’(ik+ (n- 1)/2) * 

F(E)= jz, j,~~~‘:,, 1$1 (m+j-l-112) 
2 ) 

e-j% 

m-1 (-l)i 
( 

V 
m3= c 

j=l  j!(i-l)! lz (m+j--0 
) 
e-j{. 

Group SU(n, 1) 

r(ik) l?(ik+1/2) [I?( -ik+n/2)12 

S(2k)=l?( -ik) r( -ik+1/2) [lY’(ik+n/2)12 ’ 

(374 

(3%) 

(37c) 

(384 
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Group SU(2m, 1) 

m-1 (-1)i 
F(O= ,;* jl(j-l)! ( 

5 (m+j-1)’ 

1 
e--2X 

. [=I j-Z+ l/2 

- (-l)j+l 
+C 

j=l (jv11i2 ( 
‘j--l (m+j-l/2-Z)2 
rI 
I=1 j-1/2-1 ) 

&-j+1/2)g 

Group SU(2m + 1,l) 

F(O = ,tl j:(TAy)! 
( 

[VI 
2j (m+ j+ 1/2-Z)2 eFzjg 

. j-l+ l/2 1 

m (-l)j+l 
+ jzl (j-1)!2 ( 

“fi’ (m+j-1)2 

I=1 j-1/2-1 1 
&-j+ l/2)9 

Group Sph, I) 

K’(ik) 
S(2k) =p 

l?(ik+ l/2) [I’( -ik+n+ 1/2)12 (ik+n- l/2) 
r( -ik) r( -ik+ l/2) [r(ik+n+ 1/2)12 (-ik+n- l/2) 

F(S)= 2 
(-l)j 

( 
fi (n+j+l/2-Z)2 

j=l j!(j-l)! 1~1 j-Z+ l/2 1 
n-l/2-jePzie 
n-1/2+j 

n (-l)j+l 
+E 

j=l (j- 1Y2 ( 
“fi’ (n+j-O2 

1 
n--j$(-j+l/2)g+ 

1~1 j-1/2-Z n-l+j 

Group F4 

I’(ik) I( --ik+11/2) (3/2-ik) (l/2--ik) 
S( 2k) =- I( -ik) I’(ik+11/2) (3/2+ik) (1/2+ik) * 

(38b) 

(38~) 

(3%) 

(3%) 

(4W 

F(~) = ~~~ j,~J’:‘), 

. 

. [ f i (y+ j-l)] ::~~+-~~~:~~+-~~ c2jg- 1920e’~-20~~~b) 

To calculate the inversion potentials for all rank one spaces we use Eq. (lo), 

g(x)=-2$lndet(Pv)+1), 

with the operator T W) defined in IQ. ( 18). 
For the group SO( 2m + 1) this operator is finite dimensional and the calculated inversion 

potential is exact. For the other spaces the kernel is represented by an infinite series and we can 
only provide an approximation to the inversion potential. In Fig. 1 we present the inversion 
potentials for the spaces SO(n,l ) for several values of n in either an exact form (n odd) or as 
an approximation using (6 X 6) dimensional operators. To illustrate the fast convergence of our 
procedure we plot the potential corresponding to the space SO( 2,1) using TcN) for different 
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250.0 

0.0 
0.1 0.6 1.1 1.6 2. I 

FIG. 1. The inverse scattering potentials for symmetry scattering related to the spaces SO( n, 1 )/SO(n) : n=4, full line; 
n= 5, dotted line; n=6, dashed line and n=7, dashed-dotted line. The potentials for n=5 and n=7 are exact. For 
n=4 and n=6 a (6x6) dimensional operator is used. The axes are in arbitrary relative units. 

values of N. From the approximation inequality (28) we see that for N=2 at x= 1 the error 
is of the order of 10m2. For N=6 the error is smaller than 10m5 (Fig. 2). 

The results obtained here through the inversion are in agreement with the ones that can be 
obtained as a direct problem. Let us discuss briefly how the symmetry scattering potentials for 
rank one spaces can be obtained in a direct way. 

Symmetry scattering is related to the scattering described by the radial part of the eigen- 
value equation for the Laplace Beltrami operator of the symmetric space: 

-A$+(T) =((m,/2+m2,)2+kz)~,k(7). (414 

0.0 

-5.0 

-10.0 

-i ‘i 
: ‘i . I. 

I! 
I I 
Ii 
’ i 
Ii I 3 I I I I I I I . c - 

0.0 0.5 1 .o 1.5 2.0 

FIG. 2. Approximations to the inverse scattering potential for symmetry scattering related to the space 
SO(2,1)/SO(2). The approximations use operators T (N) of different dimension N: N=2, dotted line; N=4, dashed 
line and N=6 dasheddotted line. The full line is the exact potential found by other methods. The axes are in arbitrary 
relative units. 
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This equation takes the explicit form 

d2 
-p+ma coth rg+2m2, coth 2r$ apk(r) =((m,/2+m2,)2+k2)Q,(T), (41b) 

and has as a solution 

Here 

@k(r) =F(a,b,c,-sinh2 7). (42) 

m,/2+mla+ik 
, b= 

m,/2 -I- m2a - ik m,+mzn+ 1 
a= 2 2 ,c= 2 * 

Now, the potential is gained by considering the function 

W,(r) = (2 sinh r) md2 ( 2 sinh 27) m2a’2@~ ( 7). 

Equation ( 4 1 b ) becomes 

( -g+ UT> Y/l(T) =PYn(7), ) 
where 

with 

a= 
I( 

ma+r;12aw1)2-(~)2], b=(m2,-l)2-l. 

(43) 

(4) 

IV. CONCLUSION 

The quantum mechanics inversion techniques have been applied to associate the abstract 
symmetry scattering with the scattering in the Schrodinger frame by local potentials. The 
potentials found for all rank one spaces are of the Poschl-Teller type, and coincide with the 
results obtained in the literature by other methods.* Besides this confirmation, we found a 
remarkable fact concerning the spaces S( n,l )/SO( n). The potentials gained for these spaces 
are similar, in fact they build the family of potentials 

v(r)=(n-2)2-1 
4 sinh2 (x) ’ 

However, analytically these spaces are different according to n being even or odd n. This 
analytic difference is reflected, for instance, in the different character of their inversion. For n 
odd, the input kernel is separable and the inversion is gained in a purely analytic manner. For 
n even, the input kernel is no longer separable and the potential is obtained only as a fast 
convergent series. We thus point out that the same family of solvable potentials have substan- 
tially different scattering matrices. 

The potentials for rank one spaces can also be obtained by other analytic methods. In this 
sense the results presented here have only complementary value. For spaces of higher rank, no 
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other standard method exists that relates its abstract interaction with some effective local 
interaction. Thus, the discussed approach becomes of fundamental importance for the treat- 
ment of these spaces. The inversion potentials for spaces of higher rank will be handled in a 
forthcoming paper. 
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