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The ideas underlying a recent computation of the running coupling in the SU(2) gauge theory are discussed 
and a summary of the results obtained is given. 

1. I N T R O D U C T I O N  

The running coupling in QCD, as(q), has been 
determined experimentally from jet production 
rates in e+e - collisions and from various other 
processes. At q = 91GeV the result quoted is 
[1, 2] 

a,(q) = 0.118 4- 0.007. (1) 

Perturbation theory predicts the evolution of the 
running coupling at high energies, but not its 
value at a given momentum q. The situation is 
different in lattice QCD, because here we may 
fix the parameters in the lagrangian at low ener- 
gies, taking as experimental input the pion decay 
constant and the masses of the % K, D and B 
mesons, for example. The theory then determines 
the physical amplitudes uniquely, at all energies, 
and so in particular the running coupling in the 
chosen scheme. 

It would obviously be very interesting to com- 
pute as(q) along these lines, not only to compare 
with experiment, but also to find out at which 
energies the perturbative evolution of the cou- 
pling sets in. At present our technical abilities 
are not sufficiently developed to perform such a 
computation. We can, however, solve the analo- 
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gous problem in the SU(2) gauge theory without 
matter  fields, and so we restrict attention to this 
case from now on. 

In pure gauge theories the bare coupling go is 
the only parameter in the lagrangian. Only one 
low-energy quantity is hence required as "exper- 
imental" input, the canonical choice being the 
string tension K.  We may then ask what the 
value of the running coupling ~-~(q)  in the M-S 
scheme of dimensional regularization is at say 
q = 20 × v/-K. The important  point to note is 
that the question has a unique answer. There is 
no free parameter left and it is just a matter  of 
being able to solve the theory to a sufficient de- 
gree. 

A straightforward approach to the problem is 
based on the force F ( r )  between static quarks 
at distance r [3-5]. The idea is to calculate the 
running coupling 

c~qq(q) = ~r2F(r) ,  q = i/~,  (2) 

through numerical simulation and then to convert 
to the MS scheme using the one-loop formula [6, 
7] 

= - 0 . 0 5 5  × + . . .  ( 3 )  

Of course this expansion is only applicable when 
the coupling is sufficiently small, i.e. deep in the 
perturbative short distance regime. 
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"The basic difficulty encountered in this calcula- 
tion is that  at present it is practically impossible 
to reach momenta q greater than a few GeV. This 
is so because one needs a lattice with physical size 
L greater than about  1.5 fm (to avoid finite vol- 
ume effects) and a spacing a much smaller than 
v (to avoid cutoff effects). It is already compro- 
mising if we allow r to be as small as 3a, and we 
then end up with the bound 

q [GeV] _~ 0.044 x (L /a ) .  (4) 

The largest lattice simulated so far has 56 x 48 s 
points [8] and so even in this case is one limited 
to momenta q _~ 2 GeV. 

E1-Khadra et al. [9] have recently put forward 
another idea of how to compute the running cou- 
pling. Their  starting point is the perturbation 
expansion [10] 

= - 0 .206  × + . . . ,  (5) 

which relates the MS coupling to Parisi's im- 
proved bare coupling [11-13] 

=  olP, = gg/4zc.  (6) 

The plaquette expectation value P occurring here 
is a function of go and is evaluated through nu- 
merical simulation. Eq.(5) allows us to determine 
the renormalized coupling at scale q -- 7r/a for 
any given small value of the bare coupling. To 
be able to express q in physical units, we must, 
at the same value of go, also compute some low- 
energy scale such as the string tension or, as E1- 
Khadra et al. propose, the mass difference Am 
between the 1P and 1S (quenched) charmonium 
levels. Am is an attractive quantity, because it is 
meaningful beyond the quenched approximation 
and because it is experimentally measurable (in 
contrast to the string tension). 

Whichever low-energy quantity one decides to 
compute, it is clear that  this method is also sub- 
ject to the basic limitation discussed above, since 
all relevant scales must fit onto a single lattice. 
A further difficulty is that  one has no eheck on 
the reliability of the perturbation expansion (5) 
in the accessible range of  lattice spacings. 

The conclusion from all this is that  some sort of 
many-lattice or renormalization group approach 

is needed, if one desires to reach momenta q much 
greater than a few GeV. In his Carg~se lectures of 
1979, Wilson [14] has already stressed the neces- 
sity o f a  recursive procedure. His proposition was 
to set up a "block spin" renormalization group 
transformation, an idea which was taken up by 
many authors later on (a nice review is ref.[15]). 

Our own method is best referred to as a re- 
cursive finite-size technique [16-18]. It relies on 
a renormalized coupling ~2(L) which runs with 
the lattice size L. The renormalization step 
then amounts to matching lattices with the same 
renormalized coupling but different lattice spac- 
ings. We can also easily study the evolution of the 
coupling by changing L at fixed a. By combining 
these steps, we are able to pass to the continuum 
limit and to trace .~(L) over a large range of box 
sizes L given in units of the string tension K. 

Our aim in the following is to discuss the tech- 
nique in some detail and to summarize the results 
that have been obtained so far. 

2. R U N N I N G  C O U P L I N G  A T F I N I T E  L 

The precise definition of the renormalized cou- 
pling 02(L) that  we use in our numerical work is 
complicated. To keep the discussion transparent, 
it is better to start with an alternative coupling, 
which is equally good from a theoretical point of 
view and which is straightforward to define. We 
shall return to our particular choice of coupling 
in sect. 5, after the basic ideas of the calculation 
have been made clear. 

Let us choose a hyper-cubic lattice with spatial 
size L and time-like extent T much larger than L. 
Zero modes and other technical complications in 
small volumes [19, 20] can be avoided by taking 
twisted periodic boundary conditions in the space 
directions [21-23]. We then consider the force 
E(r ,  L) between static quarks at distance r and 
define a renormalized coupling through 

02(L) = k ( , 2 F ( , ,  L)},=D/4, (7) 

where the proportionality constant k is chosen 
such that .~Z(L) -- go z + O(g04). Since 7./L is held 
fixed, the coupling depends on L alone and is, 
therefore, a running coupling. 
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Figure 1. Computation of the step scaling function 0"(2, u). The continuum limit (left-most points) is 
reached by linear extrapolation. 

The heavy quark force can be worked out in 
perturbation theory, either on the lattice or di- 
rectly in the continuum limit using dimensional 
regularization. If we set 

a(q)  = 0 2 ( L ) / 4 r ,  q = 1 /L ,  (8) 

the result obtained in the continuum theory may 
be written in the form of a series 

a~-~ = a + k t a  2+... (9) 

with purely numerical coefficients. Note that the 
only L--dependence on the 1.h.s. of this equation 
arises through the argument q = 1 /L .  The M-S 
coupling is defined as usual without reference to 
a finite volume. 

Eq.(9) thus establishes a connection between fi- 
nite and infinite volume physics. At first sight one 
may be surprised that such a simple connection 
exists, but it is really just a consequence of the 

fact that the theory has only one bare param- 
eter. Any two different renormalized couplings 
can therefore be expressed in terms of each other, 
independently of the context in which they were 
defined. 

3. R E N O R M A L I Z A T I O N  G R O U P  

In the continuum limit the Callan-Symanzik ~-  
function appropriate to our finite-volume scheme 
is defined through 

= (to)  

From eq.(9) and the known perturbation expan- 
sion of the ~-function in the MS scheme, we infer 
that 

__~S -2n 
0=o , (11) 

n-=0 
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Figure 2. Qualitative behaviour of the running coupling as a function of the box size L. 

where b0 : 11/24z "2 and bl : 17/96~r 4 are the 
usual universal coefficients. 

More useful for our purposes is the step scaling 
function 0-(s, u), which tells us what happens to 
the coupling if the box size is changed by a factor 
s. So if we choose an initial value u : ~ ( L )  and 
integrate eq.(10) up to the scale sL, the resulting 
coupling is 

0-(s, u) : ~2(sL). (12) 

In other words, the step scaling function is an 
integrated form of the fl-function. 

An important remark now is that 0-(s,u) is 
computable through numerical simulation of the 
lattice theory. For s = 2 the calculation proceeds 
as follows. 

I. Choose u, the renormalized coupling at 
which the step scaling function is desired, 
and pick a lattice with L/a points on each 
spatial side. 

2. Adjust the bare coupling go until the renor- 
malized coupling #2(L) assumes the value 
U. 

3. At the same value of go, simulate a lattice 
with twice the spatial size and compute u' = 

~2(2L). Following Symanzik it is possible to 
show that [17] 

u' ----- 0"(2, ~) 4- O(-IL). (i3) 

4. Repeat the cycle (steps 1-3) for a range of 
L/a  and determine 0-(2, u) by extrapolating 
u' to the continuum limit. 

In fig. 1 some of our data  are plotted to illustrate 
the procedure. At the larger values of u, the cut- 
off effects are quite significant, but the extrapo- 
lation to the continuum limit is smooth and does 
not cause any problem. It should be emphasized 
that  no exceedingly large lattices are required in 
these calculations. 

4. S T R A T E G Y  

The running coupling ~2(L) is expected to be 
a monotonically rising function of L as shown in 
fig. 2. At very small volumes the evolution of the 
coupling is accurately described by perturbation 
theory [eqs.(10),(11)]. Then there is a transition 
region and when L is larger than the fundamental 
correlation lengths in the theory, the behaviour of 
the coupling is determined by non-perturbative 
effects. Our aim is to compute .~2(L) for a range 
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of L connecting the perturbative scaling region 
with the low-energy regime. 

The basic idea is simple. We consider the 
theory in the continuum limit and construct a 
sequence of couplings u0, ul,..., u,, recursively, 
starting from some initial value u0 in the pertur- 
bative domain. Each step ui ---} ui+t corresponds 
to a change of scale by a factor 2, i.e. the recursion 
is defined through 

= (14) 

As discussed above the step scaling function is 
computable through numerical simulation. Given 
the initial value u0, the couplings ul, u2,..., un 

can thus be determined successively. 
By construction there exist box sizes Li such 

that 

= f(L d, = 2 L0. (15) 

Although it is well-defined, the initial scale L0 is 
not really known at this point. By performing 
a sufficient number of renormalization steps, we 
may however arrange that the terminal box size 
Ln is in the large volume range. It is then possible 
to make contact with the low-energy scales of the 
theory and to express Ln in units of the string 
tension K. Once this is achieved, all box sizes Li 
will be known in physical units. 

Returning to the high-energy end of the se- 
quence of couplings, we may finally convert to the 
M--S scheme, using perturbation theory [eq.(9)]. 
An important point to note is that in this last 
step of the calculation all reference to a finite vol- 
ume drops out. One simply gets o~-~ at some 
momenta ql = 1 /L i  given in units of the string 
tension. The running coupling in finite volume 
may hence be regarded as merely a technical de- 
vice, which is needed to connect the high-energy 
regime with the fundamental low-energy scales of 
the theory. 

5. D E F I N I T I O N  OF ~ ( L )  R E V I S I T E D  

In practice the number ofrenormalization steps 
that can be performed is limited by the statis- 
tical and extrapolation errors which incur when 
the step scaling function is computed. These er- 
rors accumulate during the recursion and must be 

carefully traced. Another source of error is the 
conversion from the finite volume to the MS cou- 
pling. Perturbation theory is used here and even 
though the conversion is only performed at the 
largest momenta reached, the neglected higher- 
order corrections may not be small. 

For accurate results we hence require a renor- 
realized coupling with the following properties. 

1. ~2(L) is non-perturbatively defined. 

2. On any given lattice in the scaling region 
(with say L / a  < 32), f ( L )  can be accu- 
rately computed through numerical simula- 
tion. 

3. The cutoff effects one encounters when cal- 
culating the step scaling function are small. 

4. A perturbative computation of~2(L) up to 
two-loop order is possible with a reasonable 
effort. 

It is our experience that  these conditions are hard 
to fulfill simultaneously. In particular, couplings 
defined through Wilson loop expectation values 
are unlikely to provide a satisfactory solution to 
the problem. This is so because expectation val- 
ues of large loops are difficult to compute nu- 
merically - -  the signal-to-noise ratio is exponen- 
tially decreasing with the size of the loops - -  
and because the perturbation expansion of these 
quantities to order 900 may require an unaccept- 
able amount of work (there is a scaring number 
of Feynman diagrams and standard momentum 
space techniques do not apply). 

We were thus led to consider more exotic pos- 
sibilities and finally came up with the idea to de- 
fine ~2(L) through the response of the system to 
a constant colour-electric background field. The 
details of the definition are complicated, espe- 
cially on the lattice, and we refer the reader to 
refs.[17, 18] for a full account. Our aim here is to 
explain in simple terms, using a continuum no- 
tation, how to generate a background field and 
how to extract a renormalized coupling from the 
effective action of the background field. 

Let us consider the euclidean space-time man- 
ifold sketched in fig. 3. The time coordinate z ° 
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Figure 3. Space-time manifold and boundary con- 
ditions on the gauge field. 

runs from 0 to T and space is assumed to be a 
torus of size L in all cartesian directions. Gauge 
fields are represented by periodic vector poten- 
tials A#(z)  on [0, T] x 1~ s (in the presence of 
background fields, zero modes and multiple min- 
ima of the action can be avoided and so there is 
no need to introduce twisted periodic boundary 
conditions here). At the boundaries of the space- 
time manifold we impose 

{ C (x) at = 0, 
A k ( ~ ) =  eL(x  ) at z ° = T ,  

(16) 

where C and C'  are prescribed spatial gauge 
fields. They will be set to some particular val- 
ues below. 

The parti t ion function of the system, 

= f D[A] e -s[~t], (17) Z 

involves the Yang-MiUs action S[A] and an inte- 
gration over all gauge fields A with fixed bound- 
ary values C and C '. Z is a gauge invasiant 
functional of the boundary fields and may be in- 
terpreted as the (euclidean) propagation kernel 
for going from the initial configuration C at time 
mo= 0 to the final configuration C ~ at z ° = T. 

In the weak coupling limit, which is also the 
semi-classical limit, the parti t ion function is dom- 
inated by the field configuration B with least ac- 

tion (we do not consider situations with several 
gauge inequivalent absolute minima). B is a solu- 
tion of the Yang-Mills field equations and may be 
regarded as the classical background field induced 
by the boundary values at z ° = 0 and ~0 = T. 

If  we choose 

%(x) =   3/iL, 
(18) 

(x) = - 7)  -3liL, 
where rs is the third Pauli matr ix  and 0 < 77 < z" a 
parameter, the induced background field is given 
by 

Bo( ) = 0, 
(19) 

: + ( T -  iT. 

This field has the required boundary values and 
it is easy to verify that  it satisfies the field equa- 
tions. The absolute stability of B is guaranteed 
by a theorem proved in ref.[17]. 

The field tensor associated to B is independent 
of ~ and its magnetic components vanish, i .e .  B is 
a constant colour-electrie field. It is well-known 
that  such fields are unstable in infinite volume 
[24]. This is perfectly consistent with our asser- 
tion above (that B is a minimal action configura- 
tion), because B converges to zero in the infinite 
volume limit. 

The effective action of the background field, 
r = - I n  Z, can be expanded in powers of the 
bare coupling go by applying the saddle point in- 
tegration method to the functional integral (17). 
The series has the form 

r = go2ro + rl + go~l'2 +... (20) 

with 

r0 = g S[B] = 6 ( L / T ) ( r -  27/) 2. (21) 

The one-loop contribution r t  is a ratio of determi- 
nants of the fluctuation and the Faddeev-Popov 
operators, and at higher orders one has to evalu- 
ate Feynman diagrams with propagators and ver- 
tices that depend on the background field. 

A detailed analysis now shows that  the ef- 
fective action (modulo a divergent additive con- 
stant) is power-counting renormalizable, without 
extra counterterms. Quantum field theories on 
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manifolds with boundaries in general require ad- 
ditional counterterms, constructed by integrating 
local operators over the boundary manifolds [25]. 
Such terms can be excluded here, because there 
are no candidate operators with the right symme- 
tries and dimensions. 

By differentiating with respect to the back- 
ground field parameter ~/, any constant additive 
contribution to the effective action is removed and 
we conclude that 

#r 
r '  : - -  (22) 

is a renormalized quantity. Taking eqs.(20) and 
(21) into account, we are thus led to define a 
renormalized coupling through 

#2 = r,o/r," (23) 

We actually obtain a two-parameter family of 
couplings in this way, the parameters being T/L 
and 77. For our numerical work we chose 

T/L : 1 and : (24) 

but there is no absolute necessity to stick to these 
values. At some point one may in fact be inter- 
ested to consider different background fields to 
test the universality of the continuum limit. 

6. RESULTS 

pi is proportional to the expectation value of 
the colour-electric field operator at the bound- 
aries of the space-time manifold. On the lat- 
tice this translates to an average of the time- 
like boundary plaquettes with an insertion of the 
Pauli matrix ~'s. It is straightforward to compute 
the required expectation value through numeri- 
cal simulation, using a hybrid over-relaxed algo- 
rithm, for example. 

Our results on the step scaling function ~(2, u) 
are listed in table 1. As will become clear in the 
following, the couplings u (first column) are in 
the range of interest, approximately as u0, . . . ,  us 
in fig. 2. For comparison the step scaling func- 
tion as computed in perturbation theory, using 
the two-loop approximation for the fl-function, 
is included in table 1. The agreement with the 
numerical data is almost perfect, except at the 

Table 1 
Values of the step scaling function 

2.037 2.45(4) 2.38 
2.380 2.84(6) 2.86 
2.540 3.54(8) 3.58 
3.550 4.76(12) 4.83 

lowest value of the coupling, where a 2~r deviation 
is observed. In a set of 4 independent measure- 
ments, this is not an unlikely event, and so it may 
well be that the discrepancy disappears when the 
statistics is enlarged. 

Table 2 
Running coupling as determined from table 1 

1.000 4.765 
0.499 3.55(6) 
0.247 2.84(6) 
0.123 2.38(5) 
0.069 2.04(5) 

Apart from small mismatches, the couplings in 
the first column of table 1 together with ~4 = 
4.765 form a sequence uo,..., u4 as described in 
sect. 4. In particular, between u0 -- 2.037 and u4 
there is a difference in scale of roughly a factor 
16. A more precise analysis, tracing all errors 
and taking mismatches into account, yields the 
numbers quoted in table 2. As a unit of scale we 
here decided to take the box size Lm6x at which 
~2 _ u4. Note that the coupling is decreasing by 
more than a factor of 2 in the range of distances 
covered. 

To relate Lmax to the physical scales in infi- 
nite volume, we choose some fixed value of the 
bare coupling fl = 4/g~ where the string ten- 
sion K is already known from studies on large 
lattices (see table 3; the data in the second col- 
umn axe from refs.[26, 27]). For a range of lattice 
sizes we then compute the renormalised coupling 
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bation theory. The dashed (dotted) curve is obtained by integrating the evolution equation (10), starting 
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Table 3 
Determination of Lmax in physical units 

a'v/ K Lmax / a Lmax vf-K 

2.70 0.101(i) 8.08(4) 0.820(9) 
2.8s 0.063(3) 11.98(7) 0.76(4) 

and determine Lmax/a by interpolation. When 
this number is multiplied with the string tension, 
the desired conversion factor p = Lm~xV~- is ob- 
tained. 

As in the case of the step scaling function we 
expect that p approaches the continuum limit 
with a rate roughly proportional to a/.Lm~,x. We 
do in fact find a slight variation of p when fl 
is increased from 2.70 to 2.85, but the effect is 
barely significant. The data  are certainly insuffi- 
cient to perform an extrapolation to the contin- 
uum limit. For the time being we shall, therefore, 

take p : 0.76, the value closer to the continuum 
limit, and keep in mind that the total error on 
this number could be as large as 10%. If wc set 
V~- = 425 MeV to convert to more physical units, 
we then deduce that Lmax : 0.35 fro. The lower 
end of the range of box sizes covered by table 2 
is hence roughly equal to 0.024 fro. 

As shown in fig. 4 the evolution of the running 
coupling a(q) is well described by perturbation 
theory, down to very low energies. The error bars 
in this plot represent the statistical errors as given 
in table 2, but not the overall scale uncertainty 
discussed above. The latter amounts to a multi- 
plication of the energy scale by a constant factor 
and so has no bearing on the scaling properties 
of the coupling. 

At the highest energies reached, we can finally 
convert to the MS scheme of dimensional regular- 
ization using the one-loop formula [17] 

o~- -~  : a - I-  0 . 9 4 3 3  × ~ z  -t- . .  • (2s) 
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In particular, at q = 20 x ~ we obtain 

= 0 .1s5  + o .oos  ± 0.009. (26) 

The first error here is statistical, as inferred from 
table 2, while the second is an estimate of the to- 
tal systematic error arising from a possible order 
a s correction in eq.(25) and the 10% scale uncer- 
tainty mentioned above. 

With the presently available parallel comput- 
ers the level of accuracy could be increased sig- 
nificantly at a reasonable cost. To keep the bal- 
ance between statistical and systematic errors it 
is then necessary to extend the series (25) to the 
next order [28], and one should also use an O(a) 
improved action [17] to ease the extrapolation to 
the continuum limit. 

7. C O N C L U D I N G  R E M A R K S  

At first sight it seems unlikely that the strength 
of gluon interactions at high energies can be de- 
termined by studying the scaling behaviour of the 
theory in small and intermediate volumes. It is in 
fact well-known that the properties of the ground 
state change radically when the box size L be- 
comes smaller than a fermi or so. One may thus 
be led to conclude that  such studies are perhaps 
of technical interest, but have no relation to what 
is going on in real physics. 

This argument overlooks two important facts. 
The first is that the renormalization of the the- 
ory does not depend on L. Renormalization con- 
stants, scaling functions and improvement coeffi- 
cients may hence be computed in finite volume. 
This is obviously useful, since the correspond- 
ing calculations would be much more costly on 
physically large lattices. Asymptotic freedom is 
the other important property of the theory on 
which we rely. It implies that  once the high- 
energy regime is reached, different rcnormaliza- 
tion schemes can be matched by perturbation 
theory. In particular, whether we probe the sys- 
tem by scattering gluons or through a finite vol- 
ume eventually yields the same information, since 
the corresponding couplings can be expressed in 
terms of each other. 

At some point contact with the fundamental 
scales in infinite volume must of course be made. 

Lattices a few fermi wide are required here, but 
the renormalization group that  we have set up 
saves us from requiring very small lattice spacings 
at the same time. Unmanageably large lattices 
are hence avoided. 

Our study of the SU(2) theory reveals that the 
evolution of the renormalized coupling is accu- 
rately described by perturbation theory down to 
surprisingly small momenta (cf. fig. 4). To some 
extent this result is certainly dependent on the 
renormalization scheme employed. Nevertheless 
we may conclude that confinement, string forma- 
tion and glueballs are in no way in contradiction 
with the high-energy regime, where weakly cou- 
pled gluons are the important degrees of freedom. 
One may have feared that  there is a complicated 
transition region between the two regimes, but 
this is now definitely ruled out. 

A similar study of the SU(3) Yang-Mills theory 
is currently under way. We estimate that  about 3 
times as much computer time is needed to attain 
the same statistical accuracy as in the SU(2) the- 
ory. We also believe that finite-size techniques of 
the type described here will be useful in QCD, not 
only to determine the running coupling, but also 
to study the renormalization of quark masses and 
the normalization of the axial currents (which is 
a non-trivial problem on the lattice). 

The simulations have been performed on the 
CRAY computers at HLRZ and CERN. We thank 
these institutions for their continued support. 
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