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This paper is mainly devoted to the presentation and discussion of formulas for the cross section
of photon diffractive dissociation. The calculations which we present in a very detailed way are based
on perturbative QCD. We improve formulas which describe this process in the triple Regge limit
where the square of the missing mass Mx (the invariant mass of the bunch of secondary hadrons)
is much larger than |Q?| and extend the range of validity to the region where M% is of the same
order as |Q?|. We introduce a diffractive dissociation structure function and show that it obeys the
Gribov-Lipatov-Altarelli-Parisi evolution equation, but, with an additional inhomogeneous term.
The relation to the Pomeron structure function is discussed.

PACS number(s): 13.60.Hb, 12.38.Bx, 12.40.Nn, 13.85.Qk

I. INTRODUCTION

Diffraction dissociation processes in general provides
us with the basic information on the dynamics of “soft”
interaction. In the framework of the old-fashioned
Reggeon approach the soft interaction at high energies
was reduced to the interaction between Pomerons via the
triple Pomeron coupling constant (Gsp see Fig. 1). Its
value was extracted from experimental data on diffractive
dissociation with a large missing mass (invariant mass of
the bunch of secondary hadrons Mx) [1,2] (see Fig. 1).
Although there are large uncertainties in the value of G3p
(see [2]) the process of diffractive dissociation gives the
only possibility to estimate this value.

The process of diffractive dissociation in deep-inelastic
scattering looks especially interesting for three reasons.
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FIG. 1. Relation between diffractive dissociation and triple
Pomeron diagram.
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(1) The natural scale of hardness, namely, the large
value of |Q?| (see Fig. 2) gives hope to develop the
theoretical approach to this process within perturbative
QCD. Such an approach was suggested in the paper of
Gribov, Levin, and Ryskin (GLR) [3] and has been de-
veloped in a series of recent papers [4-6)].

(2) The virtual photon in the diffractive dissociation
probes the structure of the Pomeron. This means that
this process could lead to a better understanding of the
Pomeron structure. The idea to describe the diffractive
dissociation process with the help of a Pomeron structure
function was first introduced by Ingelman and Schlein
[7] and has been discussed from another point of view in
[8-11]. The perturbative approach to the diffractive dis-
sociation allows to examine the above ideas on a theoreti-
cal basis and helps to clarify what the Pomeron structure
is.

(3) The diffractive dissociation in deep-inelastic scat-
tering is closely related to the screening (shadow-
ing) corrections in deep-inelastic scattering through the
Abramovski, Gribov, and Kancheli (AGK) cutting rules
[12] as was noted in [3]. So diffractive dissociation can
give direct information on the screening (shadowing) cor-
rections, and the theoretical understanding of their na-
ture is equivalent to the understanding of the nature of
the screening (shadowing) corrections. Moreover, exper-
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FIG. 2. Diffractive dissociation with Pomeron exchange.

4306 ©1994 The American Physical Society



50 PHOTON DIFFRACTIVE DISSOCIATION IN DEEP-. ..

imental studies of diffractive dissociation will test our
understanding of screening corrections in the most direct
way.

The main goal of this paper is to develop the leading
log approximation (LLA) of the diffractive dissociation of
the virtual photon in the framework of perturbative QCD
and to present reliable formulas for this process. We hope
that this paper provides a basis for the interpretation of
DESY HERA's experimental data.

The paper is organized in the following way. In Sec. II,
we discuss the kinematics, the small parameters, and the
main results which include the evolution equation of the
process and some comparison of the idea of the Pomeron
structure function with our QCD approach. Section III
contains the Born approximation of the production of two
quarks, i.e., quark and antiquark, and the production of
two quarks with an additional gluon (three-jet event).
Section IV deals with the problem how to generalize to
an infinite number of jets. In Sec. V we summarize our
results, and the Appendixes contain all technical details
of the calculations.

II. THE STRATEGY OF THE APPROACH
AND THE MAIN RESULTS

A. Kinematics and notations

In this section we would like to outline our approach
and we begin with the kinematics and the notations that
we are going to use throughout the paper. First of all we
would like to introduce the light-cone vector Q], which
characterizes the incoming virtual photon:

Q. =Qu+zp,, (2.1)
where
_ Q¥
"= 3@, 22)

is the usual Bjorken variable. The main property of Q],
is the fact that

Q?=@*+2z(Q,p)=0. (23)
As energy variable we use
s =2(Q,p) . (2.4)
It is easy to see that
5=(Q+p)i=010-1z)s. (2.5)

We expand all the momenta of the particles in our reac-
tion in terms of Q}, and p,, using Sudakov variables [13].
As example we take the momentum u which is transferred
along the Pomeron and write it as

Uy = auQ;‘ + Bup + Uty - (2'6)
Using Eq. (2.6) we can express the mass of the produced
particles M% through a,, and 3, in the following way:

Mi=Q+u’=(1+au)Bu—2)s+uf  (2.7)
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while

(P—u)?=m? ora,s—ul=~0. (2.8)

From Egs. (2.7) and (2.8) we get

8 _ M} +zs—u
T 1+ ay)s
M} +xs—u}

8
~ M% +197|

’ (2.9)

since |ay,| = u?/s < 1.

An important assumption for the diffractive dissoci-
ation process is the smallness of the missing mass Mx
compared to the total energy /3 ~ /s. This means that
[see Eq. (2.9)]

Bu—z<L1. (2.10)

B. The scale of hardness

If we want to apply perturbative QCD to the diffrac-
tive dissociation process, we need to specify the scale of
hardness that appears in this process. Our first and nat-
ural scale is the large value of |Q|?. But, this scale is
not enough to apply the method of perturbative QCD.
We need to specify what the Pomeron in QCD is. Our
present understanding of the Pomeron in QCD could be
expressed in the following way: the Pomeron is a ladder
diagram (see Fig. 3). This approach can be justified only,
if we assume that the initial virtuality |Q32| is sufficiently
large and the final virtuality |Q3| lies far above the initial
one, namely,

Q31 > Q3| and o, (|QF]) < 1. (2.11)

It has to be stressed that we have to introduce both pa-
rameters Qo and Qo ad hoc. Indeed, |Q2?| (transverse
momentum of the parton inside the proton) is the start-
ing value for the GLAP-evolution equation [14]. If we
know the proton structure function at |Q3|, the GLAP-
evolution equation gives the structure function at the
larger scale |Q%|. However, in the diffractive dissoci-
ation only partons with transverse momenta substan-
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FIG. 3. The Pomeron as QCD ladder.
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tially smaller than |Q?| are involved. In order to treat
this case we need to assume that the minimal transverse
momentum of the produced particles is large enough
(|ki,] > |Qol) to be sure that perturbative QCD still
works while calculating the cross section. A negative
consequence is that we cannot calculate the total cross
section of diffractive dissociation. What we actually do is
to calculate a part of the diffractive dissociation, namely,
the cross section of the following process:

7 (Q%) +p = jets(lky, | 2 Qo) + X +p'.  (2.12)
The kinematical restriction could be imposed by an ex-
periment which measures only hard jets, i.e., jets with a
transverse momentum larger than some scale |Q3|. The
formula that we are going to calculate covers the hard
part of the cross section. The question then is, how
far can we extrapolate our results towards smaller values
of |@Q3|. For this case we have to compare our formula
with the soft Pomeron phenomenology. This will be done
in some later publication. In this paper we will discuss
special kinematical regions of 3, and z-Bjorken where a
lower cutoff in our integration becomes unnecessary. |Q3|
then takes some natural value.

C. Small parameters
and leading logs of the approach

In this subsection we would like to clarify what our
small parameters are and which type of logs we are able
to sum in LLA of QCD. We first have a look at the double
leading log approximation (DLA). This approximation
was used in earlier calculations of diffractive dissociation
[3,5]. It is capable to explain the most typical and impor-
tant features of this process. In our paper we concentrate
on the generalization to the case of single leading log ap-
proximation.

Now let us list the parameters for DLA:

B w? <1

a,ln—;ﬁl, a,ln Qz_

o (1Qf) <1, (2.13)

/3..
a,ln—In = > 1,
Q}

and

! <1, a,ln Q°<1

a,ln—ﬂ—;_ Qz_

a(jQ3) <1, (2.14)

@
gzt

Using these small parameters we are able to calculate the

a, ln
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cross section of the process shown in Eq. (2.12) in the
kinematical region:

1>Bu>z,

1Q% > |Q3| > |Q3I, (2.15)

|ug] < 1Q3] -

The set of parameters in Egs. (2.13) and (2.14) indicates
the kind of logs we take into account. It is clear from
Fig. 4 that we sum all logs due to integration over (;
and k;, of the emitted protons (ln - In|k%|) while we
calculate the structure of the Pomeron in DLA.

The most important property of the cross section for
diffractive dissociation in comparison to the usual leading
log approach of the deep-inelastic structure function is
the higher twist integral over the transverse momentum
of the slowest parton which has no logarithmic character
and looks as follows (see also Fig. 4):

2
/‘Q 'djkf|
L

This integral indicates the need of introducing the lower
cutoff |Q3| for |k?|. If there were none, the integral above
could dominate at the absolutely lowest bound |Q3|, i.e.,
there would be no room for the Pomeron to evolve. We
have to take care and introduce a new lower bound which
lies sufficiently far above |QZ|. Another point which is
illustrated by expression (2.16) is the fact that, since

(2.16)
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FIG. 4. The QCD model of the diffractive dissociation in
the triple Regge limit.
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QCD is a dimensionless theory, the extra dimension com-
ing from the integration over the momentum transferred
along the Pomeron (in our case the integral over u?) is
compensated by =5 | . The extra power in the denomina-

tor of expression (2 16) also suggests the conclusion that
the main contribution to the total cross section of reac-
tion (2.12) originates from the region where k; =~ Qo and
that we can neglect logs of the type InkZ/Q32.

We are going to improve our DLA approach by ex-
panding it to the following kinematical region:

1>Bu21x,
Q% > 1Q3] > Q3| , (2.17)
lu?| < |Q3 .
J
, do PP
Bt (" +p = Jet(lkil > Qol) + X +5)
Audluy] u?|<|Q3|
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In this region we sum all logs InQ?/Qj but o, In & < 1.
This means that the energy (f; in Fig. 2) of the produced
particles may be uniformly distributed among them with-
out any ordering.

D. The main properties of the answer

In this section we start the discussion of the final re-
sults for the cross section of reaction (2.12). The details
of the calculation will be given in the next subsections.

The result is the generalized formula of GLR [3]
now valid in the kinematical region (2.17) and looks as
follows:!

v]
= |GZG(|u2|)|2Z 41rze§;~a,m /1 dz d /lQ l dlkt2| af(lkfl)
P Q2 Jejp. 7 Budiaz ki 16

F

 [$5IDE (551021, 121) + 3508 (55,1071 K21 ) | (8D (0 2L @B - (218)

All notations should be clear from Fig. 4. G2 denotes
the proton form factor which is 1 for u? = 0. Any func-
tion D stands for the particle distribution of a dressed
parton (quark or gluon) after evolution from some low to
some large virtuality. In expression (2.18) we use as vari-
able of integration the transverse momentum |k?| with its
lower limit |Q2|. As the upper limit we take |Q?| which
is usually the upper boundary of the virtuality and not
the transverse momentum squared |kZ|, but, since we are
not interested in the extreme infrared region Mx — 0
we are allowed to do this. We just have to take care
that M% > 4Cr (¢ — £g,)A? where &, is defined as
ém = :Inln|m?|/A? for any momentum m and A de-
notes Aqcp. This restriction avoids the region where the
LLA(Q?) becomes invalid and the resummation of In(n),
the logarithm of the moments n, at large n becomes im-
portant. The 'main new results of Eq. (2.18) are the
splitting functions &£, ®§ which were derived in [22] and
which we will call Pomeron splitting functions. They de-
scribe the interaction of the Pomeron with quarks and
gluons. New in comparison with the GLR formula is the
Pomeron interaction with quarks. This process has been
calculated in the [5,6] but with two different results. So
we repeated the calculation in a slightly different tech-
nique and found the splitting function ®% which is the
corrected version of [5] and which coincides with the re-
sult in [6]. Besides, we found the second splitting function
®§ which describes the interaction of the Pomeron with

r

gluons not only in the region of small z (triple Regge
limit) but also for z of the order of 1. This means that
we extended the region of applicability to the complete
region including large missing masses (Mx) as well as
small missing masses.

1. Pomeron splitting functions

The explicit expressions for the new splitting functions
are

®E(2) = —16z2(1 - z)?
(2.19)

8S(2) = N w41 — )(2+%)2.

Although we used the name “Pomeron splitting func-
tions” in analogy to the Gribov-Lipatov-Altarelli-Parisi
(GLAP) splitting functions, they do not have the same
properties. This is obvious in the case of ®§ which is

1For transverse polarized photons.
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not symmetric under the interchange of z and 1 — 2. The 2. The diffractive dissociation structure function
strong suppression in 1 — z is due to color cancellation and its evolution equation

which effects the real emission of soft gluons from the col- In order to find an evolution equation for our process it
orless Pomeron. The virtual gluon, on the other hand, is convenient to introduce a new structure function which

behaves different and still has the typical soft distribu- describes the contribution of diffractive dissociation to
tion 1/z in its longitudinal momentum fraction z. The  the general structure function of deep inelastic scattering.
asymptotic expression for small z was found before [5]. Namely,

J

_ Q% 2] A2(].2
D5S (ﬁi,ﬂu,|cz2|,lQ3|,|Q§|) NG CR / ., / Ae] 2:Uks1)
w :z: u t

x[qﬁ,(z)pf (517 1kf|)+<1> (2)DE (—f—Z-,IQZI,kal)J

X[BuDE (Bu, K], 1QF]* - (2.20)
Differentiating Eq. (2.20) with respect to In(Q?/A?) leads to the following equations:

0 FG [« -
— 9 ___DES (—,ﬂu,tQ2|,|Q2|,|Q2|)
Oln (%) Bu ° 0
Ca(Q) [t d
- 4 z/Bu

< (25D (505 1), IQoI) +85°()DSp (50 A Q71131 |

Gzc u2 2d u az 2
LGP 2209 e (2 5,D5 a0, 107, 12 (.21)
Q2| 16
The functions Qf;'., o, <I>£, and Qg are the usual splitting functions in the GLAP equation. The other splitting
functions were defined in Eq. (2.19). The initial condition at |k?| = |Q3| for Dg'g is zero as can be seen from Eq.

(2.18).

We would like to discuss now the possibility of introducing a Pomeron structure function following the idea of
Ingelman and Schlein [7], which is simply the solution of the usual GLAP-evolution equation with new initial con-
ditions. Looking at Eq. (2.21) it seems to be impossible to introduce something like the structure function of the
Pomeron. This becomes clear even by looking at Eq. (2.20), since the structure function that corresponds to the
Pomeron exchange (3,Dg) explicitly depends on |k?| and cannot be replaced by the flux of the Pomeron as it was

done in Ref. [7]. However, in the region of not extremely small 3, (see point 5) when the value of (8,DF)?* cannot
compensate the factor ﬁ; in the integral, we can see that the integration over |kZ| is concentrated at |k?| ~ |Q3|.

Moreover, |Q?| should be much larger than |Q3|. In this kinematical region we can replace 8,DS (B, [kZ|,|Q3|) by
BuDE (Bu,|Q3|,|Q3|) and define the Pomeron structure function through its initial condition at |Q?| = |Q3|:

T = = 1 F.G x
pF¢ (_’ Q2 Qz) — & (_> , (2.22)
P ,Bu | OI | OI gg + .4.'_"11 P ,Bu
where ng denotes the number of flavors. We have normahzed the Pomeron structure function with respect to the
energy sum rule:

1
/0 dzz [ZDg(z,lel,lQ—%I) +Dg(z,|Qzl,|Q_§|)} =1. (2.23)
F

The corresponding GLAP evolution equation reads
0 FG (% 12 12 as(IQZD/l dZ[F F(i” 2 -2) F G(“’ 2 -z)]
—_—_— ? —_ = Q D 9 ’ Q D ’ ’ M
o () (717 103) = 28 7 |eF@E (55 107108) + 8508 (571971103
(2.24)

Since we introduced the normalized Pomeron structure function, we have to absorb all remaining factors into the
Pomeron flux factors:?2

2We would like to thank Ingelman who has provided us with the idea of an additional flux factor.
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296D 5, pg (s, 1231, Q2

= d 2 GZG 2
Fp(Bur 03], 1Q3)) = (93+i;‘§) J 42|28 ([u2))2 o

Q3|
93  4np) |Q3| 22(1Q3) 5 pe
(20 t 35 ) |Qg| —e BuDy (Bus Q31 1QFN* - (2.25)

The relation between Pomeron structure function and diffractive dissociation structure function is
FG (T ) A Fc [ T —
D55 ( 471810711081 1031) = £ (5 Q31 1Q3DDE® (51021103 - (2.26)
“ u

We see that factorization approximately holds. How good it works has to be checked numerically, but it seems to be
advisable to use this approach for a first analysis of DESY HERA'’s data. One more interesting remark concerns the
momentum fraction carried by gluons and quarks inside the Pomeron. It turns out that the gluon fraction roughly
makes up (100-1.9nr)% of the total momentum which suggests a strong gluon dominance.

If we want to evaluate the total cross section of diffractive dissociation including the soft region at small |k;|, we
have to move to the “soft” Pomeron phenomenology with the experimental value G3p. At |k;| ~ Qo we can match
our “hard” formulas with the phenomenological ones and extract the value of the natural cutoff Q,.

3. Transverse momentum distribution of the slowest jet in the diffractive dissociation

As was noted in [5] we have a different distribution over the transverse momentum of the slowest jet (k; in Fig. 4)
compared to the usual deep-inelastic events. It is easy to see directly from Eq. (2.18) that

BudoPP 2G 1 22\ Am2ehaem o2([k2)) 1 [l dz =
_PuSC = |G - @z
Budwiaw]| , =1 D T e L. %%
« [#5IDF (55 10°1 K21) + 95()DE (5107, I21) | DS 0w K21, 103
(2.27)

The main factor here is = k while the corresponding distribution in the deep-inelastic scattering is proportional to —5; ] k I

We see that in diffractive dissociation the typical transverse momentum is much smaller and the dependence on the
lower cutoff much stronger than in the usual deep-inelastic scattering.

4. Screening corrections (SC) versus diffractive dissociation

Due to the AGK cutting rules [12] the diffractive process is intimately related to the screening corrections. The
screening AF, can be understood as the deviation of the measured F; from the purely GLAP-evolved structure
function FFLAP:

Fa(z,1Q%,1Q3)) = F547 (2,1Q%1, 1Q3)) + AFx(=,1Q%|, 1Q3)) - (2.28)

It is supplementary to the factorization theorem [15]. The AGK cutting rules say that

1
AR, 1@ Q) = = fimey [ 20 DEb (5B lQ21IGHI) (229)

i.e., the screening corrections are negative and their absolute value identical to the integrated diffractive structure
function. In other words, the sum of the cross sections of the total inclusive deep-inelastic scattering and the inclusive
diffractive deep-inelastic scattering is free of the screening corrections and simply obeys the GLAP evolution equations.
This relation may help to check the AGK cutting rules experimentally.

Another interesting quantity is the ratio R of the moments (n) of the integrated gluon diffractive structure function
and the usual gluon-proton structure function

|AFS(n, Q%)|

R(n, Q%) = "55 moh (2.30)

where AFC is defined in a similar way as AF,:
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1
AFC(2,1Q%),1Q3) = galim s / 40u5-DSp (E”:,ﬂu,mm) : (231)

The scaling violation of R is directly related to the inhomogeneous term of our evolution equation for diffractive
dissociation (2.21):

8R(n, Q%) _ [1G2°(uZ)Pd|u?] o2(|Q?)) 2N2 4 [, dBuBr[BuDS (Bu,|Q?, |Q3]? 14 1AFS (2.32)
aln(lxrl) Q2 16 N2-1n-1 F&(n,Q?) Fe fo

R underlies a strong scaling violation 1/Q?. In the framework of a Pomeron structure function and the assumption
of factorization [Eq. (2.26)] the scaling violation of R should be zero. For asymptotic large Q2 this is true. So,
measuring R will help to understand, whether diffractive dissociation can be described within the usual perturbative
QCD in terms of a Pomeron structure function and whether the screening corrections are more than just some invisible
renormalization of the initial structure function at some low scale |Q3|.

5. The triple Regge limit, B, > =

Taking our master equation (2.18) again, we would like to examine the region: s> M% > |Q?|. We claim that in
this region we do not need the lower cutoff Q3| and integrate over the complete region of |kZ|. This has already been
discussed in the GLR paper [3], but here we are going to stress some particular features of diffractive dissociation (see
also [5]).

In order to illustrate all problems and properties of our process let us use the double log asymptotics for all our
structure functions in Eq. (2.18), namely,

zG(z,|Q?|, |k?|) ~ exp { \/IBN(&? — &) 1n (%) } . (2.33)

With this asymptotic expression the integral in (2.18) looks as follows:

3
Q dﬁk exp {—2b£k - ebei + \/16N(§Q fk) In ('B“) + 2\/16N(£k - €Qo) In (bl—) } . (2.34)

EQu

f
The z integration has only a small effect on the following  other. The factor ﬁ; has a minor effect. The opposite

analysis and we ignore it here. We search for a saddle-  kinematical region is
point solution of Eq. (2.34) and find that following equa-
tion which determines the value of our saddle point £2: In (8=
1 4N z
k
bebi 4 = \[16N12(ﬁ :/;,) - \/ 16N1£%?“) =0.
QT Sk kTS Equation (2.35) then changes into
(2.35) .
o 1 16 1\] _
In the region &+ 2b Infb(& ~ £a0)] - b 5 m Bu)) 0
u 2.39
o avin(%) (2.39)
T K l — , (2.36) .
2b b2 &g — &2 A further restriction

. . In
we can easily find the solution of Eq. (2.35), namely, lgiv In (g ) o >0 > - 1 [41;:’ €Q( 52 ]
4ln( )EQ+ln(;)§Qo

= . 2.37 (2.40)
T () +in (%) =30
leads to the solution
The kinematical region considered here corresponds to a
missing mass squared M% which is much larger than |Q?|. =1 1 [IGN n ( 1 )] (2.41)
The upper ladder and the lower two ladders balance each kT2 b Bu
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In the region that we are discussing now, the missing
mass My is either much smaller than /s nor extremely
large compared to 4/|Q?|. In this case the two lower
ladder are balanced by the factor ;1‘;

Both solutions show that we no longer need a lower
cutoff |Q3| for |k?|, i.e., the cross section does not depend
on |QF].

The second solution (2.41) has the advantage that it
J

DES ( Z B, IQ”I) — fp(Bu,|Q2))DES (

Bu
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only depends on 3, and not on |Q?| so that factorization
holds. The new sale |kZ| [see Eq. (2.41)]

(3]

serves as starting point for the evolution Eq. (2.24) where
the flux factor, now, includes the width of the saddle:

|k3] = A% exp [ (2.42)

z 2
ﬂua.@uv |Q I) )

(2.43)

45

L J1GEC (D) Pdlug] o3 (1

|3

So far we assumed the simple double leading log
asymptotics for the proton structure function which has
to be modified by taking into account shadowing (screen-
ing) corrections. These corrections correspond to dia-
grams shown in Fig. 5 which were summed by the nonlin-
ear evolution equation (GLR equation, see [3,17]). Since
the GLR equation only gives the possibility to calculate

1

W.LU.MU
W

FIG. 5. Screening (shadowing) correction to the proton
structure function.

2
16°') [8uDE (Bu, k3], |Q3N)]? -

f

the structure function in the region where the shadow-
ing corrections are still small, we need for very small G,
some additional hypothesis, the so-called parton density
saturation hypothesis:

3
a;g'('—ﬁl—) for k2| < g3(Bu),
a%Be) for |k?| > g3(Bu),
(2.44)

ﬂuDg(ﬂm ,kzls 'le) = {

™

>

—

=
TISTETTEIIRTSTITRIIISTNNI D)
~
+3S3SSSTTSEIENSSTTINIITIIE LN V)
&
e
e
=
e
&
&=
g
.

FIG. 6. Additional gluon production leading to logarithmic
contribution below the cell with dk?/k{ integration.
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where ¢3(3,) is equal to (see [3,5])
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In the framework of the saturation hypothesis we can
calculate the total cross section of diffractive dissociation.
It is easy to see that using Eq. (2.44) the integral over

@2(Bu) = Q2 + A%exp{ 3.56,[In (&) . (2.45) |k2?| in Eq. (2.18) is convergent and takes the factorized

Bu form

J
Budo®P ' 2G (1,212 dr’efaem 4 o’ R ACA(D)
Bude 7 (y'p = X)) = G2 (2D Y Sams [ Sa
dBudiid] o 1R 383G Jy z B 16
T T
< [#50I0F (55107048 ) + 3508 (1@ aba )| - (246)

At the end of this section we would like to mention
corrections that we have not taken into account. First of
all we have neglected the Pomeron-Pomeron interaction
(see Fig. 6) [19,18]. We think that due to the lower cut-
off in |kZ| and the color recoupling, which gives a factor
1/(N? — 1), this correction turns out to be negligible. A
second type of correction comes from higher twist contri-
butions, and we may have missed some important part of
the phase space due to our strong ordering assumption.
Our experience tells us that these corrections should be
small, but they have to be studied in more detail.

III. PHOTON DIFFRACTION DISSOCIATION
AT BORN LEVEL

This section is devoted to the technical details of the
calculation of the diffractive dissociation cross section at
Born level. The next section will include the generaliza-
tion to higher order of perturbation theory.

Due to the fact that the photon couples to quarks
only (and not to gluons) the minimal configuration of
the diffractive dissociation process is the dissociation into
two quark jets (quark and antiquark) (Fig. 7). The next
step towards the complete description of photon diffrac-
tive dissociation is the inclusion of one gluon jet (Fig. 12).
These two cases serve as starting point for the general-
ization.

A. Photon diffractive dissociation into two jets

Since photon diffractive dissociation is part of the gen-
eral deep-inelastic scattering, another name for our pro-
cess could be diffractive deep-inelastic scattering. New in
the case of diffractive dissociation is the more exclusive
final state which contains the proton only slightly scat-
tered. The rest of the particles in the final state (here
quark and antiquark) take the quantum numbers of the
photon. The quarks and the proton are well separated in
rapidity provided that the missing mass Mx (invariant
mass of the two quarks) and |Q| is much smaller than
the c.m.s. energy /s. In this region the leading contri-
bution to the cross section comes from the Pomeron ex-
change. At Born level and in the framework of QCD the
Pomeron is represented by a pair of gluons in the color

singlet state. In all our figures the bottom line represents
a quark which could be a gluon as well. The only thing
we need is a source which radiates off soft gluons. As we
will describe later, our simple two-gluon exchange will be
substituted by the proton structure function. This is the
only adequate model for a Pomeron in the framework of
QCD. Phrased in terms of the proton structure function,
at Born level the gluonic part of the proton structure
function is represented by a pair of gluons. Considering
studies addressing the two-gluon exchange [21], it may
seem that phenomenologically the two-gluon exchange
does not satisfy all properties of a soft Pomeron, but as
we already stressed, we intend to work consistently inside
the framework of QCD, and at least in LLA this seems
to be the correct procedure. In the same sense we do
not need to consider how the gluons couple to the quarks
inside the proton in detail. This again is a question of
calculating the proton structure function which cannot
be done without some phenomenological input.

Figure 7, now, shows all the diagrams which have to
be taken into account. Gauge invariance requires a set of
diagrams which includes all permutations of the photon
and the two-gluon lines. Diagrams with crossed gluon
lines were not explicitly shown in Fig. 7, instead each
single diagram represents the sum of two diagrams with
and without crossed gluon lines. We do this because
summing the crossed and uncrossed diagram (s-channel
and u-channel contributions) results in the approximate
cancellation of the real part of these two diagrams. Only
the imaginary part is left. The momentum u which is
transferred along the two gluons was already introduced
in Sec. II. For simplicity we set u? which is the momen-
tum transfer ¢ equal to zero. This assumption is realistic,
since the proton’s form factor decreases strongly with in-
creasing t. In the following discussion we further assume
that the two gluons couple to a quark instead of the pro-
ton in the lower part of the diagram.

Since our approach is based on LLA we concentrate
on the region of integration over |I?| (see Fig. 7) which
yields some log in |@Q3|. This requires the strong ordering
of the transverse momenta (for notation see Fig. 7):

Q2] > [kZm > |12] > Ju?] ~ 0. (3.1)
The o; component of the momentum ! (we use Sudakov
variables: | = a;Q’ + Bip + l;) is fixed by taking the pole
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FIG. 7. Complete set of diagrams which contribute to the two-quark production at Born level.

of the propagator p — u — I, whereas a,, and oy are fixed
using the mass-shell condition of the final states with the
momenta p—u and k —u. The third mass-shell condition
(momentum k + Q) serves to fix Se.

We, now, come back to the point where we need the
crossing of the gluons (crossing in the ¢t channel, Fig. 8).
As we already mentioned taking the sum of the crossed
and uncrossed diagram is equivalent to the sum of the s-
channel and u-channel contributions. Due to the positive
signature of our diagrams (color singlet state) we know
that the real part cancels out, at least in the leading-

order neglecting terms proportional to M:"i . The remain-
ing imaginary part of each diagram in Fig. 7 is given
by the imaginary part of the propagator k — I — u and
k + Q + I, respectively. In order to evaluate this imag-
inary part we just have to substitute a § function for
each propagator. It is important to remark that each §
function is accompanied by one w and not 27 as usually
appears while taking the pole of some propagator. We
can say that due to the smallness of the momentum u

+*

o

a

- - e
P pHl

FIG. 8. u-channel contribution corresponding to the dia-
grams in Fig. 7.
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the amplitude is approximately equal to the half of its
discontinuity.

We have already mentioned that in our approach we
set t equal to zero. It follows that u; and o, are zero,
too. This means that the momentum u has only one
component along p (u = Bup). B, can be expressed in
terms of the missing mass Mx and |Q?|:

M% = (Q +u)?

ﬁﬂuzM)%w:lQZi.

(3.2)

We now give all kinematical relations which we have dis-
cussed so far:

2
alzb-’
s
2
au=u_t=03
s
«a ___kf
"7 (Bu—Br)s’
_ 12 — 2(lg, ky)
(a)ﬁl_a_ks—’
(3.3)
(b) B =0,
ﬂkzm,
2
fu="X 4z,

For (; we have two different results: (a) belongs to
Figs. 7(a) and 7(c) and (b) to Figs. 7(b) and 7(d). From
Eqgs. (3.3) it is clear together with Eq. (3.1) that all o
variables are strongly ordered:

13> o] > |ou| > |ou| = 0. (3.4)

We would like to illustrate this in the case of |ax| and
|au|. There are two reasons why these two variables are
strongly ordered. The first is that we assumed |kZ| > |I2|
and the second one is the smallness of z and B,: B, — =
M)z( /8 € 1. So, even if I, is not much smaller than k;, oy
is small compared to aj and we are allowed to neglect it.
This neglection we have already used while calculating
B in Egs. (3.3).

After having clarified the kinematical situation we pro-
ceed with the calculation of the lower part of the dia-
grams in Fig. 7. In each diagram the pair of gluons is
radiated by a very fast moving quark.® The gluons are
sufficiently soft (M2/s < 1) and the emission could be
understood as virtual bremsstrahlung. In the language
of Feynman rules this means that we can use the eikonal
approximation. For example,

a(p — u)y? (p — | — @)7*u(p) ~ 4p°pPu(p)u(p) . (3.5)

3We work in the Breit frame.
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All other contributions turn to be beyond the leading or-
der that we are interested in. We see that the gluons are
polarized along p. So far we have not specified the gauge.
If we assumed the Feynman gauge, the polarization vec-
tor p? of each gluon would be directly transmitted to the
top of the diagram. With this p vector we could go on
calculating the upper fermion line, but instead we prefer
to use a trick which will help us to reduce the number
of diagrams which actually have to be calculated. Figure
9 shows that we can isolate out of Figs. 7(a) and 7(c) a
gauge-invariant substructure. Gauge invariance is guar-
anteed because the quark with the momentum k -1 —
is on mass shell [(k — I — u)? = 0]. Let us call the upper
part of Fig. 9, where the gluon is coupled to M”?. Then

lip

l MP=0=p,MP =——"—M".
(+U)p Pe ﬁl+,6u

We neglected a; as well as u;. Equation (3.6) is generally
known as Ward identity. In Appendix A we show how

this result is reached by summing explicitly the two di-
agrams in Fig. 9. Using the polarization —l;,/(8i + B.)

(3.6)

*
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N
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Ep kﬁu
2
(+u f é
p7~u
—
*
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Y
a k+Q-l-u L
M k0
P
kﬁu
l+u f
p—==l—u
—

FIG. 9. Dipole emission in the t channel.
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FIG. 10. Graphical representation of the color singlet pro-
Jjector.

instead of p? allows to neglect the diagram in Fig. 9(b)
because its contribution is proportional to (I, k:)/s.

A further possibility usually used to calculate the
Altarelli-Parisi splitting function is the use of the light-
cone gauge with Q' as gauge vector (4 - Q' = 0). In this
gauge the propagator looks as follows (k is any vector):

—id* (k)

- (3.7)

with
3 kaIu +lekv
(k, Q")

Multiplying d*¥(k) by p,, directly yields —k}/Bx where
we neglected o, Q. For the right gluon in Fig. 7 which
carries the momentum ! we keep p polarization.

We finally come to the conclusion that we only need
to evaluate the diagrams in Figs. 7(a) and 7(b), whereas
those in Figs. 7(c) and 7(d) do not contribute provided
we use as polarization vector for the left gluon —If /(8 +
Ba).

We go on with the evaluation of the upper fermion line
in Figs. 7(a) and 7(b):

a* (k) = g* (3.8)

ko a s T
—u(k +Q)’Ytnﬁﬁ'+—tﬁu(k -l —4)pu(u— k)a—ks )
(3.9)

E+1 I,

_ oy A P s

Since we consider only transverse polarized photons, we
introduced in Eq. (3.9) 7., instead of +y, for the photon
vertex. The factor 7/aps and n/s in Eq. (3.9) is the

DT>

2 2 Q% J1k2| o2 k31 gi72 2
Budo =Z47r Qemes T / dlktlf_a_£22(1_z)2 (4CF/ d|lt|gi) .
| |

dp,dt r—o

We remind the reader that a factor % is due to aver-
aging over the polarizations of the incoming quark and
transverse photon. |Q2| is as usual the initial virtual-
ity of the quark in the proton. We already introduced
the value |Q2| as lower cutoff for the transverse momen-
tum squared (kZ) in Sec. II. It should be large enough
to justify perturbative QCD and to give room for some
evolution from |Q3| to |Q3|.

As was noted before, expression (3.12) could be derived

32| kt4 16 N
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FIG. 11. The squared amplitude of two-quark production
(Born level).

result of integrating the § functions which have to be
introduced in order to calculate the imaginary part of
the amplitude as explained above.

Both expressions in Eq. (3.9) have to be explained to
the order I?/k2, for we would like to extract the log over
2. The details how to proceed is given in Appendix A.
The result for both expressions in Eq. (3.9) is

wl?
Buk?

The variable z is defined as z = B /By = z/Lu-

Next, we would like to evaluate the color coefficient of
the diagrams in Fig. 7. This is easy to do, for the pair
of gluons is assumed to make up a color singlet state.
Figure 10 shows how this looks graphically. We only
have to deal with a gluon loop which is attached to a
fermion line. The result is simply

Cr _ 1
N2—-1 2N~
We would like to conclude this subsection with the

complete expression for the cross section of photon
diffractive dissociation at Born level (see Fig. 11):

2z2(1 — 2)a(k + Q)ye, v(u — k) (3.10)

(3.11)

3.12
Q3 || 4m (3.12)

from the result of Nikolaev and Zakharov [6] by passing to
LLA. The main modification that we made, was to intro-
duce the lower cutoff |Q3| for the transverse momentum
in the quark loop, and we neglected all quark masses.
The difference becomes visible in the asymptotic region
of a large missing mass Mx. In this region only small val-
ues of the transverse momentum contribute. From Eq.
(3.12) we deduce an asymptotic spectrum of the type
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do Q*
T~ TG 19

This equation shows that our leading log result is strongly
suppressed at large Mx. In this region the Pomeron acts
as a pointlike particle. This behavior is better described
by the formula of Nikolaev and Zakharov:

do 1
dtdM% ~ miMy

(3.14)

Such a type of spectrum is typical for a pointlike particle
similar to a gluon or photon. There is only one quark
exchange in the ¢ channel (see, for example, Fig. 11). We
would like to stress that Eq. (3.14) does not contradict
our result, it is just outside the region where LLA is
applicable. But, it is only a very small fraction of the
total cross section.

B. Photon diffractive dissociation into three jets

On the way to some complete expression for the cross
section of diffractive dissociation we have to investigate
the case when besides the two quark jets one additional

a
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et
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gluon jet is emitted. Before we look at all the diagrams
which may contribute we have to specify in which gauge
we would like to work. In contrast to Ryskin [5] we use
the light-cone gauge with Q' as gauge vector [(4,Q’) =
0]. We think that in this gauge it is more convenient to
calculate the diagrams in the kinematical region where
(. could be of the same order as . This gauge can also
be used to derive the Altarelli-Parisi splitting functions
in a similar way as was done by Dokshitzer, Dyakohov,
and Troyan (DDT) [20].

We have already introduced the corresponding propa-
gator [see (3.7) and (3.8)] which is

—idm (r)
e (3.15)
with
wN'v Ty, v
¥ (r) =g - Q"+ Q% (3.16)

(r,Q")

r can be any momentum. Apart from the propagator we
need the polarization vector of a real gluon, i.e., a gluon
on a mass shell:

[re, €e(r)]

et(r) = el (r) - ——=Q'*. 3.17
( ) t( ) (’I‘, Q,) ( )
3 (b)
0
71
3 N
e q-l-u
l+u tE
£
£
e -
) p-l-u
a
J (d)
g-0
7t
: s
KHE
-
p

FIG. 12. The first set of diagrams for the three-jet production (two quarks and one gluon).
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€¢(r) denotes a vector in the transverse momentum plane
which has the following properties:

[ee(r), ec(r)] = -1,
(3.18)

D et (e (r) = —gt” .

Pol
Since the transverse plane is two dimensional we only
need two basic polarization vectors. When we sum over
the polarizations as in Eq. (3.18) we actually sum over
these basic polarization vectors. In practice we only need
the second relation in (3.18).

The kinematical situation is similar to that in the pre-

vious subsection. We have strong ordering in the trans-
verse momenta and the a components:

Q% > lgs| > |kZ| > |I| > |uf| =0,
(3.19)
1> |ag| > |ok| > |au| > |au| =0.

As a lower cutoff for |k?| we will assume |Q2|, whereas
for |I2| we have the usual |Q3|. The mass-shell conditions
(see Fig. 12) including the poles of the propagator p—I—u,
k—l—u as well as g—I—u lead to the following kinematical
relations:

2

a =%
g (,Bk—ﬁq)s’
a —————k?
" (Bu—Br)s
5
a = —,
8
2
au=u—t=0,
s
By==x, (3.20)
_ 12— 2(ls, ke)
(a) ﬂl—T,
(b) ﬁl=0a
2
ﬂu=_x+za
8

u? = u,t2 =t=0.

Here again we used the fact that the imaginary part of
our diagrams dominate over the real part. The variable
Bk, now, has to be integrated. It ranges from (3, down
to z.

We are interested in the asymptotic behavior
(1/k%) In(|Q?|/k2) where the logarithm is a result of the
|g?| integration. In order to extract these contributions
each amplitude has to be proportional to g} /¢?. The nu-
merator originates from the gluon-quark vertex and the
denominator from the quark propagator. In analogy to
the subsection before we are going to extract the loga-
rithmic contribution over {? from all diagrams.

The variety of diagrams which may contribute is quite
large, now. But the specific choice of the gauge and the
fact that we are only interested in terms proportional to
12 reduce their number. The gauge that we chose allows
to neglect diagrams with real gluon emission from their
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top, i.e., emission from the upper fermion line, whereas
emission from the bottom gives some contribution. The
light-cone gauge with p as gauge vector [(p, A) = 0] has
the opposite effect (see [5]). There, the emission from the
bottom can be neglected.

We conclude that it is enough to calculate the set of
diagrams given in Figs. 12 and 14. One example of di-
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FIG. 13. The second set of diagrams for the three-jet pro-
duction.
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FIG. 14. One example of diagrams which does not con-
tribute in the leading log approximation. The diagram is the
same as in (c) but the kinematic is different.

agrams which do not contribute is shown in Fig. 14. It
yields a contribution which is proportional to I} /I#. The
details of the calculation we leave for Appendix A and
present here only the final answer and some general re-
marks.

We divided up the complete set of diagrams into two
groups, Figs. 12 and 14. The difference between them
is, roughly speaking, the fact that in Fig. 12 we have an
interaction in the final state between the gluon and the
bottom quark whereas in Fig. 13 the common property
is the interaction between the quark pair at the top and
the bottom quark. One could object that the diagram in
Fig. 12(b) does not perfectly fit into this group but the
final answer suggests to put it there because, then, the
result of all diagrams in Fig. 12 is the same as in Fig. 13.

The polarization vector of all the gluons which are
emitted from the bottom line are aligned along the mo-
mentum p. If we multiply now the vector p? by d?*(l+u)
we get — #’?ﬁ—u For the second lower ¢t-channel gluon with
momentum [ it turns out to be more convenient to keep
the p polarization. This is possible, since the lines on
the right and on the left to the point where this gluon
is attached are on mass shell except in Fig. 13(b). The
local gauge invariance allows us to change the gauge. In
Fig. 13(b) we have this possibility, too, but now, at the
top where the right ¢-channel gluon couples to the quark
line. The quarks on both sides of the vertex are on mass-
shell again. The numerator of the propagator I + u — k
can be changed from

Q" (ke — L)

@i+ Bu—B) 2,0 (3.21)
to
?):’2’:‘ : (3.22)
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FIG. 15. Color coefficient of the three-jet production.

The t-channel gluons on which we focus at the moment
(so-called Coulomb gluons) have a specific property: due
to the fact that they couple to two particles on mass shell
their 3 components turn out to be small, i.e., they are
very soft. The smallness of the 8 component allows us to
use the approximate form (3.21) instead of d"#(l+u—k).
Another important property of these soft gluons is the
fact that they feel the total charge of the quark-antiquark
pair and not its substructure. This may be illustrated
with the help of the following example [see Fig. 14(a)]:

(G—1—k)pv(k—q)

Qg8

~v(k—gq). (3.23)

The ags in the denominator is the residue of the prop-
agator ¢ — | — k in connection with the integration over
Bi. Equation (3.23) only holds if we demand to have
a logarithmic integration over ¢?.* Taking into account
the second quark with a similar approximation as in Eq.
(3.23) the color of both quarks add up to the color of
the left gluon. The approximation which was used in Eq.
(3.23) we already know from the gluon emission at the
bottom, it is the eikonal approximation. This type of ap-
proximation is intimately related to the classical current
emission (see [5,16]).

The previous discussion and its application gives a
great simplification in the calculation of all diagrams in
Figs. 12 and 14. The total color structure becomes easy
to handle and can be reduced to the structure in Fig. 15.
Due to the color singlet state of the lower gluon pair
the color coefficient in Fig. 12(b) is the negative of the
color coefficient in Fig. 12(a). The color coefficient of
Figs. 13(c) and 13(d) add up to give again the same as
in Fig. 12(a) and in a similar way all diagrams of Fig. 13
can be normalized to Fig. 13(a).

The amplitude which finally represents the sum of all
diagrams in Figs. 12 and 13 is proportional to

“For the sake of completeness we should add a minus to Eq.
(3.23) due to the direction of the fermion line (incoming).
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k32 2
/ dii+ 7 e (3.24)
Q3 [i]  4m

z is defined as % The indices @, i, and j are the color indices of the gluon, quark, and antiquark. Over the colors of

the incoming quark we averaged.

To complete the discussion we give the cross section of the three-jet event (see Fig. 16)

Budo
dg.dt

= 7ﬂu

Bu

1Q?|

t=0 F

and define two Pomeron splitting functions, the first one
describes the Pomeron splitting into two gluons and the
second one the splitting into two quarks:

2N? 1\?
G — »)3 -
QP(Z)— N2_14Z(1 Z) (2+z) N

(3.26)
®E(2) = %1622(1 —2)%.

®F and ®f are the usual Altarelli-Parisi splitting func-
tions. The first one describes the production of two
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FIG. 16. The squared amplitude of the three-jet production.

_y drtome} /‘ dz = /'Q" d|k?| o /'Q" d|g?|
1Q3 |

T z K1 4)i2| ’
x {Qg (E) % (2) + oF (-ﬂ—;) <1>£(z)} (4CF /qul ﬁ&?)

ki 16 Juz  gf| 4m

(3.25)

quarks by a gluon and the second one describes the emis-
sion of a real gluon by a quark. It is easy to see that the
square of expression (3.24) leads to the first term in the
square brackets of expression (3.25). It corresponds to
Fig. 16(a). The integral over z was originally the inte-
gral over ;. The evaluation of the second term in the
square brackets of (3.25) follows the same strategy as was

used before. That is, extracting terms proportional to %:&
leads to the usual Altarelli-Parisi splitting function con-
voluted with the Pomeron splitting function derived in
the previous section.

We have to give a warning at this place. It is not possi-
ble to use expression (3.25) to make realistic computation
on three-jet events. This can only be done with the help
of Monte Carlo simulations. We emphasize that expres-
sion (3.25) is only one step on the way to a complete
expression of diffractive dissociation cross section.

T*

quark-
gluon
ladder

N

proton

FIG. 17. Generalization to the emission of any number of
jets.
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IV. GENERALIZATION TO MULTLJET
PRODUCTION
AND THE PROTON STRUCTURE FUNCTION

Since we are interested in the total cross section of
diffractive dissociation, we have to go beyond the three-
jet production and take into account the emission of an
arbitrary number of jets (see Fig. 17). When we talk
about the total cross section we usually think about its
hard contribution. As we have already explained in Secs.
IIB and II C, to be sure not to enter the soft region where
perturbative QCD is invalid we have to introduce some
cutoff |@3|. Our hope is that, nevertheless, the hard con-
tribution is the main contributions. This question could
by checked by fitting |Q3| in comparison to some phe-
nomenological soft triple Pomeron model. If |Q3| turns
out to be rather large, this would indicate that, indeed,
most of the cross section could be traced back to some
hard interactions. We must emphasize at this point that
there is, as usual in hadron physics, some nonpertur-
bative input to our process. But, this nonperturbative
input is hidden in the proton structure function that we

will introduce below. The use of the proton structure
J

Budo
dB,dt

t=0
2B’
V. CONCLUSIONS

The basic result of this paper is the evaluation of the
photon diffractive dissociation cross section over a wide
range of the missing mass Mx beyond the triple Regge
region. The corresponding diffractive dissociation struc-
ture function obeys the GLAP-evolution equation with
an additional inhomogeneous term and zero initial con-
dition. This inhomogeneous term contains two new func-
tions which we have introduced as Pomeron splitting
functions ®% and ®§ [see Eq. (2.19)]. The final result
will be valid in the region

2
05%1«1. (5.1)

The evolution starts at some initial scale |Q2| which has
to be understood as the lower cutoff in the transverse jet
momenta. This cutoff should be large enough in order
to stay outside the confinement, but much smaller than
|@Q?| in order to allow enough room for evolution.

We have studied our result in terms of the Pomeron
structure function and have found that factorization into
a Pomeron flux factor and a Pomeron structure func-
tion does not hold exactly, but as a rough approxima-
tion. How good this approximate factorization is has
to be examined numerically. Assuming factorization one
can use the functions ®5 and ®§ after having them nor-
malized with respect to the energy sum as initial condi-
tion for the evolution of the Pomeron structure function.

_ E an?aeme’ /1 dz o /lel d|k?| o2
I3 |Q2| ﬁ z ﬂu |Qg| kt4 16

x [wg(z)Dé (i @2, |k3|) + &5(z)DE (E‘ |Q2|,|kf|)] (8D (Bur K21, 1Q2 -
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function improves our simple model of the Pomeron just
being made up of a pair of gluons in the color singlet
state. The structure function Df," enters our calculations
via the following substitution:

k1 dji2] o
4CF[ (A - ﬂqu(ﬂu, k21, 1Q3) - (4.1)

oz || 4w
This procedure is well defined in the sense of |Q?|-evolved
(leading log) structure functions. The nonperturbative
contribution comes in at the same low scale |Q2| in the
shape of the initial = distribution. The proton form fac-
tor GZ€ in our master formula (2.18) was introduced by
hand.

As far as the production of jets is concerned the answer
is quite simple if only the higher twist ;1‘; contribution
dominates. Then we can proceed as in Sec. IIIB and
each extra emitted gluon or quark results in a logarith-
mic integration over its transverse momentum together
with the corresponding Altarelli-Parisi splitting function.
Taking Eq. (3.25) we just have to substitute the Altarelli-
Parisi splitting function by the parton density function,
for example &% by DF. This procedure yields

(4.2)

f

The gluon momentum fraction of the Pomeron, then, is
about (100-1.9nr)% (nF is the number of flavors) which
demonstrates the gluon dominance in the Pomeron.

We would like to make some comments on the differ-
ence to the earlier preprint version of this paper. In the
current version we omitted the discussion of the so-called
higher twist term in the master equation (2.18) and the
AGK-cutting rules. Both questions will be discussed by
Bartels and one of us (M.W.) in a paper that will be pub-
lished soon. We would like to stress that the calculations
presented in this paper are correct, but consider only the
leading twist case. The answer to the question of the
AGK-cutting rules originate in a deeper understanding
of what they mean. We hope that our results will help
to explain diffractive dissociation events at HERA.
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APPENDIX A

In this appendix we present some more details about
the calculation in Sec. III A starting with Fig. 9. By
summing the two diagrams in Fig. 7 we will show in an
explicit way that the polarization vector p® can be sub-

stituted by —ﬁ%:



b

-

k.
a(k + Q) gabv(k—1-

The denominator (k+Q —! —u)? is equal to —(5; + By)s.
Each s in the denominator has to be compensated by
some s in the numerator. This can be achieved only by
taking the leading contribution of the expression @(k +
Q)p(k + Q — I — @) which is sti(k + Q). Furthermore,
we can change pv(k — I — u) into ﬁ-v(k — 1 — u) after
the multiplication and the division by 8; + B,. We then
see the cancellation of the leading terms in (A1) which
results in

ﬂ(k+Q)v:‘£( T )v(k—t—u) (A2)

This is exactly what we wanted to prove.
We proceed with Eq. (3.9) of Sec. IIT A and recall the
first expression:

k1 PPN ™
pm(k — = d)pv(k - “);;;
In the first step we extract all terms of the order I? which
are the leading terms. The terms of the order I} cancel
out. It i 1s enough to expand each of the factors k — [ — i
and 75 o +3 to the first order in /;. We should remind here
that 3; depends on [;:

—u(k + Q)7 - (A3)

12— 2(ly, ke)

(07 %.]

B = (A4)
In the expression (I:: i — )PP does not contribute, since
Bipp is equal to zero. The factor m leads to El; %(i‘;—':‘.l
So we have

— k it 2(lt1 kt) F oA > oA s

— “ — — — — — —_—

u’(k + Q)’Yt k2 ﬂu [ ﬂuaks (k u’) lt p‘U(k 'U.) s .
(A5)

Integration over the azimuth angle of I/; yields

k| k. 7r12
—1 B _ S 2t
u’(k + Q)’Yt k2 |:ﬁ2a 8( u)p ] U(k aks

(A6)

Now and for further transformations we frequently use
the following identity:

This is easily proved by taking the square of the expres-
sion (A7):

Sp{v(k+ Q). Q' -

(A7)

}=0. (A8)
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u) + 4k + Q)P(T:Q—

4323

k+Q- k=1 —u). (A1)

Since ( is equal to = we find that «; (k + Q)'y,“ ap-
proximately coincides with Q' where we neglect terms

2
proportional to E.L Remembering the fact that v = B,p
we can write (A6) as

Bupkekp + k2kp  kp
Buais? a8

,Bk’ a(k + Q) v(k—u).

(A9)

The next simplification comes from the identity I::ﬁv(k -

u) = ogsv(k — u) where, again, we make use of the re-

lation v = fB,p and p? = 0. From Egs. (3.3) we get
2

Buais = l—k‘_; with z = %”-, and Eq. (A9) can be trans-

formed into

~
~

ks - z] vk —u). (A10)

-

For further reduction we use the following chain of rela-
tions: pkyv(k—u) = p(k— arQ')v(k—u) = —porQ'v(k—
u) = (—axs + axQ'p)v(k — u), and with the help of Eq.
(A7) we finally find

ol
Buk?
Next, we evaluate the second expression of Eq. (3.9):

—=2zu(k + Q)i v(k —u) . (A11)

i=+i it

- Lr AT w
a(k+ Q)p(k + Q + v, mmv(u - k); .

(A12)

The s in the denominator can only be compensated by
the leading term of @(k+Q)p(k+Q+1) which is si(k+Q).
By is zero in this case. The expansion of the propagator
gives

1 o1 2(l k)

CEACI I~ (A13)

Extracting the terms of second order in I; from the total
expression (A12) leads to

B kz w(k + Q) Yt ( _klt g;,kt)

Integration over the azimuth angle of I; yields

) v(u—k). (A14)

PPN

7rlt _

Buk? a(k + Q)r, (—% + 1) vu—k).  (Al5)

Using Eq. (A7) and the relation k2 = l—k_:; finally results
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in the same expression as in Eq. (A10). This means that APPENDIX B
the sum of all diagrams in Fig. 7, i.e., the final answer of

. . . . . 1. In this section we come back to the calculation of the
this section, is equal to expression (A11) multiplied by

diagrams in Figs. 12 and 14. These diagrams describe the

two: process of diffractive dissociation including the emission
2 of one gluon.
hy We start with Fig. 13(a) and take out the right gluon
—t4zu(k Po(k —u) . A g g &
ﬂukz Zu( + Q)7t 'U( ’U,) ( 16) vertex:
J
Lol +u—k,—Lk—u)=gu(-2l—u+k)p+ guplk —u+ 1), + gpu(l + 2u — 2k), . (B1)

The gluons to the left with the momentum ! + u — k and to the right with the momentum u — k are on mass shell,
so that we can use the polarization vector €#(l + u — k) and €”(u — k) for real gluons. From below we have p” as
polarization vector:

eI+ u—k)eP(u —k)Thuop” = (pre(l +u—k))(— 2L, e(u — k) + (2, e(l + u — k))(p, e(u — k))
—ops(e(l +u —k),e(u — k)) . (B2)

This expression yields

(lt—kt,et(l+u—k)) (kt,et(u—k))
lies(u—k)) +2(ls,es(l +u— k) ———— —aps(e(l + u —k),e:(u—k)) . B3
B+ B — P (L € ) +2(k, &(l +u — k)) 5. — e k(€ ( ), & ( ) (B3)
Next, we take the left gluon vertex
Cuvo(—l—u+k,—kl+u)=gu(-2k+l+u),+ gl +u+k)y+ gou(—2l —2u+k), . (B4)

We will use the polarization vector €”(k) even for an off mass-shell gluon. This is possible, since Q' applied to the
upper quark loop does not contribute, at least not at the desired order. From below we now have "'BTIEFJ:

e’(k)e' (I +u—k)p, (—ﬁl—l':,é;) = (e(k),e(l + u — k)) 2(1[;’1 I:t)ﬂ: i (gl’j_(g?‘) (I +u,e(l +u—k))
+2(’i‘i%%‘—@(z +ue(k)) . (B5)
This expression is evaluated to be
(s k), ex(l +u — k) 2 ke) = i 2l es(k)) = Foallru—k) el tu=k)q k). (B6)

Bi + Bu Bi + Bu — Br Br
Next, we have to multiply (B6) and (B3) and sum over the polarization of the gluon with momentum [ + u — k:

T L R e
—a lle k) Gutl®) by 4 agh e Bl B) k) — 2l
+4(lt,et(k))ﬂ(‘l: l;;,,— kt,;,, (k,,ﬂe:(u L;kk)) a2 (kt,;:(k)) (kt,ﬁe:(u ;kk))
—2ans(eu(k), ex(u — k))(l_";‘iT 2a3(ly, € (k)) (I — kt,ﬁﬁt(’u ﬂkk))
+aays Lot U=B) e ) (B7)

From this expression we would like to extract the second order in ;. While we do this we have to take into account
that 3; depends on I;:

1 2(lt,k¢)

B1 + Bu ,Bu Blons ’

(B8)
1 ~ 1 2(ltakt)
Bi+Bu—DBr Bu—DBe (Bu—Br)ors’
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So we get
(Ke, €e(k)) (l"k‘) € ————ktz €(u—
—4 5 g, Ueelu— k) =5 + 4l (k) g5 (b e — ¥)
(le, ke) (kesec(k)) _ c (kt, €c(u — k)) (U, ke)
b B (el ) Al al) e TR
—a(l. € (Le ki) (kesee(u—Fk)) 2 (kes€e(k)) (Ke, € (u — k)
Woald g 6 -8 ™ B AP
+as(es(k), e (u — k));—“ — 4(ee(k), € (u — k)) 2 (ke ’“’)
(U, e(u — k)) (kt,ﬁt(u-k)) (L, ke)
—2aks(lt,e,(k))w + 4(ls, ee(k)) 5. B B fr (B9)
Integration over the azimuth angle of I; yields
_o (ke €e(K)) (ke e (u — k) 1o _ ko
,Bk ,6 ’3 lt + 2(€f(k)’ Gt(u k)) (ﬂu _ ﬂk)zlt
12 k% o N g
+ars(e(k), e (u — Ic:))—u — 2(ee(k), €t(u — k))ﬂ—ult — ars(e(k), e (u k))ﬂu — (B10)

In the following equations we would like to include the residue of the §; integration together with the corresponding
m and the factor :1; originating from the propagator. All this leads to an extra factor

w 1

- . 1
ags k2 (B11)
With z = %“ and B,oxs = k%, we reduce the equation (B10):
wl? 2 (ke ee(k))(Ke, €e(u — k)) -2z
- - . B12
- K 22 (e, k), ee(u— B) (B12)

The next diagrams which we will calculate are those in Figs. 12(c) and 12(d). The right gluon vertex is the same
as in Fig. 12(a). Instead of the left gluon vertex we now have

_ ke, ee(k)) (2pe(1 +u — k))lf _ o

Br s

The as comes from the propagator at the bottom line.
In order to make expression (B13) comparable with
Fig. 13(a) we multiplied by I?. Later on we will divide all
contributions by I} which corresponds to the two propa-
gators with momentum ! + » and ! in Fig. 13(a). In the
further procedure we multiply expression (B13) by (B3)
and sum over the polarization as before. Since expres-
sion (B13) is already of second order in l; we only need
to take the third term in Eq. (B3). The result is

9 (ktft("’))a (kta et(u—k))
B k?

(B14)

After multiplication by the factor (B11) we see that this
result cancels the first term in expression (B12). Indeed,
taking into account Fig. 13(d) the color coefficient adds
up to give the same as in Fig. 13(a). So we are left with

wl? 3 2z
Buk?”

S (ee(k), ee(u— k). (B15)

~ kel u = K)) g (ko cek)

U —Fo)? Be (B13)

The last diagram in the first group is the one in
Fig. 12(b). We have already discussed in Sec. IIIB that
the quark pair at the top of the diagram acts as a classi-
cal current with regard to the soft gluon with momentum
l+u—k. One conclusion was that the 3 component equals
zero. So we have

ﬂl+ﬂu=ﬂk~

The gluon vertex is the same as in expression (B1), but
from the top we now have Q'*/(p, Q') and from the bot-
tom —I¥ /6.

(B16)

.07 (&) T+ w= kb =0 a0

=~ (B pu+ gy 2t =0)
4

Taking into account (B16) we find the simple result:

. (B17)
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—2(l, et(u — k)) . (B18)

The left lower t-channel gluon which carries the momen-
tum [ + u gives a contribution of the type

_Ue(k)) _ (e e(k)
:Bl +Bu Bk )

The denominator (I + u — k)2 corresponding to the right
upper t-channel gluon simply yields (k; — l;)2. Together
with (B18) and (B19) the final integration over the az-
imuth angle of /; leads to

(B19)

12 1

Buk? z(1 -
The residue of the (3; integration was canceled out by
J

)(et( ), €e(u — k)) . (B20)

Cuvp(—1

—k,l+uk—u)=gu (-2l —u+k)p+ gup(k —
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the emission vertex of the soft gluon with momentum
I +u—k.> We only keep the m which has not been taken
into account yet. Finally we have to be aware of the
opposite sign with respect to Fig. 13(a) which is due to
color.

We can now write down the final expression for the
total sum of all diagrams in Fig. 12:

wl? z3 -2z
Buk? 1-2

- i . z)) (ex(k), ex(u — k)

_wl? 1 k k
= =) (24 1) (@) aw-k) . (B21)
Our next task is the calculation of the diagrams in

Fig. 13. The gluon vertex in Fig. 14(a) is

w+ Dy + gou(l + 2u — 2k), (B22)

The procedure is similar to that before in the case of Fig. 13(a). For the gluon with momentum [ + k& we use the

polarization vector €*(l + k). From below we have as usual

which corresponds to the emitted real gluon:

—E—:‘_E, and we apply the polarization vector e?(u — k)

Iy (I ee(l + k) (Le; €t (u — k)
e“(l+k ——t—)I‘ vp€f(u —k =———2 l+u,e(u—k))+2(l+u,e(l + k))———=
0+ 8) (~grige ) Twoetlu— k) = = Lt D)y )+ 20+ et + ) Lt
12+ 2(ly, kt)
+(e(l + k), e(u — k)= B23
(et + k), efu — ) £ 20 (B23)
Further evaluation gives
(kt,Et(u—'k)) (lt+kt,€¢(l+k)) lt2 +2(l¢,kt)
—2(l, ee(l + k) —————= — 2(1;, k + (et(l + k), et (u — k) —"-—7—= . B24
(le,ec(l + k) G —n (Les Kee) Bt B (ee(l + k), e ) B+ B (B24)
In all diagrams of Fig. 13 we can set 3; equal to zero. Instead of o ﬁ we now have to expand the propagator [ + k:
1 1 1 2l ke)
= N = . 5
(L4+ k)2 12+2(l, k) + k2 k2 Tkt (B25)
After combining this equation with expression (B24) and extracting all terms of second order in /; we get
(l,,et(l + k))2(ls, k) (kt,q(u k)) _ 2(l,,et(u —k)) (It e (L + k)
k4 :31.4 - k2 ﬂk
+2 (lt,Et(‘u k))2(lt, kt) (kt,Et(l + k)) (€t(l + k) €g(u k)) lz (ét(l + k) et(u - k)) 2(lt, kt)z (B26)
k* Br Buk? k* Bu
We still have to integrate over the azimuth angle of l; which results in
7l'l2 2 (k,,et(l+k))(kt,et(u— k)) 1
Guk? {z(l——z) 2 —-(1-2)(2+ 2 (ee(l+ k), et(u—k))p . (B27)
[
where we included a m coming along with the §; integra-  which gives
tion. 2 _
We now can already suspect what happens with the _mh 2 (bl + k) (ke eu — k) . (B29)
Buk? z(1 — 2) k2

first term in Eq. (B27), if we add Figs. 14(b) and 14(c).

It is canceled. The proof is quite easy to do. From
Fig. 14(b) we have
et @l d Ry, ey L (B28)

B + B 8(l+k)2

5Typical for classical current emission.
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Figure 14(c) yields the same result, but the color coeffi-
cient is different. However, Figs. 14(b) and 14(c) sum up
to give the same coefficient as in Fig. 14(a). The complete
answer for all diagrams in Fig. 13 is

wl? 1
—ﬁulzz (1 ‘—Z) (2+ ;) (et(l+k),e,(u—-k)) . (B30)
Expressions (B30) and (B21) can be viewed as identical,
although they contain two different vectors €;(! + k) and
€:(k). We introduced these vectors for technical reasons.
To get rid of them we have to be aware that in the total
amplitude there is a second pair of adjoint vectors e}’ (I +
k) and €(k) which transforms both of them into the
projector on the vector component y after summation
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over the polarization. So we can add up both expressions
originating from Figs. 12 and 14 into one:

wl?

Buk?
We should mention that a more careful analysis shows
that the sign due to the soft emitted gluon is compen-
sated by the total color coefficient in Fig. 13, so that the
sum of diagrams in Figs. 12 and 14 have the same sign
and do not cancel out.

We conclude this subsection with one example of dia-
grams (see Fig. 14) which do not contribute. It is easy to
check that this diagram is of third order in I, so beyond
the LLA.

2(1 - 2) (2 + %) (ex(l + k), ex(u— k)) . (B31)
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