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Axial baryonic charge and the spin content of the nucleon: A lattice investigation
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The axial baryonic charge of the nucleon, AX, which measures the quark fraction of the nucleon spin,
is computed in lattice QCD with dynamical staggered fermions. We obtain the value AZ=0.1810.02.
This suggests that the quark spin is responsible for very little of the nucleon spin.

PACS number(s): 12.38.Gc, 13.60.Hb, 13.88.+¢, 14.20.Dh

The European Muon Collaboration (EMC) measure-
ment [1] of the spin-dependent structure function of the
proton, g4(x,0?), has provoked many speculations [2]
about the internal spin structure of the nucleon. The first
moment of g (x,Q?), which through the operator prod-
uct expansion is given by the proton matrix element of
the axial vector current weighted by the square of the
quark charges (modulo radiative corrections), was found
to be

J 'ax g8(x,01)=1($Au + 3 Ad + 1As)
=0.126+0.010+0.015 (1)
with
Ags,={p,slgy,vselp,s) , q=u,d,s, 2

where s, is the covariant spin vector of the proton. If we
combine the result (1) with information from hyperon de-
cays, neutron 8 decay, and the assumption of flavor
SU(3), we obtain

AX=Au+Ad+As=0.0410.16 . (3)
The quantity AZ is the axial baryonic charge of the nu-
cleon:

AZs,=(p,s|[@y,ysu+dy,ysd +5v,vss]lp,s)

=(p,slj;ZIp,s) , @)

which in a naive wave-function picture can be interpreted
as the fraction of the nucleon spin that is carried by the
quarks. For example, in an SU(6)-type model of the nu-
cleon we would obtain AZ=1. The vanishingly small ex-
perimental value of AX is referred to as the spin crisis of
the nucleon.

The nucleon matrix element of the axial baryonic
current can be written [3]

(p,slj;>Ip’,s")
=a(p,s)[G(kD)y,¥s—Gy(kMk,y5lu(p',s'),  (5)
where k =p —p’ and
G,(0)=A% . ©6)
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Unlike the octet current, j fs is not conserved due to the
anomaly. In the chiral limit,
-.05 —

1 5 B o
a“]“ NfPTrFIWFMV N Fl,w = EGIWPUFP” N 7
where N [ is the number of flavors. As a result, the form
factor G,(k?) does not develop a (Goldstone boson) pole

at k2=0. Writing

=2my A(kV)a(p,s)iysu(p’,s’), (8)
where my is the nucleon mass, one then finds
A(0)=G,(0)=AX . 9)

Thus, the quark fraction of the nucleon spin is given by
the matrix element of the anomalous divergence of the
axial baryonic current.

A meaningful lattice calculation of AX should (i) in-
clude dynamical fermions and (ii) employ a proper
definition of TrF, ,WF v in order to account for the topo-
logical origin of the anomalous divergence. (The “naive”
definition of TrF ”VF uv Would lead to ultraviolet divergent
contributions which we do not know how to renormal-
ize.) These requirements were not satisfied in earlier cal-
culations [4,5]. For a preliminary calculation along these
lines see, however, Ref. [6].

The calculations in this paper are done on a 16°>X24
lattice at B=5.35 and m =0.01 (in lattice units) with four
flavors of dynamical staggered fermions using the hybrid
Monte Carlo algorithm. Our data sample consists of 85
configurations separated by five trajectories. These
configurations were used in Ref. [7] to compute the had-
ron mass spectrum. For further details of the lattice
simulation the reader is also referred to this reference.
The lattice parameters correspond to a renormalization
group invariant quark mass of mRG!=35 MeV in the
modified minimal subtraction (MS) scheme for Agy5=200
MeV. Taking the physical scale from the p mass, the lat-
tice spacing is approximately 0.14 fm.

For TrF ”VF' v We use the “geometric” definition of
Liischer [8]:
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TeF, Fox)=2 S €0 |3 ] d*z Tr[P* 3,(P* VMR, )T GRE ]
r pv ;.wx 3 2 uvpo Plx+R+9,u,v) x+p+duv-p T x+a+duv x+0,uv o x+, v
uvpo il
-1 -1 x
-3 fp(m#v)dzzTr[P;+Wa,,(P;+W) (RE ) ',RE ]
_ 3 x -1 —1¢gx x -1
reep TS BT )T, ) 570 u80085 0 )71
+fﬂx u)d3z Tr[S;‘,#av(S;‘,#)—IS;‘,”SP(S;’#)_IS;‘,MGU(S;‘,#)_1] , (10)

where P, R, and S are certain parallel transporters extra-
polated to the interior of the plaquettes p and faces f.
This expression proceeds from the principal bundle
which is reconstructed from the lattice gauge field. The
resulting topological charge, which is given by

1

——E‘z— ZTI'F”VF#V , (1
X

assumes integer values as in the continuum. The major

drawback of Eq. (10) is that it involves a three-

dimensional integral over the faces of the hypercubes.
According to Egs. (8) and (9), AX is given by

1

E;TIF ,“,F v

On a finite lattice we cannot reach p=0 continuously.
We therefore shall evaluate AX at the smallest (nonzero)
momentum transfer which in our case is
|pl|=27/16 (=500 MeV). In the present calculation the
latter is of the order of the pion mass. Choosing
s/|s|==xp/|pl, we thus have to compute

AZ= limiﬂ (p,s
p—0 P°S

0,s> . (12)

C(t)=j’_'|;7 <‘Bp(t)Pi#TrFyVF}LV(x“)EO(O)) ) (13)

where B, B are the baryon creation and annihilation
operators, P is the spin projection operator and

TtF, F,(x4)= Se®*TtF, F,,(x) . (14)
X

Equation (13) leads to twelve independent correlation
functions corresponding to the six possible directions of
the momentum and the two spin orientations. For
0=<x, =t <<12 the average of these correlation functions
has the form

Ep(t—x4)

C(t)=AZAd e "M

myx,—E,(t—x,)

+AZ, A _(—1)e + e (15)

(and similarly for 12 <<t <x,<24), where AZ,(m,) is
the axial baryonic charge (mass) of the A, the opposite
parity partner of the nucleon [7], and
2

+32(1—cosp;)
i

m 1/2
. N,A
2sinh

Ey ,=2arcsinh 1

(16)

are the lattice energies. Note that the matrix elements
between N and A vanish for the weighted average. The

I

amplitu_des A, A_ are those of the correlation function
(By(1)B,(0)). The dots in Eq. (15) stand for contribu-
tions from higher excitations.

A nontrivial problem is the computation of TrF ,WF v
Eq. (10), for a given lattice gauge field configuration. For
the gauge group SU(2) we could do one integration
TrFﬂvF'#v analytically [9], which makes its computation
just feasible. In the present case of the gauge group SU(3)
we shall make use of the fact that the calculation can be
reduced to the case of SU(2) by means of the so-called
reduction of the structure group [10,11]. This is known
to be true for the topological charge. The reason is that
m3[SU(3)/SU(2)]=0. It is also true for AZ. To see
this, we can write [12]

—TrF, F,(x)=873(— 1)k, ,—k )+16mn(x) ,
I

x+f,p

(17)

where k, , is the Chern-Simons density given by Seiberg
[13] and n(x) is the local winding number of a section of
the bundle. The latter is topological and hence is invari-
ant under reduction to SU(2). This leaves us with the lat-
tice divergence. For the sake of argument we choose the
momentum along the three-axis. The matrix element of
the derivative in four-direction is proportional to
Ey A—my 5 and thus vanishes like p3. The contributions
from the derivatives in the one- and two-directions give
zero when summed over the lattice points in the time
slice. The contribution from the derivative in the three-
direction can be written as

—8r3 e (1—e Pk, . (18)
X

Making use of translation invariance in the one- and
two-directions, we can restrict ourselves to the sum over
x3. Exploiting the transformation properties of k, ; un-
der gauge variations [13], we can gauge K, ; to zero.
This shows that AZ is determined by the topological
properties of the gauge fields only.

In the actual calculation the reduction of the SU(3)
link matrices to SU(2) link matrices is done by a coset
decomposition [11,14] U(x,u)=w(x,u)U(x,u), where
U(x,u)ESUQ3), U(x,u)ESUR). In order to be able to
use the “geometric” definition of TrF, ,WF'W on the SU(2)
matrices, the latter must be sufficiently smooth, which is
not necessarily the case. This is achieved by fixing to a
maximal SU(2) gauge before the reduction is done. It
amounts to minimizing 3, [3—ReTrw(x,u)]. Note
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that this gauge is manifestly renormalizable and therefore
reduces ultra-violet fluctuations in the SU(2) variables.
For the minimizing procedure we apply a combination of
Metropolis and overrelaxation steps. We have checked
for most of our configurations that this results in a gauge
invariant TrF, F ..

The computation of the baryon propagators follows
Ref. [7]. For B we take the wall source, while for B we
take the ordinary local baryon operator (i.e., operator
No. 1). We have found that the lattice dispersion relation
is rather well satisfied for the meson states at the present
value of B, so that it is justified to assume the validity of
Eq. (16). The current is placed at two different times:
x4=4 and x,=20. The correlation function (13), aver-
aged over all possible momentum and spin combinations,
is shown in Fig. 1 for the choice x,=4. (For x,=20 and
backtracking baryon the correlation function oscillates
between positive and negative values.) In contrast with
earlier calculations [4] we obtain a clear signal over
several lattice spacings. The data are fitted by the func-
tion (15) with 4., A_, my (=0.77), and m,(=0.90)
taken from a fit [7] of (By(¢)By(0)) in the interval
4=t =<20. The result of the fit of the x,=4 and x,=20
data combined is indicated by the solid line. It leads to

AZ=0.18+0.02, (19)

while the axial baryonic charge of the A comes out to be
A3, =0.2210.04.

The error analysis for the correlation function was
done by a jackknife method. The error quoted for AX is
the standard MINUIT error which neglects correlations
between the data points. In order to check our results for
systematic errors, we have also done a fit with the data
points at t=4 and ¢=20 discarded. This gave
A3=0.17%0.02. Furthermore, we have repeated the cal-
culation for x,=3, where we found AZ=0.16%£0.05.
Thus, we can assume that x,=4 and x,=20 are far
enough away from the source, so that the excited states
have died out, and that the current does not excite the
nucleon noticeably.

Our result (19) shows that a QCD calculation based on
first principles can reproduce a value for AZ which is
substantially below one, in qualitative agreement with ex-
periment. One might object that our calculations are not
entirely realistic, as we work with four light quarks in-
stead of two plus a heavier strange quark. Furthermore,
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FIG. 1. The averaged correlation function (13) as a function
of t for x,=4. Also shown is a two-parameter fit of Eq. (15) to
the x,=4 and x, =20 data combined, the fit interval being from
t=4 to t=7 and from t=20 to t=17, respectively. For
8 <t <16 the data are too noisy to be of much use.

we neglect contributions proportional to the quark
masses. But there are reasons to believe that none of
these approximations will alter our conclusions. As far
as the flavor dependence is concerned, one expects
ASx<y'N ¢ [15], which leads to a small correction only.
The quark mass and momentum dependence, on the oth-
er hand, are controlled by the n' mass which is large
compared to the pion mass. A larger correction might be
expected from the strange quark. By the same analysis
which led to (3) we obtain As =—0.1910.07. Given that
the anomalous contribution to As is small, the effect
could be that altogether AZ =0.
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