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The Eventbuilder of the ZEUS experiment is a real-time parallel data formatting and transport system . It combines data flows
originating from various detector components and transfers them to the third level trigger processor farm . The Event builder is
based on an asynchronous packet-switching transputer network and uses transputer links for bulk data transfer. A high-speed
64X64 custom made crossbar switch allows dynamic linking of any detector component to any branch of third level processor
nodes, offering a bandwidth of more than 24 MB/s over a distance of 100 m. The use of structured system development techniques
(SA/SD) resulted in a flexible and well-partitioned system structure and guaranteed that all requirements were met.

1. Introduction

HERA, the new electron-proton colliding facility at
DESY, started operation for physics measurements in
spring 1992 . HERA provides electron-proton colli-
sions at a cm energy of 310 GeV. The ZEUS collabora-
tion constructed a detector for one of HERA's interac-
tion regions.

Challenges for the ZEUS experiment are the short
interval between beam crossings of only 96 ns, more
than 250000 readout channels and an initial raw data
rate exceeding 10 GB/s . The data rate has to be
reduced by a factor of at least 104 before data record-
ing. This imposes strong requirements on the trigger
and data acquisition system .

The trigger and data acquisition system of the ZEUS
experiment is a highly-parallel distributed real-time
system . It consists of several independent readout sys-
tems and three trigger levels for data filtering. Its
central part, the ZEUS Eventbuilder, combines and
formats the data flows originating from the various
readout systems.

The Eventbuilder is subject to the highest data rate
within the ZEUS data acquisition system . Due to its
connections to almost all parts of the data acquistion
system, the Eventbuilder is also an important tool for
system analysis and diagnosis . This article describes the
development of the ZEUS Eventbuilder, gives a brief
overview of its hardware and software architecture and
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reports first results on the performance of the Event-
builder and the data acquisition system .

2. Overview of the ZEUS trigger and data acquisition
system

The ZEUS detector comprises several indepen-
dently operating detector components, each of them
equipped with their own so-called component subsys-
tem (CSS). Component subsystems contain the "front-
end" electronics required for the component control
and readout. They interface to two levels of global
trigger processors and the Eventbuilder . The layout of
the ZEUS trigger and data acquisition system and the
data throughput at its components are shown in fig . 1 .
The component subsystems of the ZEUS experiment
are listed in table 1.

Once a detector component has been read out, the
data are stored in a 5.5 ws first level trigger pipeline
and analyzed by a local first level trigger processor.
The results of the different component subsystems
referring to the same beam crossing are input to the
global first level trigger (GFLT), which computes an
overall first level trigger decision . The maximum rate
of GFLT accept decisions is designed to be 1 kHz. Up
to the GFLT both the trigger and readout are dead-
time free .

On GFLT accept, data accepted for further analysis
are copied to a second level trigger pipeline . A GFLT
accept rate of 1 kHz and a "copy" time of 30 p,s result
in 3% deadtime . This is the only source of deadtime
provided no buffer full states occur.
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A second level trigger processor local to the compo-
nent subsystem computes a trigger subdecision, which
is forwarded to the global second level trigger (GSLT)
and used to compute an overall second level trigger
decision . The GSLT is designed to accept ca . 10% of
all GFLT accepted triggers .

In case a component subsystem receives a positive
GSLT decision, the corresponding data are assigned a
"GSLT decision number" and transferred to the
Eventbuilder . The Eventbuilder combines and formats
all the component data carrying the same GSLT deci-
sion number into one data set. This data set is called
an "event", and its GSLT decision number is also
referred to as the "event number".
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Component I F/E

Once an event is complete, it is input to the third
level trigger (TLT). The TLT is a processor farm
consisting of six branches of a total of 36 processor
nodes. It performs the global event reconstruction and
a final filtering and is designed to accept up to 5
events/s .

3. Developing the ZEUS Eventbuilder
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Fig. 1 . Layout of the trigger and data acquisition system of the ZEUS experiment ; on the right side, the data throughput at the
different components of the system is shown.



Table 1
Specification of component subsystems in the trigger and data acquisition system [3]

structured development techniques (SA/SD) yielded a
well-partitioned and flexible system structure and en-
sured all requirements being met.

The following sections list the requirements on the
Eventbuilder and illustrate the analysis and design
process. Additionally, the implementation of the
Eventbuilder and its operation are also described. Fi-
nally, experience gained from system development and
integration is summarized #' .

3.1 . Requirements

The requirements on the ZEUS Eventbuilder are
defined by its position in the trigger and data acquisi-
tion system, the rate of positive GSLT decisions and
the amount of data acquired from the component
subsystems . The main issues are to :
- combine and format data from different components

carrying the same event number into a single data
record (event) . Sufficient buffer space has to be
provided to account for the asynchronously arriving
component data . Complete events have to be trans-
ferred to the TLT, which involves a data transport
over a distance of around 100 m;

- sustain a GSLT accept rate of at least 100 events/s .
Taking into account the event sizes defined in table
1, this requires a total bandwidth of more than 15

#i This article introduces part of the notation of SA/SD.
However, for the modelling technique we refer to refs .
[7,14,12].
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MB/s and up to 3 MB/s at the interfaces to compo-
nent subsystems ;

- provide fault tolerance against failure of transmis-
sion lines to the TLT. The data transport to the TLT
necessitates the use of serial transmission lines and
a redundant hardware architecture ;

- distribute the events over the TLT branches . By
surveying the data throughput at the interfaces to
the TLT, the load of its different branches of pro-
cessor nodes can be estimated and used for load-bal-
ancing .

Further requirements include format checks of compo-
nent data and generation of an index to the data
objects inside an event record #2, careful on-line moni-
toring for debugging and system analysis purposes,
conceptual simplicity regarding maintenance and fu-
ture upgrades, and low cost .

3.2. Essential model

255

The Eventbuilder has to support interfaces to the
various detector components, the six branches of third
level trigger processor nodes (TLT), the global second
level trigger (GSLT) and the run control console (RC) .
The context diagram (CD, fig . 2) shows, how the
Eventbuilder is embedded in the trigger and data ac-
quisition system .

#2 The ZEUS collaboration stores their data in the ADAMO
format [4] .

Detector component No. readout Maximum
Channels

Readout
event length [kB] Processor

Central tracking detector CTD 4608 30 transputer
Forward/rear track. det. FRTD 5 778 15 transputer
Barrel calorimeter BCAL 5184 20 transputer
Forward calorimeter FCAL 4344 20 transputer
Rear calorimeter RCAL 2336 10 transputer
Transition radiation det . TRD 2472 10 transputer
Hadron electron separator HES 37 304 10 transputer
Backing calorimeter BAC 40000 2 transputer
Vertex detector VXD 832 2 68k-family
Beamline BEAM 1 transputer
Barrel muon chambers BMUO 62256 0.6 transputer
Forward muon spectrometer FMUO 18948 0.5 68k-family
Leading proton spectrometer LPS 52000 0.2 68k-family
Luminosity monitor LUMI 0.2 68k-family
Vetowall VETO 0.01 transputer
Global second level trigger GSLT 20 transputer
Fast clear FCLR 2 68k-family

258142 142
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Entity relationship diagrams (ERDs) show the data
elements occurring in a system and highlight the rela-
tionships between them . In case of the Eventbuilder,
an ERD can easily be derived from a description of the
system's behaviour, where nouns refer to objects and
verbs indicate relationships (fig . 3) . Every detector
component has to respond to a GSLT decision by
providing its component-data . Component data con-
sists-of several component_data _banks . Scanning the
component data reveals the component -data _com-

Third Level
Trigger

Fig . 2 . The context diagram defines the interfaces between the Eventbuilder and other components of the trigger and data
acquisition system . Boxes represent external systems, bars common memory areas and arrows the flow of data (solid) or control

information (dashed) . The Eventbuilder is shown as a bubble, representing a process .

position . Matching this to the readout _configuration
ensures only valid banks being built into the event .
When all participating_components of a run have re-
sponded to the GSLT decision, the set of valid compo-
nent-data-banks and the event composition can be
combined-into the formatted-raw-event .

Tasks operating on the data elements and establish-
ing the relationships are defined in a control and data
flow diagram (CDFD, fig . 4) . The diagram is an exten-
sion of the "build event" process in the context dia-

Fig . 3 . The data objects occurring within the boundaries of the Eventbuilder are defined m an entity-relationship-diagram . Boxes
indicate data objects, diamonds represent relationships between objects . The numbers classify the type of a relationship

(one-to-one, one-to-many, . . . ).
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gram . It has the same input and output flows, but gives
a more detailed definition of how to build events. The
processes of the CDFD are synchronized by a control
unit (finite state machine, fig. 5) which analyzes the
process states and reacts on external signals .

Transputers #3 proved to be well suited processors
for the ZEUS Eventbuilder . Standard VME transputer

# ; Transputers are single VLSI devices with processor, mem-
ory and communication links to other transputers [9] .
Transputers are building blocks for real-time parallel sys-
tems as described in ref. [6] . Their links are designed for
synchronization purposes inside distributed systems, but
may also be used for data transport .

ovmtbullder_
performance

' all_compo_nenta
adlro

Fig . 4 . The control and data flow diagram defines how the Eventbuilder processes objects and establishes relationships amongst
them . The notation is similar to the context diagram . The vertical bar denotes the interface to the finite state machine which is

synchronizing the processes .

modules offering two T800 transputers with 4 MB of
private memory each and a triple-ported memory
(TPM) of 128 kB or 512 kB on a double-height VME-
module [11] have been developed within the ZEUS
collaboration . It was decided to use those modules
wherever possible . Fig. 6 shows the layout of the
Eventbuilder hardware .

Interfaces to component subsystems and to branches
of TLT processor nodes connect the Eventbuilder with
the trigger and data acquisition system of the ZEUS
experiment . To keep the interfaces independent of the
implementation of the external systems, common mem-
ory areas have been chosen for data input to or output
from the Eventbuilder. The interfaces are imple-
mented using the ZEUS standard transputer modules
with the common memory areas being located in the
TPMs. At the input side, one of the board's transput-
ers is made available to the component subsystem. This
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way, components can access the memory via VME or
transputer. The third level trigger obtains its data by
VME accesses to the TPMs .
A network of data paths has to be foreseen in the

Eventbuilder to transport data from every component
subsystem to any branch of TLT nodes. A freely con-
figurable network (crossbar switch) has proven to be
the best solution [5] . Crossbar switches can connect any
of their inputs to any of their outputs. In case of an
N x N crossbar switch, N such connections can be
established simultaneously . The Eventbuilder `s custom
made crossbar switch for transputer links is based on
Inmos 0004 chips [10] .

For maximum performance, fibre-optical link con-
nections [8] have been developed for the long distance
data transfer to the third level filter farm . The data
transfer is limited by the handshake protocol on trans-
puter links. Currently, a peak data throughput of 600
kB/s/link is achieved, limiting the total sustained
bandwidth to 24 MB/s .
A control unit (Supervisor) provides the interface to

Run Control and configures the crossbar switch ac-
cording to the data arriving at the component inter-
faces.

3.4 . System implementation and operation

To implement the Eventbuilder, the processes of
the Essential Model were allocated to the different
processor groups . Then the code for each transputer
and the protocols between them were designed . The
code is written in parallel C. An SGI 4D/25S unix
workstation with a purpose built transputer interface
served as host and development platform .

The Eventbuilder operation principle can be sum-
marized as follows:
- Component subsystems provide their data in a com-
mon memory area and signal its availability to the
Eventbuilder. The Eventbuilder then checks the
component data for the correct format .

- As soon as the GSLT decision is available for an
event, the Eventbuilder tries to transfer all the com-
ponent data to one of its TLT interfaces . For this
purpose, the component interfaces issue a "link
request" to the crossbar router whenever they have
data ready for transfer . Once they receive a "link
ready"-message, the data transfer to the TLT inter-
face is immediately started on the specified link .
The availability of this link is again signalled by a
"link release"-message .

- The decision, which event should be transferred to
which TLT branch, is computed by the crossbar
control task . It traces the buffer and 1/O loads on
each TLTbranch to avoid new events being directed
to busy branches . The connections between compo-
nent and TLT interfaces are installed by a router

U Behrens et al. / The ZEUS Ecentbuilder 25 9

which is tuned to minimize deadtime on the trans-
mission lines.
When all component data of an event have been
transferred to a TLT interface board, the formatting
of the event is triggered by the control unit. Format-
ted events are copied to the common memory area
with the TLT.

3.5. Experience

The Eventbuilder of the ZEUS experiment has been
developed, implemented and tested between 1988 and
1991, consuming about 11 man years. Most of the
effort has been spent on software development (7 man
years) . Because of the extent of the Eventbuilder sys-
tem (more than 50 transputers distributed over 24
VME crates) and its numerous interfaces, about half of
this time went into system integration and verification.

The use of SA/SD techniques proved to be helpful
in many situations . The software model is well parti-
tioned and of a flexible structure, so that modifications
of requirements usually affect only a single process.
The encapsulation of processes enabled prototyping
and partial implementation and supported system inte-
gration at an early stage. As all process interfaces were
well defined, simulators of the different processor
groups and external systems have been developed.
Thus, very reliable performance estimates have been
available at any stage of system development.

Transputers have shown to be easy-to-handle
multi-purpose processors for real-time parallel systems.
However, testing and debugging software distributed
over several transputers turned out to be a difficult and
very time consuming task as no tools were available
which could analyze a transputer network without
changing its real-time behaviour. For the tracing of
synchronization problems, again the diagrams of the
Essential Model were indispensable .

4. Eventbuilder performance

The Eventbuilder of the ZEUS experiment has seen
successful operation for more than one year. During
this time, the Eventbuilder performance has been care-
fully monitored and evaluated. This fact and its central
position in the data acquisition chain have enabled the
Eventbuilder to become an important diagnostic and
analytic tool for the entire trigger and data acquisition
system .

4.1 . Monitoring concept

Eventbuilder operation involves several hundred
processes which are distributed over more than 50
transputers and have to share limited system resources
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synchronization messages, no extra traffic is introduced
on the Eventbuilder network. To keep the extra load
which monitoring imposes on the Eventbuilder proces-
sors as low as possible, monitoring data are collected
while the events are transferred instead of being taken
at fixed intervals. Time stamps allow tracing of the
Eventbuilder performance. To allow for correlations of
monitoring data acquired in different parts of the
system (i .e . on different transputers), a "real time" is
defined throughout the whole system [13].

4.2. Performance

Requirements on the bandwidth of the Event-
builder arise from the GSLT frequency, fGSLT, and the
amount of data acquired from each component subsys-
tem, Lco.P . Their nominal values are listed in section
3.1 . The response time of a component subsystem to a
GSLT decision, dcomp, defines the minimum buffer
capacities required at the component interfaces .

During the first year of operation, the mean GSLT
decision rate, fGSLT, was kept below 20 events/s .
Therefore, the limit of the Eventbuilder has not been

Fig. 9 . The maximum
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reached. Measurements have shown the total band-
width to be at least 24 MB/s . The Eventbuilder can
construct up to 72 events in parallel . Its buffers can
accommodate at least 75 more events, depending on
the event size . Fig. 7 shows data sizes and response
times for components as observed during the pilot run
and compares them with the specification .

4.3. On-line monitoring and system analysts

For on-line monitoring purposes it is sufficient to
simply survey the load of the buffers inside the Event-
builder. Any unusual system behaviour can be de-
tected, sometimes even predicted from heavy buffer
load . As an example, fig . 8 shows how the Event-
builder's buffers fill when the accept rate of the second
level trigger (GSLT) exceeds the speed of the third
level trigger (TLT). As the TLT is located downstream
from the Eventbuilder, buffers are expected to start
filling at the backend. Indeed, the common memory
areas with the TLT fill up first (P.TLTn), followed by
the internal buffers of the interfaces to the TLT
(LTLTn). Finally, the buffers inside the private mem-
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event rate which can be handled by component subsystems can be determined from monitoring the GSLT
accept rate and the data flow into the Eventbuilder (see text).
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ory of the interfaces to the component subsystems
(I.Comp) fill, The figure shows, that when all buffers in
the Eventbuilder were filled, the data acquisition sys-
tem stabilized at a GSLT accept rate of 44 events/s .

Monitoring the GSLT accept rate and the data flow
into the Eventbuilder allows the determination of the
maximum event rates which can be handled by the
different component subsystems . Even at low GSLT
accept rates, consecutive positive GSLT decisions may
be separated only by a few milliseconds . Fig. 9 shows
for a run with an average GSLT rate of 18 Hz the
interval between two consecutive GSLT decisions, DT-
TRIG, going down to 2 ms (upper left and right) .
Component subsystems should have a constant re-
sponse time on GSLT decisions, therefore the interval
between two consecutive component data sets, DT-
Comp, is expected to equal the corresponding DT-
TRIG . However, plotting DTComp against DTTRIG
shows DTComp to saturate (lower right) . Obviously,
the component subsystem cannot keep pace if the
trigger decisions are coming in too fast, and the corre-
sponding data start piling up in the system's buffer .
Only when DTTRIG increases beyond the minimum of
DTComp the component subsystem can start emptying
its buffers, and DTComp < DTTRIG . Determining the
minimum of DTComp allows the derivation of the
maximum event rate which can be handled by a com-
ponent subsystem.

The last issue shows that monitoring Eventbuilder
operation may also be used to survey the performance
of those components interfacing the Event builder.
This way, the Eventbuilder has become an important
diagnostic and analytic tool for the entire data acquisi-
tion system . Currently, the Eventbuilder environment
is used for the construction of a prototype expert
system [2,1] which can survey and analyze the monitor-
ing data . Its goal is to provide on-line diagnostics and
guidance for the shift crew running the experiment .

5. Conclusion

The Eventbuilder of the ZEUS experiment is a
transputer-based real-time parallel data formatting and
transport system with a total bandwidth of at least 24

U. Behrens et al . / The ZEUS Euentbudder

MB/s. It has seen successful operation for more than
one year now.

The Eventbuilder has been developed making ex-
tensive use of structured system development tech-
niques. Application of structured analysis and struc-
tured design (SA/SD) yielded a well-partitioned and
flexible system structure and ensured that all require-
ments were met.

Its central position has enabled the Eventbuilder to
become an important diagnostic and analytic tool for
the entire trigger and data acquisition system of the
ZEUS experiment . The full potential of the Event-
builder diagnostics will be achieved when the expert
system [2] becomes fully available.
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