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Sphaleron transitions in the symmetric phase of the standard model 
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Using a massive pure gauge theory with a dynamically generated magnetic mass ~g2T as an effective theory of the standard 
model at high temperatures we estimate the rate of B+ L violating processes in the symmetric phase. Treating the magnetic mass 
as a parameter of the theory we find a small range of mass values for which it is possible to apply steepest descent methods and to 
obtain transition rates larger than the expansion rate of the universe. However, the largest rate that can possibly occur in this 
model lies in a range where the saddle-point approximation breaks down and is by at least one order of magnitude smaller than 
those obtained by lattice simulations. 

In the past  few years there has been much interest  in baryon and lepton number  violat ing processes of  the 
s tandard  electroweak model  at high temperatures.  The reason is that  for sufficiently large rates such processes 
wash out any preexist ing B + L asymmetry  of  the early universe created in the f ramework of  some unified theory. 
There are several calculations by now which suggest that  in a narrow tempera ture  range below the electroweak 
phase t ransi t ion sphaleron [ 1 ] media ted  B +  L violat ing processes are indeed in thermal  equi l ibr ium [2 -6 ] .  
These calculations employ the fact that  at high temperatures  it is possible for thermally  excited gauge and Higgs 
fields to cross over  the potent ia l  barr ier  separat ing topologically inequivalent  vacua. In the broken phase the 
height of  this barr ier  is given by the sphaleron energy 

2 m w (  T) 
Esp - - -  B(A/0/w) , ( 1 ) 

0/w 

where B ( 2 / a w )  is a slowly varying function of  the Higgs coupling 2 and the weak coupling 0/w=g2/4~z. It is then 
possible to compute  the rate of  such crossings using the Langer formula [ 7,8 ] 

F =  - ~  Im F ~  I x l Im Zsp 
n Zo ' (2)  

where F is the free energy of  the sphaleron and x is a dynamical  factor to coincide with the frequency to_ of  an 
unstable mode in the unde rdamped  case. In refs. [ 2 -6 ]  F has been calculated semiclassically by considering 
quadrat ic  f luctuations a round  the sphaleron configurat ion and evaluating the corresponding par t i t ion  function 
in a gaussian approximat ion .  The results o f  these calculations are suppor ted  by numerical  real t ime s imulat ions 
on the latt ice [ 9 ]. However,  analytical  methods  meet  severe difficulties as Tapproaches  the critical tempera ture  
T¢ of  the phase t ransi t ion and above. Since the high tempera ture  effective coupling o f  the three d imensional  
theory is given by 0/3 = 0 /wT /2mw(T)  and the mass of  the W-boson goes to zero as T ~  T¢, the one loop approx- 
imat ion  breaks down and the potent ia l  barr ier  vanishes for high temperatures  [ 3 ]. Moreover,  in the symmetr ic  
phase the high tempera ture  loop expansion is plagued by infrared singularities. F rom dimensional  considera- 
t ions it can be inferred, however,  that  the rate for t ransi t ions between different vacuum states in the symmetr ic  
phase has to behave like [ 3,10 ] 
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F 
"~ = K ( ~ w  T)  4 , (3 )  

where the only quantitative estimate of the prefactor so far comes from lattice simulations which yield x~  O ( 1 ) 
[ 9,11 ]. To circumvent the afore mentioned difficulties and still try to gain some insight by analytical methods 
we would like to elaborate on the idea to describe the electroweak model in the symmetric phase by a massive 
pure gauge theory where the gauge boson mass is dynamically generated [ 12]. The corresponding effective 
lagrangian is the gauged nonlinear a model 

2 
LP~fr= -- ~--u"--l~'a ~,~u,_ qW Tr[ (U- I  D u U ) ( U  -~ DuU)] , (4) 

where Du=Ou- igW u and U is a unitary matrix transforming as U'= VU under gauge transformations 
V(x)  =exp[  - ( i /2)Aa(x)ra],  while L/q~fr and U -1 DuUremain unchanged. Concerning the choice of this model 
some comments are in order. It is well known [ 13 ] that higher order contributions to the self-energy of the gauge 
boson propagator in high temperature Yang-Mills theories develop directional singularities which potentially 
generate a "magnetic" mass ~ g2T for the spatial components of the gauge fields. The value of this mass cannot 
be calculated perturbatively and is as yet unknown. However there are arguments [ 13 ] and analytical [ 14 ] as 
well as lattice calculations [ 15 ] which indicate that it is nonzero. While these results are not entirely conclusive 
we assume the magnetic mass to be nonzero and give it a coefficient mo which we treat as a parameter of the 
theory, i.e. row= m0g2T henceforth. Now the theory has a sphaleron solution again around which we can expand 
semiclassically. Since we will be working in the background gauge Wo = 0 we can in a first approach neglect the 
fact that the time components of the gauge fields develop a different "electric" mass. The only effect of the Higgs 
fields here is to give a dynamical contribution to the magnetic mass. For the known classical solutions of the 
field equations the Higgs fields remain at their vacuum expectation value zero and hence do not contribute to 
the saddle-point, in fact there are indications that they partly decouple from the gauge fields in the symmetric 
phase [ 16]. The high temperature effective coupling of the theory (4) is now given by ot3=4~z/m o where all 
references to the coupling strength of the theory and the temperature has disappeared. 

To obtain the classical solutions of the theory we choose the temporal gauge W8 =0  and parametrize the 
remaining fields by the spherically symmetric ansatz 

fCr(~ ) ( i  ~_z) Wa(X)= 1/fA(r)--I + f n ( r )  (r2(~ia__XiXa)+ XiX a U (x )=ex p  ~O(r) . (5) g \ r 2 ~iamXm F3 

We still have time independent gauge degrees of freedom left which are fixed by takingfB (r) = 0. This ansatz is 
then inserted into the field equations and the resulting differential equations for the radial functions are solved 
numerically. For the parametrization chosen here these equations are 

r2mZwO ' 
f g, = f-~ ( f  ~,--1) + mZw(fA--Cos O) + fAJ~C, fc - -  r2mZw + 2f  ~ , 

r=O"+2rO'--rZf'c --2rfc --2fA sin 0 = 0 ,  (6) 

with boundary conditions 

f A ( r ) ~ l ,  O(r)~O for r ~ 0 ,  

fA(r)-- ' l ,  O(r)--,2n for r--.oo. 

Our theory is mathematically equivalent to the one obtained from the SU ( 2 )-Higgs theory by taking the limit 
of  infinite Higgs mass and coupling [ 17,18 ]. We therefore know that it has a whole series of classical solutions. 
There is one solution with constant 0 (r) = n, energy Esp = 5.41 mw/aw and winding number q = 0.5, commonly 
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referred to as the sphaleron solution which was considered in ref. [ 12] as the relevant configuration for B + L 
violation. However, this solution is not the lowest energy solution of the field equations and furthermore has an 
infinite number of instabilities [ 18 ]. There are further solutions termed deformed sphalerons because they have 
winding numbers different from 0.5. In contrast to the sphaleron these deformed sphalerons are not CP invar- 
iant, so they always come in pairs related by CP conjugation. For the lowest energy deformed sphalerons with 
only one direction of instability we find Esp = 5.07m w/Olw and winding number q = _+ 0.375 in agreement with 
refs. [ 17,18 ]. Note that these energies now rise linearly with mw ~ T, so one does not lower the Boltzmann 
suppression by raising the temperature. In ref. [ 19 ] it was shown for the case of quantum mechanical tunneling 
that only saddle-points with a single unstable mode are related to the decay ofa  metastable state. It is not entirely 
clear to us if this statement generalizes to the case of thermal transitions. But even if it does not we expect the 
lowest energy saddle to be the dominating one, so for the rest of this paper we will restrict ourselves to consider 
transitions over the lowest energy deformed sphalerons. 

In ref. [ 6 ] it was shown that a calculation of the full fluctuation determinant is possible by exploiting the 
symmetries of the sphaleron solution and performing a partial wave decomposition of the fluctuations with 
respect to the total angular momentum operator]  characterizing these symmetries. In terms of this decomposi- 
tion the physical zero modes belong to the j =  1 part of the determinant [4,6 ]. Apart from these modes we will 
in a first step only consider the spherically symmetric, i.e. j =  0, part of the fluctuations, since the unstable mode 
is to be found in this channel [ 18 ]. We then determine the eigenfunctions of the unstable mode and, as a by- 
product of our numerical procedure, obtain a rough estimate for the j = 0 part of the determinant. The calcula- 
tion of the transition rate now essentially follows those in refs. [4,5 ]. Consider fluctuations around the sphale- 
ron configuration, 

a a a 
W i - - W s p i ~ - ~ i  , U...~Usp-~- ~ . (7) 

Spherically symmetric fluctuations of U are restricted to fluctuations of the radial function 0= 0sp + ft. The gauge 
zero modes obtained by transformations V(x) =exp[  - ( i /2 )Aa(x) r  a ] from the sphaleron are given by 

1 i za=-g  (DiA) a, tl=-~zaAaUsp. (8) 

Here and in the following the covariant derivative is built with the sphaleron background field. To avoid count- 
ing these unphysical zero modes in the path integral one has to impose a gauge fixing condition 

m 2 
(DiZ,)a--i -~g Tr(/TtTaUsp - -  g~pTall) = 0 .  (9) 

The (Re= ~ ) gauge fixed static fluctuation hamiltonian then takes the form 

Hn = d3x ½ (D~x~)a(D,xj)a+gE,,b~F~z,bx~ -- -~-fl(D~X~)axa + 2g2 

2 [ . a a  g r--il fl,Z,]X, xa+lfl'2~.__2 ( 1  1 a ' , ( 1  g r---31 W~X,X~) +mw ~ZiZi- - c o s  Off Z~- ~3Zixixa)+~ sin Off z W ~ -  

1 a 2 2 + q'-sinOfl-~,iarnZiXm-JCcosO~ ( ~  g~,iamWaXm)]--C'ta[--(DiDi)ab-l-mwt~ab]Cb}, (10) 

where c a, cta are Fadeev-Popov ghosts and we have dropped the index "Sp" from the sphaleron solution 
W~, O. Besides the gauge zero modes there are also physical zero modes corresponding to spatial translations 
and rotations of the sphaleron solution, which have to be integrated separately using collective coordinates. The 
naive spatial transformations have to be supplemented by appropriate gauge transformations such that they 
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fulfill the gauge fixing condition (9). Carrying out the procedure described in refs. [4,5 ] we find the normalized 
volume factor 

(~/'V) = 87~ 2 V (~tr~r°t) 3/2 
(27tfl~w) 3 , ( 11 ) 

with 

~tr=l f d x (  4 f ~ + 2  (f2A-1)2 ) xZ +4fgf2A +XZ(f~ +O'Z--20'fc)+ 2f~ + 2--4fA COSO =5.07, 

~rot=l [dxx2(2fZAj~c+2 (f2A--1) 2 1--f2A 16 fAfc x z + 2 f ~ + 8 ~  Q-16f'gP-x x R 

+2(fA -- 1 )2+ 32(PZ+R2) + 16Q2+ ( 1 - cos  0) ( 16P+ 4fa) + 16 sin 0 R)  = 1.53, (12) 

where the auxiliary functions P, Q and R satisfy the differential equations 

V"= 2 P ' + (  f - 2 + l  ) 2fA , o  f k  
- x \ ~  + f  2 + 1 P -  Q +  2R ~fc + f  Cl , -  2x '  

( f ~ )  4fA 1--f  2 
Q,,=_2Q,+ 2 +1 Q---~TP+ 2x 2 X 

+ + f ~ + l  R - 2 f c e ' - e f ' ~ -  2 f o p _ Y e A  (13) 
x ~ x 2 x '  

with x = m wr. 
Next the spherically symmetric fluctuations are parametrized by 

x a ( x ) - ~ ! ( ( ~ A ( r ) ' i a m X r n q - ~ ( r 2 t ~ i a - - X i X a ) q - N / f 2 ~ X i X a )  r 

X a 
f l ( r )=  V/2~D(r),  c a ( x ) = f ( r )  - - ,  (14) 

m w  r 

and yield the following set of coupling differential equations for the fluctuation frequencies 09: 

) dx 2 xdx  + x f + f 2 + l  OA--2fc0h-- + f ~  ¢n+x /~s in0¢~+2  ~C=032~A, 
- -  X 

cos00o d 2 2 d + x 5- x 
d x  2 x d x  

=0320B, 

( dx 2 

( dx 2 

( dx 2 

2 d +2 +1 ¢~c+2~r2 
x dx  x U  - -  x 

2 d  
xdx  

+c°s 0 2fA ) + ~  sin 0 0A + x/~fA--COS 0 0a 
x2 +1 ¢~ - - ~ - -  x =0320° 

2 d 4 - 2 f ~  "~r 
xdx  + x ~  + l p =  032ef, (15) 
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where we have changed to the dimensionless radial variable x = m wr and frequency th = og/mw. Note that there 
is no decoupling of channels with definite parity because the deformed sphaleron is no eigenstate of the parity 
operator. 

We estimate the frequency spectrum by putting the system in a sphere of radius R much larger than the sphal- 
eron radius m ~.1 and imposing boundary conditions rOi (r)--, 0 as r ~ 0  and ~i (r)--, 0 as r~R, Then the eigen- 
value equations (15) are discretized and diagonalized numerically. We find one negative eigenvalue 
o9 2 = - 3 . 9 5 m  2.  This value is confirmed by using it and the corresponding eigenfunctions as initial estimate 
for the solution of ( 15 ) in i relaxation routine. The eigenfunctions of  the unstable mode are displayed in fig. 1. 
Fluctuations around the vacuum are obtained from ( 15 ) by lettingfA (x) ~ 1, 0 (x) ~ 2n. The difference between 
the free energies of  the sphaleron and the vacuum is [4] 

1 ~ ( l - e x p ( - m o g  2a)°)l-exp(-rn°g2th/) 1-exp(-m°gZ~b°i)~l-~xp(-~]' AF=Fs-Fo=Es ,+  ~=1 In + ln  (16) 

where we have assumed that the divergent zero-point oscillations can be absorbed by a counterterm whose finite 
effects are small. A crude numerical estimate (accuracy ~ (10-20) %) of the entropy factor is given in table 1. 
We have not pushed for higher numerical accuracy because the uncertainty due to our lack of knowledge about 
higher angular momentum parts of the entropy factor is larger than the numerical uncertainty. For the case of 
the sphaleron in the phase with broken symmetry it was shown that the higher partial waves give important 
contributions to the determinant [ 6 ]. The point here is merely to see if there is any entropy suppression already 
in the spherically symmetric channel. 

Collecting the results the formula for the transition rate over the lowest energy deformed sphalerons reads 

F 
=?(mo)T 4 e x p [ -  f l ( A F - E s p ) ] ~ ,  (17) 
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Fig. 1. Eigenfunctions of the unstable mode. Solid line: XOA(X); dotted line: x0B(x), dashed line: X0c(X), dash-dotted line: XOD(X). The 
eigenfunetions are normalized to f dx x2 ( O 2 + 0 ~ +0 2 +020) = 1. 
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Table 1 
Entropy factor of  the spherically symmetric fluctuations. 

22 April 1993 

mo exp [ -- fl(z~F-- Esp ) ] 

0.1 42.3 
0.2 27.1 
0.3 19.5 
0.4 14.8 
0.5 11.8 
0.6 9.5 
0.7 8.1 
0.8 6.9 
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Fig. 2. The contributions of  the single negative mode and the zero modes to the prefactor in the transition rate. 

where 

(~t~ot) smh(~mog o91) l a _' 3/2 • , 2 - o  
7( mo) = m o  [t~_ ~mog ogj=l) e x p ( - f l E s p ) ,  r~ ot 3 sin(½mog2O3-) [s inh( t  2 -0  ]6 ( ~ 8 )  

and ~ contains the fluctuation determinant o f  all channels with j > 0 .  We have extracted a factor 
[ sinh ( ½ mog2o~°= 1 ) ] 6 from the j =  1 channel putting o3°  1 ~ 1 to compensate for the zero modes which have been 
integrated separately. The factor Y(mo) is shown in fig. 2. To see the relevance of  this result one has to compare 
the rate of  B + L  violating processes induced by the sphaleron transitions [ 3 ], 

dNn 13 3 _F' 
1"9-  Nn dt  ~ - T nffl -~ , (19) 
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(here NB denotes the baryon excess) with the Hubble expansion rate H =  1.66 x/~/fl2Mp~. Plugging in our re- 

suits and taking g* ~ 100 one finds 

I Fa____/I ~ 1.177(mo) )t4r,,~ exp[ - f l ( A F - E s p ) l t ? .  (20) 
H 1 

Without much playing around with different parameter  values for too, ~ and T it is easy to see that for mo< 0.5, 
say, there will be a substantial effect even for some moderate entropy suppression coming from 2. 

The effective coupling or3 does not tell us anything about the validity of the one loop approximation since it 
does not contain any scale. Instead we have to compare the contr ibutions of the saddle point  arid the prefactor 
to the final result. The quant i ty  which was evaluated in saddle-point approximation is Im Zsp/Zo. From this we 

divide out the volume factor VT 3 and thus compare ln{y(mo) e x p [ - f l ( A F - E s p ) ] / e x p  ( -  flEsp)} with flEsp. 
We find that for mo> 0.3 the logarithm of the prefactor is always less than 10% of the saddle-point contr ibution 
such that one can trust a one loop calculation. Unfortunately,  for the most interesting range with mo < 0.2 the 
prefactor is already ~ 30% of the saddle contr ibut ion and the approximation is not a good one anymore. Of  
course matters change again for values of g much different from one. Another remark concerns the validity of 
the dilute sphaleron gas approximation. In ref. [3 ] it was shown that one has to demand (N/V) I/3R << 1 for the 
sphalerons to be sufficiently diluted, where N ~  Im Zsp/Zo is the number  of sphaleron transitions and R ~ m ~v 1 

the sphaleron radius. Because of mw~g2T in the model considered here the temperature cancels out of the 
condit ion such that it is always fulfilled. 

Restating our result in the form of ( 3 ) we find that even in the best case x ~ O ( 10-1_ 10- 3 ) for the model (4) 
we considered. In conclusion we have a qualitative picture indicating that there is a parameter range for the 
magnetic mass of the W-boson in the symmetric phase for which we find a substantial rate of sphaleron transi- 
tions leading to B+L violation. However, this rate is falling short of  the lattice results by at least one order of 

magnitude. 

I would like to thank W. Buchmiiller, T. Yanagida and T. Helbig for helpful discussions. 
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