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We comment on the numerical calculation of the Lipatov pomeron in the measurement of"hot spots" in deep inelastic scatter- 
ing. We illustrate that previous analytic estimates based upon the leading term in the Lipatov equation are accurate within 20%. 
We present evidence that numerical calculations should be done with a fixed oq. The use of a running as appears as an unnecessary 
complication. We argue that at low Q2 the BFKL pomeron requires higher-order corrections. 

1. Some time ago Mueller and Navelet [ 1 ] have suggested to measure, in hadron-hadron  collisions at high 
energies, a particular configuration of  jets in the final state which allows to observe, for the first time, the Balit- 
sky-Fad in -Kuraev-Lipa tov  (BFKL) pomeron [2 -5 ]  in QCD. More recently, Mueller [6] reformulated this 
measurement for deep inelastic scattering at HERA. The idea is to identify in deep inelastic scattering (charac- 
terized by xB, Q2) events with one jet in the hadronic final state which carries transverse momentum kj 2 ~ Q2 
and longitudinal momentum fraction xj >> xB. This corresponds to an off-shell photon-off-shell  gluon (quark) 
scattering process in the limit s / Q  2~ x j / xa  =- 1 / z  >> 1. If  both virtualities are sufficiently large, ors is small and 
perturbative QCD can be used. The leading logarithmic approximation is given by the BFKL pomeron,  i.e. the 
sum of  gluon ladders between the jet-emission vertex and the coupling of  gluons to the photon via a quark loop. 
Due to the choice k 2 ~ Q2 there is no evolution in transverse momentum between the emission of  the jet and 
the interaction with the photon; that is why the BFKL pomeron applies, and not the usual Gr ibov-L ipa tov-  
Altarelli-Parisi evolution [ 7,8]. In impact parameter space, the emission of  the jet takes place close to the 
photon interaction vertex. Therefore, the measurement o f  such jets "explores the region around the photon 
interaction vertex", the so-called "hot  spot". This is quite in contrast to the inclusive measurement of  deep 
inelastic structure functions which averages over the full size of  the hadron and gives no information on the 
spatial distribution o f  partons inside the hadron. The xj/xB-dependence of  the differential cross section for such 
"hot  spot" events depends only upon the BFKL pomeron and not the initial patton distribution Dp(x,  k2). It is 
also believed that first "screening" corrections to the BFKL pomeron might become important  rather soon: they 
should manifest themselves in a suppression of  the measured cross section compared to the prediction of  the 
BFKL pomeron. The analytic expression for these first corrections has been derived recently in ref. [ 9 ]. 

Analytic [ 10-12] and numerical [ 10,1 1 ] estimates of  the BFKL pomeron in the "hot  spot" cross section 
have been discussed by several groups. They all agree in the analytic formula, which, however, introduces an- 
other step of  approximation (the "leading singularity" approximation to the BFKL pomeron) ,  whereas the 
numerical evaluation has been done in different ways. In ref. [ 10 ] the analytic approximation was compared to 
a Monte Carlo simulation, based upon the usual GLAP evolution program. Although there is evidence that in 
the HERA region there is not much difference yet between the GLAP evolution and the BFKL-improved de- 
scription, this comparison seems not really satisfactory. Moreover, a repeat of  the Monte Carlo simulation based 
upon another routine shows quite a distinct answer [ 13 ]. The analysis in ref. [ 11 ], on the other hand, compares 
the analytic approximation with a computer  calculation o f  the BFKL equation, but the latter one is done with a 
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running as instead of the fixed as (Q2) (the derivation of the BFKL pomeron does not include the renormali- 
zation of ot~ which renders the fixed coupling momentum dependence). When replacing "by hand" the fixed 
coupling by the running one, the kt integration in the BFKL equation becomes infrared divergent (whereas the 
original equation was finite), and one is forced to introduce an infrared cutoff. As a result, the numerical answer 
depends upon this cutoff, and this dependence turns out to be rather strong. In summary, both numerical esti- 
mates are unsatisfactory and require a new attempt, namely the numerical calculation of the BFKL pomeron 
with fixed a~. 

Apart from the "hot spot" cross section, the BFKL pomeron has attracted interest also for the x-dependence 
of the gluon structure function [ 14-16 ]. It predicts a rather steep increase in the small-x region. Numerical 
calculations are again plagued [ 11 ] by the dependence upon the infrared cutoff, which appears as a result of 
introducing the running ors. In ref. [ 16 ] this dependence turns out to be so strong that, in our opinion, it seri- 
ously raises the question whether (and how) the BFKL pomeron can be used at all in this context. 

In this letter we present results of a new numerical calculation which, as we hope, will help to clarify both 
questions, the comparison of  the analytic approximation to the "hot spot" cross section with the BFKL pome- 
ton, and the use of the BFKL pomeron for the gluon structure function at low Qo 2. We have done, for the "hot 
spot" cross section, a numerical analysis of the BFKL pomeron with fixed a~, and we find surprisingly good 
agreement with the analytic "leading singularity" approximation. In a second step we have analyzed, in our 
numerical calculation, which region of transverse momentum gives the dominant contribution. For the "hot 
spot" cross section in the HERA region (and above), at kj 2, Q2 between 50 and 100 GeV 2, the transverse mo- 
mentum is concentrated in the region above 1 GeV 2. This supports the expectation that the leading power in xj /  
)ca becomes visible before the diffusion in transverse momentum has reached the dangerous infrared region. The 
use of the running coupling, therefore, appears as an unnecessary complication. For lower Q2, however, the 
situation is very different. The dangerous infrared region k2< 1 GeV 2 now becomes an essential part of the 
integration region, and higher-order corrections cannot be neglected. 

2. The differential cross section for the "hot spot" process reads #1 [ 10] 

x, kl  
d4a 4nc~ra 1 q.¢ 2 [  (x~  ) 1 - y  pq (x j  , ) ]  

- - -  ~ eq Yqh k 2, Q2 -t- - -  ~2 k] ,  Q2 
dxj dk2j dxB dy Q2 2 ,- ' Y MEXB \XB 

× 4--~-  xjDf~(xj, k ~ ) + ~  [xjDf~(xj, k~)+xjDf~(xj, k])] . (1) 
F1. 

The @i are defined analogously to the canonical Wi. In the limit Xn/Xj << 1 they are given by Lipatov ladders 
with a suitable coupling to the virtual photon and without external gluon propagators. The second part describes 
the jet-emission vertex, and the expression in square brackets contains the parton content of the proton, para- 
metrized in terms of the structure functions. 

The @i are solutions of the BFKL equation [ 2-4 ] averaged over the angle in the transverse momentum plane: 
o o  

0 ( 1 ) k 2  Nears ,2 k 2 [  1 (1  k'2X~_( 1 1 ) (1 k 2 ) l  
f I k'2l Q2j k,21 (k4+4k,4) ,/2 ~i 7 '  0 1 0 g l ~  @' ' - ~  = n a d k  -k 7~ k 2 -  qg, , Ik2 ~ 
0 

(2) 

As the initial condition we take the sum of quark-box diagrams ~ (o) [ 10 ] (quark masses are neglected): /.tip 

~o) = _ ½ (411 + I2 ) ,  (3) 

#1 In comparison with ref. [ 10] slightly different definitions for the @i are used. In particular they contain no external gluon propagators. 
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Pq @~0)=_4(311  +¼12), (4)  M2XB 
l l 

Ii ~ __cb(O) n,unvX§ -1  Q2y2(1-y)2 + y ( l - y )  (5)  
4 n = u ~  ~- e q2  - 4-7~°tsQ 2 dxdy _ x ( l _ x ) k 2 y ( l _ y ) Q  2 

o o 
I I 

iz= ldp(uO)gu,,= ~ot~Q2 f f dx ~ ( k 2 [ 2 y ( 1 - y ) -  l+ 2x (1 -x )  ]'~ 
ay~ ~ - 1  ~ - y - ( ~ - y ~  ) "  (6)  

0 0 

We choose our evolution to start at z =  1 (this differs from the t reatment  of  ref. [ 11 ] where the starting point 
is Zo= 10 - I  ). For the numerical solution the BFKL equation (2)  is discretized in k 2 (a similar method was 
employed in ref. [ 17 ] ). This procedure leads to a system of  ordinary differential equations which can be solved 
with a Runge-Kut ta  one-step method.  For the discretization we introduce an upper  and lower cutoffk2/k 2 and 
transform to the new variable t = log (k2 /k~) / l og  (k~ /k  2). The integral is approximated  with the t rapezium rule. 
The kernel in (2)  is singular for t=t'. However,  for q~i differentiable in k 2 the full integrand in (2),  I(t, t'), has 
well-defined limits t'Tt, t'J,t. We put 

l(tl, t l ) =  lim I ( t l ,  t ' )  , (7)  
lrJ, l l  

I(ti, ti)=½(limI(ti, t ')+ \ t'~t, limI(ti, 

I( tu, tu) = lim I( tN, t') . 
l t ~ tN  

(8) 

(9) 

In this way we obtain the matrix equation: 

• (k2(t,), y) = ~ K(k2(t,), ~:2(tj))~(k2(tj),y), (10) 
j = l  

where y =  In 1/z. We have tested the stability of  our results against variat ions in ko 2, k2F and N. For the calcula- 
tions we use kg = 10-12 GeV 2, k~ = 1016 GeV, N =  200. The functions ~1, ~2 are calculated for different values 
ofk2j/Q 2 and values o f  2 = X B / X  J between 1 and 10 -6. The results are compared  with the approximate  analytical 
solution of  the BFKL equation [ 10], 

Qf~ l {l'~ x(°, { - ( logk2 /Q2)2"~  AI 
tj~l = k 2 exp - ~ . . . . .  , 

~, 2z (0)log 1/z ,] x/28N~a~((3) 

Pq 02 =k2  Q~2 1 _ (1~  xw) {-(logk2/Q2)2~ A2 (11)  
M2XB l X / / ~ I ~ \ z ]  exp ' ,  ~ ~ - z  ) x/28Nc ot~ ~(3 ) ' 

where 

z ( o ) = N c a s 4 1 o g 2 ,  z " ( o ) = N c c q 2 8 ( ( 3 ) ,  (12) 
7~ 

and A 1, A2 collect factors resulting f rom the quark-box integrals. 
Numerical  results for the ~i  at different ratios k2/Q 2 are shown in figs. 1 and 2, curves for the cross section 

in fig. 3. The solutions in figs. 1 and 2 show the characteristic power behaviour  of  the BFKL pomeron  (straight 
lines in our double logarithmic plot) for z ~ 1 0 -  3, 10-4. In general the analytic solution overest imates the nu- 
merical one. It can further be seen that the analytic solution becomes better  as the ratio k~/Q2 is getting close to 
1. For small k]/Q 2, we are closer to the deep inelastic situation: before we reach the power behaviour  of  the 
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Fig. 1. Structure functions ~1 (lower curves) and ~2 (upper 
curves) for Q2=100 GeV 2, kj2=10 GeV 2, and 10-6~<z~<l. 
Straight lines show numerical calculations, dashed lines repre- 
sent the analytic approximation. 
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Fig. 2. Same as fig. I but for kj 2 = 100 GeV 2. 
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Fig. 3. Differential cross section for the "hot spot" process at 
HERA for different values ofxjQ 2 is 100 GeV 2 and kj 2 is 50 GeV 2. 
Dashed lines show calculations based on the analytic approxi- 
mation. The number of flavours is 5, and the EHQL1 parametri- 
zation of parton distributions is used. 

BFKL pomeron,  there is an intermediate region in which one sees the small-x behaviour 

1 l o g  . ~ exp log z 

This indicates that contr ibut ions from non-leading singularities depend on log k 2 / Q  2 in a more complicated 
way than the leading one. The differential cross section (fig. 3) shows surprisingly good agreement (within 20 
percent or less) between the analytic approximation and the numerical  curve, for z <  5 × 10-2. This is in agree- 
ment  with what was found in ref. [ 10 ]. Clearly, for larger xj the straight l ine-behaviour is better visible than for 
the smaller x-value. 

3. Having established that our fixed-coupling version of the BFKL pomeron is not too badly approximated by 
the analytic formula, we now move on to the second question raised above, namely whether we better should 
have used the runn ing  coupling instead. As a criterion for the necessity of introducing higher-order corrections 
(the use of the runn ing  coupling amounts  to taking into account a subset of these corrections) we study the 
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distribution in transverse momentum inside the BFKL equation. A strong emphasis of  low momenta would 
indicate that a substantial part comes from a region where as is not small, and higher-order corrections are 
expected to be essential. 

It is well known [ 3 ] that the iteration of the BFKL kernel describes a random walk in log k 2. Starting from 
some initial distribution in k 2 (e.g. the quark loop in our cross section), each iteration of the BFKL kernel leads 
to a broadening of the/q-distribution. After a sufficiently large number of  steps (or for sufficiently large rapid- 
ity), the following diffusion equation holds: 

0 2 
c':':3 ~(Y, ~)=O)o ~(y, ~ ) + C ~  ~(y, ~) ,  

Oy 

where 

(13) 

~ (k2)  (14) 

~(y ,  ¢) = v / ~  , 
k 2 

~----log ~-~, (15) 

N c ~ s  ~o= 4log 2, (16) 
It 

C -  Nccts 14~(3).  (17) 
It 

This equation is solved by the following Green function: 

1 ex { _  (~_~,) 2"~ G(y,y'; ~, ~') = e x p [ o g o ( y - y ' ) ]  [4itC(y_y,) ]~/2 P k ~ c ~ . ] "  

In particular, it follows from this equation that the mean square deviation grows linearly in rapidity: 

(18) 

~ = ( ( ~ -  ~,~,a,,)2 ) = 2Cy. (19) 

Fig. 4 shows a numerical calculation of the (normalized) momentum distribution ~(y, ~) as function of 
rapidity. As initial distribution we use the result for the quark loop which (after multiplication with 1 /v /~ ,  z ) 
has the shape of a (slightly asymmetric) gaussian. With increasing rapidity, the distribution broadens, whereas 
the center stays the same. In fig. 5 we plot, as a measure for the width, the mean square deviation. For small 
rapidity, it is larger than the analytic prediction; for large y it reaches the value obtained from eq. (19) 

4. Next we wish to study the growth of the width of the momentum distribution during the BFKL evolution. 
The evolution in log k 2 in fig. 5 shows that the contributing momenta rapidly enter the dangerous region k 2 < 1 
GeV 2 where as starts to feel the Landau pole and becomes large. Yet one has to keep in mind that fig. 5 shows 
an "unrestricted" evolution, whereas for the "hot spot" process we are interested in a sharply peaked (at k 2 ) 
momentum distribution. This means that we have a random walk in the transverse momentum plane with the 
additional condition that we want to reach a particular final point. At every point of the ladder we can view the 
momentum distribution as a folded distribution of two evolutions originating from above and from below. It is 
this product distribution which gives a measure for the contributing momenta in our specific process. 

For fixed rapidity gap y=log  1/z, z= 10-4, corresponding to an optimistic HERA value, we evolve with the 
BFKL equation simultaneously from the quark-box and from the jet vertex. We define the product distribution 
~rJ2(Yl,~) ~'/i (Y--Yl,~) in ~ as a function of yl, where ~u2 refers to evolution starting from the jet vertex and ~l to 
the evolution from the quark loop. As a measure for the dominant region of integration along the ladder in the 
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Fig. 4. The normalized distr ibution function ~ ( ~ = l o g  k2/Q 2) 
calculated with the quark box as initial condition for three differ- 
ent values ofz.  
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Fig. 5. Width (4) of  these distributions in log k2/Q 2 as a function 
of  z (straight lines). The dashed lines correspond to the analytic 
result, eq. ( 19 ). 

"hot  spot" process we calculate the width of  this product  distribution. Formally, the dependence upon xj/xB of  
the differential cross section ( 1 ) can be written as 

f 6(k  2 - k  2) Cb(y, k2/Q 2) dk 2 
d a ~  j ~ ] l ~ -  [k 21,/2 k 2 

~w2(o, ~)~.(y, ~). 

(20) 

(21) 

In the second line we have turned to the discretized version and replaced the integration by a summation.  
Numerically, T, (y, ()  is the result o f  Nevolu t ion  steps: 

7/, (y, ~) = [ ( 1 + AyK)~® ~o ] (Y, ~) • (22) 

This means that we can express the cross section equivalently in terms of  our product function: 

~2(0, ~)T~1 (y, ~) 

= W2(0, ~)T[ ( 1 + AyK)N® Wo] (Y, ~) 

= [ ( 1 + AyK)M® ~2(0) ] (Yl, ~)T[ ( 1 + AyK)N-M® ~0] (Y--Y,, ~) 

= t/'t2(Yl, ~)Tt/'/l (y- -y l ,  ~) • 

(23) 

(24) 

(25) 

(26) 

In fig. 6 we show, for different values o f  y, but fixed z =  10--4, the momentum distribution, i.e. the weight o f  
the different terms in the sum (26).  The full curve belongs to the distribution at the quark loop (nearly a 
gaussian with center at Q z=  100 GeV2), the dotted line corresponds to the jet vertex (sharply peaked at k 2 = 
50 GeV 2) and the dashed line to a rapidity value ha l fway in between the two extrema (almost a gaussian with 
the center between Q2 and k 2). For a better illustration of  the spread in transverse momentum we have calcu- 
lated the center o f  the distribution (~m~,) and the root o f  the mean square deviation (4) as a function o f  
z, (~=logk2/Q2). Fig. 7 shows the results, translated back into k 2. At the quark loop (left hand side, at Zl ~ 10 -4)  
we start with a finite width. Moving to the right, the width increases, reaches a maximum and then decreases 
towards zero. As the most important  result, the width never reaches below 1 GeV 2. Obviously, for a smaller z- 
interval we expect the "cigar" to become thinner, and a change in Q2 and /o r  k ] will move the tips of  the "cigar" 
upwards or downwards. 
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Fig. 6. Normal ized  product distribution ~P~ ~P2 for fixed rapidity 
gap z =  10 -~  and three different values of  z I (corresponding to 
yl = log  l /Z l ) .  
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Fig. 7• Evolution of  width and m a x i m u m  in k 2 of the product 
distribution ~1 (YL, ~) VJ2(Y-Yl, ~) as a funct ion ofzm = e x p (  - y ~  ) 
for fixed rapidity gap z = 10 - 4. 

¢,(kVq2=o.45,z= 10-') 
100.0 

05.0 

70.0 

55.0 

40.0 

25.0 

10.0 

 ii iiii  ii iiiii! ii!iii!!!!iii iiiiii!iiiiiiiiiiiiiiiiiiiiiiii ! ! -  

i i 

a ~  
i i i i i i i i i i i i i l i  

-15.0 -I0.0 -5.0 0.0 

7~7~ 

! i i i  

i i i T  

5.0 
Logt0(k02- GeV -z) 

Fig. 8. The structure function ~ l  ( k 2 / Q  2 : 0 . 4 5 ,  2 =  10 -4 )  from 
the BFKL equation, as a function of  the infrared cutoff ko 2. The 
dots belong to a calculation with a fixed coupling constant, the 
circles to a running coupling constant. 
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Fig. 9. Relative error d--- I~k~=O-- @k~ I/~k2o=O of (PI(k2/Q 2 

=0.45, z= 10 -4) as a function of the infrared cutoff ko 2 calcu- 
lated with fixed as with respect to the asymptotic value k2o - ,0 .  

This result suggests the following picture• Obviously, for the "hot spot" cross section in the HERA region and 
k 2 ~ Q2 between 50 and 100 GeV 2, the region below 1 GeV 2 is inessential, and it should not matter very much, 
if we introduce a cutoff, say, between 0.5 and 1 GeV 2. Now we could switch from fixed to running as. We expect 
the variation to be moderate, i.e. there is not much difference whether we use fixed or running c~s. This, however, 
changes if we lower the cutoff and get into the vicinity o f  AQCD: whereas the fixed-coupling version should 
remain approximately constant (we know that it has a finite limit for zero cutoff ), the running-coupling version 
starts to grow rapidly. If, on the other hand, we increase the cutoffbeyond 1 GeV 2, we start to take away a part 
of  the essential region of  integration: consequently, both versions (running or fixed) should decrease and strongly 
depend upon the value o f  the cutoff. 

This is all illustrated in fig. 8 where we present the ~ function (at fixed z, Q2, and kj 2) as a function of  the 
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infrared cutoff. For comparison, we show both versions (fixed and running coupling). Starting from the left one 
sees that ~ is approximately constant when fixed ors is used (dots)  and k g is small. When ko 2 increases the phase 
space gets smaller and ~ decreases. For ko 2 = 1 GeV 2 one finds a relative deviation of  up to twenty percent 
whereas for still larger k 2 the decrease proceeds much more rapidly. In the calculation with running coupling 
(circles) a similar behaviour is found for k 2 above 1 GeV z, whereas for lower values one soon reaches the 
Landau pole, and ~ diverges. Fig. 9 shows the relative deviation of  the cutoff  version, normalized to the uncut 
version with fixed coupling constant. When the cutoff  reaches the value of  k 2, the relative deviation exceeds 
fifty percent. In summary,  for a cutoff  in the intermediate region the two versions do not differ too much. We 
feel that the use o f  the running coupling presents a somewhat unnecessary complication. 

The fact that the curves in ref. [ 11 ] have such a strong dependence upon the cutoff  is now easily understood: 
the calculations are done with a cutoff  k 2 between 1 GeV 2 and 4 GeV 2, and all these values lie in the region 
well-above the "safe" interval. So they cut away more and more of  the essential part o f  the integration region. 
If, on the other hand, the cutoff  would have been chosen somewhat lower (but not too low), the results would 
have been similar to ours, i.e. close to the analytic estimate. 

The situation with the influence o f  the infrared cutoff  changes dramatically if we try to apply the BFKL 
pomeron to a lower Q2 scale, say, to the gluon structure function at 4 GeV 2. Let us return to fig. 7: assuming that 
the quark distribution at the left hand side has a similar width (remember that the quark loop has been calcu- 
lated for zero quark masses and hence depends only upon the ratio k2/Q2),  and taking at the right hand side a 
distribution of  a comparable shape, there is little doubt  that a substantial part of  the transverse momentum 
integration will lie below 1 GeV 2 (even below 0.1 GeV2). Now, in our opinion, it becomes absolutely essential 
to take into account higher-order corrections to all elements of  the BFKL equation (kernels, trajectory func- 
t ion),  as well as contributions which unitarize the BFKL pomeron. The mere replacement o f  the fixed coupling 
by its running counterpart  seems a rather poor first step. The importance of  higher-order corrections or even 
non-perturbative effects in the BFKL pomeron has also been emphasized (although in a slightly different ap- 
proach)  by Landshoff  et al. [ 18,19 ]. 

5. In this short note we tried to develop a better understanding of  the BFKL evolution in the "hot  spot" 
process. Due to its unique features mentioned in the introduction, this process offers a very appropriate envi- 
ronment  to study QCD effects at small x, i.e. dense partonic systems in the small coupling limit. 

As a first step we have calculated structure functions for this process by numerically solving the BFKL equa- 
tion with fixed coupling constant. This was motivated by the fact that existing numerical studies, in our opinion, 
were not unambiguous We have found that the power behaviour o f  the BFKL pomeron sets in for xB/xj  <~ 1 O- a, 
i.e. in a region which lies at the boarder of  the H E R A  domain. The analytical approximate solution gives a good 
approximation to the behaviour o f  the full BFKL equation. Whether one can measure the Lipatov exponent 
itself clearly depends upon the corrections to the BFKL pomeron which are expected to lower the calculated 
curves. A numerical estimate o f  these corrections seems to be the most urgent task. 

In a second step we tried to estimate whether the use of  the fixed coupling constant in our calculations was 
justified. We first verified the random-walk picture in the variable In kt 2, and compared our numerical calcula- 
tion with the theoretical prediction. Specializing to the "hot  spot" cross section we found that the region of  small 
transverse momenta  contributes very little, and we concluded that there is no need for replacing the fixed cou- 
pling by the running ors. This does not mean that the use of  running ors leads to the wrong result: for our example 
we have shown that there is a domain o f  the lower momentum cutoff  for which the use of  fixed and running 
coupling constant produce almost identical results. As long as the cutoff  is chosen to lie in this "safe" region one 
gets the correct answer. The only problem lies in the fact that, without further analysis, one does not know where 
this "safe" region is. 

From our analysis o f  the relevant region of  integration we also have drawn the conclusion that the use of  the 
BFKL pomeron for the determination of  the x-behaviour of  the gluon distribution at lower Q2 appears, to say 
the least, problematic. Since the region of  rather small momenta  is very important, ors is no longer small and 
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h igher -order  cor rec t ions  are  impor tan t .  Th i s  inc ludes  not  only  the r eno rma l i za t i on  o f  the  coupl ing  cons tan t  bu t  

also h igher -order  cor rec t ions  to the  B F K L  kernel  and,  in par t icular ,  un i ta r i ty  correct ions .  

We thank  A. Mue l l e r  for  a helpful  suggest ion.  
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