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Abstract The gluon contribution to the svuclure function FL(x. Q2) is calculated using ki 
factorizalion. A generalization of this factorization is given, which allows the expression of 
shucture functions and hard CIOSS sections in term of quantities that are well defined within 
perturbalive QCD. 

1. Introduction 

In this paper we calculate. using k~ factorization [l], the gluon contribution to the smcture 
function &(x.  Q2). with the advent of HERA the electromagnetic proton structure functions 
can be determined down to values of Bjorken x 2 at Q2 2 10GeV2 [21 with high 
precision. Among the different structure functions which will be measured, FL(x, Q2) is 
known to be particularly sensitive to the gluon distribution of the proton and may be used 
as an observable to determine this distribution [3,4]. 

Usually, the evolution of the proton structure functions is calculated in fixed-order 
perturbation theory assuming the validity of the collinear approach of the parton model 
and mass factorization. For not too small values of x, x > lo-’, this method works well, 
as demonstrated by various deep-inelastic scattering experiments. However, if x becomes 
very small, for example x - 10-3-10-4, these assumptions may turn out to be invalid. 
As discussed in [5 ]  one should properly account for the k l  effects of the parton entering 
the hard scattering process. This leads both to a modification of the parton picture and the 
factorization scheme used in comparison to the calculations done in the range of medium 
values of x, as discussed below. This method has been applied previously in the high-energy 
limit, using further appropriate approximations (see [ I  ,5-71 for some applications). 

As an example, in this paper we calculate the longitudinal structure function FL(x, Qz), 
taking the k l  effects of the initial-state gluon into account without any approximation in x, 
in order to obtain a coefficient function which is valid in the full x range. This is particularly 
important due to the fact that the gluon density rises rapidly at small x .  Since FL(x, Q2) is 
obtained as a Mellin convolution in x of the gluon density and a coefficient function, the 
small-x part of the former samples the large-x part of the latter, and vice versa. To obtain a 
consistent perturbative description the k l  factorization relation originally used in [ I ]  cannot 
be applied here directly. It has to be transformed into a relation that allows us to express 
FL(x, Q2) only in terms of quantities that are fully defined within perturbative QCD. 

2. ICL factorization 

The calculation of the deep-inelastic scattering cross section presumes the factorization of 
the ‘point-like’ hard cross section of the subprocess from the parton distributions. In the 
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case of incoming partons that are collinear with the initial-state hadrons the factorization 
relation is 

I 

H ( x ,  I r a )  = dxl d r Z S ( X  - XIXZ)G(XI, I r 2 ) U t ( X Z ,  2) (1) 

for an observable H ( x ,  p’). Here, pz denotes an appropriate factorization scale, G ( q ,  pz) 
the parton distribution and ~ , $ ( x z .  p z )  the cross section of the hard subprocess. The kL- 
dependent factorization structure was derived in [ I ]  for the case that the initial-state partons 
are gluons. One obtains 

d2k 
H(x,pZ) = / ~ l  d x ~ d x z S ( x  - x l x z ) 3 ( x l , k ) o ~ ( x z , k , p 2 ) .  (2) 

Here, F(x, k, Q i )  is defined by [81 
!A1 

G(x ,  fiZ) = dk2F(x, k). (3) 

Because the gluon momentum k is expressed in the Sudakov representation k@ = + 
qpg + k? it may depend on the choice of the two light-like vectors p ,  and p z  in general, 
which can induce some scheme dependence when using (2). For the calculation of proton 
structure functions a natural choice of the light-like vectors is q’ = q + x P and P t  where 
a is the 4-momentum transferred to the Droton. P is the omton momentum. and x is the 
Bjorken variable$. 

Since the kinematical range of lkl is 0 < lkl 6 K,, = ,/W. equation (2) 
is not an appropriate definition in general, because F(x, k) is not defined in  perturbative 
QCD at values of k2  smaller than Q i  - 1 GeV’, since non-perturbative terms become 
significant At such low k2 values, factorization relations are introduced to separate non- 
perturbative parts from perturbative terms. In the case of hadronic structure functions one 
may, fortunately, rewrite (2) in such a way that H ( x ,  @*) can indeed be expressed by 
quantities defined perturbatively. Since the K2-dependent coefficient function U,$(., A, pz) 
is only calculated in fixed-order perturbation theory, it is not intended to describe the 
observable H ( x ,  p z )  at arbitmy small scales p z .  For example, in the case of hadronic 
structure functions, one chooses, p z  = Q2 -q2 >> Q i  N a few GeVZ. A comparison 
with experimental data should be done only for these values of Q2. Therefore, in the range 
K Z  = -k2 < Q i  the coefficient functions U,”(., K z / Q 2 )  E &@(x, K 2 / Q 2 )  approach the 
value f p “ ( x ,  K 2 / Q 2  -+ 0).  Thus, one may rewrite (2) as 

provided f ,@ contains no collinear singularity for KZ + 0, which is the case for F&. Q2)§ .  
This is also the reason for the well known fact that f 2 G ( x ,  K*/Q2 + 0) is scheme 
independent in O(cu,). Here, K& = Qz(q  - x ) / x .  Note that (4) depends on the gluon 
distribution x G ( x ,  K 2 )  only at virtualities K 2  which are large enough that it can be 
considered as a parton distribution. Equation (4) will be used for the calculation of the 
structure function FL(x.  Q 2 )  hereafter. 

t In [ I ]  the 4-vectors 1, and P were chosen inslead. 
t Fermion masses were neglecled whenever possible. 
5 The corresponding relation in tho ease when collinear singular terms do occur is given in [121. 
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3. The structure function 

The deep-inelastic scattering cross section may be written as 

For electromagnetic interactionst the leptonic and hadronic tensor L,, and W,, are given 
by 

L," = 2(I,IL + I;!" - g,, I . I')  
(6) 

with I and I' the incoming and outgoing lepton 4-momenta. and M the proton mass. In the 
Bjorken limit the longitudinal stmcture function FL(x, Q 2 )  is obtained via the projection 

(7) 

The coefficient function for the gluon contribution to FL(x, Qz), which yields the dominant 
part, is given by 

where 

1 - 5 1 2  cos@ = 
Q2 J=3 

4K2x2 < = -  

and p denotes the angle between gluon and proton in the virtual-photon-virtual-gluon CMS. 
The functions G&?, t) in (8) may be expressed in a polynomial form by 

where 

W ( t )  = 1 - { + m. (11) 

t At Qz < 500GeV2 the conuibution due to y-2 interference and 121' terms turns out to be very small in the 
kinematical range accessible at HEM [9]. 
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Finally, the coefficients g;:) in (IO) are 
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gg?B) = -$ + ; cosp - ; cos3 p + Q cos4p 

g;'V) = -+ + 2cosp - cosz p - 3 cos3 p + 4 cos4p 

g;:'(p) = cosp - ;coszp - ; cos3p + ;cos4p 

g,, V) = a + y cosp - Tcos2p - + 3 2 p  + Fcos4p 

(L) ( ~ ) = ~ + ~ c o s B - ~ c o s ~ ~ - ~ c o s ~ p + ~ c o s ~ ~  3 9  

g, I LI ( p )  = ; + T c o s p  - 15cos2p - TcoS3p + 4 cos4p 

63, ( p )  = E + x c o s p  - a cm2p - ; cos3p + y cos4p 

gu (6) = 3 + -,cos6 - T C O S  p - ~ c o s 3 p  + yCos4p 

a, 1 go, (B)  = - T +  6cosp - icoszp - 10cos3fi+ $cos4p 

a) I 13 

gl:'V)= 1 + 1 8 ~ 0 s ~ - 2 4 c o s ~ ~ - 3 O c o s ~ ~ + 3 5 c o s ~ ~  

(12) 16 

ILI 

(L) 3 6  

IL) 9 9  45 2 

823 (B) f + 1 8 ~ 0 ~ s  - 42cos2p - 3 0 ~ 0 s ~  p + cos4 ,3 

& ( B )  = 3 + 6  COS^ - 3Ocos2p - locos3 p + 35cos4 p 
(Ll 3 15 2 

(L) 9 45 

(L) 

g41 ( B ) = ~ - ~ c o s  p + S c 0 s 4 p  

g4, (p)  = - E C O S ~ B  + % C O S ~ B  

g4, (p) = ; - * cos2p + $ cos4p. 
The structure function FL(X, Q2) is then given by (4) for i = L .  

one obtains the well known result [ IO]  
In the limit K 2  + 0 the coefficient function f;'"(x, Q2) simplifies considerably and 

(13) 
qG(OI 2 

fL ( x ,  Q2)  = -e&,xZ(l - x ) .  
7r 

The gluonic part of FL(x, Q 2 )  is then represented by 

since the integral over K2 in (4) can be carried out analytically. Equation (4) is the 
generalization of (14) for the case of k~ factorization. Note that in the limit KZ + 0 the 
complete coefficient function as derived in the Altarelli-Patisi approach is obtained, which 
is due to the fact that (4) was derived without further approximations with respect to the 
x behaviour. Furthermore, (4) is an expression for FL(x, Q2)  depending only on quantities 
accessible in perturbative QCD. We have not been specific in expressing anG(x, K 2 ) / a K 2 ,  
since at small x various dynamical effects may influence the scaling violations of the single- 
particle gluon distribution. Among them are effects due to the Lipatov Pomeron [SI and 
gluon-recombination effects [ I  11. A detailed theoretical investigation of these terms within 
perturbative QCD requires further work. The value of expressions like (4) is that they allow 
us to extract the gluon distribution from measured structure functions, and thus to compare 
theoretical predictions on the evolution of xC(x. Qz) directly with data. 

Results of a numerical comparison between (4) and (14). and the corresponding 
behaviour of Fz(x, Qz), are given in [12]. 
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