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The longitudinal structure function Fi,(xz, Q2) at small x
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Abstract. The gluon contribution to the structure function FL(x, 92) is calculated using &,
factorization. A generalization of this factorization is given, which allows the expression of
structure functions and hard cross sections in terms of quantities that are well defined within
perturbative QCD.

1. Introduction

In this paper we calculate, using &, factorization [1], the gluon contribution to the structure
function £ (x, 0%). With the advent of HERA the electromagnetic proton structure functions
can be determined down to values of Bjorken x 2 1074 at Q? P 10GeV? [2] with high
precision. Among the different structure functions which will be measured, F (x, 02) is
known. to be particularly sensitive to the gluon distribution of the proton and may be used
as an observable to determine this distribution [3, 4].

Usuaily, the evolution of the proton structure functions is calculated in fixed-order
perturbation theory assuming the validity of the collinear approach of the parton model
and mass factorization. For not too small values of x, x 2 1072, this method works well,
as demonstrated by various deep-inelastic scattering experiments. However, if x becomes
very small, for example x ~ 1073-10*%, these assumptions may turn out to be invalid.
As discussed in [5] one should properly account for the k, effects of the parton entering
the hard scattering process. This leads both to a modification of the parton picture and the
factorization scheme used in comparison to the calculations done in the range of medium
values of x, as discussed below. This method has been applied previously in the high-energy
Iimit, using further appropriate approximations (see [1,5-7] for some applications).

As an example, in this paper we calculate the longitudinal structure function Fi(x, 0%),
taking the &) effects of the initial-state gluon into account without any approximation in x,
in order to obtain a ceefficient function which is valid in the full x range. This is particularly
important due to the fact that the gluon density rises rapidly at small x. Since FL(x, 0%) is
obtained as a Mellin convolution in x of the gluon density and a coefficient function, the
small-x part of the former samples the large-x part of the latter, and vice versa. To obtain a
consistent perturbative description the & factorization relation originally used in [1] cannot
be applied here directly. It has to be transformed into a relation that allows us to express
Fr(x, Q%) only in terms of quantities that are fully defined within perturbative QCD.

2. k. factorization

The calculation of the deep-inelastic scattering cross section presumes the factorization of
the ‘point-like’ hard cross section of the subprocess from the parton distributions. In the
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case of incoming partons that are collinear with the initial-state hadrons the factorization
relation is

1
H(x,,u.2)=f dx) dxy 8(x — x1x2)G{(xy, pDoF (22, p2) (N

for an observable H(x, u?). I-Iere ©? denotes an appropriate factorization scale, G(x;, 1)
the parton distribution and o, P(x3, u?) the cross section of the hard subprocess. The k-
dependent factorization structure was derived in [1] for the case that the initial-state partons
are gluons. One obtains

d!Zk ]
Hx, ph = f — f dxydxa8(x — x1x2)F(x1, K)ok (x2, ke, 7). (2)
4]
Here, F(x, k, Q}) is defined by (8]

2

Gix, u?) = fo k2 F (x, k). 3

Because the gluon momentumn £ is expressed in the Sudakov representation i# = &p‘," -+
nph + &% it may depend on the choice of the two light-like vectors p; and p; in general,
which can induce some scheme dependence when using (2). For the calculation of proton
structure functions a natural choice of the light-like vectors is ¢’ = g + x P and P{ where
q is the 4-momentum transferred to the proton, P is the proton momentum, and x is the
Bjorken variablei.

Since the kinematical range of |k| is 0 < k| € Kusx = + 021 — x)/x, equation (2)
is not an appropriate definition in general, because F{x, k) is not defined in perturbative
QCD at values of k* smaller than Q2 ~ 1GeV?, since non-perturbative terms become
significant. At such low k% values, factorization relations are introduced to separate non-
perturbative parts from perturbative terms. In the case of hadronic structure functions one
may, fortunately, rewrite (2) in such a way that H(x, #?) can indeed be expressed by
quantities defined perturbatively. Since the K?-dependent coefficient function o} (x, k, ©?)
is only calculated in fixed-order perturbation theory, it is not intended to describe the
observable H(x, u?) at arbitrary small scales pl. For example, in the case of hadronic
structure functions, one chooses, u? = 0? = —¢2 » Qz ~ a few GeV2. A comparison
w1th experimental data should be done only for these values of Q2. Therefore, in the range

= —k2 < 03 the coefficient functions ol (x, K2/0% = f°(x, K?/Q?) approach the
value F(x, K2/ 0% — 0). Thus, one may rewrite (2) as

F.'(x,Qz)—Z[ f f“G( )nG(n, o

f dnf K2 £ X ﬁ) nGn, K?) @
' Q2 K2

provided £3% contains no collinear singularity for K2 — 0, which is the case for FL(x, 0%)8.

This is also the reason for the well known fact that f (x. K*/Q@* — 0) is scheme

independent in O(w;). Here, K2, 2 = @%n — x)/x. Note that (4) depends on the gluon

distribution xG(x, K?) only at vutualities K? which are large enough that it can be

considered as a parton distribution. Equation (4) will be used for the calculation of the
structure function Fi(x, 0?%) hereafter.

t In [1] the 4-vectors {, and P were chosen instead.
 Fermion masses were neglected whenever possible,
§ The corresponding refation in the case when epllinear singular terms do eccur is given in [12].
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3. The structure function

The deep-inelastic scattering cross section may be written as

d’o Ms i

— =2mot——————— L, W, 3
agidy ~ T s g ®

For electromagnetic interactionsi the leptonic and hadronic tensor L, and W, are given

by

Ly = 20,0, + 14y — g1+ 1) ©

, I P P
Wiy = ("S,uu + q;q )Wi(-x 0+ — [(P# - qzq‘?.u)(P - Tq")]w2(x’ 29

with [ and /' the incoming and outgoing lepton 4-momenta, and M the proton mass. In the
Bjorken limit the longitudinal structure function Fy {x, Q%) is obtained via the projection

P
T Watx, 01 - 2 Wi(x, 01 - Filx, @) = EP PWHY. 0!

The coefficient function for the gluon contribution to Fi{x, @%), which yields the dominant
part, is given by

ose; £ 40* xQ? 1. 1+/1T=¢
Sk QY = “(K4 Gi(B. )+ =5 mlog\l_ 1_t[GzL(ﬁ,z) ._
2 2
+2%6., ;;)) ®
where |
4K2x? 1-¢/2
Tt T = ®

and B denotes the angle between gluon and proton in the virtual-photon—virtual-gluon CMs.
The functions G;L(8, &) in (8) may be expressed in a polynomial form by

J
Gu(p.0) = Egﬂ(ﬂ)(w(;)) (10)
where
W@ =1-¢+ 1L, | an

t At 07 < 500GeV? the contribution due to y-Z interference and |2|2 terms turns out to be very small in the
kinematical range accessible at HERA [9].
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Finally, the coefficients g”‘) in (10) are
g = —%+ jcosB—Lcos’ B+ Leos' B
803 (B) = —} +2cos B — cos’ﬂ —3cos* B+ I cos* B
863 (B) = —% + 6cos B~ Fcos® B — 10cos® B + L cos* B

g (B = Cosﬂ - écoszﬁ -3 cos"‘ﬁ +3cos* B

g5 =1 +Lcosp— Leos’~Lcos® B+ Lcos’ B

g?g’(ﬁ) = 1+ 18cos 8 — 24 cos? B — 30cos® B -+ 35cos* B

25 (B) = Z+2cosp—Fcos’B—Loos® f+ Foos'p (12)
85 (B) = £+ Zcos f—15c05" B — L cos® B+ B cos* B

g5’ (8) = 1 + 18cos B — 42¢0s? ﬁ~30cos B+ Seostp

e =3 ECOSﬁ 2 cos? ﬁ 2 cos® B+ £ cos* B

g5 By =3+ 3cos B — Hcos? B — Bcos® B+ W cos* B

g33)(13) =34 6¢c0sf — 30cos? 8 — 10cos® § + 35¢os* B
g B = 33 - Boos? g+ Beos B
85 B =3 -~ Lcos? f+ Weos* B
g5 B =2- ‘2—50052,3 + B cos* g,
The structure function FL(x, Q?) is then given by (4) fori = L.

In the limit K2 — 0 the coefficient function f3°(x, Q%) simplifies considerabty and
one obtains the well known resuit [10]

ffoml(x, 0?) = %eﬁagxz(l — x). (13

The gluonic part of Fy(x, 0?) is then represented by
R 09 =% f %) 26, 09 (14)

since the integral over K? in (4) can be camied out analytically. Equation (4) is the
generalization of (14) for the case of k; factorization, Note that in the limit X 2 .5 0 the
compiete coefficient function as derived in the Altarelli-Parisi approach is obtained, which
is due to the fact that (4) was derived without further approximations with respect to the
x behaviour. Furthermore, (4) is an expression for F(x, Q%) depending only on quantities
accessible in perturbative QCD. We have not been specific in expressing 8xG (x, K?)/3K?,
since at small x various dynamical effects may influence the scaling violations of the single-
particle gluon distribution. Among them are effects due to the Lipatov Pomeron [8] and
gluon-recombination effects [11]. A detailed theoretical investigation of these terms within
perturbative QCD requires further work. The value of expressions like (4) is that they allow
us to extract the gluon distribution from measured structure functions, and thus to compare
theoretical predictions on the evolution of xG(x, Q%) directly with data,

Results of a numerical comparison between (4) and (14), and the comesponding
behaviour of Fz(x, 9?), are given in [12].
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